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Abstract

In this paper we study a stochastic particle system that describes homogeneous

gas phase reactions of a number of chemical species. First we introduce the system as

a Markov jump process and discuss how relevant physical quantities are represented

in terms of appropriate random variables. Then, we show how various deterministic

equations, used in the literature, are derived from the stochastic system in the limit

when the number of particles goes to in�nity. Finally, we apply the corresponding

stochastic algorithm to a toy problem, a simple formal reaction mechanism, and to

a real combustion problem. This problem is given by the isothermal combustion of

a homogeneous mixture of hepthane and air modelled by a detailed reaction mech-

anism with 107 chemical species and 808 reversible reactions. Heptane as described

in this chemical mechanism serves as model-fuel for di�erent types of internal com-

bustion engines. In particular, we study the order of convergence with respect to

the number of simulation particles, and illustrate the limitations of the method.
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1. Introduction

In this paper we study a stochastic particle system that describes the homogeneous gas

phase reaction process of a number of chemical species at constant pressure and temper-

ature. The reaction mechanism consists of several elementary chemical reactions,

(��;1; : : : ; ��;S)  ! (��
�;1; : : : ; �

�

�;S
) ; � = 1; : : : ; I ; (1.1)

where S is the number of chemical species and I is the number of possible reactions.

The stoichiometric coe�cients ��;i and �
�

�;i
of the species i in reaction � are non-negative

integer values. The time evolution of the state variables is given by the following initial

value problem (cf. [20, formulas (2), (49), (51)]; [17]),

dYi

dt
=

Wi

%(Y )
_!i(Y ) ; Yi(0) = Y0;i ; i = 1; : : : ; S ; (1.2)

with the chemical production rate of the i-th species

_!i(Y ) =
IX

�=1

(��
�;i
� ��;i) q�(Y ) (1.3)

and the rate of progress of the �-th reaction

q�(Y ) = K�;f

SY
k=1

[Xk]
��;k �K�;r

SY
k=1

[Xk]
�
�

�;k : (1.4)

Here Y ; [X] and W denote the vectors of the mass fractions, the molar concentrations,

and the molecular weights of the species, respectively. The mass density is denoted by

% : The numbers K�;f and K�;r are the forward and reverse rate constants for the �-th

reaction.

One of the �rst publications on calculating homogeneous reaction systems using stochas-

tic ideas is Bunker et al. [5]. In this paper an algorithm was proposed to simulate the

combustion of propane in an adiabatic plug �ow reactor. The chemical mechanism that

was used contained 17 species and 37 reactions. Independently, Gillespie suggested an

algorithm that mimics the dynamics of any well stirred gas mixture of reactive chemical

species in thermal equilibrium [11]. In [13] he gave a derivation of the chemical mas-

ter equation proving that it is an exact description of any well stirred and thermally

equilibrated gas-phase chemical system. This approach can be viewed as a mesoscopic

description of chemical reactions that is between the macroscopic description, given by

particle densities averaged over a control volume, and the microscopic description given

by the momentum and the position of all molecules contained in the control volume. This

algorithm, that will be subject of our investigations, has been applied by various authors

in recent years for various purposes.

Gillespie demonstrated that the stochastic algorithm is able to account for microscopic

�uctuations [12]. These �uctuations can not be captured in a deterministic approach given

by a system of ordinary di�erential equations. This has been illustrated by studying

a steady state solution of the Lotka reaction system. Similar investigation have been

performed on the Brusselator and the Oregonator reaction system, the later as an idealized
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model for the Belousov-Zhabotinski reactions. Other authors used Gillespie's algorithm

to study polymerization reactions. For example in [2] the formation of soot using a

coagulation reaction model has been investigated. Also reaction di�usion problems have

been studied using Gillespie's algorithm in conjunction with an algorithm that accounts

for the di�usion process. The Fisher equation was studied in [16], [3], and [4]. The Maginu

equation has been investigated in [7] and a reaction-di�usion model of receptor cells was

solved using a Gillespie's algorithm in [10]. Another area where the Gillespie algorithm

has been extensively applied is the modelling of surface processes [9]. For example the

time development of surface interfaces and adsorption-desorption phenomena have been

studied in [22], surface catalysis was investigated in [18], and temperature-programmed

desorption was studied in [21] and [15]. The same authors have also provided a public

domain software package called chemical kinetics simulator (CKS). This package is based

on the algorithm as described by Bunker et al. and Gillespie. It models homogeneous

gas-phase reactions system for isothermal and adiabatic conditions [14].

The purpose of this paper is to study convergence and performance properties of

the stochastic algorithm. In particular, the order of convergence is determined numeri-

cally, and the algorithm is applied to real combustion problems using practically relevant

fuels. The paper is organized as follows. Section 2 is concerned with the description of

the stochastic model. The basic Markov jump process is de�ned, and relevant combus-

tion quantities are represented in terms of related random variables. Various deterministic

equations are derived from the stochastic system. Examples from the combustion litera-

ture are considered. Finally, the stochastic algorithm is described. Results of numerical

experiments are presented in Section 3. Two test cases are considered, �rst a toy model

from the classical paper by Gillespie, and second a practically relevant example, the com-

bustion of heptane. For comparison, an accurate deterministic method is used. The �rst

part of test calculations is concerned with the convergence behaviour of the algorithm.

In the second part the issue of performance is studied, and limitations of the present

algorithm are illustrated. Finally some conclusions are drawn in Section 4.

2. The stochastic model

2.1. Markov process

We consider a Markov process of the form

Z
(n)(t) =

�
N

(n)
1 (t); : : : ; N

(n)

S
(t)
�
; t � 0 ; (2.1)

where N
(n)
j

(t) 2 f0; 1; : : :g denotes the number of particles of type j = 1; : : : ; S at time t :

The number of particles at time zero,

n =
SX
j=1

N
(n)
j

(0) ; (2.2)

plays the role of an approximation parameter. It is assumed that

lim
n!1

N
(n)
i

(0)

n
= �

0
i
; i = 1; : : : ; S ; (2.3)
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for some constants �0
i
:

The stochastic system (2.1) is a pure jump process de�ned by the generator

(A�)(x) =
IX

�=1

~K�(x)
h
�(J�(x))� �(x)

i
; x 2 f0; 1; : : :gS ; (2.4)

where � is some test function. This process performs jumps according to the jump

transformation (cf. (1.1))

J�(x) = (x1 � ��;1 + �
�

�;1; : : : ; xS � ��;S + �
�

�;S
) : (2.5)

The distribution of the random jump moments is determined by the rate functions

~K�(x) = 
(x)1�
P

S

j=1
��;j

K�

SY
j=1

h
xj (xj � 1) : : : (xj + 1� ��;j)

i
; (2.6)

where K� ; � = 1; : : : ; I ; are reaction parameters. The function 
 is either of the form


(x) = n ; (2.7)

corresponding to normalization with initial particle number (cf. (2.2)), or


(x) =
RT

p

SX
j=1

xj ; (2.8)

corresponding to normalization with volume (cf. (2.11) below).

Remark 2.1 The expression in brackets in (2.6) is de�ned as zero in the case ��;j = 0 :
The product assures that a reaction may only occur if there are enough of the corresponding

particles in the system (cf. (2.5)). It is zero if xj < ��;j for some j = 1; : : : ; S :

By de�nition, mass conservation means (cf. (2.5))

SX
j=1

Wj J�(x)j =
SX

j=1

Wj xj : (2.9)

This property holds provided that

SX
i=1

Wi ��;i =
SX
i=1

Wi �
�

�;i
; � = 1; : : : ; I :

The basic theoretical result concerning the Markov process (2.1) is that, under as-

sumption (2.3),

lim
n!1

N
(n)
i

(t)

n
= �i(t) ; i = 1; : : : ; S ; t > 0 ; (2.10)

(cf. [19], [8, p.454]). Later we will derive equations, which are satis�ed by the limit of

the stochastic process. These equations can be numerically solve by the corresponding

stochastic algorithm.
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Here we discuss how relevant physical quantities are represented in terms of the random

variables N
(n)

k
(t) ; k = 1; : : : ; S ; which correspond to the mole numbers nk(t) in the

chemical literature.

The total mole number is

n(t) =
SX

k=1

nk(t) �
SX

k=1

N
(n)

k
(t) ;

the total mass is

m(t) =
SX

k=1

Wk nk(t) �
SX

k=1

Wk N
(n)

k
(t) ;

and the volume is

V (t) =
RT

p
n(t) �

RT

p

SX
k=1

N
(n)

k
(t) : (2.11)

Note that

1

n

SX
k=1

N
(n)

k
(t)

n

�!

SX
k=1

�k(t) =: ~n(t) ; (2.12)

1

n

SX
k=1

Wk N
(n)

k
(t)

n

�!

SX
k=1

Wk �k(t) =: ~m(t) ; (2.13)

and

1

n

RT

p

X
j

N
(n)
j

(t)
n

�!
RT

p

SX
k=1

�k(t) =: ~V (t) =
RT

p
~n(t) : (2.14)

Remark 2.2 The quantities n(t);m(t); V (t) are of physical size (large values). They are

obtained from the quantities ~n(t); ~m(t); ~V (t) (which are calculated using the limit func-

tions �i(t)) by multiplication with the appropriate number n(0) : The quantities below are

normalized (moderate values), and we will use the same symbols for both the physical

quantities and the quantities obtained using �i(t) :

The mole fraction of a species k is given by

Xk(t) =
nk(t)

n(t)
�

N
(n)

k
(t)P

j N
(n)
j

(t)

n

�!
�k(t)P
j
�j(t)

=
�k(t)

~n(t)
; (2.15)

its mass fraction is

Yk(t) =
Wk nk(t)

m(t)
�

WkN
(n)

k
(t)P

j
Wj N

(n)
j

(t)

n

�!
Wk �k(t)P
j Wj �j(t)

=
Wk �k(t)

~m(t)
; (2.16)

and the molar concentration is

[Xk](t) =
nk(t)

V (t)
�

N
(n)

k
(t)

RT

p

P
j N

(n)
j

(t)

n

�!
�k(t)

RT

p

P
j �j(t)

=
�k(t)
~V (t)

: (2.17)
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The mass density is

%(t) =
m(t)

V (t)
=

P
S

k=1Wk nk(t)

V (t)
=

SX
k=1

Wk [Xk](t) �

P
k
Wk N

(n)

k
(t)

RT

p

P
j
N

(n)
j

(t)

n

�!
~m(t)
~V (t)

: (2.18)

The mean molecular weight is

W (t) =
SX

k=1

Wk Xk(t) =
1

n(t)

SX
k=1

Wk nk(t) =
m(t)

n(t)
�

P
k
Wk N

(n)

k
(t)P

j
N

(n)
j

(t)

n

�!
~m(t)

~n(t)
:

One obtains from the de�nitions that

SX
k=1

Yk(t) = 1 ;
SX

k=1

Xk(t) = 1 ;
SX

k=1

[Xk](t) =
n(t)

V (t)
=

p

R T
:

Note that

Yk(t)

Wk

=
Xk(t)

W (t)
=

[Xk](t)

%(t)
:

2.2. Asymptotic behaviour

The Markov process (2.1) satis�es

�(Z(n)(t)) = �(Z(n)(0)) +
Z

t

0
(A�)(Z(n)(s)) ds+M

(n)(t) ; t � 0 ; (2.19)

where M (n)(t) is a martingale term vanishing in the limit n ! 1 : The representation

(2.19) suggests that (cf. (2.4))

d

dt
lim
n!1

�(Z(n)(t)) =
IX

�=1

lim
n!1

~K�(Z
(n)(t))

h
�(J�(Z

(n)(t)))� �(Z(n)(t))
i
: (2.20)

Note that (cf. (2.6))

~K�(x) =

 

(x)

n

!1�PS

j=1
��;j

nK�

SY
j=1

xj (xj � 1) : : : (xj + 1 � ��;j)

n��;j
:

Since according to (2.10)

lim
n!1

N
(n)
j

(t) (N (n)
j

(t)� 1) : : : (N (n)
j

(t) + 1 � ��;j)

n��;j
= �j(t)

��;j ;

one obtains from (2.20) the equation

d

dt
lim
n!1

�(Z(n)(t)) = (2.21)

IX
�=1

~
(t)1�
P

S

j=1
��;j

K� lim
n!1

n

h
�(J�(Z

(n)(t)))� �(Z(n)(t))
i SY
j=1

�j(t)
��;j ;
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where the notation

~
(t) = lim
n!1

1

n

(Z(n)(t))

has been used. Note that

~
(t) = 1 ; (2.22)

in case (2.7), and

~
(t) = ~V (t) ; (2.23)

in case (2.8) (cf. (2.14)).

Choosing appropriate test functions � allows us to derive equations for the limiting

functions �k(t) from (2.10) as well as for the quantities (2.15)-(2.17).

Consider the test functions

�i(x) =
Wi xiP
S

j=1Wj xj

; i = 1; : : : ; S ;

and note that (cf. (2.16))

lim
n!1

�i(Z
(n)(t)) =

Wi �i(t)P
S

j=1Wj �j(t)
= Yi(t) :

According to (2.9) one obtains

h
�i(J�(x))� �i(x)

i
=

1P
S

j=1Wj xj

h
Wi (xi � ��;i + �

�

�;i
)�Wi xi

i
=

1P
S

j=1Wj xj

h
Wi (�

�

�;i
� ��;i)

i

so that (cf. (2.13))

lim
n!1

n

h
�i(J�(Z

(n)(t)))� �i(Z
(n)(t))

i
=

1

~m(t)

h
Wi (�

�

�;i
� ��;i)

i
;

and equation (2.21) takes the form

d

dt
Yi(t) =

Wi

~m(t)

IX
�=1

~
(t)1�
P

S

j=1
��;j

K� [�
�

�;i
� ��;i]

SY
j=1

�j(t)
��;j : (2.24)

Consider the test functions

�i(x) =
xi

n
; i = 1; : : : ; S ;

and note that (cf. (2.10))

lim
n!1

�i(Z
(n)(t)) = �i(t) :
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According to (2.5) one obtains

n

h
�i(J�(x))� �i(x)

i
= �

�

�;i
� ��;i ;

and equation (2.21) takes the form

d

dt
�i(t) =

IX
�=1

~
(t)1�
P

S

j=1
��;j

K� [�
�

�;i
� ��;i]

SY
j=1

�j(t)
��;j ; i = 1; : : : ; S : (2.25)

Consider the test functions

�i(x) =
xiP
S

j=1 xj

; i = 1; : : : ; S ;

and note that (cf. (2.15))

lim
n!1

�i(Z
(n)(t)) =

�i(t)P
S

j=1 �j(t)
= Xi(t) :

According to (2.5) one obtains

�i(J�(x))��i(x) =
xi + �

�

�;i
� ��;iP

S

j=1 xj +
P

S

j=1[�
�

�;j
� ��;j]

�
xiP
S

j=1 xj

=

�
�
�

�;i
� ��;i

� �P
S

j=1 xj

�
� xi

P
S

j=1[�
�

�;j
� ��;j]�P

S

j=1 xj

� �P
S

j=1 xj +
P

S

j=1[�
�

�;j
� ��;j]

�

=
�
�

�;i
� ��;iP

S

j=1 xj +
P

S

j=1[�
�

�;j
� ��;j]

�
xi
P

S

j=1[�
�

�;j
� ��;j]�P

S

j=1 xj

� �P
S

j=1 xj +
P

S

j=1[�
�

�;j
� ��;j]

�

so that (cf. (2.12))

lim
n!1

n

h
�i(J�(Z

(n)(t)))� �i(Z
(n)(t))

i
=
�
�

�;i
� ��;i

~n(t)
�

�i(t)
P

S

j=1[�
�

�;j
� ��;j]

~n(t)2
:

Thus, equation (2.21) takes the form

d

dt
Xi(t) =

IX
�=1

~
(t)1�
P

S

j=1
��;j

K�

[��
�;i
� ��;i] ~n(t) � �i(t)

P
S

j=1[�
�

�;j
� ��;j]

~n(t)2

SY
j=1

�j(t)
��;j :

2.3. Examples

With the choice (2.8), equation (2.24) takes the form (cf. (2.23), (2.17), (2.18))

d

dt
Yi(t) =

Wi

%(t)

IX
�=1

K� [�
�

�;i
� ��;i]

0
@ SY
j=1

[Xj](t)
��;j

1
A ; i = 1; : : : ; S :
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Considering reverse reactions explicitly one obtains the equation

d

dt
Yi(t) =

Wi

%(t)

IX
�=1

K�;f [�
�

�;i
� ��;i]

0
@ SY
j=1

[Xj](t)
��;j

1
A

+
Wi

%(t)

IX
�=1

K�;r [��;i � �
�

�;i
]

0
@ SY
j=1

[Xj ](t)
�
�

�;j

1
A

=
Wi

%(t)

IX
�=1

[��
�;i
� ��;i]

0
@K�;f

SY
j=1

[Xj](t)
��;j �K�;r

SY
j=1

[Xj](t)
�
�

�;j

1
A ;

which is identical with equation (1.2).

Example 2.3 In the example in [8, p.454] rate functions of the form (2.6) are considered

with 
 as in (2.7) and

K� =
��Q

S

k=1 ��;k!
: (2.26)

The corresponding equation is obtained from equation (2.25) (cf. (2.22)),

d

dt
�i(t) =

IX
�=1

K� [�
�

�;i
� ��;i]

SY
j=1

�j(t)
��;j ; i = 1; : : : ; S : (2.27)

Remark 2.4 The number of possible choices of the corresponding particle combination

is
xj (xj�1):::(xj+1���;j)

��;j !
: In particular, there is only one choice in the case xj = ��;j : This

suggests that the factor ��;j ! should be included in K� as shown in (2.26).

Remark 2.5 Note that the behaviour of the process, and therefore its limits, depend on

the choice of the normalizing factor 
 ; and of the reaction parameters K� :

Example 2.6 We consider the example from [11, p. 422]. There are S = 4 species named

A;B;C;D and I = 6 reactions described by

B ! C � �1 = (0; 1; 0; 0) ; �
�

1 = (0; 0; 1; 0) ;

C ! B � �2 = (0; 0; 1; 0) ; �
�

2 = (0; 1; 0; 0) ;

2B ! D � �3 = (0; 2; 0; 0) ; �
�

3 = (0; 0; 0; 1) ;

D ! 2B � �4 = (0; 0; 0; 1) ; �
�

4 = (0; 2; 0; 0) ;

A+B ! 2B � �5 = (1; 1; 0; 0) ; �
�

5 = (0; 2; 0; 0) ;

2B ! A+B � �6 = (0; 2; 0; 0) ; �
�

6 = (1; 1; 0; 0) :

From (2.6), with with 
 as in (2.7) and K� as in (2.26), one obtains the rate functions

~K1(x) = �1 x2 ;
~K2(x) = �2 x3 ;

~K3(x) = n
�1 �3

2
x2 (x2 � 1) ;

~K4(x) = �4 x4 ;
~K5(x) = n

�1
�5 x1 x2 ;

~K6(x) = n
�1 �6

2
x2 (x2 � 1) :
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The corresponding limiting equation takes the form (cf. (2.27))

d

dt
�1(t) = ��5 �1(t)�2(t) +

�6

2
�2(t)

2
;

d

dt
�2(t) = ��1 �2(t) + �2 �3(t)� �3 �2(t)

2 + 2�4 �4(t) + �5 �1(t)�2(t)�
�6

2
�2(t)

2
;

d

dt
�3(t) = �1 �2(t)� �2 �3(t) ;

d

dt
�4(t) =

�3

2
�2(t)

2
� �4 �4(t) ;

which coincides with formulas (34a-d) in [11, p. 422].

2.4. Description of the algorithm

The stochastic algorithm for the numerical treatment of equation (1.2)-(1.4) consists in

generating trajectories of the Markov process (2.1) and averaging the appropriate func-

tionals.

Given the state

x =
�
N

(n)
1 (t); : : : ; N

(n)

S
(t)
�
; t � 0 ;

the process remains there for a random time � having exponential distribution with the

waiting time parameter (cf. (2.6))

�(x) =
IX

�=1

~K�(x) ;

i.e.

Prob(� � s) = exp(�s �(x)) ; s � 0 :

At the moment t+ � ; a particular reaction is chosen according to the reaction proba-

bilities

p�(x) =
~K�(x)

�(x)
; � = 1; : : : ; I ;

where (cf. (2.6), (2.8))

~K�(x) =

0
@RT

p

SX
j=1

xj

1
A
1�
P

S

j=1
��;j

K�

SY
j=1

h
xj (xj � 1) : : : (xj + 1� ��;j)

i
:

Finally, the process jumps into the state J�(x) (cf. (2.5)), and the same procedure is

repeated.
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3. Numerical experiments

3.1. Description of the test cases

Here we introduce the examples, which are used for studying the stochastic algorithm. The

�gures were obtained using the deterministic method described below in subsection 3.3.

The corresponding curves will be used as reference solutions.

The �rst test case that we shall study is Example 2.6. The initial conditions are

XA(0) = 1:0 ; XB(0) = XC(0) = XD(0) = 0 :

Temperature and pressure are set to T = 1500K and p = 1:01325PA : The calculations

are performed in the time interval [0; 2:0� 105]s. The time evolution of the species' mole

fractions and of density is displayed in Figure 1.
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Figure 1: Time evolution of the species' mole fractions and density.

The second test case is the combustion of n-heptane. This example is of practical

relevance. n-Heptane serves as primary reference fuel for internal combustion engines

such as spark-ignition, diesel, and gas turbine engines. The chemistry is described by a

reaction mechanism containing 107 chemical species and 808 reversible reactions [6]. The
initial conditions are

Xn�C7H16
(0) = 0:0187 ; XO2

(0) = 0:2061 ; XN2
(0) = 0:7752 :

Temperature and pressure are set to T = 1500K and p = 1:01325PA : The time pro�les

of reactants and products as well as density are displayed in Figures 2 on a short time

interval and in Figure 3 on a longer time interval. The oxidation of n-heptane takes place

in several steps. In a �rst phase n-heptane is decomposed into smaller hydrocarbons. After

11



3:0 � 10�5s this process is completed. At about 3:0� 10�4s ignition takes place and CO

is converted to CO2. During this ignition process the number of reactions that take place

increases rapidly due to a chain-branching reaction mechanism. As consequence radicals

like OH and H are released. At the ignition point their mole-fraction reaches a maximum

of 0.004 and 0.008 respectively.
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Figure 2: Time evolution of the species' mole fractions and density.
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Figure 3: Time evolution of the species' mole fractions and density.
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3.2. Con�dence intervals and statistical error bound

Here we introduce some de�nitions and notations that are helpful for the understanding

of stochastic numerical procedures.

Typical macroscopic quantities as species mole fractions and the mass density (cf.

(2.15), (2.18)) are functionals of the form

F (t) = �(n1(t); :::; nS(t)) : (3.1)

These functionals are approximated (as n!1) by the random variable

�
(n)(t) = �(N

(n)
1 (t); :::; N

(n)

S
(t)) ; (3.2)

where N
(n)
1 ; :::; N

(n)

S
is the particle number model (2.1).

In order to estimate the expectation and the random �uctuations of the estimator

(3.2), a number L of independent ensembles of particles is generated. The corresponding

values of the random variable are denoted by �(n;1)(t); : : : ; �(n;L)(t) : The empirical mean

value of the random variable (3.2) is de�ned as

�
(n;L)
1 (t) =

1

L

LX
l=1

�
(n;l)(t) : (3.3)

The variance of the random variable (3.2) satis�es

Var �(n)(t) := E

h
�
(n)(t)� E�

(n)(t)
i2
= E

h
�
(n)(t)

i2
�

h
E�

(n)(t)
i2

and is estimated by the empirical variance de�ned as

�
(n;L)
2 (t) =

1

L

LX
l=1

h
�
(n;l)(t)

i2
�

h
�
(n;L)
1 (t)

i2
:

The empirical mean (3.3) is used to approximate the macroscopic quantity (3.1). The

error of this approximation is denoted as

e
(n;L) = j�

(n;L)
1 (t)� F (t)j

and consists of the following two components. The systematic error is the di�erence

between the mathematical expectation of the random variable (3.2) and the exact value

of the functional, i.e.

e
(n)
sys
(t) = E�

(n)(t)� F (t) : (3.4)

The statistical error is the di�erence between the empiricalmean value and the expected

value of the random variable, i.e.

e
(n;L)
stat (t) = �

(n;L)
1 (t)� E�

(n)(t) :

Note that the random variable

�
(n;L)
1 (t)� E�

(n)(t)q
Var �

(n;L)
1 (t)

13



has asymptotically (e.g., for L � 50) a standard normal distribution, as a consequence of

the central limit theorem. Thus, one obtains

Prob

8<
:
����(n;L)1 (t)� E�

(n)(t)
���q

Var �
(n;L)
1 (t)

� ap

9=
; � p ; p 2 (0; 1) ; (3.5)

where the value of ap is determined from statistical tables. Note that

Var �
(n;L)
1 (t) =

1

L
Var �(n)(t) �

1

L
�
(n;L)
2 (t) : (3.6)

From (3.5), (3.6) a con�dence interval for the expectation of the random variable �(n)(t)
is obtained as

Ip =

2
64�(n;L)1 (t)� ap

vuut�
(n;L)
2 (t)

L
; �

(n;L)
1 (t) + ap

vuut�
(n;L)
2 (t)

L

3
75 ;

where p is called the con�dence level. This means that

Prob
n
E�

(n)(t) 2 Ip
o
= Prob

8><
>:je

(n;L)
stat

(t)j � ap

vuut�
(n;L)
2 (t)

L

9>=
>; � p :

Thus, the value

c
(n;L)
p

(t) = ap

vuut�
(n;L)
2 (t)

L

is a probabilistic upper bound for the statistical error.

For the numerical studies throughout this paper a con�dence level of p = 0:999 with

ap = 3:29 is used.

In order to describe the statistical error in [0; T ] we split this time interval in M

equidistant subintervals of length �t according the discretization

ti = i�t ; i = 0; 1; :::;M ;

with tM = T and use the quantity

cstat = max
i

n
c
(n;L)
p

(ti)
o

(3.7)

as a measure for the statistical error.
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3.3. Comparison with a deterministic numerical method

For studying the systematic error (3.4) of the stochastic algorithm, we use the compar-

ison of the empirical mean value (3.3) with an approximation �(t) of the corresponding
macroscopic quantity F (t) obtained from an accurate deterministic numerical method.

The error of this approximation is denoted as

eDASSL = j�(t)� F (t)j : (3.8)

The approximation �(t) is obtained from the code DASSL [1]. DASSL is a code for

solving systems of di�erential/algebraic systems. DASSL has been applied successfully to

combustion problems as part of the software package SENKIN [20]. This Fortran computer

program computes the time evolution of a homogeneous reacting gas mixture as described

by equation (1.2). The program runs in conjunction with the CHEMKIN [17] package

that facilitates the description of elementary gas-phase kinetics. The Appendix contains

the chemical mechanism and the thermodynamic data for Example 2.6 in CHEMKIN

format. The reaction mechanism and thermodynamic data for n-heptane oxidation were

provided in CHEMKIN format also.

DASSL is based on an implicit discretization of the time derivative and a Newton

method for solving the resulting nonlinear system of equations. The accuracy of DASSL

is determined by two tolerances RTOL and ATOL. If m the number of signi�cant digits

required for �(t) then RTOL has to be set RTOL = 10�(m+1) and ATOL has to be set to

a value at which jF (t)j is essentially insigni�cant. For the numerical calculations in this

paper the tolerances are set to RTOL = 10�10 and ATOL = 10�20. From that we obtain

an upper bound for the deterministic error (3.8)

eDASSL � 10�8jF (t)j :

The error

~e(n;L)(t) = j�(n;L)1 (t)� �(t)j (3.9)

is a good approximation of the true error e(n;L)(t) for the choice of parameters in this

paper. In order to get an expression for (3.9) on [0; T ] we calculate the quantity

ctot =
1

M + 1

MX
i=0

~e(n;L)(ti) : (3.10)

The error ctot is an estimate for the average error in the time interval [0; T ] :

15



3.4. Convergence behaviour

The errors cstat and ctot (cf. (3.7), (3.10)) are calculated for the mass density (2.18).

The mass density was chosen because it is a function of all macroscopic quantities and

therefore the errors cstat and ctot can be regarded as representative for all state variables.

Tables 1-3 contain results of the numerical study. Here tsr denotes the CPU time (in

seconds) needed for a single run. All numerical simulation runs have been performed on

a Silicon Graphics Origin 2000 work station.

Table 1 contains the results of the numerical study for the �rst test case described

in Section 3.1. In this study the product n� L is constant at a value of 2:5� 108.

Table 1: Computational study for Gillespie mechanism

n cstat � 1010 ctot � 1010 tsr tsr=n � 105

25 9:78 564 0:0010 4:0
50 9:74 297 0:0017 3:4
100 9:70 157 0:0032 3:2
200 9:67 77:7 0:0061 3:0
400 9:67 38:5 0:012 3:0
800 9:66 17:6 0:023 2:9
1600 9:67 7:81 0:046 2:9
3200 9:66 4:25 0:093 2:9

Figure 4 displays numerical solution of the stochastic method for di�erent particle

numbers, as described in Table 1, and the numerical solution obtained from DASSL. One

can see that the exact solution is covered by the con�dence band for su�ciently large n :

As long as the systematic error is larger than the statistical error we can estimate the

order of convergence. The logarithm of the error ctot as given in Table 1 is printed as

a function of the logarithm of the particle number in Figure 5. The error is compared

with the slope 1
n
: Con�dence intervals are obtained using the statistical error bound

(esys � estat).
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Tables 2, 3 contain the results of the numerical study for the second test case

described in Section 3.1. The product L� n is approximately 106 in both tables.

Table 2: Computational study for Heptane mechanism (starting phase)

n cstat � 109 ctot � 109 tsr tsr=n � 104

800 66:3 452 0:57 7:0
1200 71:5 291 0:78 6:5
1600 74:7 230 0:99 6:1
2400 76:7 184 1:4 5:8
3200 78:7 141 1:8 5:6
4800 81:3 79:9 2:7 5:5
6400 80:6 70:7 3:7 5:7
9600 81:8 48:9 5:2 5:4
12800 84:7 54:4 7:2 5:6
19200 84:6 25:5 10 5:4
25600 84:3 22:7 14 5:5
51200 81:1 30:1 28 5:5
102400 80:9 14:0 56 5:5

Table 3: Computational study for Heptane mechanism (after ignition)

n cstat � 109 ctot � 109 tsr tsr=n � 103

1000 476 3932 3:1 3:6
1799 603 2856 7:6 4:2
3247 621 1675 16:3 5:0
5848 641 710 32:6 5:5
10527 698 356 58:7 5:6
19231 810 279 110 5:7
34483 710 138 198 5:7

The error ctot as given in Tables 2, 3 is displayed in logarithmic scale as a function of

the particle number in Figures 6, 7. The error is compared with the slope 1
n
: Due to

the complexity of the second test case the order of convergence is more di�cult to detect.

Note that inside the con�dence interval the error �uctuates.
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3.5. Performance and limitations

Here we discuss the issue of e�ciency for the stochastic algorithm. In particular, we

address the problem of comparison with the deterministic algorithm. We also

indicate the limitations of the present stochastic method.

The CPU time for a single run of the stochastic algorithm is given in Figure 8 (�rst

test case) and Figure 9 (second test case), for varying simulation time intervals and

particle numbers in comparison to DASSL.
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Figure 8: CPU time for the �rst test case
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Figure 9: CPU time for the second test case

Concerning computation time CT(n; t) ; one expects the property

lim
n!1

CT(n; t)

n
= b(t) : (3.11)
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This is supported by the last columns in the tables of section 3.4., and by the measured

curves in Figure 8. Property (3.11) allow us to obtain curves for the computing time for

di�erent n on the basis of one measured curve. Accordingly, only the curve for n = 104

in Figure 9 was measured, while the others were calculated.

In addition, we consider the mean number of individual reactions RN(n; t) oc-
curing in the stochastic algorithm. We illustrate for the two test cases that

lim
n!1

RN(n; t)

n
= a(t) :

The corresponding curves are shown in Figures 10, 11 for both test cases.
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Figure 11: Number of reactions in the second test case

If the expression
b(t)

a(t)
(mean e�ort per reaction) does not vary signi�cantly in time,

than the number of reactions (which is simpler to measure) can be used to estimate the

actual computation time.
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Figures 8 and 9 provide a quantitative illustration of the general statement that, if

less accuracy is needed, the stochastic method is signi�cantly faster than the deterministic

algorithm. To make a concrete comparison in our test cases, we have �rst to decide which

precision is necessary to catch the important features of the process. Considering the

curves for the averages shows for which n acceptable results are obtained. These

values of n depend on the functional under consideration. For the corresponding n one

may use single trajectories and take advantage of the e�ect of double randomization (if,

e.g., the reactions take place in a random environment).

In the �rst test case n = 1000 is su�cient to resolve all four components of the

solution. Even n = 100 provides reasonable results (cf. Table 1). Figure 8 allows us

to conclude that in this situation the stochastic method needs less CPU-time than the

deterministic method.

In the second test case, before ignition, one needs n = 104 to resolve the three

components displayed in Figure 2. Results of single runs are given in Figure 12. Finally
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Figure 12: Single run for the second test case (starting phase)

we study the second test case on a time interval including the ignition point. A su�cient

approximation of the mass density is obtained for n = 104 : The corresponding results

are given in Figure 13 (cf. Table 3). However, after ignition, n = 104 is not enough to

resolve all relevant components. The average curves for the component XOH are given

in Figure 14. Thus, one needs n = 105 in this example. Figure 15 illustrates the

behaviour of single trajectories.

Using Figure 9, we conclude that for n = 104 the stochastic algorithm is faster for

simulation times up to 10�3; while n = 105 it is faster only for simulation times up to

10�5:
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4. Concluding remarks

We have studied a stochastic particle method for homogeneous gas phase reactions. Con-

vergence and performance properties of the stochastic algorithmwere investigated system-

atically by comparing it with an e�cient deterministic numerical method. It was demon-

strated that the stochastic method can be successfully used for the numerical treatment of

practically relevant problems, like the combustion of heptane that serves as primary ref-

erence fuel for internal combustion engines such as spark-ignition, diesel, and gas turbine

engines. Chemical systems of this complexity have not been treated by this stochastic

numerical method in the literature before.

The algorithm was described as a Markov jump process based on a particle number

model. From this model the evolution equations of the deterministic quantities used

to describe combustion problems have been derived. In the numerical examples, the

systematic error of the method is found to be inversely proportional to the number of

simulation particles. The issue of e�ciency has been studied, and a comparison with an

accurate deterministic method was performed. It turned out that in situations, where

less accuracy is needed, the stochastic algorithm is much faster than the deterministic

method. This problem was studied quantitatively, providing the dependence of the e�ort

on the number of simulation particles.

In conclusion we mention two problems that are of considerable interest for further

investigations. In order to evaluate the process of combustion of heptane correctly, we

have to get radicals such as OH, H, O, H2O2 right during ignition. These components

appear in very small concentrations or mole fractions. In the current algorithm a su�cient

resolution can only be achieved by increasing the number of particles, which is time-

consuming. Thus, the investigation of more general stochastic mechanisms of handling

individual reactions is very promising. A second important point of practical relevance is

to study stochastic algorithms for adiabatic systems.
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Appendix:

Gillespie reaction mechanism in CHEMKIN format

! Formal mechanism for CHEMKIN chemistry interpreter taken from

! D.T. Gillespie, Journal of Computational Physics, 22, p.403-434, 1976

! Example (33) on page 422.

!

ELEMENTS X/1/ END

SPECIES A B C D END

!

! Thermodynamic data taken from He

!

THERMO

A 281095X 1 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.09153489E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.09153488E+01 4

B 281095X 1 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.09153489E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.09153488E+01 4

C 281095X 2 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.09153489E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.09153488E+01 4

D 281095X 1 G 0300.00 5000.00 1000.00 1

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2

-0.07453750E+04 0.09153489E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00 3

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.09153488E+01 4

!

!

!

REACTIONS KCAL/MOLE

A => B 1.0E-05 0.0 0.0E+00

B => A 1.0E-05 0.0 0.0E+00

2A => C 2.0E+00 0.0 1.0E+00

C => 2A 1.0E-05 -0.5 5.0E-01

A + D => 2A 1.0E-00 0.0 1.0E+00

2A => A + D 1.0E-00 0.0 1.0E+00

END
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