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In memory of M.A.Krasnoselski

Abstract

The well-known classic feedback and feedforward techniques are the main

tools for investigations of the control problems. Unlike these strategies, the

vibrational control technique, introduced by S.M. Meerkov [1], has proven to

be a viable alternative to conventional feedback and feedforward strategies in

stabilization problems when the outputs, states and disturbances are di�cult

to access. Mathematical modelling of such systems is closely connected with

nonlinear singularly perturbed systems under parametric excitations. In this

paper a new asymptotical method based on the periodic solution theory, av-

eraging method and boundary functions method, is presented. Due to it, a

vibrational control problem can be investigated. The given example shows the

"parasitic" parameters loss in such systems to be extremly dangerous.

1 Introduction

The present paper is at the interface between singular perturbations theory and

vibrational control theory. As a rule, for the control engineers, singular perturbations

legitimize ad hoc simpli�cations of dynamic models. One of them is to neglect some

of "small" time constants, masses, capacities, and similar "parasitic" parameters

which increase the dynamic order of the model. However, the design based on a

simpli�ed model may result in a system far from disired performance. In this case,

control engineers need a tool which helps to improve the oversimpli�ed design.

The analytic theory of singular perturbations is presented in the monographs [1,2].

Applications of this theory for control system are discussed in the overview of

P.V.Kokotovic [3].

Usually, to stabilize a control system the feedback and feedforward principles are

used. For these principles to be applied, state coordinates (for feedback) or dis-

turbances (for feedforward) should be measured and an apropriate additive control

signal should be introduced. However, for a number of plants the classical methods

are not applicable. Vibrational control techique, introduced by S.M. Meerkov [4],

has prooved to be a viable alternative to conventional feedback and feedforward

strategies in a number of di�cult cases. This technique consists in the utilizing

appropriately chosen zero mean parametric excitations of a dynamical system to
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modify the behavior of the original system in the desired manner. Vibrational con-

trol has been reported to ensure stabilization of a number of plants which are not

easily controllable by feedback.

Further, the Meerkov's approach has been developed by R.E.Bellman, J.Bentsman,

S.Meerkov [5,6] for nonlinear dynamic systems.

In recent years the vibrational control principle has beenen extended to systems

with time delay [7,8] and to nonlinear parabolic systems [9,10].

In the present paper we consider a family of nonlinear singularly perturbed control

systems

dz

dt
= Z(z; y; �);

dy

dt
= 
Y (z; y; �); (1.1)

where z 2 Rn; y 2 Rm are the states, � 2 Rr is a vector parameter, 
� 1 is a large

scalar, and t is a dimensionless time. Introducing in (1.1) parametric vibrations

according to the law

�(t) = �0 + '(
t); (1.2)

where �0 is a constant vector and '(�) (� = 
t) is an almost periodic vector function

with zero average value. As a result, (1.1) becomes

dz

dt
= Z(z; y; �0 + '(�));

dy

dt
= 
Y (z; y; �0 + '(�)): (1.3)

Assume that

z = P (z; y; �) + 
Q(z; �)

P : R
n
�R

m
�R

r
! R

n; Q : R
n
�R

r
! R

n:

First, let us consider the equation

dz

d�
= Q(z; �0 + '(�)): (1.4)

We denote the general solution of (1.4) by

z = h(c; �); h : R
n
�R

!
R

n; (1.5)

where c 2 Rn is a constant uniquely designed for every initial (x0; �0) and propose

that (1.5) is almost periodic in � 2 [0;1). Then we make the substitution

z = h(x; �)

which transforms (1.3) into the system

dx

dt
= f(x; y; �); (1.6)

dy

dt
= 
F (x; y; �); 
� 1 (1.7)
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where

f = [
@h

@x
]
�1P (h(x; �); y; �0 + '(�));

F = Y (h(x; �); y; �0 + '(�)):

Thus, we have obtained the singularly perturbed system (1.6), (1.7) with high fre-

quency coe�cients.

In this paper we suggest the hybrid asymptotical method that allows to construct

the solutions of systems (1.6), (1.7) in the interval [0; T ] ( or even [0;1) ) in the

form

xN = u0(t) + �[u1(t) + v1(t; �) + �1(�)] + � � �+ �N [uN(t) + vN(t; �) + �N (�)]+

�N+1
[vN(t; �) + �N(�)]; (1.8)

yN = Y0(t; �) + �0(�) + �[Y1(t; �) + �1(�)] + � � �+

�N [YN(t; �) + �N(�)] + �N+1YN+1(t; �); (1.9)

where vi; Vi are the almost periodic functions, and �i;�i are the boundary layer

functions. If the functions f(x; y; �); F (x; y; �) are independent of � the expansions

(1.8), (1.9) coinside with the classical Vasil'eva expansions [2]. If system (1.3) is

regular, we get the special averaging expansions [11]. The formulas (1.8), (1.9)

highlight a structure of the solutions of system (1.6), (1.7). (1.8), (1.9) are of prime

importance for studying of a transient behavior. The analysis in details of (1.8),

(1.9) allows to investigate the vibrational stability for nonlinear singularly perturbed

systems.

The paper has the following structure. Section 3 discusses preliminaries. Section

4 considers the hybrid asymptotical method. Section 5 presents evaluating of the

remainder terms of the expansions (1.8), (1.9). Section 6 discusses two signi�cant

special cases. In sections 7, 8 the expansions in an in�nite interval [0;1) and

vibrational stability are studied.

2 Notations

Let Rn be a space of n- dimensional real vectors with the norm

jjxjj = max
1�i�n

jxij;

where xi is the ith coordinate of the vector x and (x; y) is the inner product of

vectors x and y.

Let f : R
n ) R

n be N -times continuously di�erentiable function in the region

G � Rn; i.e. f 2 CN
(G;R). Let f (k)

(x) = f (k)
x

(x) denote the kth derivative of f at

x 2 G The f (k) is a k-multilinearmap ofRn for each x 2 G; f (k)
(x) 2 L(Rn; : : : ;Rn

).
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For �1; : : : ; �k 2 R
n and x 2 G, the value of f (k)

(x) at (�1; : : : ; �k) is given by

f (k)
(x)(�1; : : : ; �k) =

X @(k)f(x)

@x(j1) : : : @x(jk)
�
(j1)
1 : : : �

(jk)
k

;

the summation ranging over j1 + : : :+ jk = k, 0 � j1; : : : ; jk � n, and

kf (k)
(x)k = max

j1+:::+jk=k;0�j1;:::;jk�n

����� @(k)f(x)

@x(j1) : : : @x(jk)

����� ;
for all x 2 G.

In this notation, the Taylor formula for f 2 CN
([0; "0]);R

n
) can be written in the

form

f(") = f(0) + f 0(0)"+ : : :+
1

(N � 1)!
f (N�1)

(0)"N�1
+

1

N !
f (N)

(�)"N ;

where " 2 [0; "0], � 2 [0; "].

Now let F (i)
(x; �1; : : : ; �m)(j = 1; : : : ; n) be an arbitrary 2�- periodic real analytic

function of � 2 Rm for each x 2 G. Moreover, let F (i)
(x; �1; : : : ; �m) be N times

continuously di�erentiable of x 2 G for � 2 Rm. As FN
(G;Rm;Rn

) we denote the

space F = (F (1); : : : ; F (N)
).

Let ! 2 Rm and AN

!
(G;Rn

) be a class of functions f(x; t) mapping G � [0;1) !

R
n which satisfy f(x; t) = F (x; !1t; : : : ; !mt), where F is an arbitrary function of

FN
(G;Rm;Rn

).

Finally, let Mm�m be a space of (m � m) matrices, and A!(M) = AN
(G;Mm�m

)

be a class of (m �m) real matrices A(x; t)(x 2 G; t 2 [0;1)), which are N times

continuously di�erentiable with respect to x 2 G.

3 Preliminaries

For the following studies we need some preliminary results.

Lemma 3.1 Let K be a compact set of Rn and f 2 A!(K;R
n
). Then f is bounded

in K � [0;1).

Lemma 3.2 If K is a compact set of Rn and f; g 2 AN

!
(K;Rn

), then f + g; �g 2

AN

!
(G;Rn

).

Lemma 3.3 Let f 2 Aj

!
(G;Rn

); '1; : : : ; 'j 2 A
0
!
(G;Rn

). Then

f j(x)('1; : : : ; 'j) 2 A
0
!
(G;Rn

):
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Let f 2 A0
!
(G;Rn

) and put

Mt[f ](x) = lim
T!1

1

T

Z
T

0
f(x; �)d�;

Kt[f ](x) = f �Mt[f ](x);

It[f ] =

Z
t

0
f(x; �)d�:

Lemma 3.4 The operators

Mt : A
N

!
(G;Rn

)! CN
(G;Rn

);

Kt : A
N

!
(G;Rn

)! A
N

!
(G;Rn

)

are de�ned and bounded.

The following lemma gives a clear to the elements of the space AN

!
(G;Rn

). Let Zm

be a space of m-dimensional integer vectors.

Lemma 3.5 (13) Function f 2 AN

!
(G;Rn

) if and only if the following conditions

are valid:

1:f =

X
k2Zm

ak(x)e
i(k;!)t

;

2:ak 2 C
N
(G;Rn

);

3. for all compact set K 2 G, j = 0; : : : ; N there exist such constants � > 0; � > 0,

that

ka
(j)
k
(x)k � ��jkj(8x 2 K):

De�nition 3.1. A vector ! 2 Rm is called nonresonance if there exist such constants

; � > 0 that

j(k; !)j � jkj��

for all k 2 Zm; k 6= 0. By Rm

res
we denote a set of such vectors [13].

Lemma 3.6 If ! 2 Rm

res
then the operator

ItKt : A
N

!
(G;Rn

)! A
N

!
(G;Rn

)

is de�ned and bounded.
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Finally, consider the linear di�erential equation

dy

d�
= C(x; �)y + h(x; �); (3.1)

where h(x; �) 2 A0
!
(G;Rn

); C(x; �) 2 AN

!
(G;Mm�m

).

We assume that for any C > 0, � > 0 the fundamental matrix V (x; �; s) of the linear

homogeneous system
dy

d�
= C(x; �)y

satis�es the estimate

jjV (x; �; s)jj � Ce��(��s); (3.2)

0 � s � � <1;

where C, � do not depend on x 2 G. By Y we denote the class of such matrices.

Lemma 3.7 The equation (3.1) has a unique solution y(x; �) 2 A0
!
(G;Rn

).

By P (Rm
) we denote a class of continuous bounded functions '(�) with values in

R
m, i.e.

jj'(�)jj � Ce��� (C > 0; � > 0; 0 � � � 1)

Lemma 3.8 Let h(�) 2 P (Rm
) and C(�) 2 Y. Then the Cauchy problem

dz

d�
= C(x; �)z + h(�); z(0) = z0 (3.3)

has a unique solution z(�) 2 P (Rm
).

If h = h(x; �), C = C(x; �) are k times continuously di�erentiable with respect to

x 2 K (K is a compact), then the function z(x; �) has the same smoothness.

To prove this assertion we need to introduce the Banach spaces X = Cr
(K;Rm

)

and Y = Cr
(K;Mm�m

).

We shall consider h(x; �) as a curve

h : [0;1)! X

in the Banach space X, and denote as y(x; �)an unknown curve

y : [0;1)! X:

Then the equation (3.1) can be rewritten as an equation in the Banach space X

dy

d�
= C(�)y + h(�); (3.4)

where for any �xed � 2 [0;1) the matrix C = C(x; �) is an element of Banach

space Y .

Estimate (3.2) yields

Lemma 3.9 If C 2 Ar

!
(K;Mm�m

), h 2 Ar

!
(K;Rm

), then y 2 Ar

!
(K;Rm

).
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4 Asymptotics in Finite Interval [0; T ]

Let t 2 [0; T ], x 2 R
n, y 2 R

m, G1 and G2 be open regions in Rn and Rm

respectively.

Consider the singularly perturbed Cauchy problem

dx

dt
= f(x; y; �); (4.1)

"
dy

dt
= F (x; y; �); (4.2)

x(0; ") = �; y(0; ") = �; (4.3)

where � = t=" is fast time, � 2 G1, � 2 G2.

We suppose

I. f 2 AN+2
!

(G1 �G2;R
n
), F 2 AN+2

!
(G1 �G2;R

m
)

II. For every x 2 G1 the equation

dy

dt
= F (x; y; �); (4.4)

has a unique solution

y = 	0(x; �) 2 A
N+2
!

(G1;R
m
); (4.5)

moreover, the values 	0(x; �) 2 G2.

By C(x; �) we denote the matrix Fy(x; '0(x; �); �).

Let V (x; �; s) be the fundamental matrix of the linear homogeneous system

dy

d�
= C(x; �)y: (4.6)

III. For some C > 0, � > 0 the uniform estimate

jjV (x; �; s)jj � Ce��(��s)(0 � s � � <1) (4.7)

is valid, moreover constants C, � are independent on x 2 G1.

We will seek the solution of the problem (1)-(3) in the interval [0; T ] in the form

xN = u(t; ") + v(t; �; ") + �(�; "); (4.8)

yN = Y (t; �; ") + �(�; "); (4.9)

where

u(�; ") = u0(t) + "u1(t) + : : :+ "NuN(t); 0 � t � T

is a regular serie ;

v(t; �; ") = "v1(t; �) + : : :+ "N+1vN+1(t; �)
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is a vibrational serie, vi 2 A
N+2�i
!

([0; T ];Rm
) withMt[vi] = 0 for i = 1; 2; : : : ; N+1;

Y (t; �; ") = Y0(t; �) + "Y1(t; �) + : : :+ "N+1YN+1(t; �)

and Yi(t; �) 2 A
N+2�i
!

([0; T ];Rm
); �nally

�(�; ") = "�1(�) + : : :+ "N�N+1(�);

�(�; ") = �0(�) + "�1(�) + : : :+ "N�N+1(�)

are bounded functions, i.e. jj�ijj, jj�ijj � Ce��� (i = 1; : : : ; N+1; j = 0; : : : ; N; � 2

[0;1)) for some C > 0, � > 0.

Further, like in [2], introduce the functions f , F , �f , �F putting

f(t; �; ") = f (u(t; ") + v(t; �; "); Y (t; �; "); �) ;

F (t; �; ") = F (u(t; ") + v(t; �; "); Y (t; �; "); �) ;

�f(t; �; ") = f (u(t; ") + v(t; �; ") + �(�; "); Y ("�; �; ") + �(�; "); �)� f("�; �; ");

�F (�; ") = F (u("�; ") + v("�; �; ") + �(�; "); Y ("�; �; ") + �(�; "); �)� F ("�; �; ");

Now substituting (4.8), (4.9) into (4.1), (4.2) we obtain

du

dt
+
@v

@t
+

1

"

@v

@�
+

1

"

d�

d�
= f(u+ v + �; Y +�; �); (4.10)

"
@Y

@t
+
@v

@�
+
d�

d�
= F (u+ v + �; Y +�; �): (4.11)

Rewrite (4.10), (4.11) in the form

du

dt
+
@v

@t
+

1

"

@v

@�
+

1

"

d�

d�
= f +�F; (4.12)

"
@Y

@t
+
@v

@�
+
d�

d�
= (F +�F ): (4.13)

Expanding f , F , �f , �F in power serie of ", we obtain

f = f 0 + "f1 + : : : ;

F = F 0 + "F 1 + : : : ;

�f = �f0 + "�f1 + : : : ;

�F = �F0 + "�F1 + : : : :

Using the operatorsM� , K� we separate the regular and the vibrational components

of f

8



f =M� [f 0] + "M� [f 1] + : : :+K� [f 0] + "K� [f 1] + : : : ;

F =M� [F 0] + "M� [F 1] + : : :+K� [F 0]"K� [F 1] + : : : :

Collecting the terms with the same power of " in a special manner and, �nally,

equating the coe�cients of the same types to each other, we obtain the equations

for ui, vi, �i, Yi, �i

dui

dt
= M� [f i]; (4.14)

@vi

@�
= K� [f i]�

@vi

@t
; (4.15)

d�i+1

d�
= �if; (4.16)

@Yi

@�
= K� [F i]�

@Yi�1

@t
; (4.17)

d�i

d�
= �iF: (4.18)

Let us consider these equations for principal case i = 0 in details

du0

dt
= M� [f(u0(t); Y0(t; �); �)]; (4.19)

@v1

d�
= K� [f(u0(t); Y0(t; �); �)]; (4.20)

d�1

d�
= f(u0(0); Y0(0; �) + �0(�); �)� f(u0(0); Y0(0; �); �): (4.21)

@Y0

@�
= F (u0(t); Y0; �) (4.22)

d�0

d�
= F (u0(0); Y0(0; �) + �0(�); �)� F (u0(0); Y0(0; �); �): (4.23)

Recalling that M� = 0, �1(1) = 0, u0(0) = �, Y0(0; 0) + �0(0) = � we �nd u0, v0,

�1, Y0, �0 in the following way.

i) From the equation (4.22) and the condition II we have

Y0(t; �) = 	0(u0(t); �); (4.24)

where u0(t) is an unknown yet function.

ii) Substituting Y0 into the equation (4.19), we get the Cauchy proplem for u0(t)

du0

dt
= f0(u0); u0(0) = �;

where

f0(x) =M� [f(x;	0(x; �); �)]:

9



IV We assume that this Cauchy problem has a unique solution in the interval [0; T ]

and u0 2 G1 for all t 2 [0; T ]. S0, u0 and Y0 are de�ned.

iii) Recalling M� [v0] = 0, from (4.20) we have

v1 = K�I�K� [f(u0(t);	0(t; �); �)]:

iv) The equation

dZ

d�
= F (�;  0(�; �) + Z; �)� F (�;  0(�; �); �) (4.25)

has a zero steady state Z � 0. The condition III implies that Z � 0 is a stable

steady state.

V. We suppose that the point � � 	0(�; 0) belongs to the attraction region D of

zero steady state.

Now we de�ne �0(0 � � < 1) as the solution of equation (4.25) with the initial

condition Z(0) = � � 	0(�; 0).

VI. We assume that

	0 +�0 2 G2(0 � t � T; 0 � � <1):

v) From (4.21) we have

�1 = �
Z
1

�

ff(�; Y0(�; s) + �0(s)� f(�; Y0(�; s); s)gds:

Thus u0,v1,�1,Y0,�0 are de�ned completely.

Now let us �nd the next terms u1,v2,�2,Y1,�1. It is easy to see that for the case

i = 1 the equation (4.17) is linear with respect to Y1 and u1 and has a form

@Y1

@�
= C0(t; �)Y1 + h1(t; �) +H1(t; �)u1(t):

Using the Lemma 3.7 we can determine Y1 in the form

Y1 = �1(t; �)u1 +	1(t; �):

Substituting Y1 into the equation (*) for the case i = 1 we get the linear Cauchy

problem to de�ne u1
du1

dt
= A1(t)u1 + b1(t); u1(0) = 0:

Thus u1 and Y1 are completely de�ned.

Further, v2 is found due to the operators K� , I� . It is easy to note that the equation

for �1 has a form
d�

d�
= C(�)�1 + h(�);

10



where C 2 Y and h 2 P (Rm
). Hence, �1 2 P (Rm

). Finally, �2 is de�ned like �1.

The terms uk,vk+1,�k+1, Yk,�k (k > 2) can be found in a similar way.

Thus xN , yN satisfy the relations

dxN

dt
= f(xN ; yN ; �) + "N+1�N(t; ");

"
dyN

dt
= F (xN ; yN ; �) + "N+1�N (t; ");

and, moreover, for any "0 > 0

max
0�t��

jj�N(�; ")jj � C; max
0�t��

jj�N(�; ")jj � C;

where C is independent on " 2 (0; "0].

5 Estimating of Remainder Terms by Vasil'eva Tech-

nique

To estimate the remainder terms

rN = x� xN ; RN = y � yN

(see (4.8),(4.9)) we change of variables in the Cauchy problem (4.1)-(4.3):

x = r + xN ; y = R + yN : (5.1)

Then for the new variables r, R we get the Cauchy problem

dr

dt
= f(xN + r; yN +R; �)� "

dxN

dt
; (5.2)

"
dR

dt
= F (xN + r; yN +R; �)� "

dyN

dt
; (5.3)

r(o; ") = O("N+1
); R(o; ") = O("N+1

) (5.4)

Our goal is to prove the existence of such constants C > 0, "0 > 0 that for all

" 2 (0; "0] the estimate

jjr(t; ")jjC[0;T ] + jjR(t; ")jjC[0;T ] � C"N+1 (5.5)

is true.

Introduce the following matrices

A(t; �) = fx(u0(t); Y0(t; �) + �0(�); �); (5.6)

B(t; �) = fy(u0(t); Y0(t; �) + �0(�); �); (5.7)

C(t; �) = Fx(u0(t); Y0(t; �) + �0(�); �); (5.8)

D(t; �) = Fy(u0(t); Y0(t; �) + �0(�); �): (5.9)

11



Linearizing the system (5.2),(5.3) at the point

x = u0(t); y = Y0(t; �) + �0(�)

we obtain the following nonlinear system

dr

dt
= A(t; �)r +B(t; �)R +G(r; R; t; �; "); (5.10)

"
dR

dt
= C(t; �)r +D(t; �)R +H(r; R; t; �; "); (5.11)

where

G = f(xN + r; yN +R; �)�
dxN

dt
� fx(u0; Y0 +�0; �)r� fy(u0; Y0 +�0; �)R; (5.12)

H = F (xN +r; yN +R; �)�"
dyN

dt
�Fx(u0; Y0+�0; �)r�Fy(u0; Y0+�0; �)R: (5.13)

Obviously, the nonlinear functions G, H have two principal properties.

1
0. There exist such small "0 > 0 and C > 0 that for all " 2 (0; "0]

jjG(0; 0; t; �; ")jjC[0;T ] + jjH(0; 0; t; �; ")jjC[0;T ] � C"N+1:

2
0. For any small � > 0 there exist such numbers Æ > 0,"0 > 0 that for

jju1jj; jju2jj; jjv1jj; jjv2jj � Æ; 0 < " � "0

the inequalities

jjG(u1; v1; t; �; ")�G(u2; v2; t; �; ")jjC[0;T ] � �(jju1 � u2jj+ jju1 � u2jj)(5.14)

jjH(u1; v1; t; �; ")�H(u2; v2; t; �; ")jjC[0;T ] � �(jju1 � u2jj+ jju1 � u2jj)(5.15)

are valid.

The properties 10, 20 make it possible to prove the contraction mapping principle

for the corresponding integral operator.

Without loss of generality we can believe that r(0; ") = 0, R(0; ") = 0. Then the

Cauchy problem (5.2)-(5.3) is equivalent to integral equations system

r =

Z
t

0
V (t; s; ")[B(s; s=")R(s) +G(r(s); R(s); s; s="; ")]ds; (5.16)

R =
1

"

Z
t

0
U(t; s; ")[C(s; s=")r(s) +G(r(s); R(s); s; s="; ")]ds; (5.17)

where V (t; s; ") and U(t; s; ") are fundamental matrices of nonlinear homogeneous

systems

dV

dt
= A(t; �)V; V (s; s; ") = I; (5.18)

dU

dt
= D(t; �)U; U(s; s; ") = I (5.19)
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respectively. Obviously, the matrix V (t; s; ") is uniformly bounded. For the matrix

U(t; s; ") it is possible to prove the estimate

jjU(t; s; ")jj � Ce��(t�s)=" (C > 0; � > 0; 0 � s � t � T ): (5.20)

The constants C, � are independent on " 2 (0; "0].

The next two lemmae yield the estimate (5.20).

Lemma 5.1 Let for all t 2 [0; T ] the matrix D0(t; �) be a Hurwitz matrix of the

class Y, moreover for the fundamental matrix U0(t; �; s; ") (t is �xed) of linear ho-

mogeneous system
dU0

d�
= D0(t; �)U0; U0(t; s; s; ") = I

the estimate

jjU0(t; �; s; ")jj � Ce�4�(��s)="
(C > 1; 0 � s � � <1)

hold. Then for fundamental matrix W0(t; s; ") of the linear homogeneous system

"
dW0

dt
= D(t;

t

"
)W0; 0 � s � t � T

the estimate

jjW0(t; �; s; ")jj �Me��(t�s)=" (M > 0; � > 0; 0 � s � t � T ) (5.21)

is valid.

Lemma 5.2 Let D0(t; �) be a matrix from Lemma 5.1 and matrix D1(t; �) satis�es

the estimate

jjD1(t; �)jj � M1e
��1t="

(M1 > 0; �1 > 0; 0 � t � T ):

Then for fundamental matrix W (t; s; ") of the linear homogeneous system

dW

dt
= (D0(t; �) +D1(t; �))W; W (s; s; ") = I

the estimate of type (5.21) is true.

The proves of Lemmae 5.1, 5.2 will be given below.

The matrix D(t; �) from (5.11) can be presented in the form

D = D0 +D1;

where

D0 = Fx(u0(t); Y0(t; �));
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D1 = Fx(u0(t); Y0(t; �) + �0(�))� Fx(u0(t); Y0(t; �));

moreover, it is obvious that

jjD1jj �M1e
��1t=":

Hence, Lemma 5.1 and Lemma 5.2 imply the estimate (5.20) for the fundamental

matrix U(t; s; ") of the linear homogeneous system (5.19).

Now reform the integral equation system (5.16), (5.17). Substituting r(s) from

(5.16) into the integral
1

"

Z
t

0
U(t; s; ")C(s;

s

"
)u(s)ds;

we get new integral equations system for r and R.

r =

Z
t

0
V (t; s; ")B(s;

s

"
)R(s)ds+Q(r; R; "); (5.22)

R =

Z
t

0
K(t; s; ")R(s)ds+ P(r; R; "); (5.23)

where

K(t; s; ") =
1

"

Z
t

0
V (t; p; ")C(p;

p

"
)V (p; s; ")ds+D(s;

s

"
);

Q(r; R; ") =

Z
t

0
V (t; s; ")G(r(s); R(s);

s

"
; ")ds

P(r; R; ") =
1

"

Z
t

0
U(t; s; ")G(r(s); R(s);

s

"
; ")ds+

1

"

Z
t

0

Z
t

s

U(t; p; ")V (p; s; ")C(p;
p

"
)H(r(s); R(s);

s

"
; ")dpds

The estimate (5.20) implies that the kernel K(t; s; ") of the Volterra operator

K �R =

Z
t

0
K(t; s; ")R(s)ds

is bounded, and small nonlinear integral opertors Q and P have the properties 10

and 2
0, as do the operators G and H.

Now let us reform the Volterra integral equation (5.23). We denote by R(t; s; ") the

bounded resolvent of the kernel K(t; s; "). Equation (5.23) can be rewritten in the

following equivalent form

R = P
�
(r; R; "); (5.24)

where

P
�
(r; R; ") = P(r; R; ") +

Z
t

0
R(t; s; ")P(r(s); R(s); s; ")ds (5.25)

Putting

Q
�
=

Z
t

0
V (t; s; ")B(s;

s

"
)R(s)ds+Q(r; R; ")
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we obtain for r 2 C([0; T ];Rn
), R 2 C([0; T ];Rm

) the system of equations

r = Q
�
(r; R; "); R = P

�
(r; R; "): (5.26)

We consider the equations (5.26) in Banach space

Cn�m[0; T ] = C([0; T ];Rn
)� C([0; T ];Rm

)

with the vector norm

jj(r; R)jj = (jjrjj; jjRjj)T 2 R2

We write the equation (5.26) in the form

(r; R) = S(r; R; "); (5.27)

where

S(r; R; ") =

 
Q�

(r; R; ")

P�(r; R; ")

!
:

Due to 1
0, 20 for Q�, P� it is easy to establish

jjS(r1; R1; ")� S(r2; R2; ")jj �

 
�1 a

�2 �3

! 
jjr1 � r2jj

jjR1 � R2jj

!
;

where D1,D2,D3 are small numbers if

jjr1jj; jjr2jj; jjR1jj; jjR2jj � Æ

and Æ is a su�ciently small number.

Obviously, for small �i the spectral radius � of the matrix 
�1 a

�2 �3

!

is less then 1. Therefore, S is a contraction operator in a small ball

B(q) = f(r; R) : jjrjjC[0;T ] � q; jjRjjC[0;T ] � qg

(q is a su�ciently small number). Simple check shows that for q = C"N+1

S : B(q)! B(q)

and S has a unique �xed point (r�; R�) 2 B(q) (see [14]).

Thus we prove

Theorem 5.1 Let for any ! the right hand parts f , F of the system (4.1), (4.2)

satisfy the conditions I-VI. Then there exist such constants C > 0 and "0 > 0 that

for all " 2 (0; "0] the Cauchy problem (4.1) has a unique solution x 2 G1, y 2 G2,

for t 2 [0; T ] and the inequiality

jjx� xN jjC[0;T ] + jjy � xN jjC[0;T ] � C"N+1

is true.
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In conclusion let discuss the proof of Lemma 5.1.

Fixing any number q 2 (0; 1) and take such integer number n that for all t1; t2 2

[0; T ], jt1 � t2j � T=n we have

jjD0(t1; �)�D0(t2; �)jj �
q�

2C2
: (5.28)

In the interval [0; T ] we choose the uniform grid �n : ti = iT=n; i = 0; 1; : : : ; n� 1.

By B0(t; �) we denote the piecewise constant with respect to t 2 [0; T ] matrix

B0(t; �) = D0(tj; �)(t 2 [tj; tj+1); j = 0; 1; : : : ; n� 1):

Let W0(t; s; ") be a fundamental matrix of the auxiliary linear homogeneous system

"
dW0

dt
= B0(t; �)W0;W(s; s; ") = I:

First, we estimate jjW0(t; s; ")jj. Let s be an arbitrary number of [0; T ] and let

s 2 Ij = [tj; tj+1).

a) For t 2 Ij we have

"
dW0

dt
= D0(t; t=")W0:

Hence, W0 = U0(tj; t="; s="), and thus

jjW0(t; s; ")jj = jjU0(tj; t="; s=")jj � Ce�4�(t�s)=": (5.29)

b) For t 2 Ij+1 we have

W0(t; s; ") = U0(tj+1; t="; tj+1=") � U0(tj+1; tj+1="; s=")

and, therefore

jjW0(t; s; ")jj � Ce�4�(t�s)=":

c) By induction it is easy to show that for t 2 Ij+k+1

jjW0(t; s; ")jj � Ck+2e
�2k�T

n" � e�2�(t�s)=" (5.30)

Consider the sequence of numbers

C2
(Cke

�2k�T

n" ); k = 1; 2; : : : : (5.31)

Obviously, for " 2 (0; "0], "0 =
2�T
n lnC

, C > 1, we have

Ce
�2k�T

n" < 1

and the sequence (5.31) is bounded by C2.
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Hence,

jjW0(t; s; ")jj � C2e�2�(t�s)="; (5.32)

0 � s � t � T:

To complete the proof of Lemma 5.1 we rewrite the equation

"
dW0

dt
= D0(t; t=")W0; W (s; s; ") = I

in the form

"
dW

dt
= B0(t; t=")W + [D0(t; t=")� B0(t; t=")]W: (5.33)

For 0 � s � t � T from (5.33) we have

W (t; s; ") =W0(t; s; ")+
1

"

Z
t

0
W0(t; q; ")[D0(q; q=")�B0(q; q=")]W (q; s; ")dq: (5.34)

Estimating the left-hand and right-hand parts of (5.22) and (5.23) by norm, we

obtain

jjW0(t; s; ")jj � C2e�2�(t�s)="
+
q�

2"

Z
t

0
e�2�(t�q)="

jjW0(t; q; ")jjdq: (5.35)

Now introduce the scalar function

!(t; s; ") = e�(t�s)="jjW0(t; s; ")jj

and the number

!� = max
0�s�t�T

e�(t�s)="jjW0(t; s; ")jj:

Multiplying (5.35) by e�(t�s)=", it is easy to get

!(t; s; ") � C2e��(t�s)=" +
q�!�

2

Z
t

s

d(e��(t�q)=") � C2
+ q!�:

The last relation implies that !� � C2
+ q!� and hence !� � C2=(1� q).

This proves Lemma 5.1.

To prove Lemma 5.2 we denote the fundamental matrix W of the system

dW

dt
= (D0(t; �) +D1(t; �))W; W (s; s; ") = I

is a solution of the integral equation

W (s; s; ") = W0(s; s; ") +
Z

t

s

1

"
W (s; p; ")D1(p; p=")W (p; s; ")dp;

where W0 is a fundamental matrix of the system

"
dW0

dt
= D0(t; �)W0; W0(s; s; ") = I:

Now the estimate of type (5.21) can be easily obtained by the succesive approxima-

tions method.
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6 Two Signi�cant Special Cases

6.1 Quasilinear problems

Consider the Cauchy problem

dx

dt
= f(x; y; �); (6.1)

"
dx

dt
= C(x)y +D(x; �) = F (x; y; �); (6.2)

x(0; ") = �; y(0; ") = �; (6.3)

where x 2 Rn, y 2 Rm, " is a small positive parameter, t 2 [0; T ], � = t=", � 2 G1,

� 2 G2.

Let ! be a nonresonance vector and

f 2 AN+2
!

(G1 �G2;R
n
);

C 2 CN+2
(G1;M

m�m
);

D 2 A
N+2
!

(G2;R
m
);

moreover, for the eigenvalues �i = �i[C(x)] of the matrix C(x) the estimate

sup

1�i�m;x2G

<�i[C(x)] < 0

holds. For the problem (6.1)-(6.3) the solution is convenient to be sought in the

form

xN = u(t; ") + v(t; �; ") + �(�; "); (6.4)

yN = U(t; ") + V (t; �; ") + �(�; "); (6.5)

where

u(t; ") = u0(t) + "u1(t) + : : :+ "NuN(t); (6.6)

U(t; ") = U0(t) + "U1(t) + : : :+ "NUN(t); (6.7)

are regular serie;

v(t; �; ") = "v1(t; �) + : : :+ "N+1vN+1(t; �);

V (t; �; ") = V0(t; �; ") + "V1(t; �; ") + : : :+ "NVN(t; �; ")

1 are vibration serie, in addition, vi(t; �), Vi(t; �) are quasiperiodic functions with

M� [vi] = 0, M� [Vj] = 0 for i = 1; : : : ; N , j = 1; : : : ; N + 1;

�nally,

�(�; ") = "�1(�) + : : :+ "N+1�N+1(�);

�(�; ") = �0(�) + "�1(�) + : : :+ "N�N (�)
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are the boundary layer functions.

It is important to note that if f and F are independent on � the expansions (6.4),

(6.5) do not have terms v(t; �; "), V (t; �; ") and the expantions (6.4), (6.5) coinside

with the classic Vasil'eva expansions [2]. Repeating arguments of Section 4 for

�nding ui, Ui, vi, Vi, �i, �i we obtain the following relations

dui

dt
= M� [f i];

@vi

@�
= K� [f i]�

@vi

@t
;

d�i+1

d�
= �if;

M� [F i] �
dVi�1

dt
= 0;

@Vi

@�
= K� [F i]�

@Vi�1

@t
;

d�i

d�
= �iF:

Let us consider carefully these relations for i = 0

du0

dt
= M� [f(u0(t)); U0(t) + V0(t; �); �)]; (6.8)

@v1

@�
= K� [f(u0); U0(t) + V0(t; �); � ]; (6.9)

d�1

d�
= f(�; U0(0) + V(0; �) + �0(�); �)�

f(�; U0(0) + V(0; �); �); (6.10)

C(u0(t))U0(t) + M� [D(u0(t); �)] = 0; (6.11)

@V0

@�
= C(u0(t))V0(t; �) +K� [D(u0(t); �)]; (6.12)

d�0

d�
= C(�)�0: (6.13)

Recalling that M� [V0] = 0, M� [V1] = 0, �1(1) = 0, u0(0) = �, �0(0) = � � U0(0)�

V0(0) we seek u0, v1 �1, V0, �0 in the following way.

i) Put

Q(x) = �C�1
(x)M� [D(x; �)]

and de�ne by the Fourier technique the guasiperiodic in � solution W (x; �) of the

problem

dW

d�
= C(x)W +K� [D(x; �)];

M� [W ] = 0:
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Further we suppose that for all x 2 G1, � 2 [0;1) the vector

Q(x) +W (x; �) 2 G2

ii) Setting

f0(x) =M� [f(x;W (x; �) +Q(x); �); � ]

we de�ne u0(t) as a solution of the Cauchy problem

du0

dt
= f0(u0); u0 = �;

and let

U0(t) = Q(u0(t)); V0(t; �) = W (u0(t); �):

We assume u0(t) 2 G1 for all t 2 [0; T ]:

iii) The equation (6.11) and the condition M� [vi] = 0 yield

v1 = K�I�K� [f(u0(t); U0(t) + V (t; �)); � ]:

iv) We denote �(�) (0 � � <1) as a solution of the problem

d�0

d�
= C(�)�0;�0(0) = � � U0(0)� V0(0; 0):

v) At last, we have

�i = �

Z
�

�1

[f(�; U0(0) + V0(0; s) + �0(s); s)� f(�; U0(0) + V0(0; s); s]ds:

The functions ui, vj, �k, Ui, Vj, �k can be de�ned in a similar way.

It is easy to verify that if

D(x; t) =
X

k 6=0;k2Zm

Dk(x)e
i(!;k)t;

then

W (x; �) =
X

k 6=0;k2Zm

Wk(x)e
i(!;k)t; (6.14)

where

Wk(x) = [i(!; k)I � C(x)]�1Dk(x):

It is clear, that

jjWk(x)jj � CjjDk(x)jj;

and, since ! is a nonresonance vector, the series (6.14) is convergent.
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6.2 Regular problem

Now consider a Cauchy problem

dx

dt
= f(x; �); (6.15)

x(0; ") = �; (6.16)

where f 2 AN+2
!

(G1;R
n
); x; � 2 G1, � = 1=", 0 � t � T . The equation (6.15)

does not have singularities. Therefore we will seek an appropriate solution of the

problem (6.15), (6.16) in the form [11,12]

xN = u0(t)+ "[u1(t)+ v1(t; �)]+ : : :+ "N [uN(t)+ vN (t; �)]+ "N+1vN+1(t; �): (6.17)

Substituting the presentation (6.17) into (6.15) we obtain a residual function

RN =
@xN

@t
+

1

"

@xN

@�
� f(xN(t; �; "); �)

and

fN = f(xN(t; �; "); �):

Further we expand RN in a power series in "k and obtain

RN =

(
du0

dt
+
@v1

@�
� f(u0(t); �)

)
+ "

(
du1

dt
+
@v2

@�
+
@v1

@t
� f 0

N"
(t; �; 0)

)
+ : : :+

"N
(
duN

dt
+
@vN+1

@�
+
@vN

@�
�

1

N !
fN
N"
(t; �; 0)

)
+

"N+1

(
duN+1

dt
�

1

(N + 1)!
f (N + 1)N"(t; �; �)

)
; (6.18)

where � 2 (0; "].

Finally, we equate the coe�cients of the expantions of RN at the powers "k(k =

0; 1; : : : ; N) near zero. Then for "0 we have

du0

dt
+
@v1

@�
=M� [f(u0(t); �)] +K� [f(u0(t); �)]:

Let u0 be a solution of the Cauchy problem

du0

dt
= f0(u0); u0(�); (6.19)

where f0(x) =M� [f(x; �)]. Then for v1 we have

@v1

@�
= K� [f(u0; �)];
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and, hence

v1 = I�K� [f(u0(t); �)]:

From (6.18) for "1 we have

du1

dt
+
@v2

@�
= �

@v1

@t
+ f 0

N"
(t; �; 0): (6.20)

It makes us sure that

f 0
N"
(t; �; 0)�

@v1

@t
= f 0

x
(u0(t); �)(u1 + v1)�

@v1

@t
= A0(t)u1 + h1(t; �); (6.21)

where

A0(t) =M� [f
0

x
(u0(t); �)] 2 C

N
([0; � ];Mn�n

)

and

h1(t; �) = f 0
x
(u0(t); �)(u1(t) + v1(t; �))�

@v1

@t
� A0(t)u1(t):

It is easy to see that M� [h1] is independent on u1, and, therefore M� [h1] is a known

function.

Setting
du1

dt
= A0(t)u1 +M� [h1(t; �)]; u1(0) = 0

we �nd u1 2 C
N+1

([0; T ];Rn
). Now h1 2 A

N

!
([0; T ];Rn

) is a known function of t, � .

Putting
@v2

@�
= K� [h1]

we �nd

v2 = I�K� [h1] 2 A
N

!
([0; T ];Rn

):

The other terms of the expansion (6.17) can be found in a similar way.

7 Asymptotics in In�nite Semiaxis [0;1)

Come back to the problem (4.1)-(4.3). In this section we assume that the averaged

system
dx

dt
= f0(x)

has a stable state x = x� and, in addition, for the eigenvalues �1; : : : ; �n of the

matrix A0 = f0x(x
�
)

max
i

<�i � � ( > 0):

Let G0 be the attraction region of the stable steady state x�. We assume that the

initial point � 2 G0. Then it is not di�cult to prove that for the Cauchy problem

du0

dt
= f0(u0); u0 = �
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the estimate

jju0(t)jj � Ce�t(C > 0; 0 � t <1)

holds. The analysis of the algorithm, given in Section 4 for the presentation of the

approximate solution (4.8), (4.9), shows that this expansions can be considered for

t 2 [0;1), moreover, the following statement is true.

Theorem 7.1 There exist such constants C > 0, "0 > 0 that for all " 2 (0; "0] the

Cauchy problem (4.1)-(4.3) has a unique solution x(t; "), x(t; ") t 2 [0;1) and the

estimate

jjx(t; ")� xN (t; ")jjC[0;1) + jjy(t; ")� yN(t; ")jjC[0;1) � C"N+1;

holds, where C, "0 are independent on " 2 (0; "0].

8 Vibrational Stability

8.1 General case

Let G1, G2, G3 be open regions in Rn, Rm, Rr respectively. Consider a family of

nonlinear singularly perturbed systems

dz

dt
= P (z; y; �) + 
Q(z; �); (8.1)

dy

dt
= 
Y (z; y; �); (8.2)

P : G1 �G2 �G3 ! R
n; Q : G1 �G3 ! R

n;

Y : G1 �G2 �G3 ! R
m; 1� 
:

Let 0 2 G1 �G2 and P (0; 0; �) = 0, Q(0; �) = 0, and Y (0; 0; �) = 0. So the steady

state z = 0, y = 0 is an equilibrium state for the system (8.1), (8.2). We assume

P 2 CN+3
(G1 �G2 �G3;R

n
);

Q 2 CN+3
(G1 �G3;R

n
);

Y 2 CN+3
(G1 �G2 �G3;R

m
):

Let, further, ! be a nonresonance vector. Introduce in (8.1), (8.2) the parametric

vibrations with according to the law

�(t) = �0 + '(�); � = 
t (8.3)

where �0 2 R
r is a constant vector and ' 2 AN+3

!
([0;1); Rr

), M� ['] = 0.

De�nition 8.1. An equilibrium state z = 0; y = 0 is said to be vibrationally stable

(v-stable) if for any � > 0 there exist constants Æ > 0, 
0 > 0 such that for all
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initial conditions (z0; y0) (jjz0jj < Æ; jjy0jj < Æ) for the solutions z(t; z0; y0), y(t; z0; y0)

of the system

dz

dt
= P (z; y; �0 + '(�)) + 
Q(z; �0 + '(�)); (8.4)

dy

dt
= 
Y (z; y; �0 + '(�)); (8.5)

the estimate

jjz(t; z0; y0)jj < �; jjy(t; z0; y0)jj < � (8.6)

holds for t 2 [0;1) and 
 � 
0.

To investigate v-stability of the equilibrium point z = 0, y = 0 let us consider the

equation
dz

d�
= Q(z; �0 + '(�)): (8.7)

Denote the general solution of (8.7) as

z = h(c; �); h(0; �) = 0;

where c 2 G1 � R
n, h 2 AN+3

!
(G1;R

n
). We propose that h is one-to-one map,

h : G1 � [0;1)! G1 � [0;1);

@h=@c is an invertable matrix and

@h

@c
2 A

N+2
!

(G1 � [0;1);Mm�m
):

Due to the replacement

z = h(x; �)

we get the system

dx

dt
= f(x; y; �); (8.8)

"
dy

dt
= F (x; y; �); (8.9)

where " = 

�1,

f = [@h=@x]�1P (h(x; �); y; �0 + '(�));

F = Y (h(x; �); y; �0 + '(�)):

Obviously, f(0; 0; �) = 0, F (0; 0; �) = 0, and Theorem 7.1 is applicable to the system

(8.8).

De�ne the main terms of the asymptotic expansions of xN , yN for the system (8.8),

(8.9) with initial conditions

x(0;
) = � 2 G10; y(0;
) = � 2 G2:
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For every �xed x 2 G10 we consider the equation

dy

d�
= Y (h(x; �); y; �0 + '(�)) (8.10)

and suppose that this equation has a unique solution

y =  0(x; �) 2 A
N+2
!

(G10;R
m
); (8.11)

moreover, the values  0(x; �) 2 G2. Obviously,  0(x; �)! 0 as x! 0.

By C(x; �) we denote the matrix

Yy(h(x; �); y; �0 + '(�)):

Let for the fundamental matrix V (x; �; s) of the linear homogeneous system

dy

d�
= C(x; �)y

the uniform estimate (4.7) is valid, in addition, the constants C, � are independent

on x 2 G10. Substituting y =  0(x; �) into the equation (8.8) we immediately get

equation
du0

dt
= f0(u0); u0(0) = �; (8.12)

where

f0(x) =M� [(@h=@z)
�1P (h;  0; �0 + '0)]:

Since f0(0) = 0, the equation (8.11)has a zero solution.

Let the matrix

A = f0x =M�

"
@

@x

"
(
@h

@x
)
�1P (h;  0; �0 + ')

#
x=0

#
(8.13)

be Hurwitz . Then zero steady state of system (8.12) is asymptotically stable, and

for any Æ > 0 and for the solutions u0(t; �) (jj�jj � Æ) the estimate

jju0(t; �)jj � Ce��t(0 � t � 1)

is true. Thus, the solution of the Cauchy problem

du0

dt
= f(u0); u0(0) = �; jj�jj � Æ

is de�ned for t 2 [0;1).

We assume

u0(t) 2 G10

for all t 2 [0;1). S0, u0, Y0 =  0(u0(t); �) are de�ned completely.
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Finally, �0(�) is a solution of the Cauchy problem

dZ

d�
= Y (h(�; �);  0(�; �) + Z; �+ '(�))� Y (h(�; �);  0(�; �) + Z; �+ '(�));

Z(0) = � �  (�; 0); jj�jj < Æ:

Thus, we get the main term of the asymptotical expansions

x = u0(t); y =  0(t; �) + �0(�): (8.14)

Returning to old variables x, z we obtain

z = h(u0(t); �); y =  0(t; �) + �0(�) (8.15)

Folmulae (8.15) describe the transient behavior of original system (8.4)-(8.5).

Theorem 7.1 implies

Theorem 8.1 Provided the above conditions the zero steady state of system (8.4),

(8.5) is v-stable.

8.2 Linear Multiplicative Vibrations Q(z; �0 + ') = L(�)z

Let us assume that the system
dz

d�
= L(�)z

has an almost periodic general solution

z = �(�)c; c 2 Rn; � 2 A
0
!
(Mn�n

):

In this case the equation (8.10) has the form

dy

dt
= Y (�(�)x; y; �0 + '(�)); (8.16)

and let y = 	(x; �) be a unique almost periodic solution of equation (8.16) from

AN+2
!

(G2;R
m
).

Therefore, in (8.13)

A =M�

h
�
�1
fPx(0; 0; �0 + �(�))	x(0; �)g

i
: (8.17)

If A is a Gurwitz matrix then zero solution of system (8.4), (8.5) is v-stable.

Now, consider the special case when system (8.4), (8.5) has the form

dz

dt
= A0(�)z +B0(�)y + 
L(�)z; (8.18)

dy

dt
= 
[C0(�)z +D0(�)y]: (8.19)
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Let U0 be the monodromy matrix of the linear homogeneous system

dy

d�
= D0(�)y: (8.20)

Let �1; : : : ; �m be the characteristic roots of U0, and

j�ij < 1(i = 1; 2; : : : ; m): (8.21)

Then the system
dy

d�
= D0(�)y + f(�); f 2 A0

!
(R

n
) (8.22)

has a unique solution

y = 	0(�) 2 A
0
!
(R

n
):

Function 	0 can be presented in the form

y =

Z
1

0
G0(�; s)f(s)ds;

where G0(�; s) is the Green matrix of the problem (8.22).

In the considered case the matrix (8.17) has the form

A0 =M�

�
�
�1
(0; �)A0(�)�(0; �) +B0(�)

Z
1

0
G0(�; s)C0(s)ds

�
: (8.23)

If A0 is a Hurwitz matrix, zero solution of system (8.18), (8.19) is v-stable.

8.3 Cautionary Example.

Consider a sti� second order system

dz

dt
= (�0:27 + �(
 + 1))z + (0:1 + �)y; (8.24)



�1dy

dt
= (0:1 + �)z � y (8.25)

with a small positive parameter " = 

�1. Under parametric excitation � = cos � ,

� = 
t we get a new sti� system

dz

dt
= 
cos �z + (�0:27 + cos �)z + (0:1 + cos �)y;

"
dy

dt
= (0:1 + cos �)z � y:

Changing the variable

z = esin �x:
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We get

dx

dt
= (�0:27 + cos �)x + e� sin �

(0:1 + cos �)y; (8.26)

"
dy

dt
= esin � (0:1 + cos �)x� y: (8.27)

To investigate this system for small parameter " we use the proposed above algo-

rithm. First, note that the periodic solution of the equation

dy

d�
= �y + F (�) (8.28)

can be presented in the form

y = (y1 + y2)x; (8.29)

� =
e�2�

1� e�2�
; (8.30)

where

y1 = 0:1e��
�
�

Z 2�

0
es+sin sds+

Z
�

0
es+sin sds

�
; (8.31)

y2 = e��
�
�

Z 2�

0
cos ses+sin sds+

Z
�

0
cos ses+sin sds

�
: (8.32)

Substituting (8.29) into (8.26) we obtain

dx

d�
= a(t; ")x; (8.33)

where

a(�) = (�0:27 + cos �) + e���sin �
[0:1(0:1 + cos �)(�

Z 2�

0
es+sin sds+

+

Z
�

0
es+sin sds)+

(�
Z 2�

0
cos ses+sin sds+

Z
�

0
cos ses+sin sds)]:

It is to easy compute � = M� [a] < 0. According to Theorem 8.1 the zero solution

of the sti� system (8.26), (8.27) is v-stable .

On the other hand, if we neglect "small parasitic parameter" " = 1=
 in equation

(8.25) and disregard the term 

�1dy=dt, we get the equation

y = (0:1 + �)z: (8.34)

Substituting (8.34) into (8.24) we obtain the following equation to �nd z

dz

dt
= [(�0:27 + (
 + 1)�+ (0:1 + �)2]z: (8.35)
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After the parametric excitation � = cos
t we have the equation

dz

dt
= b(t;
)z; (8.36)

where

b = �0:27 + (
 + 1) cos 
t + (0:1 + cos 
t)2:

Since M� [b] = 0:24 > 0 the zero solution of (8.36) is unstable.

Thus, the disregarding of a small "parasitic" perameter 

�1 in (8.25) leads to a

mistaken result.

9 Conclusions and Discussions

The material presented in the paper develops the asymptotical theory for nonliner

singularly perturbed systems with high frequency coe�cients. The expansions ob-

tained allow to study a transient behavior, vibrational control. We give the simple

criteria to de�ne v-stability.

It is important to note for singularly perturbed problems under parametric excitation

the disregarding of a small parameter at higher derivative may deduce to wrong

results. The algorithm proposed in Section 8 is a tool for control engineers to study

complicated nonlinear systems.
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