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Abstract

We investigate the behavior at in�nity of solutions to Joukovskii�Kutta�

type problems, arising in the linearized lifting surface theory. In these problems

one looks for the perturbation velocity potential induced by the presence of

a wing in a basic �ow within the scope of a linearized theory and for the

wing circulation. We consider at �rst the pure two�dimensional case, then the

three�dimensional case, and �nally we show in the case of a time�harmonically

oscillating wing in IR
3
in a weakly damping gas the exponential decay of

solutions of the Joukovskii�Kutta problem.

1 Introduction

In this article we consider within the scope of a linearized theory problems for a

perturbation velocity potential � which is generated by the presence of a wing of

an aeroplane in a basic �ow:

Total potential = potential without wing + perturbation potential �| {z }
00
small

00

:

For describing these problems we denote by x = (y; z) = (y1; y2; z) 2 IR
3 a point in

the three�dimensional space IR3. We assume, that an inviscid, barotropic, and com-

pressible gas �ows with a constant subsonic velocity into the positive y1�direction

and that the wing as an obstacle is thin and weakly cambered.

Let L denote the projection of the wing onto the y-plane and � := f(y; z) : z =

0; �l < y2 < lg the strip which contains L and is of minimal width. We assume L

to be of a trapezoidal shape, i.e.,

L = f(y; z) : z = 0; y2 2 [�l; l] ; �Y�(y2) � y1 � Y+(y2) for y2 2 [�l; l]g

where �Y�(y2), Y+(y2) ; y2 2 (�l; l) denote parametrizations of the leading edge

�Y�, respectively the trailing edge Y+ of L, with smooth functions Y�. Especially

Y (y2) = Y�(y2) + Y+(y2) is assumed to be positive for all y2 2 [�l; l] .

The set �nL is double�connected. The wake W is de�ned by W := f(y; z) 2 � :

y1 > Y+(y2); y2 2 (�l; l)g � �nL.
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Reissner [15] formulated 1949 boundary conditions for the perturbation potential

� which has to be looked for in 
 = IR
3nL [W . These conditions have been

reformulated 1983 by Meister [11] in a mathematically more handable model in

the two�dimensional situation. Especially Meister considered a time�harmonically

oscillating wing with reduced wavenumber k under the assumption of a weakly

damping gas, i.e., Re k > 0, Im k > 0. The resulting model has been extended 1988

by Hebeker [5] under Meister's assumption of a weakly damping gas to the three�

dimensional situation and has been investigated in [6], [12], [13] in more detail.

The full problem is: Find the perturbation velocity potential � as the solution of

the problem

(4x + k
2)�(x) = 0 for x 2 
; Re k > 0; Im k > 0 ;

@z�(y;�0) = g�(y) for y 2 L ;

[�] (y) = �(y2) exp (ikM
�1(y1 � Y+(y2))) for y 2 W ;

[@z�] (y) = 0 for y 2 W :

(1.1)

Here g� denote prescribed functions de�ned on L which results from the requirement

of vanishing total normal velocities on the wing and which we assume to be smooth,

M is the Machnumber (here: M < 1), and � denotes the wing circulation as a

function de�ned on the trailing edge Y+ of L where we agree upon [�] = �(y;�0)�

�(y;+0). In the full Joukovskii�Kutta problem, besides � also � has to be found

by the requirement of vanishing intensity factors of � at the borderline Y+ between

L and W .

We assume here that � 2 H
1=2(Y+) is prescribed. This assumption is consistent

with the results [12], [13], which prove � to be a continuous function even in interior

angular points of the trailing edge Y+ of L and to possess singularities of the order

O(
q
l � jy2j) at the endpoints of Y+.

We focus here in �nding the asymptotic behavior of the solution � of (1.1) at in�nity.

We consider at �rst in section 2 the two�dimensional case with k = 0. Here, L is

an interval (�a�; a+) where we assume 0 2 (�a�; a+) and W = (a+;1). In this

situation the problem (1.1) reduces to the following one:

4(y1; z)
�(y1; z) = 0 for (y1; z) 2 IR

2n [�a�;1) ;

@z�(y1;�0) = g�(y1) for y1 2 L ;

[�] (y1) = � for y1 2 W ; [@z�] (y1) = 0 for y1 2 W ;

(1.2)

where � is a constant.

In section 3 we consider the three�dimensional case with k = 0, i.e., we look for the

asymptotic behavior of solutions of the problem
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4x�(x) = 0 for x 2 
 ;

@z�(y;�0) = g�(y) for y 2 L ;

[�] (y) = �(y2) for y 2 W ; [@z�] (y) = 0 for y 2 W :

(1.3)

Finally we prove in section 4 the exponential decay for solutions � of the problem

(1.1) in the case of a time�harmonically oscillating wing with Re k > 0, Im k > 0,

i.e., for a weakly damping gas.

2 The two�dimensional case with a vanishing wave-

number

In this section we present the asymptotic formula for solutions � of (1.2) at in�nity.

By virtue of (1.2)3, a solution � of (1.2) cannot decay at in�nity for � 6= 0. The

case � = 0 can be neglected by physical reasons. Hence, (1.2) possesses no solution

in the Sobolev space W1
2 (IR

2n[�a�;1)).

We now want to reduce (1.2) to a problem with a compactly supported right�hand

side. To do this, we use polar coordinates (r; '), centered in the point (0; 0) with

r =
q
y
2
1 + z2, ' = 0 for z = 0; y1 > 0 and a cut�o� function � 2 C

1
0 (IR) with

�(r) = 1 for r su�ciently small and �(r) = 0 for r > minfa�; a+g.

THEOREM 2.1 There exists a solution � of (1.2) which possesses for r �! 1

the representation

�(y1; z) = (1 � �(r))

0
BB@ 1

2�

a+Z
�a�

(g+(y1)� g�(y1))dy1 � ln
1

r
+ c+

�

2�
'

1
CCA +O(r�1)

(2.1)

where c denotes an arbitrary constant. Any solution ful�lling the relation �(y1; z) =

o(1 + r) takes the form (2.1).

Proof. Let us perform in (1.2) the substitution

�(y1; z) = (1� �(r))

�
a

2�
ln

1

r
+ c +

�

2�
'

�
+ �0(y1; z) (2.2)

with an arbitrary constant c and an unknown constant a which has to be �xed. �0

is also unknown. Note that the �rst term in the second factor in (2.2) covers all

harmonic functions which grow at in�nity not faster than o(1 + r), the second term

is constant, and the third term takes care of the jump of � on the wake (a+;1).

De�ning

[4; �] ( ) = 4(� �  ) � � � 4 ; (2.3)
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where confusions with the jumps of functions are excluded, and the compactly sup-

ported function f by

f(y1; z) = [4x; �(r)]

�
a

2�
ln

1

r
+ c +

�

2�
'

�
(2.4)

we arrive at the following problem for �0:

4(y1; z)
�0(y1; z) = f(y1; z) for (y1; z) 2 IR

2n [�a�;1) ;

@z�
0(y1;�0) = g�(y1) + (1 � �(r)) �

2�r for y1 2 (�a�; a+) ;

[@z�
0] (y1) = [�0] (y1) = 0 for y1 > a+ :

(2.5)

It is wellknown (e.g. [4]) that problem (2.5) possesses a solution �0 which vanishes

at in�nity if and only if the compatibility condition

Z
IR
2n [�a�;1)

f(y1; z) dy1dz +
X
�

�

a+Z
�a�

 
g�(y1) + (1� �(r))

�

2�y1

!
dy1 = 0 (2.6)

is ful�lled.

Hence we must �x the constant a in the ansatz (2.2) by condition (2.6). Some simple

calculations show

Z
IR
2n [�a�;1)

f(y1; z)dy1dz = a;

X
�

�

a+Z
�a�

(1� �(r))
�

2�y1
dy1 = 0

which yields

a =
X
�

�

a+Z
�a�

g�(y1)dy1:

Inserting the last equality into (2.2) proves the assertion.

REMARK 2.2 It is known that only the antisymmetric part of g� with respect to

the y1�axis produces a contribution to the lifting force. The fundamental solution

�(2�)�1 ln r�1 of the two�dimensional Laplace equation is symmetric and also the

constant c. Hence the lifting force appears due to the term (2�)�1�' in (2.2).

3 The three�dimensional case with a vanishing wave-

number

In this section we investigate the asymptotic behavior of solutions � of the problem

(1.3) at in�nity where we assume the circulation � 2 H1=2(�l; l) as being taken for
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granted in consistence with the results in [12], [13], mentioned in the introduction.

Furthermore, we denote in the rest of this article by r the expression
q
y
2
2 + z2, the

polar�radius in planes, perpendicular to the wake.

For �nding the asymptotics of � we note at �rst a tool.

LEMMA 3.1 Let � 2 H1=2(�l; l) and de�ne

G := IR
2nf(y2; z) : jy2j � l; z = 0g:

The problem

4(y2; z)
V (y2; z) = 0 in G ;

[V ] (y2) = �(y2) ; [@zV ] (y2) = 0 for y2 2 (�l; l) ;

jr�
(y2; z)

V (y2; z)j � c r
�1 � j�j for r� 1; � 2 N2

0

(3.1)

possesses in W1
2 (G) a solution

V (y2; z) = �
1

2�

lZ
�l

z �(t)

(y2 � t)2 + z
2
dt: (3.2)

This solution admits at in�nity the representation

V (y2; z) = �
z

2�r2
�0 + ~V (y2; z) (3.3)

where

�0 =

lZ
�l

�(y2) dy2 ; (3.4)

and ~V satis�es for r � 1 the estimate

jr�
(y2; z)

~V (y2; z)j � c r
�2 � j�j 8� 2 IN2

0 : (3.5)

Proof. That the right�hand side in (3.2) delivers a solution of (3.1) inW1
2 (G) follows

fromwellknown results from potential theory (see e.g. [3]) because for the transversal

derivative of the fundamental solution of the two�dimensional Laplace equation the

following relation holds true:

�
@

@z

1

2�
ln

1

r
=

z

2�r2
:

Finally, (3.3)�(3.5) can be veri�ed by some elementary calculations and estimates.
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REMARK 3.2 Due to the jump �(y2) in (3.1)2, the function V does not belong

to W1
2; loc(IR

2). Nevertheless, V 2 L2; loc(IR
2), @V

@y2
2 L2(IR

2) and the function

(y2; z) 7! @zV (y2; z) � �(y2)�l(y2) Æ(z) 2 L2(G) (3.6)

where �
l
denotes the characteristic function of the interval [�l; l], i.e., �

l
(y2) = 1

for jy2j � l and �
l
(y2) = 0 for jy2j > l. Æ denotes the Dirac functional.

However, in the following it is convenient to ignore the Dirac functional in (3.6)

and to regard @zV as an element of L2(G).

In order to �nd out informations about the far�eld, we consider two cases. We

investigate the behavior of � in a narrow conical neighborhood of the wake W ,

respectively outside of such a neighborhood. For describing a conical neighborhood

of W we use as a cut�o� function the expression (1 � �(y1))�(r=y1) where � is a

cut�o� function similar to that introduced at the beginning of section 2 and we shall

specify � in the form

�(x) = (1� �(y1))�(r=y1)V (y2; z) +
~�(x): (3.7)

THEOREM 3.3 Let � =
q
y
2
1 + y

2
2 + z2. Then the representation (3.7) of the

solutions � of (1.3) takes inside the conical neighborhood of W , i.e., in the region

where (1� �(y1))�(r=y1) = 1 the form

�(x) = �
1

2�

lZ
�l

z�(t)

(y2 � t)2 + z
2
dt+O(��1) for � �!1: (3.8)

Outside of this cone the expansion

�(x) =
1

4��

Z
L

(g+(y)� g�(y)) dy+
�0z

4�r2
(1+

y1
�
) +O(��2 ln �) for � �!1 (3.9)

holds true.

Proof. Performing the substitution (3.7) in (1.3)1 we obtain according to (1.3)3 the

equation

4x~�(x) = �[4x; (1 � �(y1))�(r=y1)]V (y2; z) in 
 (3.10)

as the equation for ~�.

(3.3) and (3.5) ensure the right�hand side F in (3.10) to take the form

F (x) = (1 � �(y1)) [4x; �(
r

y1
)]
�0z

2�r2
+ ~F (x) (3.11)
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with

jr
�
x
~F (x)j � c �

�4� j�j
8 � 2 IN

3
0 : (3.12)

Denoting by (�; �) = (�; �1; �2) spherical coordinates where � belongs to the unit

sphere S2 � IR
3 we can prove by elementary calculations the identity

�[4x; �(
r

y1
)]

z

2�r2
= �

�3
h(�) (3.13)

where h 2 C1(S2). Hence, (3.10), (3.11), (3.12), [7], [10], and [14, Theorems 3.5.6

and 3.5.12] yields ~� to possess a representation of the form

~�(x) =
1

�
(
a

4�
+ �0(b ln �+	(�))) + ��(x) (3.14)

where �� satis�es the estimate

jr�x�
�(x)j � c(�)��2 � j�j ln � 8 � 2 IN3

0 : (3.15)

Here, a and b denote unknown constants and 	 and b are coupled by the equation

~4
�
	(�) = h(�)� b; � 2 S2 (3.16)

with the Beltrami�Laplace operator ~4
�
. Especially, a depends on the whole data

of the problem (1.3).

Let us comment (3.14). Since ~4
�
is a formally self�adjoint di�erential operator and

~4
�
w(�) = 0 yields w = const, due to results coming up from the Fredholm theory,

the compatibility conditionZ
S
2

(h(�)� b) ds
�
= 0 ; i.e., b =

1

4�

Z
S
2

h(�) ds
�

(3.17)

has to hold. This formula would enable us to calculate b. However, we shall show by

using an other method that b vanishes. Especially we want to avoid in the following

to �x 	 by solving (3.16). Finally we can calculate a using the weight function

technique (e.g. [2], [10]).

The fact b = 0 proves of course (3.8) by reason of (3.7), (3.2), (3.14), (3.15) and the

smoothness of 	.

At the same time, (3.14) indicates the behavior of � outside a narrow conical neigh-

borhood ofW . We choose a function � which is harmonic in IR3nfx : r = 0; y1 � 0g

such that

u(x) = (1� �(y1))(�(x)�
1

2�
�(r)

z

r
2
) (3.18)

leaves an additional discrepency which has to be compensated by a solution of a

problem similar to (3.1). The solution v of this problem, which takes care both
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on the jump � and the above�mentioned discrepancy decays suitable for r �! 1

which ensures, that the main term (3.13) in (3.11) disappears. Collecting all these

facts will yield the representation

�(x) = ��0u(x) + (1 � �(y1))�(
r

y1
)v(y2; z) + ���(x) (3.19)

where

���(x) =
a

4��
+O(��2 ln �): (3.20)

We de�ne the desired function � by

�(x) =
1

4�

1Z
0

z

(r2 + (t� y1)
2)3=2

dt =
z

4�r2
(1 +

y1
�
) : (3.21)

Note that the integrand in (3.21) is just the derivative with respect to z of the

three�dimensional fundamental solution of the Laplace equation. Therefore, � is a

harmonic function in IR3nfx : r = 0; y1 � 0g. Moreover, �(x)� z

2�r2
is a smooth

function in the cylinder fx : r � r0; y1 � c0g where r0; c0 denote positive numbers.

Because

4u(x) = �
1

2�
(1� �(y1))[4(y2; z)

; �(r)]
z

r
2
+ g(x) (3.22)

with a function g 2 C10 (IR3), we consider

4(y2; z)
v(y2; z) = � A

2� [4(y2; z)
; �(r)] z

r
2 in G ;

[v] (y2) = �(y2) ; [@zv] (y2) = 0 for y2 2 (�l; l)

(3.23)

as the problem for v. Here A denotes an unknown constant which we have to choose

lateron.

There exists a solution v of (3.23) with the following behavior at in�nity:

v(y2; z) =
�

2� ln 1
r
+ const �

z

2�r2
�

Æy2
2�r2

+ ~v(y2; z) ;

jr�
(y2; z)

~v(y2; z)j � c(�) r�2 � j�j :

(3.24)

Next, we �x the constants A;�; , and Æ. To this end, we insert v and the linear

function

�(y2; z) = �0 + �1y2 + �2z

into the 2nd Greens formula, where we integrate over the ball B
R

= f(y2; z) : r <

Rg with some radius R > 0 such that � � 0 on @B
R
. We obtain the equation

I3 = I1 + I2 (3.25)
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where

I1 =
R

@B
R

�
�@v
@r

� v
@�
@r

�
ds ;

I2 =
P
�
�

lR
�l

�
�(y2; 0)

@v

@z
(y2;�0)� v(y2;�0)

@�
@z

(y2; 0)

�
dy2 ;

I3 =
R
B
R

(� � 4v � v � 4�) dy2dz :

(3.26)

Some elementary calculations show that I1 = ���0+Æ�1+�2+o(1) for R �!1

and on account of (3.23)2, I2 = �0 � �2 holds true. Finally, if we choose a ball of a

radius " such that � � 1 on @B" we observe

I3 = � A

2�
R
B
R

�[4(y2; z)
; �(r)] z

r
2 dy2 dz = � A

2�
R

B
R
nB"

�4(y2; z)
z

r
2 dy2 dz

= A

2�"
2�R
0

�
�(y2; z)

@

@r

z

r
2 �

z

r
2
@

@r
�(y2; z)

�����
r = "

d' = �A � �2

where ' denotes the argument of polar coordinates. Inserting these results into

(3.25) and passing to the limitR �!1 yields � = Æ = 0 and if we choose A = ��0,

also  = 0 holds true.

Searching � now in the form of (3.19) yields just

4x�
��(x) = �[4x; �(r=y1)]v(y2; z) +

~F (x) (3.27)

as the problem for ��� where ~F is compactly supported and due to (3.24) with

� =  = Æ = 0

jr�x [4x; �(r=y1)]v(y2; z)j � c(�)��4� j�j :

A comparison of the last results with (3.14), (3.15), respectively, veri�es the identity

(3.20) and proves the constant b in (3.14) to vanish.

Finally, we have to calculate the constant a in the representation (3.19) for � which

appears from the presence of ���. We use the weight�function technique with the

weight�function 1, where 1(x) = 1 8 x 2 IR
3. The idea is, to insert � and 1 into

the 2nd Greens formula where we integrate over the ball B
R

= fx 2 IR3 : � < Rg

and then we pass to the limit R �! 1 which yields an algebraic equation in a.

Using (1.3)2, (1.3)3 and y1 = � sin �1 cos �2; y2 = � sin �1 cos �2 and z = � cos �1,

we obtain the identity
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0 =
R
B
R

(4�� �4 1) dx =
R

@B
R

@�
@n

do +
R
L

(g+(y)� g�(y)) dy

=
R

@B
R

@

@n
( a
4�� + �0

4�
z

r
2 (1 +

y1
�
)) do +

R
L

(g+(y)� g�(y)) dy + o(1)

= R
2
2�R
0

�R
0
sin �1

@

@�
( a
4�� + �0

4�
z

r
2 (1 +

y1
�
))

����
� = R

d�1 d�2

+
R
L

(g+(y)� g�(y)) dy + o(1)

=
2�R
0

�R
0
� a
4� sin �1 �

�0
4�

sin �1 cos �1 + sin2 �1 cos �1 cos �2
1 � sin2 �1 cos

2
�2

d�1 d�2

+
R
L

(g+(y)� g�(y)) dy + o(1) :

Because
2�R
0

�R
0

a
4� sin �1 d�1 d�2 = a and because

�Z
0

sin �1 cos �1 + sin2 �1 cos �1 cos �2

1 � sin2 �1 cos
2
�2

d�1 = 0

holds true due to symmetry properties of the integrand with respect to the point

�=2, we obtain immediately that

a =

Z
L

(g+(y)� g�(y)) dy ;

which proves (3.9).

4 The three�dimensional case with a weakly damp-

ing gas

In this section we investigate the asymptotic behavior of solutions � of (1.1) at in�n-

ity, assuming a weakly damping gas, i.e., Re k, Im k > 0 and show an exponential

decay of �. Here we concentrate to the three�dimensional situation while in the

two�dimensional case only some simpli�cations occur.

Again, based on [12], [13] we assume � 2 H1=2(�l; l) as being taken for granted.

Now we present the weak formulation of the problem (1.1). Let � 2 C
1(IR3)

be a cut�o� function such that � � 1 in a neighborhood of W and �(x) = 0 for

y
2
2 + z

2
> R

2, y1 < �R, respectively with some large number R > 0. Moreover, we

assume � to be independent of y1 for y1 > R.
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We make the ansatz

�(x) = u(x)� �(x)V (y2; z)E(y) (4.1)

where V denotes the solution (3.2) of (3.1) and E(y) is the exponential factor in

(1.1)3.

Performing the substitution (4.1) in (1.1) and multiplying the transformed equation

(1.1)1 by a test function v 2 W
1
2 (
) we obtain after an integration by parts using

the transformed boundary conditions (1.1)2 � (1.1)4 the integral identity

(ru;rv)
� k
2(u; v)
 = (g+; v)L+

� (g�; v)L�
�(r�V E;rv)
 + k

2(�V E; v)
 8v 2 W
1
2 (
)

(4.2)

as the weak formulation of the problem for u. Here (�; �)
 denotes the scalar product

in L2(
).

The following proposition holds true:

PROPOSITION 4.1 The problem (4.2) possesses an unique solution u 2 W1
2 (
).

Moreover, the estimate

ku;W1
2 (
)k � c �N (4.3)

is valid where

N :=

 X
�

kg�;L2(L)k+ k�;H
1=2(�l; l)k

!
: (4.4)

Proof. For proving the assertion we only have to verify the assumptions of the Lax�

Milgram theorem. The integrals in the right�hand side of (4.2) exists by reason of

the exponential decay of E and this right�hand side represents a continuous linear

functional in v which acts on W1
2 (
). Furthermore, owing to the above mentioned

conditions Re k; Im k > 0, one can show by some elementary calculations the

existence of constants c > 0, Æ
k
> 0 such that

j(ru;ru)
 � k
2(u; u)
j � c kru;L2(
)k

2 + Æ
k
ku;L2(
)k

2 (4.5)

holds true. Clearly, the corresponding bilinearform is continuous. Hence, the appli-

cation of the usual Lax�Milgram technique proves the assertion.

Finally we show u to decay exponentially. We formulate this result in the following

proposition.

PROPOSITION 4.2 Let u satisfy the identity (4.2) for all compactly supported

functions v 2 W1
2 (
) and for some small number �� > 0 the inclusion

e
���

q
1 + �2

u 2 W1
2 (
) (4.6)
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where � = jxj. Then there exists a number �0 > 0 such that for �� 2 (0; �0) the

inclusion

e
�+

q
1 + �2

u 2 W
1
2 (
) 8�+ 2 (0; �0) (4.7)

is valid. Moreover, there exists a constant c > 0 such that the estimate

0
@ke�+

q
1 + �2

ru;L2(
)k
2 + Æ

k
ke
�+

q
1 + �2

u;L2(
)k
2

1
A1=2 � cN (4.8)

holds true. Here Æ
k
denotes the constant introduced in (4.5).

Proof. It is trivial that the solution u 2 W
1
2 (
) ful�lls the weaker asymptotic as-

sumption (4.6). By proving (4.7), we show u to be also unique assuming the asymp-

totic behavior described by (4.6). In fact, for a small number �� > 0, u is allowed

to possess an exponentially growth at in�nity.

Taking (4.6) into consideration, the integral identity (4.2) holds still true for expo-

nentially decaying test functions v such that

exp(��

q
1 + �2)v 2 W

1
2 (
)

by reason of completion arguments. Especially, we choose

v = R
2
T
u 2 W

1
2 (
) (4.9)

where the weight factor R
T

is de�ned by

R
T
(�) =

8<
: exp(�+

q
1 + �2) for � < T

exp((�+ + ��)
q
1 + T2) exp(���

q
1 + �2) for � > T:

(4.10)

Here, �+ denote a small positive number which has to be characterized in more detail

and T is a positive parameter which is scheduled to tend to in�nity. Note that R
T

is a piecewise smooth function on IR2 and that rR
T
2 L1; loc

(IR2). Furthermore,

the estimate

jrR
T
(�)j � c maxf�+; ��gRT (�) (4.11)

is valid with some constant c > 0, independent of T and �.

Performing the substitution (4.9), (4.2) takes the form

(R
T
ru;R

T
ru)
 � k

2(R
T
u;R

T
u)
 + 2(R

T
ru; urR

T
) = I

T
(u) (4.12)

with

I
T
(u) =

P
�
�(R

T
g�; RT

u)
L
+ k

2(R
T
�V E;R

T
u)


�(RTr�V E;RTru)
 � 2 (RTr�V E; urRT )
:
(4.13)
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If �+ < M
�1 Im k with the Machnumber M , the integrals in the right�hand side

I
T
(u) of (4.12) converge by reason of the rate of decay of E and I

T
(u) admits the

estimate

jIT (u)j � cN � kjukjT

where

kjukj
2 = kR

T
ru;L2(
)k

2 + Æ
k
kR
T
u;L2(
)k

2 (4.14)

and where the constant c > 0 depends neither on T nor on u. Furthermore, by

virtue of (4.11), the third term in the left�hand side of (4.12) satis�es the inequality

2j(R
T
ru; urR

T
)
j � 2 cmaxf�+; ��gkjukj

2
T
:

Hence, (4.12) and some simple calculations similar to those which led us to (4.5)

yield

kjukj2
T
� 2 c maxf�+; ��gkjukj

2
T
� cN kjukj

T
:

Finally, if we choose �0 > maxf�+; ��g su�ciently small, we obtain the estimate

kjukj
T
� 2 cN: (4.15)

The function T 7! kjukjT is by reason of (4.10) and (4.14) monotone increasing and

the limit of this function is for T �! +1 just the left�hand side of (4.8). Hence,

(4.8) results from (4.15) and the convergence of the integrals in the left�hand side

of (4.8) veri�es the exponential decay of u, i.e., (4.7).
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