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Abstract

We consider the �-�nite measure-valued di�usion corresponding to the evo-

lution equation ut = Lu+ �(x)u� f(x; u); where

f(x; u) = �(x)u
2
+

Z
1

0

(e
�ku

� 1 + ku)n(x;dk)

and n is a smooth kernel satisfying an integrability condition. We assume that

�; � 2 C
�
(R

d
) with � 2 (0; 1]; and � > 0:

Under appropriate spectral theoretical assumptions we prove the existence

of the random measure

lim
t"1

e
��ctXt(dx)

(with respect to the vague topology), where �c is the principal eigenvalue of

L+� on R
d
and it is assumed to be �nite and positive, completing a result of

Pinsky on the expectation of the rescaled process. Moreover we prove that this

limiting random measure is a nonnegative nondegenerate random multiple of

a deterministic measure related to the operator L+ �.

When � is bounded from above, X is �nite measure-valued. In this case,

under an additional assumption on L+�, we prove the existence of the previous

limit with respect to the weak topology.

As a particular case, we show that if L corresponds to a positive recurrent

di�usion Y and � is a positive constant, then

lim
t"1

e
��t

Xt(dx)

exists and equals to a nonnegative nondegenerate random multiple of the in-

variant measure for Y .

Taking L =
1
2
� on R and replacing � by Æ0 (super-Brownian motion with

a single point source), we prove a similar result with �c replaced by 1=2 and

with the deterministic measure e
�jxj

dx, giving an answer in the a�rmative to

a proposed problem in [EF99].

The proofs are based upon two new results on invariant curves of strongly

continuous nonlinear semigroups.

1 Introduction and statement of results

1.1 Motivation

In [Pin96] it has been proven that the superdi�usion corresponding to the semilinear

operator Lu + �u � �u2 tends to a nonzero limit in expectation if and only if the
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linear operator L+� satis�es a certain spectral assumption. Although the statement

was proved for the case when � and � are positive constants, it is easy to check that

the proof works just as well in the variable coe�cient case. A similar result has been

presented in [EF99] for a non-regular setting (super-Brownian motion with a single

point source).

In this paper we replace the expectations by the superdi�usions themselves, and

prove that the rescaled superdi�usions tend to a limit in law. For the case of the

super-Brownian motion with a single point source this will give a positive answer to

a proposed problem in [EF99].

1.2 Preparation

We begin with a number of notations. Let M = M(Rd) denote the set of �nite

measures � on Rd endowed with the topology of weak convergence and with k�k de-
noting the total mass of �; and letMc =Mc(R

d) denote the subset of all compactly

supported measures. Write Ck;� = Ck;�(Rd) for the usual Hölder spaces of index

� 2 (0; 1] including derivatives of order k, and set C� := C0;�: Let Cb = Cb(R
d)

and C+
b = C+

b (R
d) denote the space of bounded continuous functions on Rd and the

space of nonnegative bounded continuous functions respectively; and k � k denote

the sup-norm for bounded functions. Furthermore, C = C(Rd) and C0 = C0(R
d)

refer to continuous functions on Rd and continuous functions on Rd decaying to

zero, respectively. Finally, Cc (C
+
c ) denotes the space of continuous (nonnegative

continuous) functions on Rd with compact support.

We now continue with recalling the de�nition of the (L; �; �;Rd)-superdi�usion. Let

L be an elliptic operator on Rd of the form

L =
1

2
r � ar+ b � r on Rd ; (1)

where aij; bi 2 C1;�; i; j = 1; :::; d; for some � 2 (0; 1] and the symmetric matrix

a = faijg satis�es

dX
i;j=1

aij(x)vivj > 0 for all v 2 Rdnf0g and all x 2 Rd : (2)

In addition, let �; � 2 C� where � is bounded from above (we will later relax this

condition) and � is positive.

Notation 1 (superdi�usion) Let(X;P� ; � 2 M) denote the (L; �; �;Rd)-superdi�usion.

That is, X is the unique M-valued continuous (time-homogeneous) Markov process

which satis�es, for any bounded continuous g : Rd 7! R+ ,

E� exp hXt ;�gi = exp h�;�u(�; t)i; (3)

2



where u is the minimal nonnegative solution to

ut = Lu+ �u� �u2 on Rd � (0;1);

lim
t!0+

u(�; t) = g(�)

9=; (4)

(see [EP99]). Here h�; fi denotes the integral
R
Rd
�(dx) f(x): 3

Here is an equivalent way of replacing the word minimal in the de�nition of u in

Notation 1 (cf. [EP99]): u is the nonnegative solution to (4) obtained as a limit of

solutions with Dirichlet boundary condition: u = limn!+1 un where un(x; t) is the

solution to (4) for jxj � n with un(x) = 0 at jxj = n.

Remark 2 We note that this de�nition will later be extended to a more general

class of � 0s and a more general class of nonlinearities (see the last subsection of this

section). 3

Remark 3 (mild equation with linear semigroup) In fact the parabolic

semilinear pde under (4) can be rewritten as an integral-equation (or mild-equation)

as follows: u is the unique function which solves

u(�; t) = Ttg �
Z t

0

ds Tt�s
�
�u2(�; s)

�
; (5)

with sup0�s�t ku(�; s)k < 1 for all t > 0. Here fTtgt�0 denotes the semigroup

corresponding to the operator L + � and acting on Cb. That is, for bounded and

continuous g,

Ttg := E x

�
exp

�Z t

0

�(Ys) ds

�
g(Yt) ; � > t

�
; (6)

where Y denotes the di�usion corresponding to L on Rd living on Rd [ f�g, the
one-point compacti�cation of Rd (with expectations fExgx2Rd), and � denotes its

lifetime:

� := infft � 0 j Yt 62 Rdg:

We mention that the mild equation under (5) is usually written in a slightly di�erent

form: fTtgt�0 is replaced by the semigroup corresponding to the operator L on Rd

and the nonlinearity �u2 is replaced by ��u+�u2 (see e.g. formula (1.3) in [EP99]).
The advantage of that formulation is that the semigroup then describes the spatial

motion (the di�usion corresponding to L on Rd), while the nonlinear term refers to

the branching mechanism built in the construction of X. In this paper we chose to

include � in the linear semigroup as in (6) for technical reasons. For example, we do

not have to assume that � is bounded from below, the semigroup under (6) makes

sense whenever � is bounded from above. 3

3



Remark 4 (formula for expectation) Using the stochastic representation for-

mula for solutions of parabolic pde's (see formula 5.15 in [Fri64]) it is easy to show

that u(x; t) := Ttg(x) is the minimal nonnegative solution for (4) with � = 0. From

this, it is standard to verify that

EÆxhXt; gi = Ttg(x): (7)

3

In the sequel we will use concepts and facts from the so-called `criticality-theory' of

second order elliptic operators (see Chapter 4 in [Pin95]) without further reference.

The de�nitions for subcritical, critical and product-critical operators, for the ground-

state of a critical operator and its adjoint, and for the generalized principle eigenvalue

of L+� on Rd are presented in Appendix 2. The reader should consult that section

from time to time, where a review is given on criticality-theory.

We will also use the notation hf; gi with nonnegative f and g for the (possibly

in�nite) integral
R
Rd

dx f(x)g(x). In [Pin96] the following result has been proved

(though formally for a somewhat more restricted case � see the note after the

theorem):

Theorem P Let � 2 Mc and g 2 C+
c . Let �c 2 R denote the generalized principal

eigenvalue of L + � on Rd . In the case when L + � � �c is critical we denote

the corresponding ground state by �. (The ground state for the formal adjoint of

L+ � � �c will be denoted by ~�.) Finally, let � 2 R.

(i) lim
t"1

e��tE�hXt; gi = 0 if � > �c; and lim
t"1

e��tE�hXt; gi =1 if � < �c:

(ii� a) If L + � � �c is subcritical or if L+ � � �c is critical but h�; ~�i =1, then

lim
t"1

e��ctE�hXt; gi = 0:

(ii� b) If L + � � �c is critical and h�; ~�i <1, then

lim
t"1

e��ctE�hXt; gi = h�; �ih~�; gi;

where � and ~� are normalized by h�; ~�i = 1.

The condition in (ii� b) of Theorem P is sometimes called `product-criticality ' (see

Appendix A.2 for more explanation).

Although this result was stated for the case when L is a conservative di�usion (that

is, a di�usion having an in�nite lifetime) on Rd with a corresponding C0-preserving

semigroup and � and � are positive constants, it is easy to check that its proof

never uses these assumptions and consequently it is valid for our general notion
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of the (L; �; �;Rd)-superdi�usion as well. (Note that if � is constant, we have

�c = � + �c(L), where �c(L) denotes the generalized principal eigenvalue of L on

Rd .)

In a recent paper [EF99] a non-regular setting, namely a super-Brownian motion

with a single point source has been studied and a result analogous to Theorem P

has been proved for this process. In this case the additional mass production is zero

everywhere except at a single point (the origin, say) where the mass production

is in�nite (in a Æ-function sense). In other words, consider the superdi�usion Xsin

corresponding to the formal evolution equation

ut =
1

2
�u+ Æ0u� �u2 on R � (0;1);

u(�; 0) = g(�);

where Æ0 denotes the Dirac Æ-function at zero. The precise meaning of the above

evolution equation is that u is the unique (nonnegative) solution to the integral

equation

u(� ; t) =
Z

1

�1

dy p(t; � ; y)g(y) +
Z t

0

ds p(t� s; � ; 0)u(0; s)

�
Z t

0

ds

Z
1

�1

dy p(t� s; � ; y)�(y)u2(y; s); t > 0; (8)

with sup0�s�t ku(�; s)k <1 for all t > 0, where fp(t; x; y) = p(t; x�y); t > 0; x; y 2
Rg denote the Brownian transition densities. Xsin is then determined by its Laplace-

functional as in (3), but with u from (8). The corresponding expectations will be

denoted by fEsin
� ; � 2 Mfg.

In [EF99] the following result is proved for � = 1 (the proof for general � > 0 is

virtually identical to the proof given in [EF99]):

Theorem EF For all bounded continuous g : R 7! R+ and � 2 M(R);

lim
t"1

e
�t=2Esin

�



Xsin

t ; g
�
= he�jxj; �ihe�jxj; gi: (9)

Note that in this (non-regular) setting, the number 1=2 and the function x 7! e�jxj

play the role of �c and � (= ~�). Note also that he�2jxj; 1i = 1, that is x 7! e�jxj has

already been `normalized'.

An obvious but important fact is recorded in the following remark.

Remark 5 (`overscaling') By Theorem P(i) and the Markov-inequality, for the

(L; �; �;Rd)-superdi�usion X we have limt"1he��tXt; gi = 0 in probability if � > �c
, provided X0 2 Mc. Similarly, using Theorem EF, limt"1he��tXsin

t ; gi = 0 in

probability if � > 1=2, provided X0 2 M(R): 3
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Motivated by these results and a proposed problem in [EF99] (see Remark 3 in that

paper), we ask the following natural questions: Let the (L; �; �;Rd)-superdi�usion

X satisfy the condition in (ii-b) of Theorem P. Does the rescaled process e��ctXt

have itself a limit in law for any X0 2 Mc? Is the same true for the rescaled process

e�t=2Xsin
t for any X0 2 M(R)?

In order to answer the question, we �rst invoke the de�nition of local extinction.

De�nition 6 (local extinction) A measure-valued path X exhibits local extinc-

tion if Xt(B) = 0 for all su�ciently large t; for each ball B. The measure-valued

process X corresponding to P� is said to possess this property if it is true with

P�-probability one. 3

Roughly speaking, local extinction means that the support of the measure-valued

process leaves any given compact set in �nite time.

Remark 7 (process property) In [Pin96, EP99] it was shown that, for �xed L; �

and �, if the property in De�nition 6 holds for some P� ; � 2 Mc with � 6= 0, then

it in fact holds for every P� ; � 2 Mc . 3

Local extinction can be characterized in terms of L and � (see Theorem 6 and

Remark 1 in [Pin96]):

Lemma 8 (spectral condition for local extinction) The (L; �; �;Rd)-super-

di�usion X exhibits local extinction if and only if there exists a (strictly) positive

solution u to the equation (L+ �)u = 0 on Rd that is if and only if �c � 0.

Remark 9 (ergodicity and local extinction) Let f : R+ ! R+ . Using Lem-

ma 8, it immediately follows that if �c � 0, we have f(t)hXt; gi ! 0 as t!1 a.s.

for any g 2 C+
c and X0 2 Mc, no matter how `large' f is.

Nevertheless, the situation is completely di�erent when replacing g 2 C+
c by g 2 C+

b .

For the case when � 2 Mc but g = 1 , the condition �c � 0 (local extinction) does

not contain enough information about the behavior of the total mass. To elucidate

this point, consider the following example. Fix �; � > 0 and take an L with �c(L) �
�� corresponding to a conservative di�usion. Let X denote the corresponding

superdi�usion and let X� denote the superdi�usion where L is replaced by 1
2
�

(supercritical super-Brownian motion). Then �c(
1
2
� + �) = � but for X we have

�c(L+�) � 0. Nevertheless, the processes kXk and kX�k have the same law, because

the branching is independent from the motion process and `no mass is lost' due to the

conservativeness of the di�usion corresponding to L. (See the argument preceding

formula (1.4) in [Pin96].) Therefore kXk grows exponentially in expectation in this

case. On the other hand, the (sub)critical super-Brownian motion exhibits local

extinction too but its total mass is constant (resp. tends to zero) in expectation.

Last, we mention that the case when �c � 0 and � does not belong to Mc but

rather �-�nite, has also been studied in the literature. The simplest case is the
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critical super-Brownian motion, that is L = 1
2
�; � = 0 and 0 < � =const. In this

case �c = 0. For the ergodic behavior of this process under di�erent, and even mixed

starting measures, see [BCG93]. For (L; �; �;Rd)-superdi�usions see [Pin99]. 3

In the sequel we will always assume that �c > 0, that is that the (L; �; �;Rd)-

superdi�usion under consideration does not exhibit local extinction. (As already

mentioned in this subsection, in the singular setting the number 1=2 plays the role

of �c.)

1.3 Scaling limits for superdi�usions

In this paper we will prove the existence of the scaling limits in the case of (L; �; �;Rd)-

superdi�usions and in the case of the single point source as well, under the assump-

tion that �c(L + �) > 0 and that the condition in (ii-b) of Theorem P (product-

criticality) holds. In addition, we will assume that � is not `too large'. In fact we

will be able to replace Mc and M(R) by two families of measures, each satisfying

an integrability assumption only. (See Theorems 1 and 2 below.)

As it is usual in the analysis of nonlinear phenomena, we use a geometric approach

to the equation (5). For a continuous function u de�ne the weighted norm kuk��1 =
supx ku(x)��1(x)k where � is the ground state of L+���c. Under certain conditions
guaranteed by Theorem 1 or 2 below, we prove in Lemma 20 of section 3 the existence

of a special smooth curve u =  (�); � 2 [0;1), in the space of nonnegative functions

bounded in the norm k � k��1, such that  (0) = 0 and  0(0) = � and that the curve

is invariant under the positive time shift u(0) 7! u(t) de�ned by (5). Thus, the

curve emanates from zero and is tangent at zero to the one-dimensional invariant

(with respect to the semigroup fTtgt�0 ) subspace, spanned by �. We prove that

this curve is uniquely de�ned by the condition that for any point u(0) = g =  (�0)

on the curve we have

u(t) =  (�0e
�ct); (10)

where u(t) is the unique nonnegative solution to (5), bounded in the kuk��1-norm
at all t. This condition means that the curve is parametrized in such a way that the

equation (5) restricted to the invariant curve becomes linear: _� = �c�.

Since our invariant curve u =  (�) is de�ned uniquely by the nonlinear equation

(5), it is quite legitimate to formulate the results in terms of the function  , as

we do below (note that our proof of existence of the invariant curve in Lemma 20

is constructive and gives an algorithm for the computation of the function  ). In

essence, Theorems 1 and 2 illustrate one of the standard ideas of local nonlinear

analysis: the analogy between invariant subspaces of linearized evolution equations

and invariant curves of nonlinear equations.

Before stating our main result we introduce an additional notation.
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Notation 10 For 0 � g measurable, de�ne the following space of measures:

M(g)
:= f� is a measure on Rd

: h�; gi <1g:

3

We now state our main result.

Theorem 1 (scaling limit for (L; �; �;Rd) -superdi�usions) Let X be the

(L; �; �;Rd)-superdi�usion with L; �; � as in the paragraph preceding Notation 1.

Let 0 < �c where �c denotes the generalized principal eigenvalue of L + � on Rd .

Assume that the condition in (ii-b) of Theorem P (product-criticality) holds. In

addition, assume that �� is bounded from above.

Then for any X0 = � 2 M(�), there exists a nonnegative non-degenerate random

variable N� such that for all g 2 C+
c ,

lim
t"1

e��cthXt; gi = N� � h~�; gi in law: (11)

Moreover, under the normalization h�; ~�i = 1; the law of N� is determined via its

Laplace-transform as follows:

Ee��N� = exph�;� (�)i ; � > 0 (12)

where � 7!  (�) is the invariant curve de�ned by (10). Furthermore,

EN� = h�; �i: (13)

In particular, P(N� <1) = 1.

If we assume in addition that � is bounded away from zero, then

lim
t"1

e��ctXt(dx) = N� � ~�(x) dx in law: (14)

An interpretation of the above theorem will be given in the next subsection.

Remark 11 It is not hard to show that (11) implies that

P(N� = 0) � P�(hXt; 1i = 0 for all large t0s):

(We defer the proof to the next subsection, because we will need the concept of the h-

transform for superprocesses de�ned in that subsection.) The rightmost probability,

that is the probability of �nite time extinction is positive for all � 2 Mc (see

Theorem 3.1 in [EP99]), and consequently P(N� = 0) > 0 for all � 2 Mc: 3

We continue with two proposed problems:
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Problem 12 Is it true in general, that

P(N� = 0) = P�(hXt; 1i = 0 for all large t0s) ?

(Cf. Theorem III.7.2 in [AN72] for non-spatial branching processes.) 3

Problem 13 What can we say about the asymptotic behavior of X in the case

when L+ � � �c is subcritical or L+ � � �c is critical but h�; ~�i =1 (case (ii� a)

in Theorem P)? 3

Finally, we state a theorem analogous to Theorem 1 for the superdi�usion Xsin of

Theorem EF (super-Brownian motion with an additional single point source).

Theorem 2 (scaling limit in the case of a single point source) Let Xsin

be the superdi�usion corresponding to the integral equation (8), and assume that

�(x) � K � ejxj; K > 0. For any X(0) = � 2 M(exp�jxj), there exists a nonnegative

non-degenerate random variable N� with EN� = h�; e�jxji satisfying that

lim
t"1

e�t=2Xsin
t (dx) = N� � e�jxj dx in law: (15)

Furthermore, the law of N� is determined via its Laplace-transform as in (12), where

� 7!  (�) is the invariant curve de�ned by (10) when replacing the nonlinear equa-

tion (5) with (8), and using the formal substitution �c = 1=2.

1.4 An interpretation of our main theorem via reducing it to

a particular case

Before presenting an interpretation of Theorem 1 , �rst recall the de�nition of the h�

transformed superdi�usion. (The h-transform for (L; �; �;Rd)-superdi�usions was

developed in [EP99].)

De�nition 14 (h�transformed superdi�usion Xh) Let 0 < h 2 C2;� and con-

sider the (L; �; �;Rd)�superdi�usion X: De�ne

Xh
t := hXt

�
that is,

dXh
t

dXt

= h

�
; t � 0: (16)

Then Xh is the (Lh
0 ; �

h; �h;Rd)�superdi�usion, where

Lh
0 := L+ a

rh
h
�r; �h :=

(L+ �)h

h
; and �h := �h: (17)

Xh makes sense even if �h is unbounded from above (see [EP99, Section 2] for more

elaboration). Xh is called the h�transformed superdi�usion. 3
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Remark 15 (h�transforms) (i) Lh
0 is just the di�usion part of the usual linear

h�transformed operator Lh (see [Pin95, Chapter 4]).

(ii) The operators A(u) := Lu + �u � �u2 and Ah(u) := Lh
0u + �hu � �hu2 are

related by Ah(u) = 1
h
A(hu): 3

Remark 16 (invariance under h�transforms) An obvious but important

property of the h�transform is that it leaves invariant the support process t 7!
supp (Xt) of X. 3

We now give an interpretation of Theorem 1 using the transformed processX� = �X

as follows. First note that � and ~� transform into 1 and �~� respectively. Hence,

Theorem 1 states that for X
�
0 = � 2 M,

lim
t"1

e��ctX
�
t (dx) = N�

� � �~�dx in law (18)

(cf. Theorem III.7.1 in [AN72] for non-spatial branching processes). Recall that

X� is the (L
�
0 ; �c; ��;R

d)-superdi�usion. (Note that �� = �c is no more spatially

dependent.)

Next, note that integrating against the function 1 in (18) yields

lim
t"1

e��ctkX�
t k = N�

� in law; (19)

that is, the total mass behaves like e�ctN�
� as t!1. Recall that �c is the average

mass creation at each point of Rd and note that since � transforms into 1, we have

EN�
� = k�k:

By (12) (applied for the �-transformed setting) N�
� depends on the whole branching

term �cu � ��u2, where �� can be identi�ed with the variance of the o�spring

distribution (see Appendix 1 in [EP99]). It depends also on L
�
0 , that is on the motion

process, which fact comes of course from the spatial dependence of the branching.

Note also (see Appendix A.2) that by the product-criticality assumption, and by

the invariance of this property under h-transforms, L
�
0 corresponds to a positive

recurrent di�usion (loosely speaking, positive recurrence means that the di�usion

hits any �xed ball in �nite expected time) which ergodizes with invariant density

�~�dx (see Theorem 4.9.9. in [Pin95]). Putting this together with (19), the righthand

side of the approximating formula

X
�
t (dx) � e�ctN�

� � �~�dx

can be interpreted as e�ctN�
� being the total mass and �~�dx being the limiting

distribution of the individual particle.

We close this section with the
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Proof of Remark 11. It is enough to prove the inequality for X�, because the

probability of extinction is the same for X (starting with �) and X� (starting with

� = ��), and also P(N� = 0) = P(N�
� = 0): Using (18), we have

P(N�
� = 0) = lim

s"1
Ee�sN

�

� h�~�;1i = lim
s"1

lim
t"1
Ee�she

��ctX
�

t
;1i

� P�(hX
�
t ; 1i = 0 for all large t0s):

This completes the proof of the remark. �

1.5 More general branching

In this subsection we will consider superdi�usions with more general branching mech-

anisms and generalize our main theorem for that setup. To this end, �rst recall that

in [EP99] the de�nition of the (L; �; �;Rd)-superdi�usion has been extended for �'s

which are not necessarily bounded from above but rather satisfy the more general

condition

�c = �c(L + �) <1: (20)

This extension relies on the fact that the h-transform with h = � transforms formally

the quadruple (L; �; �;Rd) into the quadruple (L
�
0 ; �c; ��;R

d), which corresponds to

a superdi�usion X (since �h = �c < 1). Then the

(L; �; �;Rd)-superdi�usion X̂ can be de�ned by X̂ := 1
�
X (where X starts at

X0 = � 2 Mc if and only if X̂ starts at X̂0 = 1
�
� 2 Mc). X̂, however, is not

M-valued in general but rather �-�nite measure-valued. (See [EP99] for more elab-

oration.) In particular, the appropriate topology for measures becomes the vague

topology in place of the weak one.

In fact, this construction can easily be generalized for (time-independent) local

branching, that is for the case when instead of the quadratic nonlinearity in (5)

we have the more general nonlinearity of the form:

f(x; u) = �(x)u2(x) +

Z
1

0

[e�ku(x) � 1 + ku(x)]n(x; dk): (21)

Here n is a kernel from Rd to [0;1), that is n(x; dk) is a measure on [0;1) for each

x 2 Rd , and n(�; B) is a continuous1 function on Rd for every measurable B � [0;1)

(cf. subsections 1.7-1.8 in [Dyn93]). In order to be able to de�ne the superdi�usion

X̂ corresponding to L, � and f via an h-transform, we assume that 0 < �� is

bounded from above and that n satis�es

sup
x2Rd

Z
1

0

[k ^ �(x)k2]n(x; dk) <1: (22)

1In the original setting of [Dyn93] only the measurability was required. We, however, prefer to

work in this paper with the spaces of continuous functions.
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Moreover, we assume that the convergence to the limit

lim
K!+1

Z
1

K

kn(x; dk) = 0 (23)

is uniform with respect to x on every compact subset of Rd . (This condition will

guarantee that the map x 7! f(x; u(x)) is continuous whenever u 2 C.)

The h-transform with h = � takes the operator L + � into L
�
0 + �c, while f(x; u)

transforms into

f�(x; u) = ��(x)u2(x) +

Z
1

0

[e�ku(x) � 1 + ku(x)]n�(x; dk);

where

n�(x; dk) :=
1

�(x)
n

�
x;

dk

�(x)

�
:

Note that by (22), n� satis�es

sup
x2Rd

Z
1

0

(k ^ k2)n�(x; dk) <1 (24)

(and this integral converges uniformly with respect to x). Using this, along with the

fact that �� is bounded from above by assumption, the �-transformed mild equation

uniquely de�nes a superdi�usion X (see subsections 1.6-1.8 [Dyn93]). Then the

superdi�usion X̂ can be de�ned in the usual way: X̂ := 1
�
X. (Note that X̂ is M�-

valued for every starting measure in M�. In particular, if � is bounded away from

zero then X̂ isM-valued for every starting measure inM�.) Denote the semigroup

corresponding to L
�
0 + �c by fT

�
t gt�0. It is immediately seen that X̂ corresponds to

the mild equation

u(�; t) = Ttg �
Z t

0

ds Tt�s (f(u(�; s)) ; (25)

where the linear semigroup fTtgt�0 is de�ned by

Tt(u) := �T
�
t (u=�); t � 0;

and the nonlinearity f is de�ned by

f(x; u) := �(x)f� (x; u=�) :

(The h-transformed mild-equation is de�ned whenever the initial function at t = 0

belongs to C+
c � see [EP99] for further explanation for the case when n � 0.)

In fact, Theorem P and the remark preceding it are still true for this more general

setup. Our proof of Theorem 1 still works for this more general setup if (in addi-

tion to (20), the boundedness of �� and the product-criticality assumption of the

theorem) one requires that

sup
x2Rd

Z
1

0

[�Æ(x)k1+Æ ^ �2(x)k2]n(x; dk) <1 for some Æ > 0: (26)

12



This will guarantee that the Hölder-type condition (32) in Lemma 22 is satis�ed

for the nonlinearity f�. Then Lemma 22 yields the existence of a unique smooth

invariant curve de�ned by (10) for the nonlinear equation (25).

We summarize the above in a proposition. Let us call the superdi�usion described

in this section the (L; �; f ;Rd) -superdi�usion.

Proposition 17 (scaling limit for (L; �; f ;Rd) -superdi�usions) Let X be

the (L; �; f ;Rd)-superdi�usion with L as in the paragraph preceding Notation 1, and

the nonlinearity f(x; u) given by (21) where (26) is satis�ed. Let 0 < �c <1 where

�c denotes the generalized principal eigenvalue of L + � on Rd . Assume that the

condition in (ii-b) of Theorem P (product-criticality) holds. In addition, assume

that �� is bounded from above.

Then for any X0 = � 2 M(�), there exists a nonnegative non-degenerate random

variable N� such that

lim
t"1

e��ctXt(dx) = N� � ~�(x) dx in law: (27)

(Here the convergence is with respect to the vague topology.)

Moreover, under the normalization h�; ~�i = 1; the law of N� is determined via its

Laplace-transform as follows:

Ee��N� = exph�;� (�)i � > 0 (28)

where � 7!  (�) is the invariant curve de�ned by (10) for the nonlinear equation

(25).

Furthermore,

EN� = h�; �i; (29)

and in particular, P(N� <1) = 1.

If we assume in addition that � is bounded away from zero, then X isM-valued and

(27) holds with respect to the weak topology.

Letting � � 0 and choosing an appropriate n (see subsection 1.8 in [Dyn93]), (21)

has the form

f(x; u) = c(x)u1+p; 0 < p < 1;

with some nonnegative, nonzero continuous function c. In this case (23) and (26) will

be satis�ed (with Æ = p) if we assume that c�p is bounded from above. (Alternatively,

one can slightly modify the proof of Theorem 1 by writing u1+p in place of u2

everywhere. Since f transforms into c�pu1+p under an h-transform with h = �, the

proof goes through when assuming the boundedness of c�p.)
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1.6 Outline

In Section 2 we will present examples for Theorem 1. In Section 3 we will state

and prove two lemmas on invariant curves which play a key role in the proofs. In

Section 4 some preparations are made before turning to the proofs, and we also state

Theorem 3, an auxiliary result on the recurrence of di�usion processes which we will

use in the proof of our main theorem and which may be of independent interest.

Section 5 will be devoted to the proofs of Theorems 1 and 2 and of Proposition 17.

The �rst appendix presents the proof of Theorem 3. Finally, our second appendix

will collect some known auxiliary material on the criticality-theory of second order

elliptic operators.

2 Examples

In this section we present applications of our main result for three families of su-

perdi�usions. In the �rst two examples the underlying motion process (correspond-

ing to the operator L) is recurrent, in the last example, it is transient.

Our �rst example has actually been discussed in Subsection 1.4. In fact, as we

have seen, every superdi�usion X satisfying the conditions of Theorem 1 can be

h-transformed (with h = �) into the type of superdi�usion of the following example.

Example 18 (positive recurrent motion process, 0 < �=const) Let L

correspond to a positive recurrent di�usion and let 0 < � =const. Finally, let �

be bounded from above. Then L+���c = L, because �c(L) = 0 by the recurrence

property; and � = 1. Furthermore, since the di�usion process is positive recurrent,

the operator L is product-critical (that is, ~� 2 L1). Therefore, (14) holds for any

�nite starting measure with �c = �.

To give a concrete example for a positive recurrent di�usion, let L correspond to an

Ornstein-Uhlenbeck process:

L =
1

2
�� kx � r on Rd ; d � 1;

where k > 0. (It is easy to see (cf. Example 3 in [Pin96] on p.248) that ~�(x) =�
k

�

�d=2
exp(�kjxj2).) 3

The next example can be considered as a smooth version of our Theorem 2. (Recall

that formally �c = 1=2 in that theorem.)

Example 19 (super-Brownian motion with compactly supported �)

Let L = 1
2
� on Rd , d � 2. Let � 2 C+

c be not identically zero. By the recurrence

of the one and two dimensional Brownian motions and Theorem 4.6.3. in [Pin96],

we have �c > 0. The criticality of L� �c follows by the recurrence of the Brownian
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motion and Theorem 4.6.7 in [Pin96]. We now prove that � 2 L2(Rd) (product-

criticality). To see this, �rst let d = 1. Note that � satis�es (1
2
� � �c)� = 0

outside a compact set and therefore �(x) = const � exp(�
p
2�c x) for large jxj. By

the so-called minimal growth property at in�nity (see Theorem 7.3.8. in [Pin96]) it

follows that in fact �(x) = const � exp(�
p
2�c jxj) for large jxj. The proof for d = 2

is similar: using polar coordinates, it is easy to check that f(x) := exp(�
p
2�c jxj)

satis�es (1
2
� � �c)f � 0 outside a compact set. Putting this together with the

fact that � satis�es (1
2
�� �c)� = 0 outside a compact set and the minimal growth

property of � at in�nity, we have that � � K � f for K large enough. Therefore, for

both d = 1 and d = 2, (11) holds in the present case, provided

�(x) � K � exp
�p

2�c jxj
�
; K > 0;

and the starting measure � = X0 satis�es


�; exp

�
�
p
2�c jxj

��
<1. 3

Last, we present an example where L corresponds to a transient di�usion process

on Rd .

Example 20 Let

L =
1

2
� + kx � r on Rd d � 1;

where k > 0. (Note that the di�usion corresponding to L is transient.) Let � be

a constant satisfying � > kd. It is easy to see (cf. Example 2 in [Pin96] on p.247

and p.266) that �c = � � kd and that L + � � �c = L + kd is product-critical

with �(x) = exp(�kjxj2=2) and ~�(x) = 1. Therefore, (11) holds with �c = � � kd,

whenever the starting measure � = X0 satis�es h�; exp(�kjxj2=2)i <1 and

�(x) � K � exp(kjxj2=2); K > 0:

Note that if � � kd, the superdi�usion Xt exhibits local extinction for any � 2 Mc.

3

3 Two results concerning invariant curves

Let X be a Banach space and let fTtgt�0 be a continuous semigroup of bounded

linear operators acting on X . Let X+ � X be a cone. Consider the equation

u(t) = Ttu(0) +

Z t

0

Tt�s Æ f(u(s))ds (30)

for which we assume that it de�nes for any u(0) 2 X+ its semiorbit - a curve

u(t); t � 0 in X+. We assume that f : X ! X is smooth, i.e. it is di�erentiable

and its derivative is bounded and uniformly continuous on bounded subsets of X .
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It is easy to see in this case that the semiorbit u(t) de�ned by (30) is continuous

with respect to t and it is smooth with respect to the initial condition u(0).

We will also assume that

f(0) = 0; f 0(0) = 0 (31)

and that for the derivative map F (u) : du! f 0(u)du we have

kF (u)k � KkukÆ (32)

(in the usual operator-norm) for some positive constants K and Æ and all small u.

It follows, in particular, that

kf(u)k � Kkuk1+Æ: (33)

Concerning the linear semigroup Tt, we assume that it has an eigenvector �:

Tt� = e�t� (34)

for some � > 0, and that � 2 int (X+ ) (here int (X+ ) denotes the interior of the

cone X+ in norm-topology) . Since the vector � is de�ned only modulo a scalar

factor, we normalize it by k�k = 1. We also assume that for some constant M > 0

kTtk �Me(�+")t (35)

where (and this is a crucial assumption)

" < �Æ; (36)

and Æ is the exponent in the Hölder-type estimate (32).

De�nition 21 A curve Q in X is called invariant with respect to the system (30),

if for any point u(0) on Q its positive semiorbit u(t) lies in Q. 3

Lemma 22 (the existence of a particular invariant curve) Under (31)�

(36), there exists a unique smooth invariant curve Q lying in X+ , parametrically

written as u =  (�); � 2 [0;1), where  (0) = 0,  0(0) = � (that is, Q starts at

zero and it is tangent at zero to the eigenvector � of the linear semigroup), such that

for any �0, for the point u(0) =  (�0) on Q, its semiorbit is given by:

u(t) =  (e�t�0): (37)

Remark 23 Note that for any point u(0) =  (�0) on Q there exists a negative

semiorbit de�ned (just by formula (37)) for any t � 0, such that it tends to zero

and is tangent at zero to � as t! �1. 3

Remark 24 Note that we parametrize the curve Q in such a way that the system

becomes linear on Q: _� = ��: 3
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Remark 25 Although our proof is more or less standard (see [SSTC98] for a com-

parison), our invariant curve result itself is not a standard one because we do not

require the usual spectral gap assumption (note that " � 0 in (35)). 3

Proof of Lemma 22. It is enough to de�ne the function  at small � only and show

that  (�) lies in X+ for small �'s: given any point u(0) =  (�0) on the curve Q
with an arbitrarily small �0 the function  is de�ned at all larger � by formula (37),

because the positive semiorbit u(t) of u(0) is de�ned at all t � 0 by assumption.

So, take any su�ciently small � and consider the equation

v(t) = ��+ e��t
Z t

�1

Tt�s Æ f(e�sv(s)) ds (38)

where t � 0. Here, the unknown is a bounded continuous function v : [�1; 0]! X .

We will �nd it as a �xed point of the operator v 7! �v de�ned by

�v(t) = ��+ e��t
Z t

�1

Tt�s Æ f(e�sv(s)) ds; t 2 [�1; 0]: (39)

Conditions (31)-(36) imply (see below) that for all su�ciently small � it is a smooth,

contracting operator which maps the set V of continuous functions v(t) bounded,

say, as kv(t)k � 2j�j, into V itself. Therefore, by the Banach principle of contraction

mappings, it has a uniquely de�ned �xed point in V , which depends on � smoothly.

Equivalently, equation (38) has a unique solution v� for all small � which is uniformly

bounded for all t � 0:

sup
t�0

kv�(t; �)k � 2j�j: (40)

Note that v � 0 solves equation (38) at � = 0. Hence, by uniqueness,

v�(t; 0) � 0: (41)

Since v�(t; �) is a �xed point of a smooth contracting operator, its derivative @

@�
v� is

found as the unique solution of the equation obtained by the formal di�erentiation

of (38):

@

@�
v(t) = �+

Z t

�1

Tt�s Æ e�sf 0(e�sv�(s; �))
@

@�
v(s)ds: (42)

By (41), (42) we immediately have

@

@�
v�(t; 0) � �: (43)

We de�ne now the function u�(t; �) � e�tv�(t; �). By uniqueness of v�, the function

u� is de�ned as the unique (bounded by 2j�je�t) solution of

u(t) = �e�t�+

Z t

�1

Tt�s Æ f(u(s))ds: (44)
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(compare this with (38)). Recall that we de�ne the function v� at non-positive t

only, so the function u� is, by now, de�ned only at t � 0 as well. We de�ne u�(t; �)

at t � 0 as the positive semiorbit of the point u�(0; �) de�ned by the system (30).

Comparing formulas (30) and (44) shows that the function u� satis�es (44) at all t

(we take into account that Tt� = e�t� by assumption).

Now take any � > 0 and consider the function u��(t; �) = u�(t + � ; e����). It is

immediately seen that once u� satis�es (44), the function u�� satis�es (44) as well.

Therefore, by uniqueness, u�� � u� at all non-positive t and, in particular,

u�(0; �) � u�(� ; e����) (45)

for any � � 0. By de�nition, this means that the time � shift (by the semi�ow

de�ned by (30)) of the point u�(0; e����) is the point u�(0; �). Thus, if we de�ne

the sought function  as  (�) = u�(0; �)(� v�(0; �) ), we will have that the smooth

curve u =  (�) is invariant with respect to system (30) and satis�es (37).

Note also that  (0) = 0 and  0(0) = �, according to (41), (43). Thus, this invariant

curve will indeed be tangent at zero to the eigenvector �. Since � 2 int (X+ ) by

assumption, it also follows that  (�) lies in X+ for all small �'s.

To show the uniqueness of the curve Q : u =  (�) satisfying (37) and  0(0) = �,

note that if we take any point u(0) on Q and consider its negative semiorbit u(t)t�0

de�ned by (37), then u(t) must satisfy equation (44) whose solution is unique as we

just have shown (the required boundedness of u(t) by 2�e�t follows from (37) due

to the assumed boundedness of  0(0)).

To complete the proof it remains to check that the operator (39) is smooth and

contracting on the set V : fv(s)s2(�1;0]; kv(s)k � 2j�jg and maps this set into itself.

First, note that in (39)

k�v(t)k � j�j+
Z t

�1

kTt�sk � e��tkf(e�sv(s))kds

(recall that k�k = 1) and, by virtue of (33) and (35),

k�v(t)k � j�j+MKe"t
Z t

�1

e(�Æ�")skv(s)k1+Æds:

Hence,

sup
t�0

k�v(t)k � j�j+
MK

�Æ � "

�
sup
s�0

kv(s)k
�1+Æ

(recall that " < �Æ by assumption). It is clear from this estimate that for all � small

enough, if sups�0 kv(s)k � 2j�j, then k�v(t)k � 2j�j at all t � 0, which means that

the operator under consideration indeed maps the set V into itself.

The smoothness of this operator with respect to � is obvious. To prove the smooth-

ness with respect to v we must check that the linear operator

�v(t) 7!
Z t

�1

Tt�se
��(t�s)f 0(e�sv(s)) ��v(s)ds (46)
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obtained by formal di�erentiation of (39) is well de�ned and bounded on the space

of uniformly bounded �v(s)s2(�1;0], provided v(s) 2 V . This is straightforward. In
fact, by (35) and (32), we obtain thatZ t

�1

Tt�se
��(t�s)f 0(e�sv(s)) ��v(s)ds


�M

Z t

�1

e"(t�s) �K(2j�j)Æe�Æs � k�v(s)kds

�
MK

�Æ � "
(2j�j)Æ sup

s2(�1;0]

k�v(s)k;

and we see that formula (46) for the derivative of (39) de�nes a bounded linear op-

erator indeed (one may also check in the same way that the higher order derivatives

of (39) are bounded multi-linear operators). Moreover, the norm of this operator is

small (less than 1) for small �, giving the required contraction. �

The following result is a version of the well-known �-lemma (see [SSTC98]) from

the theory of �nite-dimensional dynamical systems. The advantage of our result is

that we do not assume the spectral gap condition.

Lemma 26 (the existence of the scaling limit) Let for some initial condition

u0 the following limit relation hold

lim
t"1

e��tTtu0 = ��: (47)

Then there exists the limit

lim
t"1

u(t; e��tu0) =  (�) (48)

where u(t; �) denotes the solution of (30) starting with the initial condition u(0) = �

and � 7!  (�) is the equation of the invariant curve Q constructed in Lemma 22.

Proof of Lemma 26. By continuity of the nonlinear semigroup de�ned by (30), it is

enough to prove that for some small � > 0

lim
t"1

u(t; �e��tu0) =  (��); (49)

because if we denote � = � 1
�
ln � > 0, then u(t+ �; e��(t+�)u0) is the time � shift of

u(t; �e��tu0) and  (�) is the time � shift of  (��) (see (37)).

Denote

v(t) = e��tu(t+ � ; e����u0); t 2 [��; 0]:

By (30)

v(t) = �e��(t+�)Tt+�u0 +

Z t

��

e��tTt�s Æ f(e�sv(s)) ds: (50)
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Let v�(t; ��) be the solution of (38), i.e.

v�(t) = ���+

Z t

�1

e��tTt�s Æ f(e�sv�(s)) ds (51)

We will prove that

v(t)� v�(t)! 0 (52)

as � ! +1, for any �xed t � 0. Then putting t = 0 in (52) will give (49) and �nish

the proof of the lemma. In fact, we will prove that

sup
t2[�� 0;0]

kv(t)k ! 0; (53)

for an appropriately chosen � 0 which tends to +1 as � ! +1.

First, note that it follows from the existence of the �nite limit (47) that e��sTsu0 is

uniformly bounded for all s � 0:

sup
s�0

ke��sTsu0k � L (54)

for some �nite L. It is now easy to show that

kv(t)k � 2L� (55)

for all � � 0 and t 2 [��; 0], provided � is small enough. Indeed, this holds true at

t = �� for any � , and let t0 � 0 be the maximal value of t for which (55) is still

valid. If t0 < 0, this means that kv(t0)k = 2L�. Now, by (54), using estimates (35)

and (33), we have from (50)

kv(t0)k � L� +MK(2L�)1+Æe"t0
Z t0

��

e(�Æ�")sds � L�(1 +
2MK

�Æ � "
(2L�)Æ):

If � was taken small enough, we get that kv(t0)k is strictly less than 2L�, hence

t0 = 0 which proves the claim.

Now take any � 0 < � such that � 0 ! +1 as � ! +1. We have
Z

�� 0

��

e��tTt�s Æ f(e�sv(s))ds

 �MK

�
sup
s�0

kv(s)k
�1+Æ

e"t
Z

�� 0

��

e(�Æ�")sds: (56)

By (36),(55), this integral tends to zero as � 0 ! +1, uniformly for any t � 0. The

same conclusion can be made with respect to the integralZ
�� 0

��

e��tTt�s Æ f(e�sv�(s))ds :

the estimate like (56) follows from (35) and (33), and the uniform boundedness of v�

was proven in Lemma 1 (see (40); note that the upper bound on the norm on v� is
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also linear in � in present notations, i.e. v� also satis�es (55) with an appropriately

chosen L).

Hence, for any t 2 [�� 0; 0] we have from (50), (51) (we use estimates (32), (55) and

(35)):

kv(t)� v�(t)k � �(� 0) +MK(2L�)Æ
�R 0

�� 0
e(�Æ�")sds

�
� sups2[�� 0;0] kv(s)� v�(s)k+ o(1)� 0!+1 (57)

where

�(� 0) = � sup
s2[��� 0;� ]

ke��sTsu0 � ��k:

Since �(� 0) ! 0 as � � � 0 ! +1 (see (47)), it immediately follows from (57) that

at su�ciently small � the sought relation (53) holds, provided � 0 is chosen such that

� 0 ! +1; � � � 0 ! +1. �

Note that we never used in the proof of Lemma 26 (unlike in the proof of Lemma

22) the completeness of the space X . Therefore, we may change Lemma 26 (in order

to adopt it to the particular problem we consider in this paper) as follows.

Lemma 27 (the scaling limit in a weaker norm) For any norm k � k1
which is weaker than the original norm k � k0 in X , if the (linear) limit relation

(47) holds in the norm k �k1 for some initial condition u0, then the (nonlinear) limit

relation (48) holds in the same norm, provided the following estimates are valid:

kF (u)k0 � KkukÆ0; (58)

kF (u)k1 � KkukÆ0; (59)

kTtk0 �Me�t; (60)

kTtk1 �Me(�+")t (61)

with " < �Æ, where F (u) is the derivative operator from (32).

Proof. The proof repeats the proof of Lemma 26 with the following modi�cation:

the estimate (55) (in the original k � k0-norm) follows now directly from (60). Then,

it follows from (55), (59) and (61) that all the estimates of Lemma 26 remain un-

changed in the norm k �k1. Finally, the required existence and uniform boundedness

(in the original norm k � k0 and, hence, in the weaker norm k � k1) of the solution v�

of the integral equation (38) are given by Lemma 22. �
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4 Some preliminary results for the proof of the main

theorem

The proof of Theorem 1 and Proposition 17 will be based on two propositions (see

Propositions 29 and 31 below) and on two lemmas stated and proved in Section 3

(Lemmas 22 and 27). We will also use the following simple fact.

Lemma 28 For any 0 <  : Rd ! R continuous de�ne the -norm by

kfk := kfk;

on ff continuous : f is boundedg: If  2 C0 and if F is a uniformly bounded family

of functions, then the norm k � k restricted to F is compatible with the topology of

uniform convergence on compacts.

Proof. First, assume that fn tends to zero uniformly on compacts as n " 1. Since

 2 C0 and by assumption kfnk � K; n � 1 for some K > 0, one can take a large

ball B � Rd (depending on ") such that

sup
x2RdnB

(x)fn(x) < "; n � 1:

Since fn also tends to zero uniformly on compacts as n " 1, we can pick an

N = N(") 2 N such that

sup
x2B

(x)fn(x) < "; n > N:

Then, altogether we have

sup
x2Rd

(x)fn(x) < "; n > N;

proving the -norm convergence for fn.

Conversely, assume that fn tends to zero in -norm and �x an arbitrary nonempty

ball B � Rd . We have

sup
x2B

fn(x) � C(; B) sup
x2B

(x)fn(x)

with some C(; B) > 0. The righthand side of the last formula tends to zero as

n " 1 by assumption, thus the same is true for the lefthand side. This proves

uniform convergence on compacts for fn. �

Let fStgt>0 denote the semigroup corresponding to the operator L + � � �c on R
d

(and acting on Cb). Note that

St = e��ctTt;

where fTtgt>0 is the semigroup de�ned in (6).
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Proposition 29 (convergence for S
�
t g in -norm) Assume that the condition in

(ii-b) of Theorem P is satis�ed, and furthermore let 0 <  2 C0. Then for any

g 2 Cb,

lim
t"1

S
�
t g = hg; �~�i in k � k:

Proof. Since L + � � �c is critical on Rd , so is the h-transformed (h = �) operator

(L+���c)�. Let 0 < � and ~� denote the eigenfunctions corresponding to the latter

operator and to its adjoint respectively. It is easy to see that � = 1 and ~� = �~�. In

particular h�; ~�i = h�; ~�i: Note that the �-transformed operator

(L+ � � �c)
� = L + a

r�
�
� r

has no zeroth order part (it is a di�usion generator). Using this along with the

second part of [Pin95, Theorem 4.4.9], we have that for any g 2 Cb given,

lim
t"1

S
�
t g = hg; �~�i;

in the topology of uniform convergence on compacts. Our goal is to verify that this

convergence holds also in k � k. Using Lemma 28, it is enough to show that for any

g 2 Cb given,

F := f(S�
t )ggt�0

is a uniformly bounded family of functions. Recalling, that the �-transformed op-

erator has no zeroth order part and denoting the corresponding expectations by

fE�xgx2Rd we have
(S

�
t g)(x) = E �xg(Yt)

where Yt is the corresponding di�usion process. It then follows that

kS�
t (g)k � kgk:

This completes the proof of the proposition. �

We now choose a particular function  in the following way:

Let h be a positive function satisfying

1) (L+ � � �c)
�h � 0 outside some compact set,

2) h(x)!1 as jxj ! 1.

The existence of such an h follows by the recurrence of the di�usion corresponding

to the operator (L + � � �c)
� and from the following theorem which we feel is of

independent interest. (For the proof see Appendix A.1)

Theorem 3 (necessary condition for recurrence) Let L be as in (1), and as-

sume that it corresponds to a recurrent di�usion process Y . Given any positive R1
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and any function p(x) which tends to in�nity as jxj ! +1, there exists a superso-

lution on jxj � R1, that is, a positive C2;�-function U(x) such that

LU � 0 on jxj � R1; (62)

converging to in�nity as jxj ! +1, asymptotically slower than p:

lim
r!+1

inf
jxj=r

U(x) =1; lim
r!+1

sup
jxj=r

U(x)

p(x)
= 0:

The existence of such growing to in�nity supersolution is known as a su�cient

condition for the recurrence of L (see Theorem 6.1.2 in [Pin95]). Our result here

shows that this is also a necessary condition for recurrence, (earlier it was known

only in the one-dimensional case � then the statement follows easily from Theorem

5.1.1(i) in [Pin95]).

Remark 30 By the previous theorem, h can be chosen arbitrarily slowly growing.

This fact will be used later, in the proof of Theorem 1. 3

Using the above h, we de�ne  as follows. Let

 := 1=ĥ; where ĥ = h +K (63)

and K is a positive constant to be �xed later. Then, obviously, 0 <  2 C0.

Proposition 31 (estimate for S
�
t in -norm) Assume that L+���c is critical

with the ground state � and let fStgt>0 be as in Proposition 29. For any " > 0

k S�
t k � e"t; t > 0; (64)

if K = K" is large enough (K is de�ned in (63)).

Proof. By a simple computation, the statement is equivalent to

k S�ĥ
t k � e"t; t > 0: (65)

Recall that (L + � � �c)
� has no zeroth order part. Since the zeroth order term of

(L+ � � �c)
�ĥ is

1

ĥ
(L + � � �c)

�ĥ =
1

ĥ
(L + � � �c)

�h =: V;

we have that

V � 0

outside a compact set by the �rst assumption on h. Also, if K is large enough, we

can obviously guarantee that

V � " on Rd :

The estimate under (65) now follows from this and (6) with g = 1 and � replaced

by V (but now with E corresponding to L
�ĥ
0 ). �
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5 Proof of Theorems 1 and 2 and Proposition 17

Proof of Theorem 1. The strategy of the proof is as follows. We will show that the

scaling limit exists in law for X�. More precisely, we will prove that, for � 2 M1=

with  given by (63),

lim
t"1

E�
� exp

D
e��ctX

�
t ;�g

E
= E exp hZ�;�gi ; g 2 C+

b ; (66)

with some random measure Z� having the form Z� = N�
� ��~�dx, where the random

variable N�
� is determined by (12) (or by (28) for a general nonlinearity) and enjoys

the properties stated in the theorem (note that in (12) or (28) the curve � 7!  (�)

is now replaced by a new curve corresponding to the �-transformed dynamics, that

is, to T
�
t and �� or f�.) Having shown this, it will follow from the de�nition of the

h-transform that (11) holds for X starting with the measure � := 1
�
� � (a simple

computation shows that (12) holds for the original curve � 7!  (�) when going back

to X). That is, when �(h+K) � � (where h;K are from (63)) is a �nite measure.

Putting this together with the fact that h can be chosen arbitrarily slowly growing

by Theorem 3, we will have that (11) holds true whenever � 2 M�. It will also

follow that (66) is satis�ed for X in place of X� and C+
b replaced by the class of

all continuous g's with g � const � �ĥ = const � �(h + K). In particular, (66) will

hold for X� replaced by X, provided that � is bounded away from zero (recall that

h(x)!1 as jxj ! 1). This will prove (14).

Now we are going to show (66). To do this, let us summarize what we already know

about the nonlinear semigroup corresponding to X�. First, concerning the linear

part of the semigroup, T
�
t , we know that the rescaled semigroup S

�
t corresponding

to (L+ � � �c)
� has the following properties:

a) (L+ � � �c)
� is a di�usion generator, i.e. (� � �c)

� = 0, and the ground state �

transforms into 1.

b) By Proposition 29, for any g 2 Cb , S
�
t g has the limit hg; �~�i in k � k.

c) By Proposition 31, S
�
t satis�es the exponential estimate under (64). Also, kS�

t k �
1 since fS�

t gt�0 is a di�usion-semigroup (see the end of the proof of Proposition 29).

In addition to the linear part of the semigroup, we have to control the nonlinear

term

f�(u) = ��u2:

Here �� = ��. Thus, for the derivative map

F (u) : du 7! 2��u � du;

we have (recall that k � k denotes the supremum norm):

k2��u � duk � k2��uk � kduk:

That is,

kF (u)k � k2��uk � 2k��k � kuk:
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By the same computation, also

kF (u)k � 2k��k � kuk:

Altogether, working with the nonlinear dynamics corresponding to X� and with

k � k, we are in the position to implement the invariant curve method of Section

3. More precisely, we are going to apply Lemma 27 with X = Cb, X+ = C+
b ,

k � k0 = k � k and k � k1 = k � k; where furthermore Tt and � are replaced by T
�
t and

the function 1. (Clearly, 1 2 intC+
b in sup-norm topology.) Let 0 � u(t; g; �) denote

the solution of (5) or (25) (but L; � and f replaced with (L+���c)�; (���c)� = 0

and f�, respectively) with u(0; �) = g(�). Let furthermore � 7!  (�) be the invariant

curve constructed in Section 3. Working with k � k and using the discussion at the

beginning of this paragraph along with Lemma 27 of Section 3, (3) and (5) or (25)

applied to the �-transformed setting yields

E�
� exp he

��ctX
�
t ;�gi = exph�;�u(t; e��ctg)i =

= exph�=;�u(t; e��ctg)i �! exph�=;� (hg; �~�i)i as t!1;

provided � 2 M1= ; g 2 C+
b (and in particular for g 2 C+

b ). That is,

E�
� exp he

��ctX
�
t ;�gi �! exph�;� (hg; �~�i)i as t!1:

Let us �x now a � 2 M1=. Note, that the functional

	�(g) := exph�;� (hg; �~�i)i

de�ned on C+
b is positive de�nite (for the de�nition of positive de�niteness see e.g.

the proof of Theorem A in [EP99]), because it is the pointwise limit of function-

als possessing this property. Moreover, 	� is continuous with respect to bounded

pointwise convergence, since �~� dx 2 M by assumption. Also, 	�(0) = 1, because

 (0) = 0: It follows from these properties by a standard result (see the proof of

Theorem A1 in [EP99]; see also Lemma 3.1 in [Dyn91]), that 	� is the Laplace

functional of a random measure, that is, there exists a random measure Z� such

that

EehZ�;�gi = exph�;� (hg; �~�i)i; (67)

for g 2 C+
b : Therefore, altogether,

E� exp he��ctX
�
t ;�gi �! EehZ�;�gi; as t!1;

whenever g 2 C+
b . That is, e

��ctX
�
t converges to Z� in law.

In order to identify Z�, note that if N
�
� is a nonnegative random variable satisfying

(12) (the Laplace transform in (12) de�nes uniquely N�
� � again, because of the

positive de�niteness and continuity of s 7! exph�;  (s)i), then the random variable

Z�

� := N�
� � �~�(x) dx
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clearly satis�es (67) and thus by uniqueness Z� = Z�

�:

Using the fact that  0(0) = �, it follows (13). (To do this rigorously, recall that

 0(0) = � means that lims!0  (s)=s = � in k � k. Since � 2 M1=, we can use

uniform convergence to conclude (13).)

Finally, we show that N�
� is non-degenerate. Suppose to the contrary that N�

� =

EN�
� = h�; �i with P�-probability one. By (12) this would imply that  (s) = s� for

s > 0. But this is impossible because  is invariant with respect to the nonlinear

system (75). Consequently N�
� is indeed non-degenerate. This completes the proof

of Theorem 1. �

Proof of Proposition 17. The proof is the same as the proof of Theorem 1 except the

following. For the general nonlinearity (21) we have

f�(u) = ��u2 +

Z
1

0

(e�ku � 1 + ku)n�(x; dk)

where n�(x; dk) = �(x)�1n(x; �(x)�1dk). The derivative map is

F (u) : du 7!
�
2��u+

Z
1

0

k(1� e�ku)n�(x; dk)

�
du:

Here, we have Z 1

0

k(1� e�ku)n�(x; dk) � du



� sup
x2Rd

Z
1

0

�
u(x)�(x)k2 ^ uÆ(x)�Æ(x)k1+Æ

�
n(x; dk) � kduk:

By (26),

kF (u)k = O(kuk+ kukÆ);

and, analogously,

kF (u)k = O(kuk+ kukÆ):

These estimates are enough to obtain the results of Section 3, so the rest of the proof

for the general nonlinearity goes exactly the same way as in the case f(u) = �u2.�

Proof of Theorem 2. The proof of Theorem 2 will be very similar to that of Theorem

1. We will use the results of Section 3 exactly in the same way as in the case of

Theorem 1, but we have to replace the `linear result' with an analogous result for

the singular setting and moreover to replace the pde setting of Propositions 29 and

31 by using the integral equation (8). Fix a bounded continuous g; and set

u(x; t) := Esin
Æx
hXt ; gi ; x 2 R; t � 0: (68)

Using the equation (8), it is standard to verify the following integral equation for

the expectations (see formula 91 in [EF99]):

u(x; t) =

Z
R

dy p(t; y � x)g(y) +

Z t

0

ds p(t� s; x)u(0; s); (69)
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x 2 R; t � 0: (Symbolically, ut =
1
2
�u + Æ0u with u(x; 0) = g:) Analogously to the

section preceding (7), let us de�ne now the semigroup fTtgt�0 by

(Ttg)(�) := u(�; t):

(The semigroup property can be checked by direct calculation.) By Theorem EF

then, we know that e�t=2Ttg has a pointwise limit as t ! 1 for any bounded

continuous g : R 7! R+ .

Let �(x) := e�jxj (recall that the function x 7! e�jxj plays the role of the ground

state, this justi�es our notation.) De�ne the �-transformed semigroup by

T
�
t (g) := ejxjTt(e

�jxjg); for e�jxjg 2 C+
b :

De�ne also S
�
t (g) := e�t=2T

�
t (g). Let � = Æx and rewrite (9):

lim
t"1

(Stg)(x) = e�jxjhe�jxj; gi; g 2 C+
b :

Let G := ejxjg: Then

lim
t"1

(S
�
t G)(x) = he�2jxj; Gi: (70)

Now (70) holds for every G satisfying e�jxjG 2 C+
b : In particular, (70) holds for

every G 2 C+
b : We now show that this convergence is uniform on compacts. Let us

�x a K � R compact. We must show that for g 2 C+
b ,

e�t=2ejxju(x; t)! C(g) as t " 1 (71)

uniformly for x 2 K, where C(g) := he�jxj; gi. Exploiting the notations ux(t) :=

u(x; t) and px(t) := p(t; x), the Laplace-transform of (69) (with respect to t) is

bux(�) = Z
R

dy dpy�x(�)g(y) + bpx(�) bu0(�) (72)

where bux and bpx denote the Laplace-transforms of ux and px respectively. Using

(72), the Laplace-transform of the lefthand side of (71) is

ejxj bux��+
1

2

�
= ejxj

Z
R

dy dpy�x��+
1

2

�
g(y) + ejxj bpx�� +

1

2

� bu0��+
1

2

�

=:M(x; �) +N(x; �) � bu0��+
1

2

�
:

By continuity, M is bounded on K � [0; "]. Let

a := inf
x2K
�<"

M(x; �) and A := sup
x2K
�<"

M(x; �):
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In the proof of Theorem 4(b) in [EF99] we have shown that

bu0��+
1

2

�
� C(g)

1

�
as � # 0; (73)

and that

N(x; �)! 1 as � # 0; (74)

for each x 2 R. We now show that in fact the convergence in (74) is uniform on

K. To see this, note that N(x; �) is continuous in x by monotone convergence. The

uniformity of the limit in (74) thus follows by Dini's theorem. Let

b(�) := inf
x2K

N(x; �) and B(�) := sup
x2K

N(x; �):

Then we have

a+ b(�) � bu0��+
1

2

�
� ejxj bux��+

1

2

�
� A+B(�) � bu0��+

1

2

�
;

with

lim
�#0

b(�) = lim
�#0

B(�) = 1:

Using this, (73) and a well known Tauberian theorem ([Fel71, formula (13.5.22)])

along with the monotonicity of the Laplace-transform, it follows that (71) holds

uniformly on K.

Similarly to the proof of Theorem 1, in order to conclude convergence in -norm,

we have to show that fS�
t G; t � 0g is a uniformly bounded family, for every given

G 2 C+
b . Let G 2 C+

b with kGk = K. Since he�2jxj; 1i = 1, we have

lim
t"1

(S
�
t G)(x) � K:

Consequently,

kS�
t Gk � K� for all t � 0;

with some K� > K, that is, fS�
t G; t � 0g is a uniformly bounded family, for every

given G 2 C+
b . Thus, we have shown the convergence in -norm for any  2 C0.

Now choose

 := � = e�jxj:

We look for a substitute of Proposition 31 for the non-regular setting. By Theorem

4(a) in [EF99] we have that

lim
t"1

e�t=2kTtk = 2:

A simple calculation reveals that

kT �
t k� = kTtk:
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Therefore, also

lim
t"1

e�t=2kT �
t k� = 2;

and consequently

e�t=2kT �
t k� � K; for all t � 0;

with some K > 2. This gives the required estimate for the �-transformed linear

semigroup.

Finally, the �-transformed superdi�usion X� can be de�ned in the usual way: it

will correspond to the integral equation

u(�; t) = T
�
t g �

Z t

0

dsT
�
t�s(��u

2(�; s)):

The rest of the proof is virtually identical with the last part of the proof of Theorem

1 (by setting �c = 1=2 and � = e�jxj in that proof), except that the convergence of

the �-transformed Laplace-functional now holds for all g0s with �g 2 C+
b (recall that

 = �), thus yielding convergence far all nonnegative bounded continuous functions

when going back to the original Laplace-functional. �

A Appendices

A.1 Proof of Theorem 3

Proof of Theorem 3. Let Y denote the di�usion corresponding to L on Rd with

probabilities fPx; x 2 Rdg. Let �R := infft � 0 j jYtj = Rg. Using Itô's formula, it

is immediate that for any �xed R0 > 0, �U(x;R0; R) := Px(�R0
> �R) is the unique

solution to the boundary value problem

Lu = 0 at R0 � jxj � R;

u = 0 at jxj = R0 and u = 1 at jxj = R:

(75)

By the recurrence of Y , �U(x;R0; R) tends to zero in the layer jxj 2 [R0; R0 +C], as

R! +1, for any �xed �nite C > 0.

Note that

0 < �U < 1 for jxj 2 (R0; R): (76)

Let (r; ') denote spherical coordinates; i.e. r = jxj. By the Hopf maximum principle

(see Theorem 3.2.5 in [Pin95]),

�U 0

r(x;R0; R) > 0 both at r = R0 and r = R: (77)
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Next, we show that

�U 0

r

��
r=R0

� K(R0) sup
'

�U
��
r=R0+1

(78)

where the constant K depends (continuously) only on the coe�cients of L at r 2
[R0; R0 + 1]; i.e. it is independent of the position of the outer boundary (r = R).

Hence,
�U 0

r

��
r=R0

! 0 as R! +1:

To prove inequality (78), just note that

U�(x) = U�(r) =
1� e�K(r�R0)

1� e�K

is a supersolution for a su�ciently large K:

LU� = �K2e�K(r�R0)(rr; arr) +O(K) < 0;

and, by construction, U�(r = R0) = 0, U�(r = R0 + 1) = 1. Hence, the product

U�(x) �
�
sup'

�U
��
r=R0+1

�
is a supersolution with the boundary values at r = R0 and

r = R0 + 1 not smaller than those of �U . By the elliptic comparison principle, this

implies that

U�(x) �
�
sup
'

�U
��
r=R0+1

�
� �U(x) at r 2 [R0; R0 + 1]

and, in particular, �U 0

r(r = R0) � U�0

r(r = R0) �
�
sup'

�U
��
r=R0+1

�
, which proves (78).

When using this inequality we will always assume that K(R0) grows monotonically

with R0.

To prove our theorem on the existence of supersolutions, we will use an inductive

construction: we will produce an increasing to in�nity sequence R1 < R2 < : : : and,

having built a supersolution U (q) de�ned at R1 � r � Rq we will continue it to the

domain r � Rq+1 where Rq+1 > Rq may be taken arbitrarily large (though �nite).

The new supersolution U (q+1) will coincide with U (q) at r � Rq� Æq where Æq can be

taken arbitrarily small. So, this procedure, indeed, gives in the limit a supersolution

de�ned at all r � R1 (recall that (r; ') denote spherical coordinates: r = jxj).

At the �rst step (q = 2) we take

U (2)(x) = �U(x;R1; R2);

i.e. it is the solution of the boundary-value problem (75) for an arbitrary R2 > R1.

Let us now assume that we have the supersolution U (q) de�ned at R1 � r � Rq such

that

U (q)
(Rq; ') � uq = const (79)
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and

inf
'
U (q)0
r (Rq; ') > 0: (80)

By construction (see (77)), these two requirements are satis�ed at q = 2, with

u2 = 1.

Denote

�(') � U (q)0
r (Rq; '):

Take any Rq+1 > Rq + 1 such that

K(Rq) sup
jxj2[Rq�1;Rq+1]

�U(x;Rq � 1; Rq+1) <
1

sup' �(')
inf
'
�2

('): (81)

Choose a su�ciently small Æq > 0 (arbitrarily small, in fact) and take the solution
�U(x;Rq � Æq; Rq+1) of the boundary-value problem (75). For brevity, we will denote
�U(x) � �U(x;Rq � Æq; Rq+1) below. We will also use the notation

�(') � �U 0

r(Rq � Æq; '):

Since �U(x;Rq�Æq; Rq+1) � �U(x;Rq�1; Rq+1) for any Æq 2 [0; 1], it follows (see (77),

(78) and (81)) that

0 < inf
Æq2[0;1]

inf
'
�(') � sup

Æq2[0;1]

sup
'

�(') <
1

sup' �(')
inf
'
�2('): (82)

This inequality allows us to �nd such constants � and A that

� > sup
Æq2[0;1]

sup
'

�(')

�(')
(83)

and

inf
'
�(') > A > � sup

'

�('): (84)

Let us now de�ne

U (q+1)(x) =

8>>>>>>>><>>>>>>>>:

U (q)(x) for jxj � Rq � Æq;

�U(x) + uq � AÆq for Rq+1 � jxj � Rq;

uq(U
(q)(x)� uq)(1� �1)+

+( �U(x)� AÆq)�2 for jxj 2 [Rq � Æq; Rq];

(85)

where A is the constant from (84) and �1;2 are some C2;�-functions of z � (r�Rq +

Æq)=Æq such that

�(z) � 0 at z � 0; �(z) � 1 at z � 1 (86)
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and

0 < �(z) < 1 at z 2 (0; 1): (87)

Moreover,

�0(z) > 0 at z 2 (0; 1): (88)

In the rest of this section, any C2;�-function satisfying (86)-(88) will be called nice.

Obviously, the function U (q+1) de�ned by (85) is C2;� and it is a supersolution (i.e. it

satis�es (62)) for r � Rq�Æq and r � Rq. So, we must check that it is a supersolution

in the layer Rq� Æq � r � Rq too, for an appropriate choice of the `gluing' functions

�1;2. In this layer, the inequality to check is

�(U (q)
(x)� uq)L�1 � 2(rU (q); ar�1) + ( �U(x)� AÆq)L�2 + 2(r �U(x); ar�2) � 0:

(89)

Note that at jxj 2 [Rq � Æq; Rq] we have

rU (q)jx=(r;') = �(')rr +O(Æq);

r �U jx=(r;') = �(')rr +O(Æq);

U (q)(r; ') = uq � [�(') +O(Æq)] (Rq � r);

�U(r; ') = [�(') +O(Æq)] (r �Rq + Æq):

Also, it is easy to see that

r� =
1

Æq
�0 � rr

and

L� =
1

Æ2q
�00 � (rr; arr) +O

�
1

Æq

�
�0:

Plugging this into (89) we arrive at the following condition which must be ful�lled

at all ' and at all z 2 [0; 1]:

[(1� z)�001 � 2(1 +O(Æq))�
0

1](z) �
�
A� �(')z +O(Æq)

�(') +O(Æq)
�002 � 2

�(') +O(Æq)

�(') +O(Æq)
�02

�
(z):

(90)

Since �01;2 is nonnegative by assumption, and since Æq may be taken as small as

necessary, it is su�cient that for some small enough �

(1� z)�001 (z)� (2� �)�01(z) � (1� �sign(�002 (z)))
A� �(')z

�(')
�002 (z)� (2� �)��02(z);

(91)
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where � is the constant from (83), (84) (recall that A > �(') by (83),(84)). Denote

�0(z) =
�1(z)� ��2(z)

1� �
: (92)

By (83),(84), if � is su�ciently small, then to satisfy the inequality (91) it is enough

to require that

(1� z)�000 (z)� (2� �)�00(z) � �(z)�002 (z); (93)

where

�(z) =

�
�+ for �002 (z) > 0

�� for �002 (z) < 0
(94)

for some appropriately chosen constants �� which may be taken such that

0 < �+ < �� < 1: (95)

Let us now take a smooth function  (z) with zeros at 0, 1 and at some � 2 (0; 1).

Let  (z) > 0 at 0 < z < � and  (z) < 0 at � < z < 1. Also, letZ �

0

 (z)dz = �
Z 1

�

 (z)dz = 1: (96)

Denote

I+� =

Z �

0

 (z)(1� z)(1��)dz; I+� = �
Z 1

�

 (z)(1� z)(1��)dz:

Let

�2(z) ==
1

I+0 + I�0

Z z

0

(z � s) (s)ds (97)

at z 2 [0; 1]. It is easy to see that this de�nes a nice function �2 for any  satisfying

(96). Moreover,

�002 (z) =
1

I+0 + I�0
 (z): (98)

We will assume now that �2 is given by (98) where the choice of  will be speci�ed

below. Note that the inequality (93) which must be satis�ed by the function �0 is

rewritten as

(1� z)�000 (z)� (2� �)�00(z) �
1

I+0 + I�0
�(z) (z): (99)

We will look for a nice function �0 which satis�es the equation

(1� z)�000 (z)� (2� �)�00(z) = �(z)�(z)
 (z)

I+0 + I�0
; z 2 [0; 1]: (100)
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Here we denote

�(z) =

�
�+ for z 2 [0; �]

�� for z 2 [�; 1]
(101)

for some constant �� such that

�+ < 1 < ��: (102)

The integration of (100) gives

�0(z) =

(
�+�+

(I+
0
+I�

0
)(1��)

R z

0
 (s)(

�
1�s
1�z

�1�� � 1)ds for z 2 [0; �]

1 +
�
�
�
�

(I+
0
+I�

0
)(1��)

R 1

z
 (s)(1�

�
1�s
1�z

�1��
)ds for z 2 [�; 1]

(103)

It is seen that �0(0) = 0, �0(1) = 1. We also have

�00(z) =

( �+�+

(I+
0
+I�

0
)(1�z)2��

R z

0
 (s)(1� s)1��ds for z 2 [0; �]

� �
�
�
�

(I+
0
+I�

0
)(1�z)2��

R 1

z
 (s)(1� s)1��ds for z 2 [�; 1]

(104)

Thus, �00(z) > 0 at z 2 (0; 1) and �00(0) = 0, �00(1) = � �
�
�
�

(I+
0
+I�

0
)(2��)

 (1) = 0. One can

also check that �000 (0) =
�+�+

I
+

0
+I�

0

 (0) = 0 and �000 (1) = � �
�
�
�

(I+
0
+I�

0
)(3��)

 0(1). It follows

that in order to have a nice function �0 we must assume additionally that  0(1) = 0

and that the continuity conditions

�0(� � 0) = �0(� + 0); �00(� � 0) = �00(� + 0)

are ful�lled (the continuity of the second derivative would then follow from equation

(100) since  (�) = 0 by assumption). By (103) and (104) the continuity conditions

are written as

�+�+I
+
� = ����I

�

�

and

1�
����

(1� �)(I+0 + I�0 )
= �

�+�+

(1� �)(I+0 + I�0 )

(note that we took into account the equality (96)). This leads to the following

formula

�� =
(1� �)

��I��
�
I+0 + I�0
1

I
�

�

� 1

I
+
�

: (105)

To ful�ll (102) at a su�ciently small �, it is enough to have

��

I+0
<
I+0 + I�0
I+0 � I�0

<
�+

I�0
: (106)

By (95), this will be satis�ed if I+0 is close enough to 1 and I�0 is close enough to

zero. To this aim, just take  su�ciently closely approximating the sum of the

delta-function near zero and the minus delta-function near 1.
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So, �xing the choice of a smooth function  such that (106) and (96) were satis�ed

(along with the requirements  (0) = 0,  (1) = 0,  0(1) = 0,  (�) = 0 and  (z) > 0

at z 2 (0; �) and  (z) < 0 at z 2 (�; 1)), we obtain the nice functions �2 and �0
satisfying (100) and (98), respectively. By (102), this means that the inequality (93)

holds for these two functions.

It follows that the function �1 recovered from (92) is also nice and satis�es (91).

Hence, for such chosen functions �1;2 the function U
(q+1) given by (85) is a superso-

lution indeed at all r 2 [R1; Rq+1].

As required, U (q+1) is constant at r = Rq+1:

U (q+1)(Rq+1; ') = uq + 1� CÆq � uq+1:

Hence,

uq + 1 � uq+1

and, by taking Æq small, we may always ensure

uq+1 � uq +
1

2
:

Therefore,

q � uq �
q

2
:

By construction,

U (q+1)(x) � uq+1

and

U (q+1)(x) � uq+1 � 1 at r � Rq:

It follows, �rst, that the supersolution U which we obtain in the limit of this proce-

dure as q ! +1 grows to in�nity:

lim
r"1

inf
jxj=r

U(x) = +1:

On the other hand, this growth can be made arbitrarily slow: it is seen that U(x) � q

at jxj � Rq but Rq may be taken growing as fast as necessary. �

A.2 A review on criticality theory

Let L be as in (1). Then there exists a corresponding di�usion process Y on Rd that

solves the generalized martingale problem for L on Rd (see Chapter 1 in [Pin95]).

The process lives on Rd [ � with � playing the role of a cemetery state. We

denote by Px and Ex the corresponding probabilities and expectations, and de�ne

the transition measure p(t; x; dy) for L + � by

p(t; x; B) = E x

�
exp

�Z t

0

�(Ys) ds

�
;Yt 2 B

�
;

for measurable B � Rd .
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De�nition 32 IfZ
1

0

p(t; x; B) dt = Ex

Z
1

0

exp

�Z t

0

�(Ys) ds

�
1B(Yt) dt <1;

for all x 2 Rd and all bounded B � Rd , then

G(x; dy) =

Z
1

0

p(t; x; dy) dt

is called the Green's measure for L+ � on Rd . If the above condition fails, then the

Green's measure for L+ � on Rd is said not to exist. 3

In the former case, G(x; dy) possesses a density, G(x; dy) = G(x; y)dy, which is

called the Green's function for L+ � on Rd .

For � 2 R de�ne

CL+��� = f u 2 C2 : (L+ � � �)u = 0 and u > 0 in Rd g:

The operator L + � � � on Rd is called subcritical if the Green's function exists

for L + � � � on Rd ; in this case CL+��� 6= ;. If the Green's function does not

exist for L + � � � on Rd , but CL+��� 6= ;, then the operator L + � � � on Rd

is called critical. In this case CL+��� is one-dimensional. The unique function (up

to a constant multiple) in CL+��� is called the ground state of L + � on Rd . The

formal adjoint of the operator L + � � � on Rd is also critical with ground state ~�.

If furthermore �~� 2 L1(Rd), we call L + � � � on Rd product-critical . (For � = ~�

this means that � is an L2-eigenfunction.) Finally, if CL+��� = ;, then L + � � �

on Rd is called supercritical.

If � � 0, then L + � is not supercritical on Rd since the function f � 1 satis�es

Lf = 0 on Rd . In this case L + � = L is subcritical or critical on Rd according

to whether the corresponding di�usion process, Y , is transient or recurrent on Rd .

Product criticality in this case is equivalent to positive recurrence for Y . If � � 0

and � 6� 0, then L + � is subcritical on Rd .

In terms of the solvability of inhomogeneous Dirichlet problems, subcriticality guar-

antees that the equation (L + �)u = �f in Rd has a positive solution u for every

0 � f 2 C�
c . (Here C

�
c = Cc \C�.) If subcriticality does not hold, then there are no

positive solutions for any 0 � f 2 C�
c :

One of the two following possibilities holds :

1) There exists a number �c 2 R such that L � � on Rd is subcritical for � > �c,

supercritical for � < �c, and either subcritical or critical for � = �c.

2) L� � on Rd is supercritical for all � 2 R, in which case we de�ne �c =1.

De�nition 33 The number �c 2 (�1;1] is called the generalized principal eigen-

value for L on Rd . 3
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Note that �c = inf f� 2 R : CL+��� 6= ;g. Also, if � is bounded from above,

then case 1) holds.

If L + � is symmetric with respect to a reference measure � dx , then �c equals

the supremum of the spectrum of the self-adjoint operator on L2(Rd ; � dx) obtained

from L+ � via the Friedrichs' extension theorem.

Let h 2 C2;� satisfy h > 0 in Rd . The operator (L+ �)h de�ned by

(L+ �)hf =
1

h
(L + �)(hf)

is called the h-transform of the operator L+ �. Written out explicitly, one has

(L+ �)hf = L0 + a
rh
h
� r+ � +

Lh

h
;

where L0 = 1
2
r � ar+ b � r.

All the properties de�ned above are invariant under h-transforms.

For further elaboration and proofs see Chapter 4 in [Pin95].
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