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Abstract

We investigate the behavior at infinity of solutions to Joukovskii-Kutta—
type problems, arising in the linearized lifting surface theory. In these problems
one looks for the perturbation velocity potential induced by the presence of
a wing in a basic flow within the scope of a linearized theory and for the
wing circulation. We consider at first the pure two—dimensional case, then the
three—dimensional case, and finally we show in the case of a time—harmonically
oscillating wing in IR® in a weakly damping gas the exponential decay of
solutions of the Joukovskii-Kutta problem.

1 Introduction

In this article we consider within the scope of a linearized theory problems for a
perturbation velocity potential ® which is generated by the presence of a wing of
an aeroplane in a basic flow:

Total potential = potential without wing + perturbation potential ® .

"small”

For describing these problems we denote by = = (y,2) = (y1,¥9,2) € R3 a point in

the three-dimensional space R3. We assume, that an inviscid, barotropic, and com-
pressible gas flows with a constant subsonic velocity into the positive yj—direction
and that the wing as an obstacle is thin and weakly cambered.

Let L denote the projection of the wing onto the y-plane and II := {(y,2) : z =
0, —! < y9 < I} the strip which contains L and is of minimal width. We assume L
to be of a trapezoidal shape, i.e.,

L={(y,2):2=0,yp € [-,]], =Y_(yg) < w1 < Y (yg) for yg € [-1,1]}

where —Y_(y9), Y1 (y2), yo € (—I,1) denote parametrizations of the leading edge
—Y_, respectively the trailing edge Y of L, with smooth functions Y, . Especially
Y(yg) = Y_(y9) + Y4 (y9) is assumed to be positive for all y9 € [—1,1] .

The set II\L is double-connected. The wake W is defined by W := {(y,2) € 1L :
y1 > Y_|_(y2),y2 € (—,0)} c I\ L.



Reissner [15] formulated 1949 boundary conditions for the perturbation potential
® which has to be looked for in Q = R?’\L UW. These conditions have been
reformulated 1983 by Meister [11] in a mathematically more handable model in
the two-dimensional situation. Especially Meister considered a time-harmonically
oscillating wing with reduced wavenumber k& under the assumption of a weakly
damping gas, i.e., Re £ > 0, Im & > 0. The resulting model has been extended 1988
by Hebeker [5] under Meister’s assumption of a weakly damping gas to the three-
dimensional situation and has been investigated in [6], [12], [13] in more detail.

The full problem is: Find the perturbation velocity potential ® as the solution of
the problem

(Aa;—l—kz) $(z) = Oforze, Rek>0, Imk>0,
z®(y,£0) = gi(y)forye L, (1.1)
[@](y) = D(yg)exp (kM L(y; — Yi(yp))) fory e W,
[02®](y) = Oforye W.

Here g4+ denote prescribed functions defined on L which results from the requirement
of vanishing total normal velocities on the wing and which we assume to be smooth,
M is the Machnumber (here: M < 1), and T' denotes the wing circulation as a
function defined on the trailing edge Y of L where we agree upon [®] = ®(y, —0) —
®(y,+0). In the full Joukovskii-Kutta problem, besides ® also I' has to be found
by the requirement of vanishing intensity factors of ® at the borderline Y between

Land W.

We assume here that I' € Hl/Z(Y_|_) is prescribed. This assumption is consistent
with the results [12], [13], which prove I' to be a continuous function even in interior
angular points of the trailing edge Y. of L and to possess singularities of the order

O(4/! = |yg|) at the endpoints of Y .

We focus here in finding the asymptotic behavior of the solution ® of (1.1) at infinity.
We consider at first in section 2 the two—dimensional case with & = 0. Here, L 1s
an interval (—a_,ay) where we assume 0 € (—a_,ay) and W = (a4, o0). In this
situation the problem (1.1) reduces to the following one:

A(yl 2) ®(y1,2) = 0for (y1,2) € ./Rz\ [—a_,00) ,
2®(y1,£0) = gi(yy)fory; € L, (1.2)
[®] (yl):Ffor y1 €W, [02®](y1) =0fory; e W,
where [' is a constant.

In section 3 we consider the three—dimensional case with & = 0, i.e., we look for the
asymptotic behavior of solutions of the problem



Ag®(z) = O0forzeQ,
0:®(y,£0) = gu(y)forye L, (1.3)
[®] (y) =T(yg) fory e W, [022](y) =0fory e W .

Finally we prove in section 4 the exponential decay for solutions @ of the problem
(1.1) in the case of a time-harmonically oscillating wing with Re & > 0, Im & > 0,
i.e., for a weakly damping gas.

2 The two—dimensional case with a vanishing wave-
number

In this section we present the asymptotic formula for solutions ® of (1.2) at infinity.

By virtue of (1.2)3, a solution ® of (1.2) cannot decay at infinity for I' # 0. The
case [' = 0 can be neglected by physical reasons. Hence, (1.2) possesses no solution

in the Sobolev space Wzl(Rz\[—a_, 0)).

We now want to reduce (1.2) to a problem with a compactly supported right-hand
side. To do this, we use polar coordinates (r, ), centered in the point (0,0) with

r = \/y% + 22, @ = 0for 2 =0,y; > 0 and a cut-off function x € CSO(IR) with
x(r) = 1 for r sufficiently small and x(r) = 0 for » > min{a_, a}.

THEOREM 2.1 There ezxists a solution ® of (1.2) which possesses for r — oo

the representation

By1,2) = (1 —x(r)) | 5= [ (9:(61) ~9- (1)1 1o -+ et 50| +OGD)

(2.1)
where ¢ denotes an arbitrary constant. Any solution fulfilling the relation ®(y1,2z) =

o(l + ) takes the form (2.1).
Proof. Let us perform in (1.2) the substitution

By1,2) = (1—x(r)) (sl + e+ o) + 8%y, 2) (22)

with an arbitrary constant ¢ and an unknown constant a which has to be fixed. ®°
is also unknown. Note that the first term in the second factor in (2.2) covers all
harmonic functions which grow at infinity not faster than o(1 + r), the second term
is constant, and the third term takes care of the jump of ® on the wake (a4, ).

Defining
(A, x] () = Ax-¥) — x- Dy, (2.3)
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where confusions with the jumps of functions are excluded, and the compactly sup-
ported function f by

Fl1,2) = 1o xr)] (o1t e+ 5 0) (2.4)

we arrive at the following problem for ®°:

Dy, 2)2°W1,2) = f(y1,2) for (v, 2) € R\ [~a_,00) |
029%(y1,£0) = g+(y1) + (1 - X(r))% for y; € (—a_,ay), (2.5)

[029°] (y1) = [®°] (y1) = 0 for y1 > ay .
It is wellknown (e.g. [4]) that problem (2.5) possesses a solution ®° which vanishes
at infinity if and only if the compatibility condition
ay
[ s dnds + S5 [ (ax1) + Q- xtrg—) dn =0 (26)
R%\[~a_, c0) —o-
1s fulfilled.

Hence we must fix the constant a in the ansatz (2.2) by condition (2.6). Some simple
calculations show

ay

r
/ fy1,2)dy1dz=a, > F / (1- X(T))Edyl =0
+
R\ [~a_, ) —e-

which yields

ay

a=>+ [ gely)dy.
S

Inserting the last equality into (2.2) proves the assertion. [ ]

REMARK 2.2 [t s known that only the antisymmetric part of g+ with respect to
the y| —azis produces a contribution to the lifting force. The fundamental solution

—(27r)_1 Inr— ! of the two-dimensional Laplace equation is symmetric and also the

constant c. Hence the lifting force appears due to the term (27r)_1f‘cp in (2.2).

3 The three-dimensional case with a vanishing wave-
number

In this section we investigate the asymptotic behavior of solutions @ of the problem

1.3) at infinity where we assume the circulation I' € /2 —1,1) as being taken for
g
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granted in consistence with the results in [12], [13], mentioned in the introduction.

Furthermore, we denote in the rest of this article by r the expression \/y% + 22, the

polar-radius in planes, perpendicular to the wake.

For finding the asymptotics of ® we note at first a tool.

LEMMA 3.1 Let T' € HY/2(—1,1) and define

G = R2\{(y2,2) : lyg| <1,z = 0}.
The problem

A(y27z)V(y2,z) = 0inG,

[V1(y2) =T(v2), [02V] (y) = 0 foryg € (—1,1), (3.1)
|V(ay2 z)V(y2,2)| < er - | forr>1 ac Ng

possesses in W21(G) a solution

1 z2I'(¢)
Viyo,z) = —— dt. 3.2
(v, 7) 27{_/1 e el (3.2)

This solution admits at infinity the representation

z

V(y27z) = 2F0 + V(@/Z:'z) (33)
2mr
where
l
To = [ T(yz)dya, (3.4)
-1
and V satisfies for r > 1 the estimate
o Y —2—|a 2
Ve, )V @2 2) <er el va e N2, (3.5)

Proof. That the right-hand side in (3.2) delivers a solution of (3.1) in W21(G) follows
from wellknown results from potential theory (see e.g. [3]) because for the transversal
derivative of the fundamental solution of the two-dimensional Laplace equation the
following relation holds true:

Finally, (3.3)-(3.5) can be verified by some elementary calculations and estimates.
|



REMARK 3.2 Due to the jump T'(y9) in (3.1)9, the function V does not belong
to I/Vzl7 loc(Rz)' Nevertheless, V € LZ,ZOC(RZ)’ gy—‘g € LZ(Rz) and the function

(y2,2) = 02V (y9,2) — I'(y9)8;(y2) é(2) € Lo(G) (3.6)

where 0; denotes the characteristic function of the interval [—1,1], i.e., 0;(yg) = 1
for lyg| <1 and 0;(yg) =0 for |yg| > 1. § denotes the Dirac functional.

However, in the following it is convenient to ignore the Dirac functional in (3.6)
and to regard 0;V as an element of Lo(G).

In order to find out informations about the farfield, we consider two cases. We
investigate the behavior of ® in a narrow conical neighborhood of the wake W,
respectively outside of such a neighborhood. For describing a conical neighborhood
of W we use as a cut-off function the expression (1 — x(y1)) x(r/y1) where x is a
cut—off function similar to that introduced at the beginning of section 2 and we shall
specify @ in the form

®(z) = (1 — x(y1)) x(r/y1) V(y9, 2) + ®(z). (3.7)

THEOREM 3.3 Let p = \/y% —I—y% + 22. Then the representation (3.7) of the
solutions ® of (1.3) takes inside the conical neighborhood of W, i.e., in the region

where (1 — x(y1)) x(r/y1) =1 the form

l
1 2['() 1
b(z) = —— / dt +O(p ) for p — oo. (3.8)
2 I (yg - £)2 4 22
QOutside of this cone the expansion
1 [oz Y _
0(z) = 7 [(0:(0) ~9-W) dy + 5 (1+ L)+ 0(p2Inp) for p — o0 (3.9)
Urs dr P
L
holds true.

Proof. Performing the substitution (3.7) in (1.3)1 we obtain according to (1.3)3 the
equation

DNe®(2) = =Lz, (1 - x(y1)) x(r/y1)]V (y2,2) in © (3.10)
as the equation for ®.

(3.3) and (3.5) ensure the right-hand side F in (3.10) to take the form

r . gz ~

F(z) = (1 - x(y1)) [Aaz,x(y—)] 5 + F(z) (3.11)




with )
VeF(z)| < cpt 1ol v o c IN3. (3.12)

Denoting by (p,8) = (p, 01, 89) spherical coordinates where 8 belongs to the unit

sphere S2 ¢ R3 we can prove by elementary calculations the identity

T ¥4

_[Am, X(i)] o

5 = p Oh(6) (3.13)

where h € COO(SZ). Hence, (3.10), (3.11), (3.12), [7], [10], and [14, Theorems 3.5.6

and 3.5.12| yields @ to possess a representation of the form

B(z) = %(ﬁwo(b Inp+ ¥(8))) + &*(=) (3.14)

where ®* satisfies the estimate

|VEd*(z)] < c(a)p_2 — e InpV a € IN3. (3.15)
Here, a and b denote unknown constants and ¥ and b are coupled by the equation
RgU(8) = h(8) —b, 6 € S (3.16)

with the Beltrami-Laplace operator Ag. Especially, a depends on the whole data
of the problem (1.3).

Let us comment (3.14). Since Ag is a formally self—adjoint differential operator and

Agw(@) = 0 yields w = const, due to results coming up from the Fredholm theory,
the compatibility condition

. 1
/(h(e) ~b)dsg =0, ie. b= / h(6) dsg (3.17)
s? s?
has to hold. This formula would enable us to calculate b. However, we shall show by
using an other method that b vanishes. Especially we want to avoid in the following

to fix ¥ by solving (3.16). Finally we can calculate a using the weight function
technique (e.g. [2], [10]).

The fact b = 0 proves of course (3.8) by reason of (3.7), (3.2), (3.14), (3.15) and the

smoothness of V.

At the same time, (3.14) indicates the behavior of ® outside a narrow conical neigh-

borhood of W. We choose a function T which is harmonic in R?’\{az :r=0,y; > 0}

such that
1 2

u(z) = (1= x(y))(T(z) - 5—x(r)5) (3.18)
m T
leaves an additional discrepency which has to be compensated by a solution of a

problem similar to (3.1). The solution v of this problem, which takes care both

7



on the jump I' and the above—mentioned discrepancy decays suitable for r — oo
which ensures, that the main term (3.13) in (3.11) disappears. Collecting all these
facts will yield the representation

T

&(z) = —Tou(z) + (1 - X(M))X(E)v(yz: z) + 9™ (z) (3.19)

where

B** () = ﬁ +0(p " 21np). (3.20)

We define the desired function T by

17 : IRt
M) = 47r0/(r2—|-(t—y1)2)3/2 i L p )

(3.21)

Note that the integrand in (3.21) is just the derivative with respect to z of the
three-dimensional fundamental solution of the Laplace equation. Therefore, T is a

harmonic function in R?’\{az :r =0,y; > 0}. Moreover, T(z) — » 2 7 is a smooth
r
function in the cylinder {z : r <7,y > cg} where r(, ¢y denote positive numbers.

Because
Au@) = 5 (L= X)) (g, 1)) 5 + () (322)

27 r

with a function g € CSO(IR?’), we consider

D(yg, 2)?2:7) = ~ 35D (g ) x(P) T in G

(3.23)
[v] (y2) = T'(ya) , [0zv] (yg) = 0 for yp € (—1,1)

as the problem for v. Here A denotes an unknown constant which we have to choose
lateron.

There exists a solution v of (3.23) with the following behavior at infinity:

= 4rin} vz byy -

v(y9g,2z) = 5—In 2 + const — _ 4 e

(v9,2) = 3 In5 omrl | 9rn2 (y9, 2) .
|V(0‘y27z),l~)(y2’z)| < c(a)r—Z —la|

Next, we fix the constants A, (3,7, and §. To this end, we insert v and the linear
function

Aly2,2) = Ag + Arya + Agz

into the 224 Greens formula, where we integrate over the ball Bp = {(y9,2) : 7 <
R} with some radius R > 0 such that x =0 on dBp. We obtain the equation

[3 = [1 + 12 (3.25)

8



where

L= [ (Ag%—v%%) ds ,

0Bp
{ Ov OA
b=gF] (A2, 0052 02, +0) — o(y3, %0)P(15,0)) du (3.26)
I3= [ (A-DAv—v-AN) dygdz .
Br

Some elementary calculations show that I] = —BAO—|—5A1 —|—’yA2—|—0(1) for R —
and on account of (3.23)9, Iy = I'g - Ag holds true. Finally, if we choose a ball of a
radius € such that xy = 1 on 0Bg we observe

A 2
M=~ [ AB,  Fdnd
E 2) . o B\ Be (v2,2) 2
2m
= fre 0 (A(y272)?%iz B ﬁ?%A(yZ’z)) dp=—Ah

rT=£

where ¢ denotes the argument of polar coordinates. Inserting these results into
(3.25) and passing to the limit R — oo yields 8 = § = 0 and if we choose A = —T',
also v = 0 holds true.

Searching ® now in the form of (3.19) yields just
Ng®* ™ (z) = —[Az, x(r/y1)lv(y, 2) + F(a) (3.27)

as the problem for ®** where Fis compactly supported and due to (3.24) with
B=~4=46=0
IVE[Az, x(r/y1)]v(yg, 2)| < c(a)p 4—lal

A comparison of the last results with (3.14), (3.15), respectively, verifies the identity
(3.20) and proves the constant b in (3.14) to vanish.

Finally, we have to calculate the constant a in the representation (3.19) for ® which
appears from the presence of ®**. We use the weightfunction technique with the
weight—function 1, where 1(z) =1V z € R3. The idea is, to insert ® and 1 into
the 224 Greens formula where we integrate over the ball Bp = {z ¢ R3 p < R}
and then we pass to the limit R — oo which yields an algebraic equation in a.
Using (1.3)9, (1.3)3 and y; = psinfj cosfy,yg = psinfy cosfy and z = pcosfy,
we obtain the identity



R OB p I
= [ S+ 50+ ) do+ [(9:(y) — 9-()) dy + o(1)
0B g r
227r7r . 0/ a [y 2 Y1
=R ({({Slnela_(zlw_p—l_ﬁ;f(l—l_ p))p: dfy dbgy
+ J(9+(¥) — 9-(y)) dy + o(1)
27

%sm 61 cos 61 + sin 01 cos 01 cos 09 48, dds

1— s11r12 61 cos”

+£(g+(y)— 9-(y))dy +o(1).

T
Because [ [ Zla? sin §1 dfy df9 = a and because
00

/ sin 61 cos 71 + sin 91 cos §1 cos b9 g =0
0 1 —sin 01 cos 02

holds true due to symmetry properties of the integrand with respect to the point
7 /2, we obtain immediately that

a’_/g-l- )dy7

which proves (3.9). ]

4 The three-dimensional case with a weakly damp-
ing gas

In this section we investigate the asymptotic behavior of solutions ® of (1.1) at infin-
ity, assuming a weakly damping gas, i.e., Re k&, Im k£ > 0 and show an exponential
decay of ®. Here we concentrate to the three-dimensional situation while in the
two-dimensional case only some simplifications occur.

Again, based on [12], [13] we assume [ € Hl/z(—l, [) as being taken for granted.

Now we present the weak formulation of the problem (1.1). Let x € COO(R?’)

be a cut-off function such that xy = 1 in a neighborhood of W and x(z) = 0 for

y% + 22> R2, y1 < —R, respectively with some large number R > 0. Moreover, we

assume x to be independent of y; for y; > R.

10



We make the ansatz

®(z) = u(z) — x(x)V(y9, 2) E(y) (4.1)
where V' denotes the solution (3.2) of (3.1) and E(y) is the exponential factor in
(1.1)3.
Performing the substitution (4.1) in (1.1) and multiplying the transformed equation

(1.1)1 by a test function v € Wzl(Q) we obtain after an integration by parts using
the transformed boundary conditions (1.1)9 — (1.1)4 the integral identity

(Vu,Vu)g — kZ(U,v)n = (9+;U)L+ - (9—7”)1)_

4.2
—(VXVE, Vo) + k2(xVE,v)q Yo € Wy (Q) (42)

as the weak formulation of the problem for u. Here (-, -)q denotes the scalar product

in Ly(Q).
The following proposition holds true:

PROPOSITION 4.1 The problem (4.2) possesses an unique solution u € Wzl(Q)

Moreover, the estimate

1
s W) < ¢ N (43)
15 valid where

N (2 925 Lo(L)] + IIT; H1/2<—l,1>||) . (4.4)

Proof. For proving the assertion we only have to verify the assumptions of the Lax—
Milgram theorem. The integrals in the right-hand side of (4.2) exists by reason of
the exponential decay of E and this right—hand side represents a continuous linear
functional in v which acts on Wzl(Q) Furthermore, owing to the above mentioned
conditions Re k, Im & > 0, one can show by some elementary calculations the
existence of constants ¢ > 0, dg, > 0 such that

(Vu, Vu)a — k2 (w,ua| > ¢|[ Vs Lo(Q)||? + 651w Lo(@)|I*  (4.5)

holds true. Clearly, the corresponding bilinearform is continuous. Hence, the appli-
cation of the usual Lax—Milgram technique proves the assertion. [ ]

Finally we show u to decay exponentially. We formulate this result in the following
proposition.

PROPOSITION 4.2 Let u satisfy the identity (4.2) for all compactly supported

functions v € W21 (Q) and for some small number 7— > 0 the inclusion

VP2, W4 () (4.6)

11



where p = |z|. Then there ezists a number 7o > 0 such that for 7 € (0,70) the
wnclusion

\/ 2
eVt p%y, ¢ Wzl(Q) Vry € (0,70) (4.7)

18 valid. Moreover, there exists a constant ¢ > 0 such that the estimate

1/2
2 2
(||€T+V1+pVu3L2(9)||2‘|‘5k||eT+v1+pu3L2(Q)||2) <cN - (48)

holds true. Here 8y, denotes the constant introduced in (4.5).

Proof. It is trivial that the solution u € W21 (Q) fulfills the weaker asymptotic as-
sumption (4.6). By proving (4.7), we show u to be also unique assuming the asymp-
totic behavior described by (4.6). In fact, for a small number 7_ > 0, u is allowed
to possess an exponentially growth at infinity.

Taking (4.6) into consideration, the integral identity (4.2) holds still true for expo-
nentially decaying test functions v such that

exp(T_y/1+ ,02)1) c Wzl(Q)

by reason of completion arguments. Especially, we choose
2 1

where the weight factor Ry is defined by

R _ exp(ryy/1+p2) forp < T ‘
T(P) { exp((4 + 7-)y/1+ Tz)exp(—T_\/l + p2) for p > T. (4.10)

Here, 7, denote a small positive number which has to be characterized in more detail
and T' is a positive parameter which is scheduled to tend to infinity. Note that R

is a piecewise smooth function on R? and that VRp el RZ). Furthermore,

00, loc!
the estimate

VRp(p)] < ¢ max{ry, 7} Ry(p) (4.11)

1s valid with some constant ¢ > 0, independent of T" and p.

Performing the substitution (4.9), (4.2) takes the form
(RpVu, RpVu)g — k2(Rpu, Rpu)g + 2(RpVu,uVRp) = Ip(u)  (4.12)
with

Ip(u) = L*(Rpge Rpu)p + K2 (RpxVE, Rpu)a
—(RTVXVE,RpVu)q —2(RpVXVE,uVRp)q.

(4.13)

12



Ifry < M~ Im k with the Machnumber M, the integrals in the right—hand side
I (u) of (4.12) converge by reason of the rate of decay of E and Ip(u) admits the
estimate

[ Ir(u)l < e N -[[lulll7

where

2 2 2
Ifull|* = | RpVu; Lo()||* + g || Rpw; La(Q)] (4.14)

and where the constant ¢ > 0 depends neither on 7 nor on w. Furthermore, by
virtue of (4.11), the third term in the left-hand side of (4.12) satisfies the inequality

2|(Rp Vi, uV Ry)a| < 2cmax{ry, 7} fu 3.

Hence, (4.12) and some simple calculations similar to those which led us to (4.5)
yield
2 2
[lulll7 — 2 ¢ max{ry, 7_}|[ul[|l7 < cN||[ull.

Finally, if we choose 7o > max{7,,7_} sufficiently small, we obtain the estimate

lfullly < 2¢N. (4.15)

The function T' — |||ul|| is by reason of (4.10) and (4.14) monotone increasing and
the limit of this function is for T — +o0o just the left-hand side of (4.8). Hence,
(4.8) results from (4.15) and the convergence of the integrals in the left-hand side
of (4.8) verifies the exponential decay of u, i.e., (4.7). ]

References

[1] R.L. Bisplinghoff, H. Ashley and R.L. Halfman, Aeroelasticity, Addison Wesley
Publishing Company, Massachusetts, 1957.

[2] H.F. Bueckner, A novel principle for the computation of stress intensity factors,

Z. Angew. Math. Mech., 50(1970), 529-546.

[3] M. Costabel and E.P. Stephan, A direct boundary equation method for trans-
mission problems, J. Math. Anal. Appl., 106(1985), 367413

[4] R. Courant and D. Hilbert, Methods of mathematical physics, vol. II, Inter-
science publishers, 1962.

[5] F.C. Hebeker, Report for the VW-project “Mathematische Theorie insta-
tiondrer Fliigelstromungen”, unpublished, 1988.

[6] R. Hinder and E. Meister, Regarding some problems of the Kutta-Joukovskii
condition in lifting surface theory, Math. Nachr., 184(1997), 191-228.

13



7]

[11]

[12]

[13]

[14]

[15]

V.A. Kondrat’ev, Elliptic boundary value problems in domains with con-
ical or angular points, Trudy Moskow Mat. Obshch., 16(1967) 209-292 =
Trans. Moskow Math. Soc., 16(1967), 227-313.

V.G. Mazja, S.A. Nasarow and B.A. Plamenewski, Asymptotische Theorie ellip-
tischer Randwertaufgaben in singulér gestorten Gebieten I, Akademie-Verlag,

Berlin, 1991.

V.G. Mazja, S.A. Nasarow and B.A. Plamenewski, Asymptotische Theorie ellip-
tischer Randwertaufgaben in singulér gestorten Gebieten II, Akademie-Verlag,

Berlin, 1991.

V.G. Mazja and B.A. Plamenewski, The coefficients in the asymptotics of so-
lutions of elliptic boundary value problems in domains with conical points,

Math. Nachr., 76(1977), 29-60 = Amer. Math. Soc. Transl. (Ser. 2), 123(1984),
57-88.

E. Meister, Randwertaufgaben der Funktionentheorie, B.G. Teubner, Stuttgart,
1983.

S.A. Nazarov, The operator of a boundary problem with Chaplygin—
Zhukovskii-Kutta type conditions on an edge of the boundary has the Fredholm
property, Funkt. Anal. Appl., 31(1997), 183-192.

S.A. Nazarov, About Singularities at angular points of a trailing edge under

the Joukowskii-Kutta condition, Math. Meth. Appl. Sci., 21(1998), 939-967.

S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piece-
wise smooth boundaries, Moskow, 1991 = Walter de Gruyter, 1994.

E. Reissner, Boundary value problems in aerodynamics of lifting surfaces in

non-uniform motion, Bull. Amer. Math. Soc., 55(1949), 825-850.

14



