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Abstract

The history and the contemporary results in homoclinic orbits are reported.

In 1885, the Swedish King Oscar II decided to call for an international competition

on the best mathematical study of an important scienti�c problem. The price was

supposed to be awarded at the day of the 60-th anniversary of the King, January

21, 1989. The competition had to be organized by the Swedish mathematical jour-

nal �Acta Mathematica�. The evaluating committee included the following three:

Mittag-Le�er, the editor of �Acta�, and K.Weierstrass and Ch.Hermit, respected

European mathematicians. The committee propose four themes for the competi-

tion. It is interesting to note here that only three themes were purely mathematical,

whereas the �rst theme (proposed by K.Weierstrass!) was the problem of Celestial

Mechanics. Namely, it was the question on the possibility to represent the solutions

of the n body problem in the form of series in some known functions of time, con-

verging uniformly on the whole real axis. It was also added by Weierstrass: �If it

would occur impossible to solve the proposed problem to the prescribed date, the

prize could be awarded to the work where some other problem of mechanics would

be considered in this way and solved completely.�

Altogether, eleven memoirs from di�erent countries were submitted (anonymously,

in order to make the competition absolutely fair). Two works were awarded by

the prize: it was the memoir of Poincaré �On the three body problem and on the

equations of dynamics� and a work by Appel �On integrals with weights and their

application to the expansion of Abelian functions in trigonometric series.� Somewhat

later both these papers were published in the 13-th volume of �Acta� (1890) along

with the report of Hermit on the paper by Appel. The report of Weierstrass on the

paper of Poincaré was not published at that time1. Of course, the original report

which Weierstrass sent to Mittag-Le�er is available now. Weierstrass wrote: �This

paper cannot, in fact, be considered as the solution of the problem announced for the

competition, but it is so signi�cant, that with its publication, by my opinion, a new

epoch in Celestial Mechanics will start.� It is interesting that among many merits

of this paper he mentions that this work has absolutely no value for the practical

astronomy, moreover, it shows that many methods used by astronomers are wrong.

We will not analyse the entire Weierstrass report and quote only that part which is

related to biasymptotic solutions, the main subject of the present paper: �... even

in the case when the mutually attracting, by the Newton law or by some other law,

1The reason was that the German mathematical community was very angry that the prize was

given to French scientists.
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bodies, in the number greater than two, are moving so that the distances between

any two of them stay always in �nite bounds, even then there exist the forms of

motion which we, before, could hardly suspect about, and for which we do not know

an appropriate (valid from t = �1 to t = +1) analytic expression; the only thing

which is established is that they cannot be given by trigonometric series.�

What are these new motions? To begin with, let us consider the equation

�x� x + x
2 = 0:

It is integrable and its phase portrait is shown in Fig.1. The origin is a saddle

equilibrium state, and the point (1; 0) is a center. One of the outgoing separatrices

of the saddle O(0; 0) returns to it as t ! 1, forming a loop. Since this orbit

tends to O both as t ! infty and t ! +1, the separatrix loop corresponds to a

biasymptotic motion. All this is well known to Weierstrass, since he is, in essence,

the author of the geometric method of drawing phase portraits for the equations of

the form

�x + f(x) = 0:

Analogously, one can consider the motions which are biasymptotic to saddle periodic
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orbits. Thus, consider the system

�x� x+ x
2 = 0

_� = 1;

(1)

where the variable � is cyclic. The phase space of such system is R2
� S

1 where S1

is a circle. Since we identify � = 0 and � = 2�, the study of such system reduces to

the study of the map T : � = 0 ! � = 2� de�ned by the orbits of the system. The

phase portrait of this map is the same as shown in Fig.1, with the di�erence that

O(0; 0) is now a saddle �xed point with the multipliers e2� and e
�2�, having one-

dimensional stable and unstable manifolds W s and W
u, halves of which coincide.

Note that the set of orbits which are biasymptotic to O(0; 0) has now the cardinality

of continuum.

The same situation may take place in an integrable system with two degrees of

freedom when in some level of a �rst integral there exists a saddle periodic orbit

whose stable and unstable manifolds coincide (entirely, or halves of them). Naturally,

even before the given paper by Poincaré, the possibility of existence of such kind

of asymptotic motions in integrable Hamiltonian systems was well known. What

was shown by Poincaré is that in the nonintegrable cases the stable and unstable

manifolds of saddle periodic orbits may intersect not coinciding.

It is the situation which appears, for example, when one considers the following

equation

�x� x+ x
2 = �A sin t;

which may also be written in the form of the system

�x� x+ x
2 = �A sin �

_� = 1:

This system is a small perturbation of (1) as 0 < � � 1. The map T� : � = 0 !

� = 2� still has a saddle �xed point O�, which tends to O(0; 0) as �! 0. In turn,

the invariant manifolds W s

�
and W u

�
will be close to W s

0 and W u

0 (on any compact

piece). However, they may have transverse intersections now, and the phase portrait

at � 6= 0 will now look as shown in Fig.2.

The possibility of such behavior of the orbits in the three body problem was the

subject of one of the chapters of the memoir by Poincaré. Later, in the third

volume of �New methods of Celestial Mechanics�, when describing the behavior of

invariant manifolds in this case, Puancaré exclaims: �If we try to imagine the �gure

of these two curves and their repeated intersections, each of which corresponds

to a biasymptotic solution, then these intersections form something like a grid, a

net with in�nitely tight loops. None of these loops should intersect itself but it

should wind along itself in a very complicated way, so that to intersect all the

loops in the net. The complexity of this �gure which I would not even try to
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draw is astounded. Nothing gives us a better impression on the complexity of the

three body problem and, in general, all the problems of dynamics where the single-

valued integral does not exist.� Now, Poincaré gives the name homoclinic to such

biasymptotic motions. To those orbits which are asymptotic to two di�erent periodic

motions he proposes the name heteroclinic by natural reasons. The genie is released

from the bottle. In the second half of the XX-th century practically all researchers

in the qualitative theory of di�erential equations and nonlinear dynamics will speak

in the language of these notions. As a whole, �New methods� of Poincaré, which

are an extensive version of the prize awarded memoir, became a program monument

which determined the development of the qualitative and ergodic theories of the XX-

th century for many years ahead. This includes the method of a small parameter

for the search of periodic motions in near-integrable systems, the theory of integral

invariants, Poisson-stable orbits and recurrence theorems, asymptotic series and

many other topics.

As for our main subject, the homoclinic orbits, there is, formally speaking, only one

general result belonging to Poincaré: if a two-dimensional map has a homoclinic orbit

which corresponds to a transverse intersection of the stable and unstable manifolds of

a saddle �xed point, then there exists in�nitely many other homoclinic orbits. After

that Poincaré had never returned to the study of systems with homoclinic orbits.

Naturally, the question appears: why? To some extent, the answer is that Poincaré,

being mostly interested in the actual problems of dynamics, gave a special value to

stable periodic orbits. Thus, in the �rst volume of the �New methods� (1891) he
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wrote about such solutions that �they give us a unique insight to the region which was

considered earlier as inapproachable.� Moreover, when he presented the method of

small parameter he conjectured that in non-integrable analytic Hamiltonian systems

stable periodic orbits are dense in compact levels of the Hamiltonian. For the further

understanding, we should remember the following events.

One year before the third volume of �New methods� appeared, i.e. in 1898, a paper

�On geodesics on the surfaces of negative curvature� was published by Hadamard.

In the case of negative curvature all the geodesics are unstable. Indeed, the equation

describing the mutual divergence of geodesics is written, in the linear approximation,

in the following form
d
2
y

ds2
+ ky = 0;

where k is the curvature of the surface. Since k < 0, the behavior near every

geodesics is of saddle type. All two-dimensional surfaces, except for the sphere and

the torus, admit such metrics for which the curvature is constant and negative.

The instability of all geodesics on such surfaces immediately implies that they must

behave in a very complicated, messy way. Notably, Hadamard �nishes his paper by

the question: �Does there exist anything similar in the problems of dynamics and,

in particular, in Celestial Mechanics? If it does, then all the setting of the problem

on the stability of planetary systems has to be radically reconsidered.�

In this connection, the opinion of Poincaré is interesting which can be found in his

paper �On geodesic lines on convex surfaces� (1905). He notes that the paper by

Hadamard is very important but he believes that the trajectories in the three body

problem are not similar to geodesic lines on the surfaces of negative curvature; they,

on the contrary, can be compared with the geodesics on the convex surface and only

the latter can be interesting to the problem of dynamics! The paper by Hadamard

is indeed very interesting because it was in this paper for the �rst time where the

analysis of the dynamics was done by means of the method of symbolic description.

It followed from this description that, in particular, closed geodesics are dense and

all of them have homoclinic orbits, so in any neighborhood of any periodic orbit

and any of orbits homoclinic to it there exist in�nitely many other periodic orbits.

Naturally, Poincaré could notice this. Since all periodic orbits here are unstable, it

was, probably, the reason why he considered such structures su�ciently inessential

for the problems of dynamics2. It also seems to me that Poincaré must know that at

least single-round periodic orbits near a homoclinic orbit are saddle in the general

(Hamiltonian, of course) case as well.

The further development of ideas of Poincaré on the study of homoclinic structures

is due to Birkho�. Here, we must recall, �rst, his paper [1] known as �Pope mem-

oir� (it was submitted to a competition in honour of Pope Pius XI). In this paper

Birkho� shows that a two-dimensional analytic area-preserving di�eomorphism T

2Note that it was quite well known at that time that the trajectories of the ideal gas behave in

an unstable way. Essentially, Boltzmann used this for the explanation (not rigorous enough, may

be) of the irreversibility of the laws of macroscopic behavior. The furious polemic on this matter,

in which Poincaré took part, must be well known to the reader.
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possessing a saddle �xed point O with a homoclinic orbit � which corresponds to a

transverse intersection of the stable and unstable manifolds of O has in�nitely many

single-round periodic orbits (of all periods starting with a su�ciently large one) in

any neighborhood of � [ O. The main idea of the proof can easily be recovered if

one assumes that the map T has a smooth �rst integral3 H(x; y) in a small neigh-

borhood of the saddle O. Let H(x; y) = 0 corresponds to the local stable (W s) and

local unstable (W u) manifolds. Then the neighborhood of the saddle is foliated by

hyperbola-like curves H(x; y) = C with C su�ciently small. Naturally, iterating

these invariant curves forward and backward by the maps T and T�1, we can con-

tinue them alongW u andW s, respectively. SinceW s andW u intersect transversely,

the closed invariant curves will have self-intersection points, as shown in Fig.3.

Namely, the set of the self-intersection points is a curve l emanating from the ho-

moclinic point M . The orbit of any point P on l must stay on the invariant curve

de�ned by the corresponding value of C. Therefore, if such orbit returns, after one

round, to l, it must return to the same point P , i.e. this orbit is periodic. It is ob-

vious that the number of iterations of a point PC 2 l which are necessary to return

again into a neighborhood of M tends to in�nity as C ! 0. Now, it immediately

follows by continuity that there must exist a sequence fCng
1

n=n0
, where Cn ! 0

as n ! 1, such that T nPCn 2 l, hence PCn = T
n
PCn . This means indeed that

in�nitely many periodic points lies in any neighborhood of the homoclinic point M .

3The existence of such integral was proved by Moser almost twenty years later.
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In the same paper Birkho� makes an important conjecture on the possibility of a

complete description of all the orbits in a small neighborhood of the homoclinic orbit

in the language of symbolic dynamics, based on the analogy with the geodesic �ows

on the surfaces of negative curvature. Note that he stresses the necessity of the use

of in�nitely many symbols.

In general, we should mention in this connection a great contribution of the Birkho�

school and, in particular, Morse and Hadlund, to the development of symbolic dy-

namics as an important part of the theory of dynamical systems. Note, however,

that the area of their application of symbolic dynamics remained limited by geodesic

�ows alone.

Explicitly, the problems connected with the study of nonconservative systems was

set up by Andronov. We should especially mention that his approach came from

the problems of the theory of nonlinear oscillations, which was closely associated

with the theoretical radioengineering in those years. It had become clear very soon

that in those cases where the problems admit modelling by two-dimensional sys-

tems a ready mathematical apparatus had, in fact, existed already in the form of

the Poincaré theory of limit cycles and Lyapunov theory of stability. This allowed

Andronov to develop an important thesis that the adequate mathematical image

of self-oscillations is given by rough stable limit cycles. The next step in this di-

rection was made in the paper by Andronov and Pontryagin �Rough systems� [2].

Here, a rigorous de�nition of roughness of dynamical systems was given (a system

is rough if every C1-close system is topologically equivalent to it, i.e. if there exist

a homeomorphism which maps the trajectories of one system to the trajectories of

the other system; an additional requirement was that this homeomorphism must

be su�ciently close to identity4). Moreover, necessary and su�cient conditions of

roughness of systems on a plane were obtained. Thus the idea of roughness as the

stability with respect to small smooth perturbations was introduced in the theory as

the basis for the study of dynamical systems. In fact, this paper allows us to start

to speak about the theory of smooth dynamical systems as a separate mathemati-

cal discipline, because such things as the subject of the study and an appropriate

equivalence relation were quite explicitly formulated here. Of course, this paper

dealt speci�cally with the systems on a plane, but the signi�cance of the notion of

roughness of the system for the multidimensional case was understood quite well.

So, the question on the development of the theory of rough systems for the general

case arose naturally. Thus, in the introduction to the famous book by Andronov,

Vitt and Khaikin �The theory of oscillations� (1937)5 it was directly announced

that in the further volume the authors suppose to develop the multidimensional

theory, including the case of distributed systems (described by PDE's). As Evgenija

Leontovich told me later �we were going to study multidimensional systems.�

However, it did not happen that time due to di�erent circumstances. Andronov

4In the later version by Peixoto the roughness was called structural stability and the requirement

of the closeness of the homeomorphism to identity was abandoned.
5due to the sad circumstances of that time, Vitt was excluded from the authors in th �rst

edition of this book
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suddenly switched to the study of nonlinear problems of the theory of automatic

control. E.A.Leontovich, after her work on bifurcations of limit cycles from the

separatrix loop, devoted herself completely to the writing of the books on the qual-

itative theory of dynamical systems and their bifurcations. Bautin, after he proved

that quadratic two-dimensional systems can have three limit cycles, started to de-

velop the theory of clocks. So, among the four main people of the �Gorky school�,

only Mayer dealt closely with the problem of roughness of multidimensional systems.

However, he did not achieve positive results. Moreover, an opinion of nonroughness

of the systems with homoclinic orbits appeared, at least in Gorky6. Only systems

with simple dynamics (later called Morse-Smale systems) were considered as rough.

It is interesting that Smale also adhere to this point of view when he wrote his

�Morse inequalities for dynamical systems.�

We note that unsuccessful, though comprehensive, analysis of systems with homo-

clinic orbits led Mayer to the solution of the Birkho� problem on the ordinal number

of the center of dynamical systems. Note that the main object in the construction of

Mayer was the geodesic �ow on a surface of negative curvature. It is quite probable

that Andronov and Mayer could understand that such geodesic �ows are rough. But

Mayer died in 1951 and Andronov died in the next year. An explicit setting to the

problem of roughness of multidimensional systems was given by E.A.Leontovich in

her talk on the III Soviet Mathematical congress in 1956: �One should not think

that he notion of roughness is extended trivially onto both these cases. Not speak-

ing about the problem that in the case of a nonautonomous system of the second

order (depending periodically on time) this question is closely connected with the

question about special and regular orbits, which is not clear, here we have a number

of principal di�culties. Analogous di�culties appear in the case of an autonomous

system in the three-dimensional space. I cannot speak about this in detail. I just

can brie�y say that the root of all di�culties is connected to a homoclinic point of

a transformation of a plane.�

To summarize these not so well known events, we limit ourselves by the follow-

ing general re�ection. If one cannot show the transversality of the intersection of

the stable and unstable manifolds of saddle periodic orbits, then the probability is

su�ciently high that in the system under consideration homoclinic tangencies (the

tangencies between W
s and W

u) can appear. It is su�ciently obvious that when

there exists one homoclinic tangencies, then arbitrarily small smooth perturbation

of the system can be found such that the perturbed system will have new homoclinic

tangencies, etc.. Moreover, this can be achieved by generic one-parameter unfold-

ings of the original tangency. So, the homoclinic tangencies behave in a persistent

way in this sense. Undoubtedly, this kind of picture had already been observed

by Poincaré when he gave his geometric proof of the existence of in�nitely many

homoclinic orbits. Indeed, in a one-parameter family of di�eomorphisms T�, which

includes a di�eomorphism generated by an integrable system with a separatrix loop,

even when the single-round homoclinic orbits are rough (transverse) at � 6= 0 (Fig.4)

6In the beginning of 70-s (!) N.F.Otrokov, a former participant of the Andronov seminar,

expressed it to me in the following way: �But we know that such systems are nonrough.�
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there exist arbitrarily small values of � for which the di�eomorphism has a double-

round homoclinic orbit at the points of which the manifolds W s and W
u have a

tangency (Fig.5).

For the case of nonconservative systems, like the following equation

�x + �h _x� x+ x
2 = �A sin t;

where � � 1, even single-round homoclinic orbits can correspond to the tangency

of the stable and unstable manifolds for some relation between h and A (Fig.6).

Here, the increase in h leads to the disappearance of the homoclinic orbits, whereas

a pair of transverse homoclinic orbits is born when h decreases. Then, double-round

orbits of homoclinic tangency can appear and multi-round ones, as well. Therefore,

an idea of the nonroughness of the systems with homoclinic orbits arises naturally.

In 50-s, the main source on homoclinic orbits and related dynamical structures was

the book by Nemytsky and Stepanov �Qualitative theory of di�erential equations�

(1949). The above-mentioned Birkho� theorem was presented in this book, along

with a number of other statements on the structure of the nonwandering set in a

neighborhood of the homoclinic point. Since the presentation of this topic preserved

completely the original Birkho�'s style, its understanding was quite di�cult. When

I turned to the original �Pope memoir�, it occured that the statements on homoclinic

orbits given in the book by Nemytsky and Stepanov are based solely on the Birkho�

conjecture explained above.

The interest to homoclinic orbits and to the behavior of stable and unstable man-

ifolds of saddle periodic orbits increased in the end of 50-s among physicists. The

problem was that the structure of magnetic �elds within toroidal accelerators like

�Tokamak� us, in general, non-integrable. Taking into account the deviation from

integrability shows that due to the appearance of homoclinic intersections and splits

between stable and unstable manifolds a charged particle may hit the inner surface

of the �Tokamak.� As a result of such analysis, a paper [3] by V.K.Melnikov ap-

peared where an estimate (known now as Melnikov formula) for the splitting of the

manifolds was given.
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The progress came at 60-s. In 1961, in Kiev, on a conference on nonlinear oscilla-

tions, Smale gives an example (known now as the �Smale horseshoe�) of a di�eomor-

phism of a plane which behaves on the non-wandering set as the Bernoulli scheme of

two symbols [4]. As a result, it follows that periodic and homoclinic orbits are dense

in the non-wandering set in this example. Although the proof of the roughness of

this di�eomorphism which was constructed piecewise linear on the non-wandering

set was not proven by Smale, the validity of this fact did not cause any doubt. Little

a bit later Anosov proved explicitly [5, 6] the roughness of the so-called U-systems

(called Anosov systems now) which include the geodesic �ows on compact manifolds

of negative curvature and hyperbolic di�eomorphisms of a torus.

The idea of the �horseshoe� was applied by Smale to his proof [7] of the theorem on

complicated behavior of orbits in a small neighborhood of a transverse homoclinic

point of multidimensional di�eomorphisms. Taking as an initial strip � a neighbor-

hood of the saddle �xed point O which contains a piece of the stable manifold along

with some homoclinic point M , for some integer m we obtain that the m-th itera-

tion of the di�eomorphism, Tm, maps � to a horseshoe (Fig.7). From this picture

it followed that Tm has an invariant set in � such that Tm is conjugate on this set

to the Bernoulli shift of two symbols.

Smale obtained this result in the assumption that T is reduced to a linear form near

the saddle point O. It meant, for example, that the theorem could not be applied to

the case of Hamiltonian systems and symplectic maps. Moreover, and this is indeed

important, the method of �horseshoe� did not give a complete description of all

trajectories lying in a neighborhood of the closure of the homoclinic orbit, therefore

it did not solve the problem of Birkho�. The complete solution was published

by me in 1967. But this was preceded by the discovery of another situation with
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complicated dynamics.

I started to study multidimensional systems in the end of 50-s. The �rst problem

was to generalize the global bifurcations by Andronov and Leontovich from the two-

dimensional case onto the multidimensional one. In principle, the solution of these

problems for the case when only one, moreover stable, periodic orbit is born from

the separatrix loop could be achieved by the methods known to that time. After the

study of these cases [9], I turned to the following problem: let a three-dimensional

system have an equilibrium state O of saddle-focus type, i.e. a pair of the roots

of characteristic equation is complex and lies in the left half-plane: � � i!, where

� < 0, ! 6= 0, and the third root is real and positive: � > 0. Assume that one of the

orbits coming out of O at t = �1, tends to O again as t! +1, i.e. a homoclinic

loop � is formed (Fig.8).

The case where the saddle value

� = �+ �

13
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is less than zero led to the problem of the birth of a stable limit cycle which had

already been solved in the general multidimensional setting. On the contrary, the

case � > 0 required a separate consideration. Both in the cases � < 0 and � > 0 the

image of the upper half of a small cross-section � under the map T by the trajectories

close to the loop � is a spiral-shaped region (Fig.9). So, � can be divided into a

sequence of strips sk, k = k0; : : : ;1, such that the image of each strip is exactly one

curl of the spiral, Tsk. In the case � < 0 we have sk \ sk = ;, but at � > 0 the map

T acts on sk as the Smale horseshoe (Fig.10). Thus, it occured that at � > 0 the

Poincaré map has in�nitely many Smale horseshoes, hence - in�nitely many saddle

periodic orbits [10].

Naturally, the �rst whom I told about this was E.A.Leontovich. Her reaction, as

she said me somewhat later, was: �I wanted to say that it cannot be.�

Immediately, the understanding of the dynamics for the case of the transverse homo-

clinic orbit came. The most convenient way (at least to the author) was to consider

the system in the form of �ow. Usually the cross-section is chosen transversely

to the periodic orbit, but I chose it as a transversal to the stable manifold in a

neighborhood of the homoclinic point. In this case it is also possible to construct

14
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the Poincaré map T , whose domain of de�nition is an in�nite sequence of disjoint

strips �k, k = k0; k0 + 1:::. Here, T�k intersects all the strips for any k (Fig.11).

In essence, this is the picture which gives a complete description identical to that

which was conjectured by Birkho� in the �Pope memoir�. Note that, unlike the case

of a homoclinic loop of a saddle-focus which is a non-rough structure, the transverse

homoclinic orbit by Poincaré is rough. Hence, it can admit a symbolic description

with a �nite number of symbols. In order to understand this, let us consider di�erent

possible codings for the orbits in a neighborhood of a homoclinic orbit of a smooth

�ow.

Let a system have a periodic motion L of saddle type, i.e. its multipliers does not lie

on the unit circle and part of them lies inside this circle and the rest of the multipliers

lies outside the unit circle. Then L will have a stable and unstable manifolds W s

and W u. Suppose that they have a common orbit �, di�erent from L (Fig.12).

Take a small neighborhood U of the set L [ �, it is a solid torus with a handle

(Fig.12). Any orbit lying entirely in U will be coded as follows: one round in the

solid torus will correspond to the symbol O, and passing along the handle will be

coded by the symbol 1̂. By this rule, the periodic motion L will be coded by the

in�nite sequence of zeros:

(:::0; :::; 0:::);
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and the coding of the homoclinic orbit � will be

(:::0; 1̂; 0:::):

. Thus, any orbit in U will be coded by some sequence

(:::; i
�k; :::; i0; i1; :::);

where the symbol im is either 0 or 1̂. Here, the symbol 1̂ must be necessarily followed

by a su�ciently long string of zeros. The minimal number �n of zero symbols following

1̂ depends on the choice of the neighborhood: the less the size of the neighborhood,

the larger �n. One cam make the following recoding: denote

1 = f1̂; 0 : : : 0
| {z }

�n

g:

Then the orbits will be coded by sequences

(:::; i
�k; :::; i0; i1; :::);

where the symbol 1 may be followed by either of the symbols 0 or 1. In other words,

the codings here are the orbits of the Bernoulli shift of two symbols whose graph is

shown in Fig.13.

In [11], I used another code. Since the symbol 1̂ is followed by zeros, any orbit in U

which is not asymptotic to L may be coded by the in�nite sequence

(:::; n
�k; :::; n0; n1; :::; nk; :::)

where nk is the number of zeros following the corresponding symbol 1̂; an orbit

which is asymptotic to L on one end (let as t! �1) is coded by the in�nite to one

end sequence

n0; n1; :::; nk; :::;

and an orbit homoclinic to L is coded by the �nite sequence

(n0; n1; :::; nk)

17
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(here the number of passes along the handle equals to k + 1). We always have here

nk � �n where �n is an integer depending on the size of U . In fact, it is the code

which appears when we use the numbers n of the strips �n as the symbols.

The claim that for every such symbolic sequence there exists in U a unique (and

saddle) orbit with the given coding is in the heart of the problem here. It was the

claim which I managed to prove in [11] under the assumption that W s and W
u

intersect transversely at the points of the homoclinic orbit �.

Rigorously speaking, one should invoke the notion of the suspension here. It is not

that important, we just note here that the �ow under consideration, when restricted

onto the set of the orbits lying entirely in a special small neighborhood of L [ �, is

topologically equivalent to the suspension over the Bernoulli shift of two symbols,

independently on the dimension of the system. In the case of di�eomorphism the

symbolic description in a small neighborhood of a rough homoclinic orbit � is given

by the Markov chain shown in Fig.14, where the meaning of �n is the same as above

and p is the number of iterations necessary for the orbit of a homoclinic point M

lying on W
u

loc in a small neighborhood of O to get to this neighborhood again.

Clearly, the chains with di�erent values of �n + p are not topologically conjugate

(because the corresponding values of the topological entropy will be di�erent). It

means that the answer depends, in the case of di�eomorphism, on the choice of the

neighborhood7.

The problems related to the study of the behavior in a neighborhood of homoclinic

orbits of multidimensional systems required the development of a new technique.

One of the elements of it was the construction of the local maps in a neighborhood of

saddle periodic orbits and equilibrium states in the so-called cross-form, which means

the solution of a special boundary value problem instead of the Cauchy problem8.

E�ective criteria of the existence of aperiodic trajectories was also given (in terms of

7Of course, the suspensions over such Markov chains are equivalent.
8The inconvenience of the study of these maps in the direct form by means of the solution of the

Cauchy problem is due to that the derivatives with respect to the initial values tend to in�nity with

the increase of the number of iterations, whereas all the derivatives of the map in the cross-form

are uniformly bounded (tend to zero, in fact).
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theorems on saddle and stable �xed points of operators acting in countable products

of Banach spaces).

Along with the problems described above, this technique allowed the author to

solve in 60-s an analog of the Poincaré-Birkho� problem for the case of a homoclinic

manifold to a saddle invariant torus [12], as well as a principally new bifurcational

problem - the birth of a nontrivial hyperbolic set from a bunch of homoclinic loops to

a nonhyperbolic equilibrium state of saddle-saddle type [13]. Later the technique of

cross maps was applied e�ectively to the solution of the Poincaré-Birkho� problem

for the maps in Banach spaces [14], including the case where the unstable manifold

of the saddle �xed point is in�nite-dimensional, and for non-autonomous systems

with an arbitrary aperiodic dependence on time (see [15]).

Now, the natural development of the research led to the necessity of the study

of homoclinic tangencies. The systematic study of this problem was begun by

N.K.Gavrilov and the author in [16] in the beginning of 70-s. As a subject of

the research, we took three-dimensional �ows with a saddle periodic orbit L whose

stable and unstable manifolds are quadratically tangent along some homoclinic orbit

�. Let � and  be the multipliers of L, and j�j < 1, jj > 1. Suppose that the

saddle value � = j�j 6= 1; without loss of generality we may assume j�j < 1. Let

U be a small neighborhood of the closure � [ L of the homoclinic orbit and let N

be the set of all orbits lying in U . Depending on the signs of multipliers and some

coe�cients which characterize how the stable and unstable manifolds adjoin to �,

systems with homoclinic tangencies were grouped in [16] into three classes. It was

also established that

1) for the systems of the �rst class the set N is trivial: N = fL;�g

2) for the systems of the second class, N is a nontrivial hyperbolic set which admits

a complete description in the language of Bernoulli shift of three symbols,

3) for the systems of the third class, N still contains nontrivial hyperbolic subsets

which, however, do not exhaust the whole set N in general; moreover, on the bifur-

cational surfaces composed of systems of the third class, dense structural instability

takes place.

Speci�cally, it follows from [16] that in any one-parameter family of systems for

which the original homoclinic tangency of the third class does not split and for

which the quantity

� = �

ln j�j

ln jj

changes monotonically, systems with nonhyperbolic periodic orbits are dense. Later,

it was shown in [17] that in such one-parameter families systems with in�nitely

many stable9 periodic orbits are dense, as well as systems with secondary homoclinic

tangencies.

The reason is that for the systems of the third class the structure of the set N

depends essentially on the value of �. Thus, consider the case � > 0,  > 0, for

instance. In this case, the system belongs to the third class when the stable and

9if � < 1; if � > 1, then systems with in�nitely many completely unstable
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unstable manifolds behave like it is shown in Fig.15: on a two-dimensional cross-

section S to L the manifold W u is tangent to W s

loc near the point O = S \ L from

above, and W s is tangent to W u

loc near O from the left side. Like in the case of a

rough homoclinic, every orbit from N (except for O and �) is coded by a sequence

of integers

(:::; n
�k; :::; n0; n1; :::; nk; :::);

in�nite for the orbits not lying in W s or W u, and �nite (to one end or to both) for

the orbits which are asymptotic to L. It was shown in [16] that for any sequence

of su�ciently large integers nk for which nk+1 < nk�
0 at every k, in U there exists

a continuum of orbits with this coding; and vice versa, if nk+1 > nk�
00 at least for

one k, then no orbit in U has such coding. Here �0 ¨ �00 are some numbers such that

1 < �
0

< � < �
00; moreover, �0 and �00 can be taken arbitrarily close to � if the size of

the neighborhood U is su�ciently small. A more precise description was obtained

in [18, 17]. In any case, it is immediately clear that if the value of � changes, the

structure of the set N must change permanently.

Later, it was shown in [19] explicitly that � is an invariant of the 
-equivalence (i.e.

topological equivalence on the set of nonwandering points) for systems of the third

class. In other words, the systems with di�erent values of � cannot be 
-equivalent,

which means that arbitrarily small changes of � must inevitably cause bifurcations

in the nonwandering set, i.e. the mentioned above bifurcations of periodic and

homoclinic orbits, etc..

Systems with quadratic homoclinic tangencies compose bifurcational surfaces of

codimension one. It is natural, therefore, that one should consider �rst what happen

in the one-parameter unfolding, when the tangency of invariant manifolds is split.

Let � be the bifurcational parameter responsible for the splitting of the separatrices

and letX� be a family for which � changes monotonically. Thus, X� intersects trans-

versely the bifurcational surface of systems with a homoclinic tangency at � = 0.

The following fact is of principal value here:

in any transverse one-parameter family X� there exists a sequence of intervals ac-

cumulating at � = 0 in which the values of the parameter � corresponding to new

quadratic homoclinic tangencies are dense (and X� is transverse to the correspond-

ing bifurcational surfaces).

This remarkable result was proven by Newhouse for nonconservative two-dimensional

di�eomorphisms10 in [24]. This means, roughly speaking, that although every indi-

vidual homoclinic tangency can be removed by a small perturbation of the system,

it is however impossible to prevent the appearance of new homoclinic tangencies.

10It was extended onto the general multidimensional case in [20]; the multidimensional case

was also done in [21] under condition that the unstable manifold of the saddle periodic orbit is

one-dimensional. For the area-preserving maps, and in particular, for the case of small periodic

perturbations of Hamiltonian systems on the plane with a separatrix loop (like system (1)) the

analogous result has been proved only recently in [22, 23].
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The regions of structural instability in the space of Cr-smooth (r � 2) dynamical

systems where systems with homoclinic tangencies are dense are called the New-

house regions (the above mentioned intervals of the parameter values at which the

transverse familyX� intersects the Newhouse regions are called Newhouse intervals).

The most popular result (discovered in [25]) about dynamics of the two-dimensional

maps in the Newhouse regions is that when the saddle value � = j�j is less than 1,

systems with in�nitely many stable11 periodic orbits are dense there.

This statement follows almost immediately from the denseness of the parameter

values corresponding to homoclinic tangencies and an earlier result of [16] that if

� < 1, then for any transverse family there exists a sequence (accumulating at � = 0)

of intervals of � corresponding to the existence of a stable periodic orbit.

The chain of amazing phenomena in systems with homoclinic tangencies does not

end here, as a series of papers by S.V.Gonchenko, D.V.Turaev and the author has

shown. As we noticed, it was known that for every system with a homoclinic tan-

gency of the third class, by an arbitrarily small change in � a one more orbit of

homoclinic tangency can be created (and the original homoclinic tangency does not

disappear). It occured that this face has quite severe consequences. Namely, if we

can produce a new homoclinic tangency without destroying the original one, then

we can repeat this procedure and obtain, the third tangency, fourth, etc.. Thus,

using localized small smooth perturbations, we were able to prove [28, 29] that

in the set of systems with homoclinic tangencies of the third class systems are dense12

each of which has in�nitely many saddle periodic orbits with an orbit of homoclinic

tangency each, and all these tangencies are of the third class.

Note that the latter means that such systems have in�nitely many independent

continuous invariants (moduli) of the 
-equivalence (because for each of these ho-

moclinic tangencies the corresponding � is such a modulus; we do not claim that the

set of all these quantities is a complete invariant - other invariants are also possible,

as the value � from [19], for instance).

The construction with an in�nite chain of the orbits of homoclinic tangency was the

main element in the proof of the following statement [28, 29, 30].

11If j�j > 1, we have in�nitely many completely unstable periodic orbits. For the multidimen-

sional case the general property of systems in the Newhouse regions is the simultaneous existence

of in�nitely many periodic orbits with di�erent dimensions of stable manifolds, i.e. with di�erent

numbers of positive/negative Lyapunov exponents, see [26, 27]; in the same papers criteria for the

existence of in�nitely many stable periodic orbits were given for the multidimensional case, see

also [21] where a partial case was considered.
12We mean here the denseness in C

r-topology, for an arbitrary �nite r. When we consider

C
1-smooth systems then the denseness in Cr-topology for every �xed r means, by de�nition, the

denseness in C1.
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In the set of systems with a quadratic homoclinic tangency of the third class, systems

having in�nitely many homoclinic tangencies of all, arbitrarily high, orders and in-

�nitely many nonhyperbolic periodic orbits of all orders of degeneracy are dense..

The latter are the periodic orbits with one multiplier equal to 1 or �1 and with

arbitrarily large number of zero Lyapunov values (do not miss them with Lyapunov

exponents) which are the consecutive coe�cients of the nonlinear terms in the normal

form of the Poincaré map on the center manifold. Thus, in the case of one multiplier

equal to 1, for the periodic orbit of the k-th order of degeneracy the Poincaré map

on the center manifold has the form

�x = x+ lk+1x
k+1 + o(xk+1):

A complete bifurcational diagram for such periodic orbit requires exactly k param-

eters. Since we can obtain periodic orbits of any order of degeneracy k, it means

that a complete description of the dynamics of systems with homoclinic tangencies

can never be possible, in any �nite-parameter family.

This discouraging result is even more important due to the denseness of the systems

with homoclinic tangencies of the third class in the Newhouse regions, that is we have

the whole regions in the space of smooth dynamical systems for which a complete

description of dynamics (in particular, a complete description of bifurcations of

periodic orbits) can never be achieved. When we realized all this I remembered the

words of E.A.Leontovich concerning the discovery of chaos near a homoclinic loop

to a saddle-focus: �It just cannot be!�

Soon we generalized these results to the multidimensional case [31, 20, 27, 26, 32]: an

analogous classi�cation of systems with a quadratic homoclinic tangency was given,

the main invariants (moduli) of 
-equivalence were found (thus, in the case of com-

plex leading multipliers �ei', ei the arguments ' and  occured to be 
-moduli),

the results of Newhouse were generalized and the denseness of multidimensional sys-

tems with in�nitely degenerate homoclinic and periodic orbits was established in the

Newhouse regions. Thus, the conclusion on the principal impossibility of complete

description holds in the multidimensional case as well.

All this has a direct relation to the study of speci�c dynamical models, because ho-

moclinic tangencies (hence, Newhouse regions) are found in practically every known

families of systems with complicated dynamics, from the small periodic perturba-

tions of integrable systems discussed above to such popular models as Hénon map,

Rössler system and Chua circuit, as well as at the transition to chaos after the

breakdown of quasiperiodic regimes and after a period-doubling cascade.

Quite popular among the systems with complicated dynamics are systems with the

so-called �spiral chaos�, i.e. systems with a homoclinic loop to a saddle-focus. Such

systems form, in general, bifurcational surfaces of codimension one in the space of

dynamical systems, and in many instances they are analogous to the systems of the
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third class [33, 34, 35]. Thus, on these surfaces, systems with homoclinic tangencies

are dense. Hence, close systems must have Newhouse regions. Therefore, here we

also have arbitrarily high degeneracies.

Moreover, it was recently shown by Turaev and the author that there can exist gen-

uine strange attractors13 containing a saddle-focus (we called these spiral attractors

wild). Moreover, the property of instability of all orbits in these attractors is pre-

served under small perturbations. The fact that these wild spiral attractors contain

an equilibrium state makes them partly similar to Lorenz-like attractors. However,

if Lorenz-like attractors are two-dimensional (topologically), the wild spiral attrac-

tors may have dimension three. We construct our wild attractors in one-parameter

families of systems in Rn where n � 4 and we show [37] that the range of variation

of parameters contains Newhouse intervals, with all implications of that. And such

attractors must be quite natural objects for nonlinear dynamics.

In his report to the memoir of Poincaré, Weierstrass wrote that the results of that

paper kill many illusions of the theory of Hamiltonian dynamics. In essence, this was

a starting point for the development of qualitative methods which represent now the

essence of nonlinear dynamics. Today, one century later, we see that the illusion of

the possibility of a complete qualitative description should be abandoned, in turn.

And in both cases, the cause of the crisis was the Poincaré homoclinic curve.
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