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Abstract

Surface waves at an interface between two saturated porous media of dif-

ferent structure are investigated. Existence and peculiarities of surface wave

propagation are revealed. Four types of surface waves are proven to be possible:

true Stoneley surface wave propagating almost without dispersion, leaky slow

pseudo-Stoneley wave, leaky generalized Rayleigh wave, and one more new

leaky mode. True Stoneley, leaky pseudo-Stoneley, and generalized Rayleigh

waves are similar to those waves, which exist at an interface between a satu-

rated porous medium and a liquid. Existence of generalized Rayleigh wave or

new mode depends crucially on the parameters of the skeletons.

1 Introduction

In this paper we proceed to study the e�ect of �uid-�lled porous media on the veloc-

ity and attenuation of surface waves, which propagate along an interface separating

two porous media of di�erent structure.

Comparing the results on classical surface waves [1-3] with those concerning a porous

medium bounded by the vacuum [4] and by a liquid [5], in the case under research

one might expect an existence of at least three or may be four types of surface

waves. First of all this happens because of the presence of a second longitudinal

wave in a �uid-saturated porous solid. Since any surface wave is a combination

of all bulk waves in both media, existence and distinctive properties of a second

longitudinal wave result in new properties of the surface modes. Another signi�cant

fact which may lead to the speci�c properties of the surface waves at an interface of

porous media is a relation between parameters of the skeletons. Let us recall that for

example at an interface separating two elastic solids depending on the parameters

of the media, namely their densities, one or two surface waves may exist [2].

For two porous media of di�erent structure we prove an existance of four di�erent

types of surface waves. However only three di�erent modes may exist simultaneously.

We proceed to investigate these waves.

It should be reminded that in our approach [see also 4,5] the wave number k is

choosen to be real while frequency ! = !(k) is sought as a solution of corresponding

dispersion equation and can be complex. As it was proven [5], this approach allows

one to consider isolated surface modes without interaction with the bulk waves.

Most likely, this approach also allows one to investigate the stability of isolated

surface waves and, consequently, to prove the existence of surface waves for nonlinear

problems.
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2 Mathematical Model and Boundary Conditions

Consider two semi-in�nite spaces 
I and 
II having a common interface �. Let

both regions 
I and 
II are occupied by saturated porous media of di�erent struc-

ture. In what follows we consider two typical cases: 1) when porous media are

characterized by the di�erent porosities while the Lame constants of the skeletons

as well as parameters of saturating liquids are the same; 2) when porous media are

characterized by the di�erent porosities and by the di�erent Lame constants of the

skeletons while the parameters of saturating liquids are the same. In dimensionless

variables the set of �eld equations describing the porous medium in region 
I has

the form (x 2 R3; t 2 [0; T ]) [4-6]:

Mass conservation equations

@

@t
%f + div(%fvf) = 0;

@

@t
%s + div(%svs) = 0: (2:1)

Here % is the mass density, v is the velocity vector and indices f and s indicate �uid

or solid phases, respectively.

Momentum conservation equations

%f

�
@

@t
+ (vfj;

@

@xj
)

�
vfi �

@

@xj
T
f
ij + �(vfi � vsi) = 0;

%s

�
@

@t
+ (vsj;

@

@xj
)

�
vsi �

@

@xj
T s
ij � �(vfi � vsi) = 0: (2:2)

Here T f
ij and T

s
ij are the stress tensors, � is a positive constant. The stress tensor in

the �uid is assumed to be given by the following linear law:

T
f
ij = �pfÆij � ��mÆij; pf = pf0 + �(%f � %f0); (2:3)

where pf is the partial �uid pressure. pf0 and %f0 are the initial values of this pressure

and �uid mass density, respectively. � is the constant compressibility coe�cient of

the �uid depending only on equilibrium value of the porosity mE. �m = m�mE is

the change of the porosity. � denotes the coupling coe�cient of the components.

The stress tensor in skeleton has the following form:

T s
ij = �ekkÆij + 2�eij + ��mÆij; (2:4)

where � and � are the Lame constants of the skeleton and eij is the strain tensor of

small deformations.
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Equation for the change of porosity

@

@t
�m + (vsi;

@

@xi
)�m +mEdiv(vf � vs) = �

�m

�
; (2:5)

where � is the relaxation time of porosity.

For the strain tensor one has:

eij =
1

2

�
@ usi

@xj
+
@usj

@xi

�
; (2:6)

where us is the displacement vector for the solid phase with vs = @us=@t.

The same set of equations with corresponding parameters holds true for the porous

medium occupying region 
II (in what follows upper index ��� indicates 
II).

Equation system (2.1)-(2.6) is linearized about some equilibrium state with the

following constant values: %f = %f0, %s = %s0, vf = 0, vs = 0, and �m = 0. After

the introduction of displacement vector for the �uid phase uf and linearization, the

system (2.1)-(2.6) takes the following form:

@

@t
%f + %f0

@

@xi

�@ufi
@t

�
= 0; (2:7)

@

@t
%s + %f0

@

@xi

�@usi
@t

�
= 0; (2:8)

%f0
@2ufi

@t2
+

@

@xj
pfÆij +

@

@xj
��mÆij + �

@

@t
(ufi � usi) = 0; (2:9)

%s0
@2usi

@t2
� ��usi � (�+ �)rdivus �

@

@xj
��mÆij � �

@

@t
(ufi � usi) = 0; (2:10)

@

@t
�m +mEdiv

@

@t
(uf � us) = �

�m

�
: (2:11)

From now on we consider 2D-problem of propagation of surface waves along the

interface y = 0, which separates two porous media: one of them occupies semi-

in�nite space y > 0 and another one occupies semi-in�nite space y < 0.

On the interface y = 0 the following linearized boundary conditions, which are the

consequence of the general conditions [4], have to be satis�ed:

1) the continuity of total stresses:

�
T s
ij + T f

ij

�
nj

���I = �T s
ij + T f

ij

�
nj

���II ; (2:12)
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i.e.

�

 
@us1

@y
+
@us2

@x

!���
y=0

= ��

 
@u�s1
@y

+
@u�s2
@x

!���
y=0

(2:13)

and

�div us+2�
@us2

@y
��
�
%f�%f0

����
y=0

= ��div u�s +2��
@u�s2
@y

���
�
%�f �%�f0

����
y=0

(2:14)

2) the continuity of the displacements of the solid phases (i.e. the boundary � is

material with respect to the skeleton)

us jI = us jII (2:15)

3) the continuity of mass �ux across the interface

%f0
@

@t

�
uf2 � us2

����
y=0

= %�f0
@

@t

�
u�f2 � us2

����
y=0

(2:16)

4) proportionality between discontinuity in pressure and relative velocity of the �uid

with respect to solid phase

�%f0
�
vf2 � vs2

����
y=0

= �
�
pf �

mE

m�E
p�f
����

y=0
(2:17)

Our goal is to prove that boundary value problem (2.7)-(2.11), (2.13)-(2.17) (let

us call it SWP) has solutions as surface waves, i.e. solutions which decrease as

jyj ! 1. For this purpose we will investigate the propagation of harmonic wave

whose frequency is !, wave number is k, and amplitude depends on y. It should

be noted here that as in [4,5] we consider the solutions of (2.1)-(2.6) in the absence

of external forces which are de�ned uniquely by the Cauchy data. In this case it is

natural to derive ! as a function with respect to real wave number k 2 R1. Thus,

Re!=k de�nes the phase velocity of the waves, while Im! de�nes attenuation.

3 Construction of Solution

As for the cases considered in [4,5], solution of SWP is sought in the following form:

uf = r'f +
�
( f )y;�( f )x

�
; us = r's +

�
( s)y;�( s)x

�
;
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'f = Af (y) exp
�
i(kx� !t)

�
; 's = As(y) exp

�
i(kx� !t)

�
;

 f = Bf (y) exp
�
i(kx� !t)

�
;  s = Bs(y) exp

�
i(kx� !t)

�
;

%f � %f0 = A%;f (y) exp
�
i(kx� !t)

�
;

%s � %s0 = A%;s(y) exp
�
i(kx� !t)

�
; (3:1)

�m = A�m(y) exp
�
i(kx� !t)

�
:

Consequently, the relations (3.16)-(3.19) [4] as well as bounded solution (3.32) [4]

remain to be valid, namely:

�
Af

As

�
= C1(0)

�
Rf1

Rs1

�
exp(�
1 y) + C2(0)

�
Rf2

Rs2

�
exp(�
2 y);

Bs = Cs(0) exp(��s y); (3:2)

where vectors (Rf1; Rs1); (Rf2; Rs2) and radicals �s; 
1, and 
2 are de�ned in [4]

for the general case. For the case jkj � 1 which is considered below one has [4,5]:

(Rf1; Rs1) = (1; 0), (Rf2; Rs2) = (0; 1), and


1 = jkj
r
1� ~!2

�
; 
2 = jkj

s
1� ~!2

a2s1
;

�s = jkj
s
1� ~!2

a2s2
; (3:3)

where ~! = !
Æ
k.

As it has been noted already, we investigate two cases: 1) when porous media have

di�erent porosities, and 2) when porous media have di�erent porosities and di�erent

Lame constants of the skeletons. Consequently for the �rst case one gets �� = �

and �� = �. For the second case we assume (in order to simplify the construction

of asymptotic solution) that velocities of longitudinal and shear waves are the same

in both media, i.e. a�s1 = as1 and a
�
s2 = as2. The latter results in relations:

��

�
=
��

�
=
%�s0
%s0

: (3:4)

Thus, in both cases solution for the porous medium, occupying region y < 0, has

the form:

�
A�f
A�s

�
= C�

1
(0)

�
Rf1

Rs1

�
exp(
1 y) + C�

2
(0)

�
Rf2

Rs2

�
exp(
2 y);
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B�s = C�s (0) exp(�s y); (3:5)

where radicals �s; 
1, and 
2 are de�ned above.

In order to derive dispersion relation and de�ne the frequencies of the surface waves,

one should substitute solutions (3.2), (3.5) into boundary conditions (2.13)-(2.17).

We proceed to do so.

4 Dispersion Relation

Substituting the solution into boundary conditions for the case � = 0 and jkj �
1 one gets the following system of equations with respect to unknown constants

C1(0); C2(0); Cs(0) and C
�
1
(0); C�

2
(0); C�s (0) :

�2i~
2C2 +
�
~�2s + 1

�
Cs = 2i

��

�
~
2C

�
2
+
��

�

�
~�2s + 1

�
C�s ; (4:1)

(�+ 2�)(~
2
2
� 1)C2 + 2�C2 + 2�i~�sCs � ~!2%f0C1

= (�� + 2��)(~
2
2
� 1)C�

2
+ 2��C�

2
� 2��i~�sC

�
s � ~!2%�f0C

�
1
; (4:2)

iC2 � ~�sCs = iC�
2
+ ~�sC

�
s (4:3)

�~
2C2 � iCs = ~
2C
�
2
� iC�s (4:4)

�~
1C1 + ~
2C2 + iCs =
%�f0

%f0

�
~
1C

�
1
+ ~
2C2 + iCs

�
; (4:5)

~
1C1 � ~
2C2 � iCs = i�~!
�
C1 �

%�f0

%f0

mE

m�E
C�
1

�
; (4:6)

where

~
1 =

r
1� ~!2

�
; ~
2 =

s
1� ~!2

a2s1
;
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~�s =

s
1� ~!2

a2s2
: (4:7)

The condition that determinant of the system (4.1)-(4.6) must vanish yields the

dispersion equation for the de�nition of frequencies of the surface waves. First let

us consider the case when porous media are characterized by the di�erent porosities

only. In this case dispersion equation takes the form:

 
� 1

2
�Pv � ~
1

�
(�+ 2�)(~
2

2
� 1) + 2�

��
~�s~
2 � 1 +

~!2

2a2s2

�

+
1

2
%f0~!

2~
2

�
1�

%�f0

%f0

��
~�s~
2 � 1

�
+ %f0~!

2~
2
~!2

2a2s2

! 
~
1 � i�~!

�
1 +

mE

m�E

�!

+%�f0~!
2~
2

�
~�s~
2 � 1

� 
~
1 � i�~!

�
1� %f0

%�f0

�!
= 0 (4:8)

Here Pv is the dispersion relation, corresponding to the case of surface waves at a

free interface of a porous medium [4]:

Pv = ~
1PR + ~
2
%f0

%s0

~!4

a4s2
; (4:9)

whereas PR is a classical Rayleigh equation [4]:

PR =

 
2� ~!2

a2s2

!2

� 4~
2~�s: (4:10)

Substituting (4.9), (4.10) into (4.8), one can rewrite dispersion equation (4.8) in a

simpli�ed form:

 
2~
1~�s%s0 +

�
%f0 + %�f0

��
~�s~
2 � 1

�! 
~
1 � i�~!

�
1 +

mE

m�E

�!

+2%�f0

�
~�s~
2 � 1

� 
~
1 � i�~!

�
1� %f0

%�f0

�!
= 0 (4:11)

For the second case under research, when porous media are characterized by the

di�erent porosities and by the di�erent Lame constants of the skeletons, dispersion

equation has the following form:
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~
1

 
1

2

�
1� %�s0

%s0

�2�
1� ~�s~
2

�
PR � 2

~!4

a4s2

%�s0
%s0

~�s~
2

!�
~
1 � i�~!

�
1 +

mE

m�E

��
+

+~
2
~!4

2a4s2

�
1+

%�s0
%s0

�
(1�~�s~
2)

%f0

%s0

 
~
1

�
1+

%�f0

%f0

�
+i�~!

�
1�mE

m�E

��
1�

%�f0

%f0

�!
= 0: (4:12)

Obviously, (4.11) and (4.12) include radicals ~
1; ~
2; ~�s, which are multi-valued func-

tions. In order to make these function single-valued, consider Riemann surface of ~!

with the cuts outgoing from the points ��;�as2;�as1. Later on we consider this

Riemann surface, where the signs at radicals are de�ned uniquely (depending on

the strip of the Riemann surface [5]) in such a way that on the real axis radiation

condition [1] is satis�ed.

Let one of the following conditions holds true:

Condition 1

1 > maxRe

 
~!2

�
;
~!2

a2s2
;
~!2

a2s1

!
(4:13)

and, consequently, ~
1; ~
2 and ~�s are de�ned as in (4.7).

Condition 2

Re
~!2

�
> 1 > maxRe

 
~!2

a2s2
;
~!2

a2s1

!
(4:14)

and, consequently, ~
2 and ~�s are de�ned as above. However

~
1 = i

r
~!2

�
� 1 (4:15)

on the �rst strip of the Riemann surface [5].

Condition 3

maxRe

 
~!2

�
;
~!2

a2s2

!
> 1 > Re

~!2

a2s1
: (4:16)

Then ~
2 and ~
1 are de�ned as in (4.7) and (4.15) respectively. However

~�s = �i
s

~!2

a2s2
� 1 (4:17)
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on the upper (second) strip of the Riemann surface [5].

Next we will show that dispersion equation (4.11) has three roots satisfying either

(4.13) or (4.14) or (4.16). Dispersion equation (4.12) also has three roots. Depending

on the parameters of porous media two situations are proven to be possible: 1) the

roots satisfy either (4.13) or (4.14) and 2) the roots satisfy either (4.13) or (4.14) or

(4.16). Next we investigate the dependence of the roots of (4.12) on parameters %s0
and %�s0 and for both dispersion equations we construct the asymptotic expansions

of the roots.

5 Asymptotics of the Roots

5.1 Porous Media with Di�erent Porosities

First let us consider dispersion equation (4.11). One can prove that (4.11) has three

roots. One of them ~!1 satis�es condition (4.13), i.e. Re~!1 2 [0;
p
�). Another

one ~!2 satis�es condition (4.14), i.e. Re~!2 2 (
p
�; as2) and the last one ~!3 satis�es

condition (4.16), i.e. Re~!3 2 (as2; as1).

It should be noted that we construct outer expansion � � 1 of the roots with respect

to �.

The asymptotic expansion of ~!1 is sought in the following form [4,5]:

~! =
p
�(1� c1�

2 + � � � ): (5:1)

Substituting (5.1) into (4.11) from the lowest appoximation modO(�3=2) one de�nes:

p
2c1 =

(mE �m�E)(%f0 � %�f0)

4(mE +m�E)%s0

�
1

a2s2
+

1

a2s1

�
: (5:2)

It is obvious that both Rec1 and Re
p
2c1 should be positive. By virtue of physical

reasons,

(mE �m�E)(%f0 � %�f0) > 0; (5:3)

and, consequently, c1 > 0. Therefore

Re~!1 =
p
�
�
1� c1�

2 +O(�3)
�
2 [0;

p
�): (5:4)

Similarly to the cases of a free interface of a porous medium and of an interface

separating porous and liquid half-spaces [4,5], this phase velocity corresponds to

9



very slow surface wave (true Stoneley wave), propagating almost without dispersion.

Its speed is less than the velocities of all bulk waves in the porous media and has

order O(
p
�).

Next we will show that dispersion equation (4.11) has also two complex roots ~!2
and ~!3, satisfying conditions (4.14) and (4.16) respectively. These roots correspond

to the localized with respect to y surface waves.

Asymptotic expansion of ~!2 has the following form [5]:

~! =
p
�(1 + c2�+ c3�

3=2 + � � � ): (5:5)

Substitution of (5.5) into (4.11) allows one to de�ne the coe�cients c2 and c3.

Namely from the lowest O(�) approximation one gets:

p
2c2 = �

�
1 +

mE

m�E

�
> 0 (5:6)

and, consequently,

c2 =
�2

2

�
1 +

mE

m�E

�2
> 0: (5:7)

From the next O(�3=2) approximation one has:

c3 = �i
�

2

%f0

%s0

�
1 +

mE

m�E

%�f0

%f0

�� 1

a2s2
+

1

a2s1

�
(5:8)

Finally, one gets the following expansion for the second root of dispersion relation

(4.11):

~!2 =
p
�
�
1 + c2�+ c3�

3=2 +O(�2)
�
; (5:9)

where coe�cients c2 and c3 are de�ned above. This root de�nes slightly dispersive

surface wave (pseudo-Stoneley wave), whose phase velocity is close but somewhat

more than
p
�. This is a leaky wave, thus reradiation of energy occurs across

the interface. Phase velocities of both true and pseudo Stoneley waves are de�ned

primarily by the compressibility coe�cient of a liquid. For the pseudo-Stoneley wave

it depends additionally on surface permeability � (see (2.17)). As it was proven [5],

if � ! 0, i.e. surface pores are closed, this wave is degenerated into the slow

longitudinal wave.

As it was mentioned already, dispersion equation (4.11) has one more complex root,

satisfying condition (4.16). It corresponds to a new surface mode, which is not

observed either for the cases of a free interface of a porous medium nor for an

interface separating porous and liquid half-spaces. Its phase velocity is close but

10



somewhat more than velocity as2 of a shear wave in unbounded medium. Let us

remind that in accordance with condition (4.16) here we have to choose the following

branches of the radicals:

~
1 = i

r
~!2

�
� 1; ~�s = �i

s
~!2

a2s2
� 1 (5:10)

and, additionally, one can expandr
~!2

�
� 1 � ~!p

�
: (5:11)

Similar to ~!2, an asymptotic expansion of this root is sought in the following form:

~! = as2(1 + c4�+ c5�
3=2 + � � � ): (5:12)

It is easy to get from the lowest approximation O(��1=2) that

p
2c4 =

%f0 + %�f0

2%s0as2
> 0 (5:13)

and, consequently,

c4 =
(%f0 + %�f0)

2

2%2s0a
2

s2

> 0: (5:14)

From the next approximation O(�0) it follows that

c5 = 2�%f0

�
1 +

mE

m�E

%�f0

%f0

� %f0 + %�f0

(2%s0as2)2
+ i

(%f0 + %�f0)
3

(2%s0as2)3

s
1� a2s2

a2s1
(5:15)

Finally, one has:

~!3 = as2

�
1 + c4�+ c5�

3=2 +O(�2)
�
; (5:16)

where coe�cients c4 and c5 are given by (5.14) and (5.15). This root de�nes disper-

sive leaky surface wave, whose phase velocity, similar to the generalized Rayleigh

wave, is very close to the velocity as2 of a shear wave. However phase velocity of

this surface wave is somewhat more than as2 while phase velocity of the generalized

Rayleigh wave is somewhat less than as2. Moreover, it is not di�cult to estimate

using (5.16) and (5.10) that some part of the energy of this wave is absorbed by

the slow longitudinal wave. In contrast to the generalized Rayleigh wave which is

transformed to the classical Rayleigh wave as %f0, %
�
f0 ! 0 [4,5], this surface mode

is degenerated into shear bulk wave if %f0, %�f0 ! 0. It should be noted also, that

an amplitude of this mode is slowly growing with respect to t. The latter means

that this surface mode exists as isolated surface wave during short time interval [7].
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5.2 Porous Media with Di�erent Porosities and

Di�erent Lame Parameters of the Skeletons

Next we investigate dispersion equation (4.12), which corresponds to the more com-

plicated case of porous media with di�erent characteristic parameters. One can

prove that this dispersion equation also has three roots. Two of them are very sim-

ilar to the roots ~!1 and ~!2 of dispersion equation (4.11). They satisfy conditions

(4.13) and (4.14) respectively. The third root, depending on ratio of %s0 and %
�
s0 may

satisfy either condition (4.14) or condition (4.16).

First, let us prove that there exists a root ~!1 of (4.12) satisfying (4.13), i.e. Re~!1 2
[0;
p
�): As above the asymptotic expansion of ~!1 is sought in the following form:

~! =
p
�(1� c1�

2 + � � � ): (5:17)

Substituting (5.17) into (4.12) from the lowest appoximation modO(�7=2) one can

de�ne coe�cient c1. Depending on relation between %s0 and %
�
s0 the expression forp

2c1 is given either by

p
2c1 =

(mE �m�E)(%f0 � %�f0)

2(mE +m�E)%s0a
4

s2

1
1

a2
s2

� 1

a2
s1

> 0 (5:18)

if
%�
s0

%s0
= O(

p
�), or by

p
2c1 =

(mE �m�E)(%f0 � %�f0)

4(mE +m�E)%s0

�
1

a2s2
+

1

a2s1

�
> 0 (5:19)

if
%�
s0

%s0
= O(1). Let us note that (5.19) coincides with (5.2).

Taking into account (5.3), one can easily see that in both cases
p
2c1 and c1 are

positive. Therefore

Re~!1 =
p
�
�
1� c1�

2 +O(�3)
�
2 [0;

p
�) (5:20)

and, as before, this phase velocity corresponds to the slowest true Stoneley wave.

Next we will show that dispersion equation (4.12) has a root, satisfying (4.14) and

corresponding to the pseudo-Stoneley wave. An asymptotic expansion has the fol-

lowing structure:

~! =
p
�(1 + c2�+ c3�

3=2 + � � � ): (5:21)

Substituting this expansion into (4.12) and taking into account that ~
1 = i

q
~!2

�
� 1,

one obtains from the lowest approximation:
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p
2c2 = �

�
1 +

mE

m�E

�
> 0; (5:22)

i.e.

c2 =
�2

2

�
1 +

mE

m�E

�2
> 0: (5:23)

From the next appoximation one gets:

c3 = �i�
%f0
%s0

�
1 +

%�
f0

%f0

mE

m�

E

�
a4s2

�
1

a2
s2

� 1

a2
s1

� (5:24)

if
%�
s0

%s0
= O(

p
�), or, as in (5.8),

c3 = �i
�

2

%f0

%s0

�
1 +

mE

m�E

%�f0

%f0

�� 1

a2s2
+

1

a2s1

�
(5:25)

if
%�
s0

%s0
= O(1). In both cases it is easy to see that Imc3 < 0.

Finally, one gets:

~!2 =
p
�
�
1 + c2�+ c3�

3=2 +O(�2)
�
; (5:26)

where coe�cients c2 and c3 are given above. This root de�nes slightly dispersive

pseudo-Stoneley wave.

Now let us investigate the third root of dispersion equation (4.12) which satis�es

either (4.14) or (4.16) depending on relation between %s0 and %
�
s0. First we consider

the case when densities of porous media di�er signi�cantly, i.e.

%�s0
%s0

= O(
p
�) = R0

p
�+ � � � ; (5:27)

where R0 � 1. Below we prove that if relation (5.27) holds true, dispersion equation

(4.12) has a root ~!R0 satisfying condition (4.14), namely Re~!R0 2 (
p
�; as2). This

root similar to [4,5] corresponds to the generalized Rayleigh wave with phase velocity

close to the velocity as2 of a shear wave. Asymptotic expansion of ~!R0 is sought in

the following form:

~! = 
0 +
p
�
1 + � � � (5:28)

Because of condition (4.14), the branch of ~
1 is taken as ~
1 = i

q
~!2

�
� 1. Addition-

ally, one can assume that
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~
1 = i

r
~!2

�
� 1 � i

~!p
�
: (5:29)

Using (5.29) and rewritting (4.12) as


2
1

�1
2

�
1� %�s0

%s0

�2�
1� �s
2

�
PR � 2

!4

a4s2

%�s0
%s0

�s
2

�

+
1

�
� i�!

�
1 +

mE

m�E

��1
2

�
1� %�s0

%s0

�2�
1� �s
2

�
PR � 2

!4

a4s2

%�s0
%s0

�s
2

�
+

+
2
!4

2a4s2

�
1 +

%�s0
%s0

�
(1� �s
2)

%f0

%s0

�
1 +

%�f0

%f0

��

+i�!
2
!4

2a4s2

�
1 +

%�s0
%s0

�
(1� �s
2)

%f0

%s0

�
1� mE

m�E

��
1�

%�f0

%f0

�
= 0 (5:30)

one can easily see that the leading part 
0 of expansion (5.28) is de�ned from O
�
1

�

�
approximation and it satis�es the Rayleigh equation: PR(
0) = 0, i.e. 
0 = cR,

where cR is a phase velocity of the classical Rayleigh wave [1]. For the next term 
1

in O
�

1p
�

�
approximation one gets the following equation:

"
4

a4s2

3

0
� 8

a2s2

0 � 4

d

d~!

�s
1� ~!2

a2s1

s
1� ~!2

a2s2

�����
~!=
0

#

1

= i

s
1� 
2

0

a2s1

%�f0 + %f0

%s0


3

0

a4s2
� 4R0


5

0

a4s2

q
1� 


2

0

a2
s1

q
1� 


2

0

a2
s2

1�
q
1� 


2

0

a2
s1

q
1� 


2

0

a2
s2

(5:31)

Finally, one has:

~!R0 = cR +
p
�
1 +O(�); (5:32)

where 
1 is determined by (5.32). 
1 is complex, thus the generalized Rayleigh

wave is a leaky wave. Similar to the cases investigated in [4,5], Im
1 > 0 and,

consequently, one can prove, estimating the amplitudes of the bulk waves, that part

of the energy of this surface wave is absorbed by the slow compressional wave. Let us

emphasize that attenuations of the generalized Rayleigh wave at an interface of two

porous media and at an interface separating a porous medium and a liquid [5] occur

in a similar way (imaginary parts of 
1 in (5.31) and in (5.16) [5] coincide). However,

in contrast to [4,5], where 
1 is pure imaginary, here 
1 has additionally the real

part which implies its correction to the phase velocity of the generalized Rayleigh

wave at an interface of porous media. Namely, its phase velocity is smaller than
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phase velocity of analogous wave considered in [4,5]. Another distinctive property

of this surface mode in comparison for example with [5] concerns its behaviour if

%f0, %�f0 ! 0. In [5] it was proven that Re~!R0 ! cR if %f0, %�f0 ! 0. However here

phase velocity of the generalized Rayleigh wave is somewhat less than phase velocity

of the classical Rayleigh wave as %f0, %�f0 ! 0. Also it can be proven that if the

ratio
%�
0

%s0
increases, i.e.

�
1 � %�

0

%s0

�2
! 0 (see (5.30)), then the generalized Rayleigh

wave, similar to the Stoneley wave at an interface of two elastic solids, disappears

and the corresponding root of dispersion equation (4.12) tends to as2 (see Appendix

for more details).

On the other hand if
%�
0

%s0
= O(1) then another surface mode appear.

Next we investigate the case when densities of porous media are almost identical,

i.e.

%�s0
%s0

= O(1) = 1�
p
R0

p
�+ � � � (or

�
1� %�s0

%s0

�2
= R0�+ � � � ); (5:33)

where R0 � 1. One can prove that in this case dispersion equation (4.12) has a

root ~!3 satisfying condition (4.16) with Re~!3 2 (as2; as1). It corresponds to the

surface mode whose phase velocity, in contrast to the generalized Rayleigh wave, is

somewhat more than phase velocity as2 of a shear wave. Asymptotic expansion of

this root has the same as in (5.12) structure:

~! = as2(1 + c4�+ c5�
3=2 + � � � ): (5:34)

In accordance with (4.16) one has ~
1 = i

q
~!2

�
� 1 � ias2p

�
and ~�s = i

q
~!2

a2
s2

� 1.

From the lowest approximation O(��1=2) one gets:

p
2c4 =

%f0 + %�f0

2%s0as2
> 0 (5:35)

and, consequently, exactly as in (5.14),

c4 =
(%f0 + %�f0)

2

2%2s0a
2

s2

> 0: (5:36)

From the next approximation O(�0) it follows that similar to (5.15)

c5 = 2�%f0

�
1 +

mE

m�E

%�f0

%f0

� %f0 + %�f0

(2%s0as2)2
+ i

(%f0 + %�f0)
3

(2%s0as2)3

s
1� a2s2

a2s1

+iR0

%f0 + %�f0

8%s0as2

1q
1� a2

s2

a2
s1

(5:37)
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Finally, one has:

~!3 = as2

�
1 + c4�+ c5�

3=2 +O(�2)
�
; (5:38)

where coe�cients c4 and c5 are given by (5.36) and (5.37). This root de�nes dis-

persive leaky surface wave, whose phase velocity is somewhat more than as2. Since

Imc5 > 0, one can conclude estimating ~
1 and ~�s that some part of the energy of

this wave is absorbed by the slow longitudinal wave. It is easy to see also that this

surface mode is degenerated into shear bulk wave if %f0, %
�
f0 ! 0.

6 Conclusions

The results presented in the paper concern surface waves which propagate on an

interface separating two saturated porous media of di�erent structure. The present

research reveals new features of surface waves in porous media in comparison with

those which appear at an interface between two elastic solids. In contrast to the

classical case, where one or two surface waves may exist, depending on parameters of

the solids, in porous materials three surface modes exist simultaneously. Moreover

in porous media four di�erent types of surface waves are proven to be possible. They

are due to the combination of all bulk waves.

Two slowest modes, namely true Stoneley and pseudo-Stoneley waves, with phase

velocities somewhat less and somewhat more respectively than velocity
p
� of a

slow longitudinal wave always exist. They are very similar to corresponding waves

at an interface between a porous medium and a liquid [5]. Their phase velocities

are de�ned primarily by compressibility coe�cient of a liquid phase. Phase velocity

of leaky pseudo-Stoneley wave is in�uenced additionally by surface permeability �.

Existence of the other two modes with phase velocities somewhat less and somewhat

more than phase velocity as2 of a shear wave is stipulated by the relation between

the densities of the skeletons. Namely, if the densities of the solid phases di�er then

there exists the generalized Rayleigh surface wave with phase velocity less than

as2. Similar to [4,5] it is a leaky wave. It attenuates during the propagation and

part of its energy is absorbed by the slow compressional waves. In comparison with

analogous waves investigated in [4,5] this generalized Rayleigh wave propagates with

smaller phase velocity. However this surface mode and that one considered in [5]

have identical attenuations.

At an interafce separating two porous media with almost equal densities generalized

Rayleigh wave does not exist. At the same time a new surface mode appears whose

phase velocity is slightly more than velocity of a shear bulk wave. It is also a

leaky dispersive surface wave and part of its energy is reradiated into the slow

compressional waves. In contrast to generalized Rayleigh wave this surface mode is

transformed into the bulk shear wave if %f0, %
�
f0 ! 0.

Pseudo-Stoneley, generalized Rayleigh and new surface waves are transitional modes

between surface and bulk waves. Due to energy reradiation into interior of the media
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they exist only in the limited domains, i.e. they are localized waves.

Appendix

Proof of Existence of the Generalized Rayleigh Wave

Let us consider the leading part of dispersion equation (5.30). It can be rewritten

as

P0 =
�
1� �s
2

�
PR � 4�s
2

!4

a4s2

%�s0
%s0

1�
1� %�

s0

%s0

�2 : (A:1)

After the changes ~! = as2Z and Y = Z2 and substitution of (4.10), (A.1) takes the

form:

P0 =
�
1�

p
1� Y

p
1� � Y

��
(2� Y )2 � 4

p
1� Y

p
1� � Y

�
�4
p
1� Y

p
1� � Y Y 2 �; (A:2)

where � =
a2
s2

a2
s1

and � =
%�
s0
%s0�

%�
s0
�%s0

�
2 .

Obviously, in order to prove that there exists a root of dispersion equation (5.30)

satisfying condition (4.14), one has to show that equation P0 = 0 has a root Y 2
(0; 1). It is not di�cult to calculate that:

P0
���
Y=0

=
d

dY
P0
���
Y=0

= 0;

P0
���
Y=1

= 1 > 0; (A:3)

and

d2

dY 2
P0
���
Y=0

= �2(1� �2)� 8� < 0: (A:4)

Thus, there exists a root Y0 2 (0; 1). Let us analyze the behaviour of this root

depending on parameter �. If the ratio
%�
s0

%s0
is relatively small and, consequently, �

is relatively small as well, then the root Y0 of equation P0 = 0 is somewhat less than

1 and it de�nes the generalized Rayleigh wave whose phase velocity is close to as2

(see Fig.1: here � = 0:44 (
%�
s0

%s0
= 0:25), � = 0:75).

If
%�
s0

%s0
! 1, i.e. � ! 1, then the root Y0 almost coincides with 1 (see Fig.2: here

� = 56:0 (
%�
s0

%s0
= 0:87), � = 0:75). The latter means that corresponding root of
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dispersion equation (5.30) tends to as2 and the generalized Rayleigh wave disappears.

Moreover, for
%�
s0

%s0
= O(1) one should consider another leading part of (5.30) which

will de�ne the root ~!3 with Re~!3 > as2.
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