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Abstract

We propose a new method of e�ective dimension reduction for a multi-index

model which is based on iterative improvement of the family of average derivative

estimates. The procedure is computationally straightforward and does not require

any prior information about the structure of the underlying model. We show that in

the case when the e�ective dimension m of the index space does not exceed 3, this

space can be estimated with the rate n
�1=2

under rather mild assumptions on the

model.

1 Introduction

Suppose that the observations (Yi; Xi) , i = 1; : : : ; n , are generated by the regression

model

Yi = f(Xi) + "i (1.1)

where Yi is a scalar response variables, Xi 2 [�1; 1]d are d -dimensional explanatory

variables, "i are random errors and f(�) is an unknown d -dimensional function f :

IRd ! IR .

We assume that f(x) has the speci�c structure:

f(x) = g0(Tx): (1.2)

Here g0(�) is an unknown m -dimensional link function and T is a linear orthogonal

mapping from the high-dimensional space IRd onto the space IRm with an essentially

smaller dimension m , satisfying the condition T T> = Im , where T> stands for the

transpose of T . In the statistical literature relations as in (1.1) and (1.2) are referred

to as multi-index regression models. Model (1.2) is a rather general expression of the

hypothesis that all the information about f(x) is �concentrated� in a low-dimensional

projection Tx . If we adopt such a model, our intention can be both to �nd the e�ective

dimension m and to describe the index space I = ImT> which is also referred to as the

e�ective dimension space or the space of e�ective dimension reduction in Li (1991, 1992)

and Cook (1998). In the present paper we propose an algorithm to estimate the index



space when the e�ective dimension m is known a priori. Some extensions are discussed

in Section 6.

Note �rst that the representation (1.2) is not unique. For instance, if Om is an orthogonal

transform in IRm , then the function f can be rewritten in the form f(x) = g1(T1x) with

g1(z) = g0(Omz) and T1 = O>
mT . Nevertheless, the index space I is de�ned uniquely

by (1.2) and it contains very important information about the model. As soon as the

operator T which maps IRd onto IRm is �xed, the link function g0 can be estimated in

a nonparametric way.

Various methods for dimension reduction have been proposed in the literature. Classical

theory of principle component analysis considers mostly the case of multiple linear regres-

sion. Brillinger (1983) extended the method to the so called �generalized linear model�

with normally distributed regressors. The underlying idea is to make some data trans-

formation and then to proceed as if the model were linear. Under a similar assumption

on the distribution of regressors, Li (1991) o�ered the so called �sliced inverse regres-

sion� approach A modi�cation of this method (principle Hessian directions) is explored

in Li (1992) and Cook (1998). Samarov (1993) discussed an approach relying on average

derivative estimation of some linear functionals of the gradient of the regression function

f . However, the conditions for this method to work appear to be quite restrictive in

application to real data. The main problem here is that, for large d , the data in the high

dimensional space IRd is very sparse (the so called �curse of dimensionality� problem).

Our approach can be seen as an iterative improvement of the average derivative estimator

and can be used under weak assumptions on the model. The proposed procedure can be

regarded as an extension of the method developed in Hristache, Juditsky and Spokoiny

(1998) for the single-index model to the multi-index situation. In the sequel the latter

paper is referred to as HJS98.

The paper is organized as follows: in the next section we discuss the heuristics behind

the proposed approach. Then in Section 3 the estimation procedure is presented. The

performance of the method is tested for some simulated datasets in Section 4. The

theoretical setting is given and asymptotic properties of the algorithm are studied in

Section 5. Section 6 shortly summarizes main results and discusses possible extensions

and open problems. Finally, the proofs are collected in the appendix.
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2 Basic ideas

Since the gradient F (Xi) = rf(Xi) of the regression function f at every point Xi be-

longs to the index space I , it seems quite natural to apply the principle component anal-

ysis for estimating this space: one can compute the matrix M� =
Pn

i=1 F (Xi)F
>(Xi)

and then use the eigenvalue decomposition of M, M� = O>
d �Od . Here Od is an or-

thonormal matrix and � is a diagonal matrix with decreasing eigenvalues. These matrices

deliver a valuable important information about model (1.2): the �rst m columns of U

(i.e. the �rst m eigenvectors of M� ) provide an orthonormal basis of the index space

I ; the corresponding eigenvalues show how fast the function f varies in each direction.

In particular, the �rst eigenvector of M� is the direction in which f varies most (cf.

Samarov (1993)). This leads to the natural idea, to �rst estimate M� from the data

Y1; : : : ; Yn and then to recover the index space I using this estimate. Note that the ma-

trix M� is a quadratic functional of the gradient of the regression function f . There is

a number of papers on estimation of such functionals in the framework of nonparametric

regression. Various estimation algorithms and results on their optimality can be found

in Ibragimov, Nemirovskii and Khasmiskii (1986), Donoho and Nussbaum (1990), Fan

(1991). The estimators in Samarov (1993) and Doksum and Samarov (1995) are based

on kernel estimators of the regression function f , Huang and Fan (1998) applied the

local polynomial �t, the procedure from Ibragimov, Nemirovskii and Khasmiskii (1986)

is based on the Fourier expansion of the gradient F of the function f . Let us see how

this latter idea applies to our problem.

Suppose that we are given a collection f ` ; ` = 1; : : : ; Lg of functions  ` : IRd ! IR

which satisfy

nX
i=1

 `(Xi) `0(Xi) = Æ``0

where Æ`` = 1 and Æ``0 = 0 for ` 6= `0 . Now, let ��` ,

��` =

nX
i=1

F (Xi) `(Xi); (2.1)

be the ` -th Fourier coe�cient of F with respect to the basis system f `g . Note that

each d-vector ��` is a linear functional of the gradient and hence belongs to I . Thus if
the dimension of the space spanned by ��1 ; : : : ; �

�
L equals m, this set of vectors completely

characterizes the index space I , and one can identify the space I by looking for the �rst

m principal components of the set �1; : : : ; �L .

In order to estimate M� , one can �rst construct an estimate b�` of each Fourier coe�cient
3



��` , e.g.

b�` = nX
i=1

bF (Xi) `(Xi) (2.2)

on the basis of a pilot estimate bF of the gradient, and then compose the estimate

cML =

LX
`=1

b�`b�>`
of M� . Note that in order to ensure cML to be a consistent estimate of the matrix M�

the number L of basis functions  ` should be taken growing with n . Otherwise cML

estimates the matrix M�
L with

M�
L =

LX
`=1

�`�
>
` :

On the other hand, recall that it is the index space I we are interested in, and not the

estimation of M� . It would be su�cient for our purposes to point out a �xed (possibly

small) number of �test functions�  ` such that rank(M�
L) = m and the value kM��M�

Lk
is not too large. The choice of a proper set of test functions  ` , ` = 1; : : : ; L is a very

sensitive issue of the proposed approach. Some heuristic ideas about it are discussed in

in more details in Section 3.4.

2.1 Equivalent representation

As we have already noticed, the model representation (1.2) is not unique. It is more

convenient for our purposes to work with another one, which is distinctly de�ned by the

set of test functions  ` , ` = 1; : : : ; L and the regression function f .

Let us denote B� the d�L matrix with the columns ��` , ` = 1; : : : ; L , where the vectors

��` are as in (2.1). Obviously, each vector ��` belongs to I and hence rank(B�) � m .

We additionally suppose that rank(B�) = m which means that this matrix completely

describes the index space I .

Let �1 � �2 � : : : � �d be the ordered set of eigenvalues of the symmetric d�d -matrix

M�
L = B�(B�)> . Since rank(M�

L) = m , only the �rst m of them are positive and the

remainings are equal to zero. Without loss of generality we assume that

�1 > �2 > : : : > �m (2.3)

which ensures that the corresponding eigenvectors of unit length e1; : : : ; em are uniquely

de�ned (up to a sign). These vectors belong to the index space I and can be used as a
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natural basis in it. We also denote �k =
p
�kek , k = 1; : : : ;m . Since �k = 0 for k > m ,

it also holds �k = 0 for those k .

We now represent the model (1.1), (1.2) in the form

f(x) = g
�
�>1 x; : : : ; �

>
mx
�

(2.4)

where the new link function g is uniquely de�ned as soon as the vectors �1; : : : ; �m are

�xed. Usually a similar representation with vectors ek = �k=j�kj in place of �k is used:

f(x) = g1
�
e>1 x; : : : ; e

>
mx
�
: (2.5)

However, the value �k characterizes a variability of the function f in the direction ek .

Thus the function g1 in (2.5) inherits the inhomogeneity of f in di�erent directions. The

bene�t of using (2.4) is that the corresponding link function g is homogeneous w.r.t. its

variables.

Let R� be a m�d -matrix such that its transpose (R�)> = (�1; : : : ; �m) has vectors

�1; : : : ; �m as columns. Then (2.4) can be rewritten as f(x) = g(R�x) . The matrix

R� maps IRd onto IRm and determines the required e�ective dimension space. In what

follows we refer to R� as the e�ective dimension reduction matrix, or simply the e.d.r.

The following lemma o�ers an explicit representation of the matrix R� via the orthogonal

decomposition of the symmetric L�L -matrix (B�)>B� .

Lemma 2.1 Let (B�)>B� = O�LO
> be the orthogonal decomposition of (B�)>B� where

O is an orthogonal L�L -matrix and �L is a diagonal matrix with non-increasing eigen-

values �01 � �02 � : : : � �0L . Let also Om be the block of the �rst m columns of O .

Then �0k = �k for k � d and

R� = (B�Om)>: (2.6)

Due to this lemma, the model (2.4) can be now rewritten in the form

f(x) = g(R�x) = g
�
(B�Om)>x

�
(2.7)

which is used in the sequel.

2.2 Gradient estimation

Next we discuss the problem of estimating each linear functional ��` using a nonpara-

metric estimate bF of the gradient F , see (2.2). A standard way to estimate both f(Xi)

5



and F (Xi) is to apply the local linear least squares approach: bf(Xi)bF (Xi)

!
= arginf

c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jXj �Xij2
h2

�
; (2.8)

where a kernel K(�) is positive and supported on [0; 1] , so that the weights of all pointsXj

outside a spherical neighborhood Uh(Xi) of diameter h around Xi vanish. The solution

to this quadratic optimization problem can be represented as bf(Xi)bF (Xi)

!
=

8<:
nX

j=1

�
1

Xij

��
1

Xij

�>
K
� jXij j2

h2

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K
� jXij j2

h2

�
where Xij = Xj � Xi . As many other nonparametric estimates, the estimate (2.8)

su�ers from the data sparseness for large d . This phenomenon is often referred to as

curse of dimensionality. Indeed, one has to select the bandwidth h in a way to provide

at least d + 1 design points in every (or almost every) spherical neighborhood Uh(Xi) .

For the case of a random design with a positive density, this implies that a bandwidth h

of order n�1=d or even larger should be taken. For large d this leads to a very poor rate

n�1=d in estimation of F , and the same applies to the estimation of the vectors ��` (see

Proposition 5.1 below).

At the same time, suppose for a moment that we know the mapping T : IRd ! IRm .

Then we could use this information for estimating the m -dimensional link function g0

and its gradient rg0 . This also provides an estimate of the gradient F (x) = T>rg0(Tx)
of much better accuracy, which corresponds to an m -dimensional nonparametric problem

on the �true� index space, instead of the original d -dimensional nonparametric estimatebF (x) . More speci�cally, a function f(x) of the form (2.7) remains constant when x varies

in any direction orthogonal to the m -dimensional subspace I . The above considerations
leads to another estimate: bf(Xi)bF (Xi)

!
= arginf

c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jT (Xj �Xi)j2
h2

�

=

8<:
nX

j=1

�
1

Xij

��
1

Xij

�>
K
� jTXij j2

h2

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K
� jTXijj2

h2

�
The latter estimate of F (Xi) is based on averaging over a narrow cylinder fx : jT (x �
Xi)j � hg , centered at Xi , which spans I? . This allows to use an essentially smaller

bandwidth h and still have enough design points in every such neighborhood. On the

other hand, the smaller bandwidth would decrease drastically the bias of estimation.

Unfortunately this �ideal� estimate cannot be implemented in practice since it requires

6



the explicit knowledge of the target index space I . A natural idea is to substitute

the mapping T by its pilot estimate. This leads to the following structural adaptation

approach. We proceed iteratively starting with the estimates b�` =
Pn

i=1
bF (Xi) l(Xi) ,

` = 1; : : : ; L based on the fully nonparametric gradient estimate bF with some h = h1 ,

see (2.8). Although this estimate is very rough, it contains some information about the

structure of the model function f and, in particular, about the mapping T : all vectorsb�` up to the estimation error, belong to the index space I . This information can be

used for producing another, more careful estimate of the gradient function and hence, of

the vectors ��` . More precisely, let bB1 be the matrix composed from the vectors b�` ,
` = 1; : : : ; L . We de�ne the gradient estimate bF2(Xi) at Xi by a local linear �t using

the elliptic neighborhood fx : jS2(x � Xi)j � h2g , with S2 = (I + ��2
2
bB1 bB>1 )�1=2 for

some �2 < 1 and h2 > h1 (instead of the spherical windows fx : jx � Xij � h1g ). In

other words, we shrink the original windows in all the directions b�` (since �2 < 1 ) and

stretch them in all the orthogonal directions (since h2 > h1 ): bf2(Xi)bF2(Xi)

!
= arginf

c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jS2(Xj �Xi)j2
h22

�

=

8<:
nX

j=1

�
1

Xij

��
1

Xij

�>
K
� jS2Xij j2

h22

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K
� jS2Xij j2

h22

�
:

This leads to the estimates b�2;` = 1
n

Pn
i=1

bF2(Xi) `(Xi) of ��` producing the matrix bB2 .
We continue this way each time compressing the averaging windows in the direction of

the current estimate bBk and expanding them in orthogonal directions.

The results presented below show that this procedure allows to estimate the index space

I at the rate n�1=2 provided that m < 4 .

3 Estimation algorithm

We now present the description of the method. The whole estimation procedure (we refer

to it as Algorithm 1) is carried out in two basic steps: estimation of the vectors ��` and

estimation the e.d.r. matrix R� . Below we discuss each step separately.

3.1 Estimation of ��` 's

The procedure involves input parameters h1 < hmax and �min < �1 , so that � decreases

geometrically from �1 to �min by the factor a� and h increases geometrically from h1

to hmax by the factor ah during iterations. The choice of these parameters as well as

7



the set of basis functions f `g will be discussed in the next section. The algorithm reads

as follows:

1 Initialization: specify parameters �1 ; �min ; a� ; h1 ; hmax ; ah and the set of

functions f `g ; set k = 1 , bB0 = 0 ;

2 Compute Sk =
�
I + ��2

k
bBk�1

bB>k�1

�1=2
;

3 For every i = 1; : : : ; n , compute bFk(Xi) from the expression:

 bfk(Xi)bFk(Xi)

!
=

8<:
nX

j=1

�
1

Xij

��
1

Xij

�>
K
� jSkXij j2

h2k

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K
� jSkXij j2

h2k

�
where Xij = Xj �Xi ;

4 Compute the vectors b�k;` = 1

n

nX
i=1

bFk(Xi) `(Xi) , ` = 1; : : : ; L and compose the

matrix bBk with columns b�k;1; : : : ; b�k;L ;
5 set hk+1 = ahhk , �k+1 = a��k . If �k+1 � �min , then set k = k + 1 and

continue with Step 2; otherwise terminate.

By k(n) we denote the total number of iterations. The estimates b�k(n);` from the last

iteration are used as the �nal estimates of ��` .

3.2 Computing the e�ective dimension reduction matrix

Let bB be an estimate of the matrix B� obtained by the previously described iterative

procedure. We will see (Theorem 5.3) that this matrix estimates the target matrix B�

with a reasonable accuracy but it is typically of the rank d and hence, it does not provide

any dimension reduction. We estimate the e�ective dimension reduction matrix R� using

the singular value decomposition of bB in place of B� , cf. (2.6). Namely, the productbB> bB , being symmetric and non-negative, can be represented in the form bB> bB = bOb� bO>

with the orthogonal L�L -matrix bO and the diagonal matrix b� : b� = diagfb�1; : : : ; b�Lg
with non-increasing eigenvalues b�1 � : : : � b�L � 0 (the squared singular values of bB).
The estimate Rm of the true e.d.r. matrix R� from (2.6) is de�ned by

Rm = ( bB bOm)> (3.1)

where bOm is the submatrix of bO composed of its �rst m columns.
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3.3 Choice of parameters of the algorithm

It is obvious that the quality of estimation by the proposed method strongly depends on

the rule for changing the parameters h and � , and, in particular, on their values at the

initial and �nal iteration. The values �k decrease from �1 to �min while hk increase

during iteration from h1 to hmax . The value h1 is to be selected in such a way that

for every (or almost every) point Xi , the estimate bF (Xi) is well de�ned. A necessary

(and usually su�cient) condition is that every ball fx : jx�Xij � h1g contains at least

d + 1 design points; see the modi�ed procedure in the next section for more discussion.

Concerning the values h and � at the last iteration k(n) , the optimization of the risk of

this estimate (see Corollary 5.1 in Section 5.3) leads to the following recommendation: the

value hk(n) for the last iteration should be possibly large that is, about
p
d , and then the

value �min should be selected possibly small, but still providing enough design points in

every or almost every local ellipsoidal neighborhoods Ek(Xi) = fx : jSk(x�Xi)j � hkg .
For the case with m � 3 , we propose the following rule of thumb:

�1 = 1; �min = n�1=3; a� = e�1=6;

h1 = C0n
� 1

4_d ; hmax = C0 ; ah = e
1

2(4_d) ;
(3.2)

where C0 � 1 is to be de�ned depending on the design, see the modi�ed procedure for a

proposal.

The proposed rule leads to k(n) � 6 log(�1=�min) � 2 log n iterations and provides that

hk(n) � hmax . Note also that assuming the structure of the matrix bBk�1
bB>k�1 to follow the

structure of the target matrix M� , neighborhood Ek(Xi) is stretched at each iteration

step by factor ah in all directions and is shrunk by factor a� in directions of the m -

dimensional index space I . Therefore, the Lebesgue measure of every such neighborhood

is changed each time by the factor e
d

2(4_d)
�m

6 which is larger or equal to 1 for all m � 3

and d > m . Under the assumption of a random design with a positive density, this would

lead to an increase of the mean number of design points inside each Ek(Xi) .

3.4 Choice of functions  `

As we have mentioned already, the choice of test functions f ` ; ` = 1; : : : ; Lg is of

primary importance for the practical e�ciency of the proposed procedure. The main

constraint on the set f `g is that the matrix B� is of the same rank as T and that

the function g from the equivalent representation (2.7) is su�ciently smooth, see As-

sumption 3 below. It can be easily shown that the �ideal� choice of the set f `g can

be obtained by orthogonalization of the components Fj = @f=@xj , j = 1; : : : ; d of the

9



gradient F . This �ideal� collection of functions  ` would contain only m elements. Of

course, this choice cannot be realized since it involves the unknown regression function

f .

Note next that the functions (vectors)  1; : : : ;  L form an orthonormal system in IRn

and ��` is the scalar product of the gradient F and the basis function  ` . The sum

FL =

LX
`=1

��` `

is the projection of the gradient F on the linear subspace in IRn spanned by f `g .
One can easily check that M�

L =
Pn

i=1 FL(Xi)FL(Xi)
> . Thus to prevent the loss of

information due to the substitution of M for ML , the set f `g should be selected rich

enough. Our proposals is to de�ne f `g by orthogonalizing the set of all polynomials

x`1 : : : x`q of the coordinate functions for some q � 1 and all 1 � `1 � : : : � `q .

A suitable alternative, especially for large d , is a basis system constructed by orthogo-

nalizing a fully nonparametric estimate of the gradient.

4 Implementation and simulated results

In this section we illustrate the performance of the proposed algorithm on some simulated

examples. First we discuss a slight modi�cation of the procedure which allows to relax

design assumptions.

4.1 Modi�ed procedure

In Algorithm 1, at each step, we use a linear combination of the estimated gradient

vectors bF (Xi) as the estimate of the vector ��` . To guarantee some useful properties of

this procedure, the estimates bF (Xi) should be well de�ned, which in turn requires some

local regularity of the design in the corresponding neighborhood of the point Xi , see

Assumption 4 in Section 5. If such a condition is not satis�ed even at a few points, then

the corresponding gradient estimates would have a very large standard deviation which

may deteriorate the quality of the index estimates b�` . We can avoid this problem by

weighting each summand in the expression for b�k;` with some coe�cients which express

the degree of local regularity of the design. This leads to the modi�ed procedure which

is presented below.

1 Initialization: specify parameters �1; �min ; a� ; h1 ; hmax ; ah , Cw and the set

10



of functions f `g ; Define w as the square root of the minimal eigen-

value of the matrix V with

V =
1

EK(�>�)
E

�
1

�

��
1

�

�>
K(�T �)

where � is random and uniformly distributed over the ball B1 = fx 2 IRd :

jxj � 1g: w2 = �min

�
V
�
; set k = 1 , bB0 = 0 ;

2 Compute cMk = bBk�1
bB>k�1 . If kcMkk > 1 , then normalize it by its maximal

eigenvalue: cMk := cMk=kcMkk ; Set Sk =
�
I + ��2

k
cMk

�1=2
;

3 For every i = 1; : : : ; n , compute the matrix bVk(Xi) with

bVk(Xi) =
1

nP
j=1

K
�
W>

ij;kWij;k

� nX
j=1

�
1

Wij;k

��
1

Wij;k

�>
K
�
W>

ij;kWij;k

�

where Wij;k = h�1
k Sk(Xj �Xi) and define wi as the square root of the

minimal eigenvalue of bVk(Xi) : w2
i = �min

�bVk(Xi)
�
;

4 If the condition

1

n

nX
i=1

wi � Cww

is not fulfilled, then increase hk by the factor ah , that is, hk := ahhk .

If hk > hmax , then terminate, otherwise repeat from Step 3;

5 For every i = 1; : : : ; n , compute bFk(Xi) : bfk(Xi)bFk(Xi)

!
=

8<:
nX

j=1

�
1

Xij

��
1

Xij

�>
K
� jSkXij j2

h2k

�9=;
�1

nX
j=1

Yj

�
1

Xij

�
K
� jSkXijj2

h2k

�
;

6 For every ` = 1; : : : ; L , compute the vector b�k;`
b�k;` =

 
nX
i=1

wi

!�1 nX
i=1

bFk(Xi) `(Xi)wi

with the previously obtained wi 's. Compose the matrix bBk with columnsb�k;` , ` = 1; : : : ; L .

7 Set �k+1 = a��k , and hk+1 = ahhk . If �k+1 � �min , then set k = k + 1

and continue with Step 2.

The last iteration estimate bB = bBk(n) will be used for the dimension-reduction step.
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4.2 Simulated datasets

In our simulation study we apply the modi�ed procedure with the following parameter

setting:

�1 = 1; �min = n�1=3; a� = e�1=6;

h1 = n�
1

4_d ; hmax = 2
p
d; ah = e

1
2(4_d) :

We also set Cw = 2�1=2 . In case of high dimensionality, i.e. d > 20 a smaller value of Cw

was necessary to guarantee the existence of valid bandwidths hk. The basis system f `g
is obtained by orthogonalization of the set of functions f1; xj ; xjxk , j; k = 1; : : : ; dg .

This setting leads to the number of iterations k(n) � log(�1=�min)

log a�
= 2 log n .

The performance of the method is illustrated by means of the following examples. We

consider the model Yi = g(X>
i �1; : : : ; X

>
i �m) for m = 1 and m = 2 . The design

X1; : : : ; Xn is modelled randomly with independent components so that every component

of (Xi + 1)=2 follows B(1; �) -distribution. The parameter � controls the skewness of

the beta-distribution with � = 1 corresponding to the uniform design. We also set

m = 1 : g(u) = u sin(
p
5u) and � = (1; 2; 0; : : : ; 0)>=

p
5 .

m = 2 : g(u1; u2) = (u31 + u2)(u1 � u32) and �1 = (1; 1; 1; 0; : : : ; 0)>=
p
3 ,

�2 = (1;�1; 0; : : : ; 0)>=
p
2 .

The �rst situation corresponds essentially to example 8.2 from Li (1992). The procedure

utilizes the biweight kernel K(jxj2) = (1� jxj2)2+ . The quality of estimation is measured

using the criterion kR�(I � Pm)k2 , where Pm is the projector on the estimated index

space bI , see Section 5.2 for more details.

Our objective is to illustrate the following features of the procedure:

� how the quality of estimation improves during iteration;

� dependence on the sample size n and the dimensionality d .

� how the results depend on skewness of the design and on the error variance �2.

We also compare the performance of our iterative procedure to a one step estimate with

an �ideal� choice of the bandwidth, minimizing the criterion for the situation at hand.

This bandwidth was selected in a separate small simulation from a grid of bandwidths,

complying to the condition in step 4 of the procedure.

Figure 1 illustrates the quality of estimation of the index space form = 1, d = 10, n = 400

and � = :1, providing the �best� view obtained by a one step estimate (left) and the view

gained from our procedure (right).

12
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Figure 1: Best view for a one step estimate (left) and view from the last iteration (right) for

g(u) = u sin(
p
5u), m = 1, d = 10, n = 400 and � = :1. Values of y and f(x) are indicated by Æ

and � respectively.

The simulation results for di�erent dimensionality d and sample size n are given in

Tables 1 and 2. All simulation results show a considerable gain using the proposed

iterative method. This gain increases drastically as the dimensionality d grows. The

results from Table 2 for d = 10 and di�erent � -values clearly illustrate the bias-variance

trade-o�. For the �rst step estimate as well as for the �best� one-step estimate the bias

dominates and the quality of estimation only weakly depends on the noise variance while

for our procedure the bias is essentially reduced during iteration and the �nal quality

of estimation is proportional to the standard deviation � . We also observe that the

procedure performs stable in case of moderate error variance and design asymmetry.

The box-plots in Figure 2 provide some information about the distribution of the criterion
p
nkR�(I � bPm)k2

Æ
kR�k2 for the �best� one step estimate and after the �rst, second,

fourth, eighth and �nal iteration for d = 10 , m = 2 and di�erent sample size n .

Results displayed are obtained from N = 250 simulations. The results con�rm the root-n

consistence of the �nal estimate as claimed by Theorem 5.1 from Section 5. Note that

the losses even being multiplied by
p
n are still slightly improved with growing n .
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Table 1: Case m = 1: mean loss


R�(I � bPm)




2
=


R�




2
for the �best� one step estimate and the

�rst, second, fourth, eighth and �nal iteration. Results are obtained from N = 250 simulations

(N = 100 in case of d > 10). The interquartile range of the losses is given in parentheses.

d n � � best 1st 2nd 4th 8th �nal

3 200 0.1 1 0:0442

(0:032)

0:0508

(0:038)

0:0419

(0:031)

0:0359

(0:026)

0:0271

(0:019)

0:0236

(0:014)

4 200 0.1 1 0:0558

(0:034)

0:0606

(0:033)

0:0484

(0:024)

0:0417

(0:025)

0:0339

(0:02)

0:0309

(0:018)

6 200 0.1 1 0:0807

(0:036)

0:0829

(0:034)

0:0631

(0:024)

0:0536

(0:024)

0:0437

(0:02)

0:0389

(0:018)

10 100 0.1 1 0:343

(0:14)

0:341

(0:14)

0:208

(0:083)

0:146

(0:067)

0:105

(0:047)

0:0903

(0:04)

10 200 0.1 1 0:172

(0:066)

0:173

(0:065)

0:109

(0:036)

0:0854

(0:026)

0:0646

(0:02)

0:0537

(0:017)

10 400 0.1 1 0:101

(0:029)

0:103

(0:031)

0:0698

(0:024)

0:0573

(0:019)

0:0438

(0:015)

0:0369

(0:012)

10 800 0.1 1 0:0619

(0:019)

0:0642

(0:019)

0:0479

(0:015)

0:0409

(0:013)

0:032

(0:011)

0:0271

(0:0084)

Table 2: Case m = 2: mean loss kR�(I � bPm)k2
Æ
kR�k2 for the �best� one step estimate and the

�rst, second, fourth, eighth and �nal iteration. Results are obtained from N = 250 simulations

(N = 100 in case of d > 10). The interquartile range of the losses is given in parentheses.

d n � � best 1st 2nd 4th 8th �nal

3 200 0.1 1 0:0248

(0:018)

0:0248

(0:018)

0:0186

(0:013)

0:017

(0:013)

0:0154

(0:012)

0:0148

(0:01)

4 200 0.1 1 0:0445

(0:024)

0:0445

(0:024)

0:0306

(0:017)

0:0265

(0:013)

0:0219

(0:011)

0:0195

(0:011)

6 200 0.1 1 0:0925

(0:035)

0:0933

(0:034)

0:0732

(0:029)

0:0653

(0:028)

0:0583

(0:022)

0:0477

(0:02)

10 100 0.1 1 0:361

(0:092)

0:361

(0:092)

0:25

(0:081)

0:209

(0:072)

0:179

(0:065)

0:153

(0:06)

10 200 0.1 1 0:203

(0:047)

0:203

(0:047)

0:132

(0:037)

0:112

(0:033)

0:086

(0:031)

0:0559

(0:017)

10 400 0.1 1 0:123

(0:031)

0:124

(0:032)

0:0739

(0:021)

0:0605

(0:019)

0:0425

(0:012)

0:0269

(0:0077)

10 800 0.1 1 0:0749

(0:019)

0:0749

(0:019)

0:048

(0:013)

0:0403

(0:011)

0:0285

(0:0073)

0:0155

(0:0042)

20 800 0.1 1 0:189

(0:026)

0:191

(0:026)

0:127

(0:024)

0:107

(0:021)

0:0743

(0:017)

0:0281

(0:0076)

50 800 0.1 1 0:647

(0:18)

0:654

(0:14)

0:389

(0:058)

0:313

(0:042)

0:229

(0:039)

0:0729

(0:0095)

10 400 0.05 1 0:123

(0:032)

0:122

(0:032)

0:0706

(0:02)

0:0572

(0:018)

0:0379

(0:013)

0:017

(0:0051)

10 400 0.2 1 0:13

(0:031)

0:132

(0:032)

0:087

(0:022)

0:0731

(0:019)

0:0573

(0:015)

0:0506

(0:015)

10 400 0.1 0.75 0:118

(0:029)

0:119

(0:031)

0:0813

(0:023)

0:0758

(0:024)

0:0591

(0:025)

0:0234

(0:0074)

10 400 0.1 1.5 0:12

(0:032)

0:12

(0:034)

0:0918

(0:026)

0:0902

(0:027)

0:0826

(0:033)

0:0382

(0:014)
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Figure 2: Simulation results in terms of
p
nkR�(I � bPm)k2

Æ
kR�k2 for m = 2, d = 10 and

n = 200; 400; 800 for the �best� one step estimate and the �rst, second, fourth, eighth and �nal

iteration

5 Main results

In this section we present some results describing the properties of the previously intro-

duced procedure.

5.1 Assumptions

We consider the following assumptions:

Assumption 1. (Kernel) The kernel K(�) is continuously di�erentiable, monotonously

decreasing function on IR+ with K(0) = 1 and K(x) = 0 for all jxj � 1 .

Assumption 2. (Errors) The random variables "i in (1.1) are independent and nor-

mally distributed with zero mean and variance �2 .

Assumption 3. (Link function) The function g from (2.7) is two times di�erentiable

with a bounded second derivative, so that, for some constants Cg and for all u; v 2
IRm , it holds

jg(v) � g(u) � (v � u) g0(u)j � Cg ju� vj2;
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Our last assumption concerns the design properties. In what follows we assume deter-

ministic design, that is, X1; : : : ;Xn are non-random points in IRd . Note however that

the case of a random design can be considered as well, supposing X1; : : : ;Xn i.i.d. ran-

dom points in IRd with a design density p(x) . Then all the result should be understood

conditionally on the design.

In order Algorithm 1 to work, we have to suppose that the design points (Xi) are �well

di�used� and, as a consequence, all the matrices Vk(Xi) are well de�ned.

The estimation procedure utilizes the matrices Sk with S2
k = I + ��2

k
bBk�1

bB>k�1 wherebBk�1 is the estimate of the matrix B� constructed at the preceding iteration step. We

also introduce an `ideal' matrix S�k =
�
I + ��2

k B�(B�)>
�1=2

and de�ne the matrix

Uk = (S�k)
�1S2

k(S
�
k)
�1:

This matrix Uk characterizes the accuracy of estimating the matrix B� by bBk�1 . IfbBk�1 = B� , then Uk = I . We shall see that these matrices Uk are typically close to I .

De�ne now, given a matrix U and k � k(n)

Zij;k = h�1
k S�k(Xj �Xi); i; j = 1; : : : ; n;

Ni;k(U) =

nX
j=1

K
�
Z>
ij;k U Zij;k

�
; i = 1; : : : ; n;

Vi;k(U) =

nX
j=1

�
1

Zij;k

��
1

Zij;k

�>
K
�
Z>
ij;k U Zij;k

�
; i = 1; : : : ; n:

Our design assumption means in particular that the (d + 1)�(d + 1) -matrices Vi;k(U)

are well de�ned for all U close to I and for all i � n .

We use below the notation kAk for the sup-norm of A : kAk = sup� jA�j=j�j .

Assumption 4. (Design) There exist constants CV , CK , CK0 and some � > 0 , such

that for all matrices U satisfying kU � Ik � � and for all k � k(n) the following

conditions hold:

(1) the inverse matrices Vi;k(U)�1 are well de�ned and

Ni;k(U)


Vi;k(U)�1



 � CV ; i = 1; : : : ; n;

(2) For j = 1; : : : ; n

nX
i=1

1

Ni;k(U)
K
�
Z>
ij;k U Zij;k

�
� CK ;

nX
i=1

1

Ni;k(U)

���K 0
�
Z>
ij;k U Zij;k

���� � CK0 :

Here K 0 means the derivative of the kernel K .
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Remark 5.1 One can easily checked that for the case of a random design with a con-

tinuous positive density, one can �x some constant CV , CK and CK0 depending on the

dimension d and design density only and such that the conditions from Assumption 4

are ful�lled with a high probability converging exponentially fast to 1 as n grows.

In what follows by C;C1; C2; : : : we denote generic constants depending on d , Cg , CV ,

CK , CK0 ,  ` , L and � only.

5.2 Loss of information caused by estimated e.d.r.

An important characteristic of the estimated e.d.r. Rm is the loss of information caused

by this reduction. Due to the representation (2.7), the information contained in a unit

vector v 2 IRd can be measured by the value jR�vj . A loss of information occurs if

jR�vj > 0 but jRmvj = 0 . Let �� be the projector in IRd onto the true index space

I and similarly, Pm denote the projector in IRd onto the estimated index space bI
corresponding to the e.d.r. Rm , that is bI = ImR>

m . Then the total loss of information

by e.d.r. Rm can be measured by the value

R�(I �Pm)



2

where


A



2
means the Euclidean norm of the matrix A , that is,



A

2
2
= trAA> =

trA>A . In the sequel we use the following obvious inequalities:


A

 � 

A



2
� pm



A


where m is the rank of A .

The next result claims that the loss of information caused by the e.d.r. Rm is of order

n�1=2 .

Theorem 5.1 Let Rm be de�ned by (3.1). For m � 3 , there exists a sequence {n ! 0

as n!1 such that under Assumptions 1 through 4, it holds for su�ciently large n and

every z � 1 :

P

�

Rm(I ���)



2
>

2zH1p
n

+ Cz2nn
�2=3

�
< z e�(z2�1)=2 +

3k(n)

n
;

P

 

R�(I �Pm)



2
>

2zH1p
n(1� {n)

+ Cz2nn
�2=3

!
< z e�(z2�1)=2 +

3k(n)

n
;

with zn = (1 + 2 log n+ 2 log logn)1=2 and

H1 =
p
2�CV CK  

p
L;

 = max
i=1;:::;n

max
`=1;:::;L

j `(Xi)j: (5.1)
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5.3 Estimation of the index space

By construction, R� is an orthogonal mapping from IRd to IRm , that is, R�(R�)> is

diagonal m�m -matrix with the diagonal elements �1; : : : ; �m . Moreover, the product

�� = (R�)>
�
R�(R�)>

��1R� is the projector in IRd onto the corresponding index space

I . Similarly Pm = Rm(RmR>
m)�1R>

m is the projector onto the estimated e.d.r. space.

Thus the quality of the identi�cation of the true index space can be quali�ed with the

error of estimating �� with Pm . We encounter the following identi�ability problem: if,

for instance, the last eigenvalue �m is (close to) zero, then the corresponding eigenvector

em is not uniquely de�ned. The next result states that if the eigenvalue �m is separated

away from zero, the estimated projector Pm recovers �� at the rate n�1=2 .

Theorem 5.2 Let m � 3 and Assumptions 1 through 4 hold. For n su�ciently large,

P

 

�� �Pm



2
>

2
p
2�

�1=2
m zH1p

n(1� {n)
+ Cz2nn

�2=3

!
� z e�(z2�1)=2 +

3k(n)

n

with {n and H1 from Theorem 5.1.

5.4 Estimation of the matrix B
�

In this section we present some results describing the quality of estimating the vectors

��` by the proposed estimation procedure. The �rst result describes the accuracy of the

�rst step estimate, and the next result describes the quality of the �nal estimate.

5.4.1 The �rst-step approximation

Let b�1;` , ` = 1; : : : ; n be the family of the estimates obtained at the �rst step of the

iterative procedure with �1 = 1 , S1 = I and some h1 .

Proposition 5.1 Under Assumptions 1 through 4, it holds for every ` � L

b�1;` � ��` = C1;` h1 +
�1;`

h1
p
n

where C1;` is a constant and �1;` is a zero mean normal random vector in IRd satisfying

C1;` �
p
2Cg CV  ` ;

Ej�1;`j2 � 2�2 C2
V C

2
K  

2

` :
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Remark 5.2 The optimization of the risk of the �rst step estimate under the constraint

h1 � Const: h�1=d leads to the following rule for the choice of h1 : h1 = Const: n�
1

4_d .

Hence, we get the accuracy for b�1;` :
jb�1;` � ��` j � Const: n�(

1
4
^ 1
d):

5.4.2 Accuracy of the �nal estimate

Let b�` 's be the estimates of ��` 's obtained at the last iteration, ` = 1; : : : ; L . As previ-

ously, bB denotes the matrix composed by the vectors b�` . It turns out that the quality
of estimation delivered by bB is not homogeneous w.r.t. to the orientation in the space

IRd . This heterogeneity is caused by application of elliptic windows for estimating the

gradient vectors F (Xi) . To mimic this property, we introduce for every k � k(n) an

operator ( d�d -matrix) P �
�k

=
�
I + ��2

k B�(B�)>
��1=2

= (S�k)
�1 which, roughly speak-

ing, multiply by the factor �k within the index space I while, being restricted to the

orthogonal subspace I? , it coincides with the identity mapping.

Theorem 5.3 Let m � 3 and Assumptions 1 through 4 hold. There exist a Gaussian

zero mean random d�L -matrix �� 2 IRdL such that, with � = �k(n) and n large enough

P

�


P �
� (
bB � B�)� ��p

n





2
> C1z

2
nn

�2=3

�
� 3k(n)� 1

n

and

E



��

2
2
� 2�2  

2
LC2

V C
2
K = H2

1 :

Corollary 5.1 Under the conditions of Theorem 5.3, for every z � 1

P

�

P �
� ( bB � B�)

2 > zH1p

n
+ C1z

2
nn

�2=3

�
� z e�(z2�1)=2 +

3k(n)� 1

n
:

6 Conclusions and outlook

We introduce a new method of dimension reduction based on the idea of structural adap-

tation. The method applies for a very broad class of regression models under mild assump-

tions on the underlying regression function and the regression design. The procedure is

fully adaptive and does not require any prior information. The results claim that the pro-

posed procedure delivers the optimal rate n�1=2 of estimating the index space provided

that the e�ective dimensionality of the model is not large than 3. The simulation results
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demonstrate an excellent performance of the procedure for all considered situations. An

important feature of the method is that it works stable in high dimensional situations

and for a non-regular design.

The procedure can be easily extended to the situation with a multivariate response vari-

able Y 2 IRp with p > 1 . The underlying multi-index assumption remains of the same

functional form: E (Y j X) = f(x) = g(X>�1; : : : ; X
>�m) where g is a vector function

on IRm with values in IRp . This means that the gradient Fj = rfj of each component

fj of f belongs to the index space spanned by vectors �1; : : : ; �m and one can utilize the

same ideas as previously for estimating the index space I . The only di�erence is that the
basis functions f `g should also be vectors in IRp . A reasonable example corresponds

to the procedure which estimates for every component fj , j = 1; : : : ; p , of the regression

function f 2 IRp the vectors ��1;j ; : : : ; �
�
L;j with

��`;j =

nX
i=1

Fj(Xi) `(Xi); ` = 1; : : : ; L;

and the same  ` 's and then utilizes the total collections of the vectors fb�`;jg with

` = 1; : : : ; L and j = 1; : : : ; p for estimating the index space I .

One more open question corresponds to the case of the unknown e�ective dimension m .

This immediately leads to the following two problems: estimation of m and testing a

m -index hypothesis. An important feature of the proposed iterative procedure is that it

does not rely on the speci�c value of m . One can therefore expect that the matrix bB
coming from the last step of the algorithm, can be used for answering the above mentioned

problems.

Another interesting issue arises when considering multiple time series and especially �-

nancial data. We regard such extensions as topics for further research.

7 Appendix A: Proofs

Here we collect the proofs of the assertions formulated previously.

7.1 Proof of Lemma 2.1

Let ok denote the k -th column of O . Then �k = B�ok is the eigenvector of M�
L with

the eigenvalue �0k , k � d . Indeed, with e.g. k = 1 ,

M�
L�1 = B�(B�)>B�o1 = B�O�LO

>o1 = �01B�o1 = �01�1: (7.1)
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Here we have used that the matrix O is orthogonal and hence, O>o1 = (1; 0; : : : ; 0)> and

O�LO
>o1 = O(�01; 0; : : : ; 0)

> = �01o1 . Under condition (2.3) this implies that �01 = �1

and �1 is a multiple of e1 , and similarly for other k . In addition,

�>k �k0 = ok(B�)>B�ok0 = okO�LO
>ok0 = �kÆkk0 ; k; k0 = 1; : : : ; L;

that is, the vectors �k are orthogonal to each other and satisfy j�kj2 = �k , k = 1; : : : ; L

and the assertion follows.

We now present the proofs of Proposition 5.1 and Theorems 5.1 through 5.3. All these

results are based on the following technical assertion describing an improvement of the

estimate bB at each iteration step.

7.2 One-step improvement

Suppose that we are given some �xed numbers h and � (which mean the current values

hk and �k ) and a �xed d�L -matrix B which can be viewed as an approximation bBk�1

of B� obtained at the previous step. Set also

SB =
�
I + ��2BB>

�1=2
;

VB(Xi) =

nX
j=1

�
1

Xij

��
1

Xij

�>
K

� jSBXij j2
h2

�
 bfB(Xi)bFB(Xi)

!
= VB(Xi)

�1
nX

j=1

Yj

�
1

Xij

�
K

� jSBXij j2
h2

�
(7.2)

b�B;` =
1

n

nX
i=1

bFB(Xi) `(Xi) (7.3)

where, recall, Xij = Xj�Xi , and de�ne the matrix bBB with columns b�B;` , ` = 1; : : : ; L .

We aim to evaluate the estimation errors bBB �B� . To describe the results, we introduce
the matrix (linear operator) P �

� =
�
I + ��2B�(B�)>

��1=2
. De�ne also for some positive

Æ < �=4 , the set BÆ;� by

BÆ;� =
n
B :



P �
� (B � B�)




2
� Æ
o
:

Proposition 7.1 Let Assumptions 1 through 4 hold. Then there exists Gaussian random

d�L -matrix � such that it holds with � = 2Æ=� + Æ2=�2

P

 
sup

B2BÆ;�





P �
� (
bBB � B�)� �

h
p
n






2

>

p
2Cg CV  

p
L

(1� �)3=2
h �2 +

�  
p
LC�;n �

h
p
n

!
� 2=n
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where

C�;n =
1

2

 p
2CV CK0

(1� �)2
+

2
p
2C2

V CK0 CK

(1� �)3

!�
2 +

p
(3 + dL) log(4n)

�
(7.4)

and

E



�

2
2
� 2�2C2

V C
2
K  

2
L: (7.5)

Before prove this statement, we present one straightforward corollary.

Corollary 7.1 It holds under Assumptions 1 through 4 for every z � 1

P

 
sup

B2BÆ;�



P �
� ( bBB � B�)

2 >  

p
L

 p
2Cg CV h �

2

(1� �)3=2
+
z
p
2 � CV CK

h
p
n

+
� C�;n�

h
p
n

!!
� z e�(z2�1)=2 + 2=n:

Indeed, the Gaussian vector � 2 IRdL ful�lls with every z � 1

P

�

�


2
� z

q
E



�

2
2

�
� z e�(z2�1)=2

see Lemma 9 in HJS98, and the assertion follows from Proposition 7.1.

Proof of Proposition 7.1: We follow the line of the proof of Proposition 2 in HJS98

and focus here only on the essential points omitting technical details.

It is useful to de�ne

u = ��1P �
� B; U = P �

�

�
I + ��2BB>

�
P �
� = (P �

� )
2 + uu>

and similarly

u� = ��1P �
�B�; U� = P �

�

�
I + ��2B� (B�)>

�
P �
� = I

so that u; u� are d�L -matrices and U;U� are d�d symmetric matrices. Clearly B = B�

implies U = I and the condition


B � B�



2
� Æ implies



u� u�



2
� Æ=� , that is, the

inclusion B 2 BÆ;� is equivalent to u 2 fu :


u� u�




2
� Æ=�g . Due to Lemma 7.7 from

Appendix B it also follows kU � U�k = kuu> � u�(u�)>k � � = 2Æ=� + Æ2=�2 for all

such u .

Next, for every i; j � n , de�ne

Zij = h�1 (P �
� )

�1 (Xj �Xi);

Vi(U) =
nX

j=1

�
1

Zij

��
1

Zij

�>
K(Z>

ij U Zij);

bsi(U) = h�1Vi(U)�1
nX

j=1

�
1

Zij

�
YjK(Z>

ij U Zij):

22



It is easy to check that bsi(U) =

 
h�1 bfB(Xi)

P �
�
bFB(Xi)

!
and hence,

P �
�
b�B;` = Ed n�1

nX
i=1

bsi(U) `(Xi)

where Ed denotes the projector from IRd+1 onto IRd keeping the last d coordinates.

The model equation (1.2) implies

bsi(U) = si(U) + �i(U)

with

si(U) = h�1 Vi(U)�1
nX

j=1

�
1

Zij

�
f(Xj)K(Z>

ij U Zij);

�i(U) = h�1 Vi(U)�1
nX

j=1

�
1

Zij

�
"jK(Z>

ij U Zij)

so that

P �
� (
b�B;` � ��` ) =

1

n

nX
i=1

�
Ed si(U)� P �

�F (Xi)
	
 `(Xi) + Ed n�1

nX
i=1

�i(U) `(Xi):

Clearly �`(U) = Edn�1
Pn

i=1 �i(U) `(Xi) is for every U a linear combination of the

Gaussian errors "i and therefore it is also a Gaussian vector in IRd . We de�ne �(U) as

d�L matrix with columns �`(U) and set � = �(U�) . It is easy to see that the following

three statements imply the desirable result:

sup
u : ku�u�k2�Æ=�

jEd si(U)� P �
�F (Xi)j �

p
2Cg CV

(1� �)3=2
h�2; i = 1; : : : ; n; (7.6)

P

 
sup

u : ku�u�k2�Æ=�



�(U)� �(U�)



2
>
�C�;n�

h
p
n

!
� 2=n (7.7)

with U = (P �
� )

2 + uu> and U� = I , and for all ` = 1; : : : ; L

Ej�`(U�)j2 � 2�2C2
V C

2
K 

2

`

h2n
: (7.8)

To check these statements, the following lemma will be useful.

Lemma 7.1 Let kU � Ik � � < 1 . Then for all i; j with Z>
ij U Zij � 1 , it holds

jZij j2 � (1� �)�1 .
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Proof. Note that the inequalities Z>
ij U Zij � 1 and kU � Ik � � imply���Z>

ij U Zij � jZij j2
��� = ���Z>

ij (U � I)Zij

��� � � jZij j2

and hence jZij j2 � (1� �)�1Z>
ij U Zij .

First we evaluate the �bias� term Ed si(U)� P �
� F (Xi) . Since 

h�1f(Xi)

P �
� F (Xi)

!
= Vi(U)�1

nX
j=1

�
1

Zij

��
1

Zij

�>  h�1f(Xi)

P �
� F (Xi)

!
K(Z>

ij U Zij)

= h�1 Vi(U)�1
nX

j=1

�
1

Zij

��
f(Xi) + (Xj �Xi)

>F (Xi)
	
K(Z>

ij U Zij)

it holds

si(U)�
 
h�1f(Xi)

P �
� F (Xi)

!

= h�1 Vi(U)�1
nX

j=1

�
1

Zij

�n
f(Xj)� f(Xi)� (Xj �Xi)

> F (Xi)
o
K(Z>

ij U Zij)

= h�1 Vi(U)�1
nX

j=1

�
1

Zij

�
rijK(Z>

ij U Zij)

where in view of (2.7)

rij = g(R�Xj)� g(R�Xi)� (R�Xj �R�Xi)
> g0(R�Xi):

The use of P �
�B�(B�)>P �

� = �2(I � (P �
� )

2) and kI � (P �
� )

2k � 1 provide

j(B�)>Xj � (B�)>Xij2 = (Xj �Xi)
>B�(B�)>(Xj �Xi)

=
�
(P �

� )
�1(Xj �Xi)

�>
P �
� B�(B�)> P �

� (P �
� )

�1(Xj �Xi)

= h2 �2 Z>
ij

�
I � (P �

� )
2
�
Zij

� h2 �2 jZij j2

which also implies

jR�Xj �R�Xij = j(B�Om)>Xj � (B�Om)>Xij2 � h2 �2 jZij j2:

This yields by Lemma 7.1 and Assumption 3 for every pair (i; j) with Z>
ij U Zij � 1 :

jrij j �
Cg h

2 �2

1� �
; 1 + jZij j2 � 1 +

1

1� �
� 2

1� �
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and using Assumptions 4 we bound

jEd si(U)� P �
� F (Xi)j � h�1

������Vi(U)�1
nX

j=1

�
1

Zij

�
rijK(Z>

ij U Zij)

������
� Cg h �

2

1� �
kVi(U)k�1

������
nX

j=1

�
1 + jZij j2

�1=2
K(Z>

ij U Zij)

������
�

p
2(1� �)�3=2 Cg CV h �

2

and (7.6) follows.

Further we study the stochastic components �`(U) . It follows directly from the de�nition

that there are vector coe�cients ci;`(U) such that

�`(U) =

nX
i=1

ci;`(U)"i:

We now apply the following two technical results from HJS98, see Lemma 3, 10 there

for a particular case with L = 1 and  ` � 1 . Extension to general L and  ` 's is

straightforward.

Lemma 7.2 It holds

(i)

nX
i=1

jci;`(U�)j2 � 2C2
V C

2
K  

2

`

h2n
;

(ii) sup
U : kU�Ik��

nX
i=1

jci;`(U)j2 � 2C2
V C

2
K  

2

`

(1� �)h2n
;

(iii) For every unit vector e 2 IRd

sup
U : kU�Ik��





 d

dU
e>ci;`(U)





 � �� `

nh

with

�� =
p
2(1� �)�3=2CV CK0 + 2

p
2 (1� �)�5=2C2

V CK0CK :

(iv) For every unit vector e 2 IRd

sup
u : ku�u�k2�Æ=�





 ddue>ci;`(U)





 � �0� `

nh

with U = Uu = (P �
� )

2 + uu> and

�0� = ��(1� �)�1=2 =
p
2 (1� �)�2CV CK0 + 2

p
2 (1� �)�3C2

V CK0CK :
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Lemma 7.3 Let r � 0 and let vector-functions ai(u) with u 2 IRp obey the conditions

sup
ju�u�j�r

���� ddu ai(u)
���� � �; i = 1; : : : ; n:

If "i are independent N (0; �2) -distributed random variables, then

P

 
sup

ju�u�j�r

1p
n

�����
nX
i=1

fai(u)� ai(u
�)g"i

����� > �� r
�
2 +

p
(3 + p) log(4n)

�!
� 2

n
:

Lemma 7.2, (i) implies (7.8). The statement (7.7) follows from Lemma 7.2, (iv), and

Lemma 7.3 applied to the matrix �(U) 2 IRdL with columns �`(U) and with U = Uu =

(P �
� )

2 + uu> , for details see again HJS98.

7.3 Proof of Theorem 5.3

To be able to apply Proposition 7.1 to the estimates b�k;` at step k , we need that the

matrix B = bBk�1 coming as the result of the preceding iteration belongs to the set B�;Æ

with � = �k and some Æ < �=4 . Since the matrix bBk�1 is random, we have to check that

the probability of the event f bBk�1 2 B�k;Æg = fB :


P �

� (B � B�)



2
� �g is su�ciently

large. Further we show that this property is ful�lled if n is large enough.

Let the numbers hk and �k be shown in the algorithm description, k = 1; : : : ; k(n) .

De�ne successively values Æk and �k , k = 1; : : : ; k(n) by �1 = 0 and

Æk =  
p
L

 p
2Cg CV

(1� �k)3=2
hk �

2
k +

p
2 � CV CK zn

hk
p
n

+
� C�k;n �k

2hk
p
n

!
;

�k+1 = ��2
k+1

�
2Æk�k + Æ2k

�
where zn = (1 + 2 log n+ 2 log log n)1=2 .

Lemma 7.4 For m � 3 and n su�ciently large, the values �k 's ful�ll max
k�k(n)

�k < 1=4 .

In addition, for the last iteration k(n) , it holds

�n :=  
p
L

 p
2Cg CV

(1� �k(n))3=2
hk(n) �

2
k(n) +

�C�k(n);n �k(n)

hk(n)
p
n

!
� C1z

2
nn

�2=3:

Proof. See Lemma 5 in HJS98.

Next, successive application of the results of Propositions 7.1 and Corollary 7.1 with

zn = (1 + 2 log n+ 2 log logn)1=2 leads to the following
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Lemma 7.5 Let n be su�ciently large. There exists random sets A1 � : : : � Ak(n)

such that

P (Ak) � 1� 3k

n

and it holds on Ak

P �
�k+1

( bBk � B�)

2 � Æk; k = 1; : : : ; k(n) � 1:

Proof. See Lemma 6 in HJS98.

Now the result of Theorem 5.3 can be proved by one more application of Proposition 7.1

to the last step estimate bB = bBk(n) with h = hk(n) � 1 and � = �k(n) � n�1=3 , see

again HJS98 for the detailed derivation.

7.4 Proof of Theorem 5.1

Let bB be the last step estimate of the matrix B� . We know from Theorem 5.3 that, with

probability close to one, bB ful�lls the conditions

P �
� ( bB � B�)

2 � �; (7.9)

with � = �k(n) and some small � . This implies by Lemma 7.7 from Appendix B

 bB ��� bB


2
� � (7.10)

where �� denotes the projector on the index space I .

Recall that bB approximates the d�L -matrix B� of rank m . However, it is typically of

rank d . It is useful to introduce another d�L -matrix Bm of rank m which minimizes the

expression


 bB�Bm

2 over all such matrices. The solution to this optimization problem

can be described explicitly via the diagonal decomposition of the matrix bB> bB = bOb�L
bO>

with an orthogonal matrix bO and a diagonal matrix b�L with non increasing eigenvalues,

cf. Lemma 2.1. We use the notation Im for the diagonal L�L -matrix with the �rst m

diagonal elements equal to 1 and the remaining ones equal to zero.

Lemma 7.6 (cf. Harville (1997, Theorem 21.12.4)) The d� L -matrix Bm =bB bOIm bO> minimizes the norm


B � bB



2
over all d�L -matrices B of rank m :

Bm = bB bOIm bO> = arginf
B2Bm



 bB �B



2

(7.11)

where Bm denotes the set of d�L -matrices of rank m .
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Proof. Let bB> bB = bOb�L
bO> . Then it holds for the d�L -matrix eB = bB bO

eB> eB = O> bB> bB bO = bO> bOb�L
bO> bO = b�L

that is, the columns of the matrix eB are orthogonal and they are ranged in a way that

their norms decrease. This clearly implies

arginf
B2Bm



 eB �B



2
= eBIm

and the assertion of the lemma follows by usual change-of-basis argument.

Recall that we de�ne the e.d.r. matrix Rm by Rm = ( bB bOm)> , see (3.1). It follows from

the last lemma that Rm = (Bm bOm)> . Also, (7.10) and the de�nition of Bm (see (7.11))

imply 

 bB � Bm

2 � 

 bB ��� bB


2
� �;

and, since kP �
� k � 1 ,

P �

� (Bm � B�)



2
�


 bB � Bm

2 + 

P �

� (
bB � B�)



2
� 2�: (7.12)

This implies by Lemma 7.8 from Appendix B

P�;m(Bm � B�)



2
� 2�(1� {)�1=2 (7.13)

where P�;m =
�
I + ��2BmB>m

��1=2
and { = 4�=� + 4�2=�2 . Now the result of Theo-

rem 5.1 is a straightforward application of Theorem 5.3 and Lemma 7.9 from Appendix B.

7.5 Proof of Theorem 5.2

Let bB be the last step estimate of the matrix B� . We know from Theorem 5.3 that, with

probability close to one, bB ful�lls the condition (7.9) with � = �k(n) and some small � .

Next, let the matrices bBm , and Rm of rank m be de�ned as in the proof of Theorem 5.1

so that the condition (7.12) is ful�lled. The projectors �� and Pm are de�ned as

�� = (R�)>
�
R�(R�)>

��1

R�;

Pm = R>
m

�
RmR>

m

��1

Rm:

The use of Lemma 7.11 of Appendix B provides

�� �Pm



2
�
p
2 ��1=2

m 2�(1� 4�=�� 4�2=�2)�1=2

and we end up as in the proof of Theorem 5.1.
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Appendix B: Some matrix inequalities

Let B and B1 be two d�L -matrices and � be some positive number. De�ne the

d�d -matrix P� as

P� =
�
I + ��2BB>

��1=2

:

Here we collect some facts which can be obtained from the inequality

P�(B1 �B)



2
� Æ (7.14)

with some small Æ � 0 . Here and in what follows kAk2 denotes the L2 -norm of the

matrix A , i.e. kAk22 = trAA> , and kAk is the sup-norm: kAk = supv2IRd jAvj=jvj .

Lemma 7.7 The condition (7.14) implies


P� �BB> �B1B
>
1

�
P�




 � 2�Æ + Æ2:

Proof. Since

P�B

2 = 

P�BB>P�


 =




�I + ��2BB>
��1

BB>



 � �2

(7.14) yields 

P� �B1B
>
1 �BB>

�
P�




� 2


P�(B1 �B)B>P�



+ 

P�(B1 �B)(B1 �B)>P�




� 2


P�(B1 �B)




2



P�B

+ 

P�(B1 �B)


2
2

� 2Æ�+ Æ2

as required.

De�ne also

P�;1 =
�
I + ��2B1B

>
1

��1=2

:

Lemma 7.8 Let B and B1 ful�ll (7.14) for some Æ < �=4 . Then



P�;1(B �B1)



2
� Æp

1� 2Æ=� � Æ2=�2
:
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Proof. Let � = 2Æ=� + Æ2=�2 . By Lemma 7.7

P�P�2
�;1P� � I



 = ��2


P�(BB> �B1B

>
1 )P�



 � �

and hence, 

P�1
�;1P�



2 =


P�P�2

�;1P�


 � 1 + � ;

P�;1P�1

�



2 =


(P�P�2

�;1P�)
�1


 � (1� �)�1:

Now

P�;1(B �B1)



2

=


P�;1P�1

� P�(B �B1)



2

�


P�;1P�1

�



 

P�(B �B1)



2
�


P�;1P�1

�



 Æ � Æ(1 � �)�1=2:

Next we consider the situation when both matrices B and B1 are of rank m with some

m < d . By � we denote the projector in IRd onto the subspace L = ImB . Similarly

�1 is the projector in IRd onto the subspace L1 = ImB1 .

Lemma 7.9 Let d�L -matrices B and B1 of rank m ful�ll


P�(B�B1)




2
� Æ . Then

it holds 

(I ��)B1




2
� Æ:

Proof. Since P� is the unity operator within the subspace L? = Im(I � �) , it easily

follows (I ��)P� = I �� (this fact is obvious when BB> and hence P� is a diagonal

matrix, and the general case can be reduced to that one by an orthogonal transform).

Since also (I ��)B = 0 , we derive

B1 = (� + I ��)B1

= �B1 + (I ��)(B1 �B)

= �B1 + (I ��)P�(B1 �B)

so that


(I ��)B1




2
�


P�(B1 �B)




2
� Æ .

Lemma 7.10 Let � and �1 be two projectors in IRd of rank m < d . Then

�1 ��



2
=
p
2


�(I ��1)




2
:

30



Proof. Note �rst that since � and I �� are orthogonal, it holds

�1 ��


2
2
=


�1(I ��)� (I ��1)�



2
2
=


�1(I ��)



2
2
+


(I ��1)�



2
2
:

Now, since


�

2

2
=


�1



2
2
= m , we derive

�1(I ��)


2
2

=


�1



2
2
�


�1�



2
2
= m�



�1�


2
2
;

(I ��1)�



2
2

=


�

2

2
�


�1�



2
2
= m�



�1�


2
2
;

so that


�1(I ��)




2
=


(I ��1)�




2
and the assertion follows.

Let now B>B = O�O> be the single value decomposition (SVD) of the matrix B

where O is the unitary L�L -matrix and � is the diagonal matrix with non-increasing

eigenvalues. Let then m�d -matrix R be constructed due to (2.6) on the base of B ,

that is, R = (BOm)> where Om is the block of the �rst m columns of O . Clearly it

holds jRvj = jv>Bj for every v 2 IRd . Similarly we de�ne R1 via the SVD of B1 .

The projector � in IRd onto the value space of B , can be represented in the form

� = R>
�
RR>

��1
R . Similarly �1 = R>

1

�
R1R

>
1

��1
R1 . Let �m denotes the smallest

eigenvalue of RR> .

Lemma 7.11 Let the matrices B;B1 of rank m ful�ll (7.14) with some Æ < �=4 . Then

the associated projectors � and �1 ful�ll

���1




2
�
p
2�1=2m Æ1

where Æ1 = Æ(1 � 2Æ=� � Æ2=�2)�1=2 .

Proof. The condition (7.14) implies by Lemma 7.8


P�;1(B � B1)




2
� Æ1 which yields

by Lemma 7.9 

R1(I ��)



2
=


(I ��)B1




2
� Æ1:

This and Lemma 7.10 provide

���1




2

=
p
2


�(I ��1)




2

=
p
2



R>

�
RR>

��1

R(I ��1)




2

�
p
2



R>

�
RR>

��1


 

R1(I ��)



2

� Æ1
p
2



R>

�
RR>

��1


:
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It remains to note that


R>
�
RR>

��1


2 = 


�RR>
��1

RR>
�
RR>

��1


 =



�RR>

��1


 = ��1
m

and the assertion follows.
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