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1 Introduction

Continuum theories of porous materials are based on models of multicomponent

systems. One of the components is a solid matrix - the so-called skeleton which is

characterized by a complex geometric microstructure. The main feature of this mi-

crostructure are randomly distributed interconnected voids. These voids are usually

�lled with a �uid or a mixture of �uids. Due to interconnections of voids the �uid

component may move with its own - one or more - kinematics in addition to the

motion of the skeleton. This property of permeability of the skeleton leads to di�u-

sion processes. Consequently two main properties describing the microstructure of

porous materials are the void fraction, called also the porosity and the permeability.

Granular materials contain an even larger class of systems as they may appear not

only in a compact form when all granulae have contact with neighbours but they

may also �uidize, i.e. they may loose contact and behave as a suspension. In the

�rst case their behavior is in many respects similar to porous materials and this is

the only case which we consider in this work.

In the paper we present some features of wave motion in poroelastic materials. A

porous material is called poroelastic if it is an elastic solid in the limit case of zero

porosity, i.e. if it becomes in this limit a classical elastic material without voids.

In the next Section a set of governing equations for a two-component poroelastic

material under large deformations is presented. Some nonlinear features of this

model shall be used in the analysis of nonlinear waves described in the last Section

of the paper. Section 3 contains the propagation condition for bulk waves in linear

poroelastic materials. It is shown that the model describes a so-called P2-mode

discovered by M. Biot. In Section 4 we present some properties of one-dimensional

monochromatic waves. In particular we demonstrate the role played in the theory

of weak discontinuity waves by two main mechanisms of dissipation: di�usion and

dynamic changes of porosity. After a brief presentation of the problem of bound-

ary conditions in Section 5 we discuss in Section 6 main features of surface waves

on an impermeable surface of the porous material (contact with vacuum) and on

a permeable boundary (drainage). We indicate the existence of three basic types

of surface waves: a Stoneley wave, a leaky pseudo-Stoneley wave, and a leaky gen-

eralized Rayleigh wave. Finally in Section 7 we report some preliminary results

for non-linear waves in porous materials. In particular we show the existence of a

soliton-like solution of a Riemann problem for porosity. Such a solution is connected

with the dispersion appearing in the �eld equations for the model of porous materi-

als with the balance equation of porosity. The coupling parameter arising from the
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existence of dynamical changes of porosity is small and plays the role similar to the

parameter � in the following Korteweg - de Vries equation

@u

@t
+ 3

@u2

@x
+ �2

@3u

@x3
= 0; x 2 <1; t 2 T :

It is well-known that limit solutions of this equation as � ! 0 are entirely di�erent

from solutions of the limit equation � = 0 (Burgers equation). For instance a soliton-

like solution of this equation converges weakly to the Dirac function as � ! 0 (e.g.

see: V. P. MASLOV, G. A. OMEL'YANOV [1981]). This is also the situation arising

in the model of porous materials considered in this work.

2 Governing equations

We limit our attention to the case of a two-component system. The thermodynamic

construction of a more general model of porous materials can be found, for instance

in the papers K. WILMANSKI [1996], [1998].

All processes are assumed to be isothermal.

In the Lagrangian description related to a reference con�guration of the skeleton B0
the unknown �elds are

1. mass density of the �uid referred to a unit reference volume: �F (X; t) ; X 2B0,

t 2 T � [0;1),

2. mass density of the skeleton referred to a unit reference volume: �S (X; t),

X 2B0, t 2 T ,

3. velocity of the �uid: �xF (X; t), X 2B0, t 2 T ,

4. motion of the skeleton: �S (X; t) ; X 2B0, t 2 T ,

5. porosity: n (X; t) ; X 2B0, t 2 T .

They satisfy the following partial balance equations

@�F

@t
+Div

�
�F �XF

�
= 0;

@�S

@t
= 0;

�XF
= FS�1

�
�xF � �xS

�
; JS := detFS > 0;

�F
 
@�xF

@t
+ �XF

�Grad �xF
!
= DivPF

� p̂; �S
@�xS

@t
= DivPS + p̂; (2.1)

@n

@t
+Div

�
�0

�XF
�
= n̂; FS

:= Grad�
S
(X; t) ; �xS :=

@�S

@t
(X; t) :
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These equations become �eld equations if we specify constitutive relations for partial

Piola-Kirchho� stress tensors PF ;PS, the source of momentum p̂, the �ux and

source of the porosity, �0 and n̂, respectively. For processes in poroelastic materials

�lled with an ideal �uid these relations have the form (e.g. K. WILMANSKI [1998]2)

PF = �pFFS�T ; pF = �F
 
�S
@ S

@�F
+ �F

@ F

@�F

!
+ � 0�0�;

PS = �S
@ S

@FS
+ � 0

@�0

@FS
�; � = n� nE; (2.2)

p̂ =�
�
�xF � �xS

�
; n̂ = �

�

�
;

where the Helmholtz free energy functions  F ;  S, the �ux coe�cient �0, and the

equilibrium porosity nE are functions of equilibrium variables fFS; �S; �Fg. Obvi-

ously the constitutive relations (2.2) do not contain any viscous e�ects. We have

neglected them in order to expose better e�ects connected with dissipation e�ects

caused by the microstructure itself.

The above system of �eld equations is assumed to be hyperbolic.

Below we consider some simpli�ed versions of this model. In particular we consider

weak discontinuity waves solely for a fully linearized model1.

3 Propagation conditions for acoustic waves

In this Section we consider the propagation of a weak discontinuity wave in a linear

poroelastic material with a constant initial porosity nE = const. In such a case it

is convenient to use the Eulerian description in which the mass densities and the

velocities are transformed in the following way

�Ft = �FJS�1 = �Ft (x; t) ; �St = �SJS�1 = �St (x; t) ; (3.1)

vF = �xF (x; t) ; vS = �xS (x; t) ; x 2 Bt := �
S (B0; t) ; t 2 T :

As we use further solely mass densities refering to current con�gurations we skip the

subscript to simplify the notation.

A weak discontinuity wave is de�ned as a singular surface moving with a normal

speed c on which the following conditions are satis�edhh
�F
ii

= 0;
hh
vF
ii

= 0;
hh
vS
ii

= 0;
hh
eS
ii

= 0; [[n]] � [[�]] = 0; (3.2)

1The general nonlinear case of poroelastic materials was consider in the paper K. WILMANSKI

[1995]2. As the main results are analogous to those for linear materials we present here solely a

linearized case.
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where [[� � �]] = (� � �)
+
� (� � �)

�

is the di�erence of limits on both sides of this surface.

The derivatives of the �elds may possess �nite discontinuities and we denote

r :=

""
@�F

@t

##
; aF :=

""
@vF

@t

##
; aS :=

""
@vS

@t

##
; D :=

""
@�

@t

##
: (3.3)

The balance equations appropriate for the linear model (Eulerian description) follow

from the equations (2.1) and have the form

@�F

@t
+ div

�
�FvF

�
= 0; �S = const:;

�F
 
@vF

@t
+ vF � gradvF

!
= divTF

� �
�
vF � vS

�
; (3.4)

�S
@vS

@t
= divTS

+ �
�
vF � vS

�
;

@n

@t
+ div

h
' (nE)

�
vF � vS

�i
= �

�

�
; � := n� nE; ' (nE) � nE:

The linear model is based on the assumption of small deformations of the skeleton.

Namely

sup
t2T

sup
x2Bt

���eS � n
 n
���� 1 for all n; jnj = 1;

@eS

@t
= symgrad

�
vS
�
; JS � 1 + tr eS � 1: (3.5)

The �eld equations are constructed by means of the following constitutive relations

for partial Cauchy stress tensors

TS = TS
0 + �S

�
treS

�
1+2�SeS + ��1; (3.6)

TF = �pF0 1��
�
�F � �F0

�
1� ��1:

These relations follow from (2.2) by linearization. The contribution of the porosity

�ux to both partial stresses is then identical and its coe�cient has been denoted by

� := � 0�0. It may depend solely on nE. The above relations are linear not only

with respect to the deformation of the skeleton but also with respect to changes of

the mass density of the �uid.

Evaluation of jumps of the equations (3.4) on the wave front yields the algebraic

homogeneous set of equations for the amplitudes (3.3). As usual one has to make

use of kinematic (Hadamard) compatibility conditions which are standard (e.g. K.

WILMANSKI [1999]). We obtain the following relations

r =
1

c
aF � n; D =

1

c
'
�
aF � aS

�
� n; aF = aF � n n; (3.7)
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aS
?
6= 0 =)

 
c2 �

�S

�S

!
= 0; aS

?
:= aS � aS � n n;

aS � n 6= 0; aF � n 6= 0 =)

=)

 
c2 � ��

'�

�F

! 
c2 �

�S + 2�S

�S
�
'�

�S

!
�

 
'�

�F

!2
�F

�S
= 0: (3.8)

Clearly we obtain three modes of propagation. Two speeds of the so-called P1-, and

P2-mode follow from the equation (3.8)2. The slower mode P2 is called also the

Biot wave and according to the relation (3.7)3 it is longitudinal with respect to the

amplitude of the �uid component aF . The third mode is transversal with respect

to the amplitude aS and its speed is identical with the speed of the shear wave in

the solid component (formula (3.8)1). The weak discontinuities of the mass density

in the �uid and of the porosity are carried by the P1- and P2-modes. These results

are con�rmed by numerous laboratory experiments on rocks and sintered glass (e.g.

T. BOURBIE, O. COUSSY, B. ZINSZNER [1987]). In situ experiments are extremally

di�cult due to a very heavy attenuation of P2-waves. We present this problem in

the next Section.

4 Monochromatic one-dimensional waves

In order to expose the most important features of bulk waves in poroelastic materials

we consider the propagation of monochromatic waves described by the following set

of linear �eld equations

@�F

@t
+ �F0

@vF

@x
= 0; �F0

@vF

@t
= �

@pF

@x
� �

�
vF � vS

�
;

�S
@vS

@t
=
@�S

@x
+ �

�
vF � vS

�
;

@�

@t
+ nE

@
�
vF � vS

�
@x

= �
�

�
;

pF = pF0 + � (nE)
�
�F � �F0

�
+ � (nE)�; (4.1)

�S = �S0 +
�
�S (nE) + 2�S (nE)

�
eS + � (nE)�;

@eS

@t
=

@vS

@x
:

In these relations �F0 ; �
S; nE; p

F
0 ; �

S
0 denote constant reference values of partial mass

densities, porosity, partial pressure and normal stress in the skeleton, respectively.

Material parameters �; �S; �S; �; �; � depend parametrically on the initial porosity
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nE. Consequently the essential coupling between components is due to changes of

porosity� (parameter �) and the relative motion vF�vS (coe�cient of permeability

�).

We seek the solution in the following form

�F = �F0 +R exp (kx� !t) ; (4.2)

vF = V F
exp (kx� !t) ; vS = V S

exp (kx� !t) ;

eS = ES exp (kx� !t) ; � = D exp (kx� !t) ;

where R; V F ; V S; ES; D are constant amplitudes of the wave. As usual we obtain

from (4.1) the dispersion relation as condition for existence of bulk waves. It has

the following form

 
!2 � US2k2 �

i!�

1 + i!�

nE�

�S
k2 � i

�!

�S

!
� (4.3)

�

 
!2 � UF2k2 �

i!�

1 + i!�

nE�

�F0
k2 � i

�!

�F0

!
+

 
i!�

1 + i!�

nE�

�F0
k2 +

�!

�F0

!2
�F0
�S

= 0:

In this relation the speeds US
k
; UF are de�ned as follows

US2
k

:=
�S + 2�S

�S
; UF2 := �: (4.4)

In the one-dimensional case one mode of propagation - the shear wave cannot appear.

Consequently relation (4.3) yields to branches of the dispersion relation connected

with the P1- and P2-wave.

We consider monochromatic waves of the frequency !. The above dispersion relation

yields then the complex wave numbers k which de�ne the phase velocity cph, the

group velocity cg, and the attenuation 
 according to the following relations

k = k (!) ; cph :=
!

Re k
; cg :=

@!

@ Re k
; 
 := Im k: (4.5)

We illustrate the results by an example shown in the Figures below. The data of

the parameters are typical for rock materials used in dynamical experiments (see:

T. BOURBIE, O. COUSSY, B. ZINSZNER [1987], K. WILMANSKI [1999]).The �rst

two Figures show the behavior of velocities and attenuations in the case of the

full coupling of waves: both coe�cients � and �, describing the dissipation in the

system are di�erent from zero. Two upper curves of the Figure on the left hand

side correspond to the P1-wave. As expected both the phase velocity (upper curve)

and the group velocity(lower curve) tend to the speed of the �rst longitudinal wave

discussed in the previous Section of this work: lim
!!1

cph = lim
!!1

cg = US
k
.
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Figure 1: Phase, group velocities and attenuation of monochromatic 1D waves

(x = !�)

� 6= 0; � 6= 0

� = 0 :

� = 0 :

Numerical data

US
k
= 3:1km

s
; UF = 0:9km

s
; n = 0:23; �S = 2400

kg

m3 ; �F = 230
kg

m3 ;

� = 2:602� 107
kg

m3s
; � = 0:313� 109

kg

ms2
; � = 3:7� 106s:

In addition the group velocity has the characteristic minimum value at app. !� = 2

(i.e. app. 0:54MHz, beyond the range of the Figure). Similarily the two lower
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curves corresponding to the P2-wave approach the limit speed of the second longi-

tudinal wave: lim
!!1

cph = lim
!!1

cg = UF . The group velocity (upper curve) has the

maximum at app. !� = 1 (i.e. app. 0:27MHz). The most characteristic feature of

the P2-wave is shown in Figure on the right where we have plotted the attenuation.

The attenuation of P1-wave (lower curve) is rather small and reaches the value of

app. 50 1

m
for !� = 1. On the other hand the attenuation of P2-wave is very large

indeed. It exceeds the attenuation of the P1-wave on two orders of magnitude and

in our example reaches the value of app. 2500 1

m
for !� = 1.

In further Figures we show the in�uence of both coe�cients � and �, determining

the dissipation. In the case of lack of coupling due to the changes of porosity �

(i.e. � = 0) the shape of curves for velocities is similar to those discussed above

apart from the shift of the extremum values of group velocities to lower frequencies.

Attenuation of the P2-waves is reduced in this case on app. 25%. This in�uence of

the porosity on the propagation conditions is quite remarkable if we compare it with

an almost total lack of in�uence of � on solutions of steady-state problems (e.g.: B.

ALBERS, K. WILMANSKI [1999]). As we see further it is even more important in the

case of nonlinear waves.

In the other case in which � = 0 and � 6= 0 we see that the phase velocity of

P1-waves is practically independent of the frequency and that these waves are not

attenuated. There is still a considerable attenuation of P2-waves (the curve in the

right Figure) but this is also reduced to app. 25% of the values which it possesses

in the general case.

Let us mention in passing that the coupling through the changes of porosity �

reminds the couplings appearing in the extended thermodynamics of �uids in which

the whole contribution �� corresponds to the fourteenth moment of such models

(see: I. MÜLLER, T. RUGGERI [1998]).

5 Boundary conditions on interfaces, drainage

In spite of the importance of this problem not much has been done to formulate

boundary conditions on boundaries of the skeleton and on the contact interfaces of

two di�erent porous materials in cases when the boundary is permeable. On the one

hand side there are a few papers of G. S. BEAVERS and D. D. JOSEPH (e.g. [1967])

who investigated theoretically and experimentally the problem of discontinuity of the

tangential component of relative velocity of the �uid with respect to the boundary.

On the other hand conditions for the normal relative displacement were introduced

by H. DERESIEWICZ [1962]. They have been modi�ed in the PhD-Thesis by K.

RUNESSON [1978]. A new version of this condition has been proposed in some

recent papers (K. WILMANSKI [1995], W. KEMPA [1997], B. ALBERS, K. WILMANSKI

[1999]). Applications to the theory of surface waves are due to be published (see:

I. Ya. EDELMAN, K. WILMANSKI, E. RADKEVICH [1999], I. Ya. EDELMAN, K.
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WILMANSKI [1999]) Some of their important aspects shall be presented in the next

Section.

The form of this boundary condition follows from the assumption that the drainage

is controlled by the pressure jump in the �uid component. For the case of a single

ideal �uid component de�ned by the constitutive relation (3.6)2 it has the form

�F
�
vF � vS

�
� n = ��0

""
pF

n

##
� �

 
pF� �

n�

n+
pF+

!
; � :=

�0

n�
: (5.1)

The left hand side can be evaluated on either side of the boundary due to the mass

conservation hh
�F
�
vF � vS

�
� n
ii

= 0: (5.2)

The ratio pF

n
approximates the value of the pore pressure. This approximation seems

to be reasonable in the case of small di�usion velocities. According to relation (5.1)

the jump of the pore pressure is assumed to be the driving force for the mass

transport through a permeable boundary. In the limit case � = 0 the boundary

is impermeable and the condition (5.1) reduces to the condition for the normal

component of velocities vF � n = vS � n.

Let us mention that in the case of the interface between a porous material (the

negative side of the boundary) and a liquid (the positive side of the boundary) the

pore pressure on the positive side must be identi�ed with the external pressure (i.e.

with the pressure in the liquid): pF+

n+
=: pext: This pressure is a part of control

variables on the boundary.

In the case of ideal �uid components considered in this work the remaining part of

the kinematic boundary condition is classical

vF � vF � n n = vS � vS � n n: (5.3)

Otherwise one has to use conditions analogous to those proposed by G. S. BEAVERS,

D. D. JOSEPH [1967].

The second vectorial boundary condition follows from the dynamical compatibility

conditions. Under the assumption of small di�usion velocities we havehh
TS

+TF
ii
n = 0: (5.4)

In the case of contact of a porous material with an external world the above condition

contains an external loading vector text�
TS +TF

�
�

n = text; (5.5)

which is assumed to be the second part of control variables on the boundary.

In the next Section we apply these boundary conditions to the problem of surface

waves.
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6 Surface waves on boundaries of a porous medium

with vacuum and with a liquid

We proceed to investigate propagation conditions for waves in linear poroelastic

materials with a boundary. In the classical case of an elastic solid two basic bulk

waves - longitudinal wave and shear wave - combine on the boundary and in this way

yield the existence of surface waves. The most important of them is the so-called

Rayleigh wave which propagates along the boundary of a semiin�nite medium with

a speed lower than the speed of the shear wave. Its wave vector varies in time in this

way that the particles near the boundary possess elliptic trajectories. Such waves

are particularly important in seismological applications because they have very large

amplitudes and they disperse much weaker than the bulk waves.

Additional bulk modes of propagation in porous materials suggest that the number

of surface modes in such systems is also larger than in a single component system.

This is indeed the case as some experiments clearly show (e.g. P. B. NAGY [1992],

L. ADLER, P. B. NAGY [1994], W. LAURIKS; L. KELDERS, J. F. ALLARD [1998]).

Moreover their attenuation is much weaker than this of P2-wave (see: Section 4)

which means that they can be much easier applied in various devices.

We present here brie�y the procedure of the analytical investigation of such waves.

Let us begin with a poroelastic semiin�nite medium whose boundary is impermeable

(� = 0 in the condition (5.1)). We seek a solution of a two-dimensional problem

assuming the existence of potentials for velocity �elds, i.e.

vS =
@uS

@t
; uS = grad'S + rot 

S; (6.1)

vF =
@uF

@t
; uF = grad'F + rot 

F :

The boundary is supposed to coincide with y = 0, and we assume solutions of �eld

equations (3.4) to have the form

'S;F = AS;F (y) exp [i (kx� !t)] ;

 S;F
x;y � 0;  S;F

z = BS;F (y) exp [i (kx� !t)] ; (6.2)

�S;F = �
S;F
0 + AS;F

� (y) exp [i (kx� !t)] ;

n = n0 + A� (y) exp [i (kx� !t)] :

Substitution of these relations in (3.4) yields

 
d2

dy2
� k2

!
AF + kF

 
kF +

i�

�F0 U
F

!
AF

�
i�

�F0 U
F
kFAS+

+
�

�F0 U
F

nEk
F

i

�
+ !

 
d2

dy2
� k2

!�
AF

� AS
�
= 0; (6.3)
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d2

dy2
� k2

!
AS

+ ks2AS
�

i�

�F0 U
S
k

kS
k

�
AF

� AS
�
+

+
�

�S0U
S
k

nEk
S
k

i
�
+ !

 
d2

dy2
� k2

!�
AF

� AS
�
= 0; (6.4)

 
d2

dy2
� k2

!
BS +

 
kS
?
�

i�

�S0U
S
?

!�F0
!�F0 + i�

!
BS = 0; (6.5)

where

kS2
k

: =
!2

US2
k

; US2
k

:=
�S + 2�S

�S0
; kS2

?
:=

!2

US2
?

; US2
?

:=
�S

�S0
; (6.6)

kF2 : =
!2

UF2
; UF2 := �:

Functions BF ; A�; AS;F
� are given by algebraic relations containing AS; AF and BS

which we shall not quote in this work (for details, see: I. Ya. EDELMAN, K.

WILMANSKI, E. RADKEVICH [1999]). Integration of the above set of ordinary dif-

ferential equations together with boundary conditions as described in the previous

Section yields the solution of the problem. It can be shown that this solution de-

scribes two di�erent modes of propagation. In the limit of short waves (k ! 1;

these are the fastest waves, i.e. these which de�ne the front of propagation) we

obtain

� Stoneley surface waves which propagate almost without attenuation and have

the speed

U2

St � �

 
1�

�F20

4�S2 (1� 
)
2
�2
!
< UF2; 
 :=

0
@US

?

US
k

1
A
2

< 1; (6.7)

this is the slowest wave of all,

� Rayleigh leaky surface wave with the speed UR 2
�
UF ; US

?

�
. It is attenuated

and as it is faster than the P2-wave it looses its energy to the P2-wave.

The situation is more complicated for permeable boundaries, i.e. for � 6= 0: The

problem has been solved for the contact of a poroelastic materials with the �uid

�owing out of the porous medium. In such a case it can be shown (we refer here

to the papers I. Ya. EDELMAN, K. WILMANSKI [1999], I. Ya. EDELMAN [2000] for

details) that there exist three modes of surface waves
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� Stoneley wave with USt < UF ; this wave propagates almost without attenua-

tion,

� leaky pseudo-Stoneley wave with the speed ULSt 2
�
UF ; US

?

�
; the speed ULSt

exceeds UF on a contribution proportional to �2. This wave degenerates into

P2-wave for �! 0;

� generalized leaky Rayleigh wave UR 2
�
UF ; US

?

�
.

All these waves were indeed observed by the authors mentioned at the beginning of

this Section.

It is still an open question what kinds of surface waves may exist on interfaces divid-

ing di�erent porous materials saturated by the same �uid. The existence of di�erent

modes depends on the relation of material parameters on both sides of the interface.

This requires a much more carefull �bookkeeping� than it is the case on a real bound-

ary. This problem is also strongly related to a more general problem of re�ection

and transmission of acoustic waves between porous materials. No theoretical results

are available as yet in such a general case.

7 A Riemann problem for poroelastic materials and

some nonlinear waves

The problem of shock waves in porous and granular materials has been investigated

primarily by means of one-component models. Results were applied in the analysis

of underground nuclear explosions, combustion problems for solid fuels etc. Very

little has been done for multicomponent systems. A preliminary result that a strong

discontinuity wave may indeed grow from a weak discontinuity if the model contains

some nonlinearity has been presented in the paper K. WILMANSKI [1998]3. However

the main problem of construction of such wave solution is still open. In the forth-

coming paper E. RADKEVICH, K. WILMANSKI [2000] the method of an asymptotic

analysis has been applied to show some singular solutions for nonlinear poroelastic

materials. In the �rst stage kinematic nonlinearities and a nonlinear dependence on

the equilibrium porosity changing according to the constitutive relation

nE = nE
�
�S ; �F

�
;

@nE

@�F
> 0;

@nE

@�S
< 0; (7.1)

has been investigated. It was shown that, using a dimensionless description in which

the coupling parameter � is small, one can construct asymptotic solutions for a one-

dimensional case in the following dimensionless form

vF = vFas + wF ; vS = vSas + wS;

�F = �Fas + rF ; �S = �Sas + rS;
�

�
= �as +$;

12



wF ; wS; rF ; rS; $ 2 W 1

p

�
<
1
� T

�

�as =

NX
j=0

�j
�
�j (x; t) + Y

p
j (�; x; t)

�
; � :=

x� x (t)

�
; (7.2)

Y
p
j = �j (�; t) +H

p
j (x; t) z0 (�; t) ; j � 1;

where � is the so-called fast variable, x(t) denotes the position of the wave front,

�j (�; t) ; z0 (�; t) are smooth. This solution yields shock wave structures for velocity

�elds with a corresponding soliton-like solution for the porosity. The latter is possible

due to the presence of an additional balance equation in the model - the balance of

porosity. There are already �rst indications that such a dynamic structure appears

indeed in nature.

8 Final remarks

The above presented review shows that it is still rather little what we know about

waves in systems with such a complicated microstructure as porosity. On the other

hand the propagation of waves - spontaneous (e.g. earthquakes) and arti�cial (ex-

plosions, vibrations etc.) - seems to be an only way to obtain in situ data needed in

geophysics, soil mechanics, materials sciences. Particularly such problems as trans-

mition and re�ection of weak discontinuity waves on interfaces, scattering of such

waves on microheterogeneities, strong discontinuity waves in nonlinear materials, re-

lations between propagation properties and material parameters in the bulk and on

surfaces of porous materials must be extensively investigated - most likely in many

cases by means of modern numerical methods for hyperbolic sets of �eld equations.
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