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Abstract

For plantwide dynamic simulation in chemical process industry, parallel numerical methods using a
divide and conquer strategy are considered. An approach for the numerical solution of initial value
problems for large systems of differential algebraic equations (DAEs) arising from industrial applica-
tions and its realization on parallel computers with shared memory is discussed. The system is parti-
tioned into blocks and then it is extended appropriately, such that block-structured Newton-type meth-
ods can be applied which enable the application of relaxation techniques. This approach has gained
considerable speedup factors for the dynamic simulation of various large-scale distillation plants, cov-
ering systems with up to 60 000 equations.

1 Introduction

During the last three decades, dynamic process simulation has become an indispensable tool for process

design and operation in chemical industry. Particularly due to an improved accuracy of mathematical

process models and an increasing degree of integration in process modeling, the size of the problems

which have to be solved numerically has grown considerably within this time. With that, the plantwide

dynamic process simulation has become an challenging field of application for parallel numerical meth-

ods.

For a dynamic process simulation of complex, highly interconnected plants, initial value problems for

large-scale systems of coupled differential and algebraic equations (DAEs)

with given piecewise continuous parameter function u(t) and the unknown function y(t), have to be solved.

Generally, differential equations arise from balances of energy, mass, and momentum, while algebraic
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relations result from constitutive relations for phenomenological quantities or different constraints, for

example. These DAE systems are highly nonlinear and can involve several tens of thousands of equations

or even more. Because the following is focussed on the parallelization aspect of numerical methods only,

for the considerations in this paper it is assumed that the DAE system is of index 1 (Brenan et al., 1989)

and that consistent initial values are provided (Kröner et al., 1992). Although the DAE systems in chemi-

cal process simulation are usually linearly implicit, the general implicit representation will be used for

notational simplicity.

The goal of this paper is to show, how the hierarchical, modular structure of chemical plants can be ex-

ploited for large-scale dynamic process simulation on parallel computers. For that a plant is considered as

a network of connected process units like reactors, pumps, heat exchangers, or trays of distillation col-

umns. In an equation based flowsheeting approach, a parameter dependent mathematical model, describ-

ing the unit operations, is assigned to each unit type and the units are connected, e.g. by mass and energy

streams. With it the corresponding system of DAEs can be structured into subsystems according to the

units.

In Section 2, a short overview on parallel numerical methods for DAE systems is given, to classify the

parallel methods considered in this paper. A simulation concept based on divide and conquer techniques is

introduced in Section 3. It uses the given unit structure of chemical plants to get hierarchically structured,

block-partitioned systems of DAEs. Section 4 describes how this hierarchical structure can be used to

construct efficiently parallelizable block-structured Newton-type methods. These methods, formally based

on block Schur-complement techniques, require a repeated solution of linear systems with the same pat-

tern structure of sparse, unsymmetric coefficient matrices and with multiple right-hand sides. A direct

solver with  pseudo code techniques is used to solve these linear systems. Most operations of block-

structured Newton-type methods can be performed independently for the blocks. Particularly all the cal-

culations of functions and Jacobian matrices as well as most of the amount needed for the solution of the

linear systems can be covered together in one parallel loop. This results in a coarse-grained parallelism.

Finally, in Section 5, the implementation of the methods in a prototype of the block-oriented process

simulation code BOP and results for the dynamic simulation of large-scale real world applications of

Bayer AG in Leverkusen on a parallel computer with shared memory are discussed.

2 Approaches  to Parallelization

Since the DAE systems which occur in real world chemical process simulation usually represent problems

with multiple time scales, implicit integration methods, e.g. BDF methods (Brenan et al., 1989), are used

for their solution. The resulting systems of nonlinear algebraic equations, which have to be solved at each

discrete point of time, are then treated with quadratically convergent Newton-type methods. Hence, sys-

tems of linear algebraic equations with sparse coefficient matrices have to be solved for each Newton step.
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Since this matrices are in general structurally unsymmetric and are not diagonally dominant, preferably

direct methods are used for their solution. A parallelization of  numerical methods for initial value prob-

lems for DAE systems is in general possible at all three levels of the numerical solution process,

• at the level of DAEs,

• at the level of nonlinear equations, as well as

• at the level of linear equations.

The possible granularity of the parallelism increases within this level hierarchy from linear equations to

DAEs. For all levels, most of the parallel approaches are based on a partitioning of the system into sub-

sidiary systems. This partitioning is cohered with an assignment of variables to equations or subsystems,

respectively.

As the solution of large sparse systems of linear equations is usually the most computationally intensive

part in large-scale dynamic process simulation, a parallelization approach at this level is quite obvious.

Two examples for such an approach should be mentioned here. A generally applicable approach that

works independently of a partitioning of the system of linear equations is described by Grund  (1999).

Here pseudo code techniques are used for vectorization as well as for parallelization. The pseudo code

instructions describing the operations for LU-factorization and solution of the sparse linear system are

assorted successively into groups of operations, so that the operations in each group can be performed

independently, after the operations of the previous group have been performed. Thus, a vectorization or

parallelization approach can be established by realizing for each group the formation of vector operations

or the balanced distribution of the operations to the processors, respectively. In another approach, Mallya

et al. (1997) describe a parallel linear solver based on a multifrontal technique. Here the frontal elimina-

tion is performed simultaneously in multiple independent or loosely connected blocks. For this method a

partitioning of the linear system corresponding to a bordered block-diagonal form of the coefficient matrix

is needed. Camarda and Stadtherr (1999) propose a graph partitioning algorithm that reorders rows and

columns so that such a structure with similarly sized diagonal blocks and a possibly small interface matrix

can be obtained. In general, one of these or any other parallel linear solver can be adapted with less effort

to nearly any dynamic simulation package. Thus, an easy to realize, universally applicable parallelization

approach for dynamic process simulation can be established, if the parallelism is restricted to the linear

solver. In opposite to that, parallel approaches at the higher levels of the numerical solution process en-

large the scope for parallelization, but they usually require an appropriately adapted simulation concept.

The most rigorous parallel approach can be implemented at the level of the DAE system. If this system

can be partitioned into several weakly coupled, lower-ordered systems (blocks), then dynamic iteration

methods, so called waveform relaxation (WR) methods can be applied. These methods, originated from

Picard iteration, have been first successfully applied to VLSI circuit simulation (see Lelarasmee et al.,

1982). Within the iteration process of a waveform relaxation method, the blocks of the DAE system are

solved independently over time horizons, so called windows. This enables a multirate integration by using
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different step-sizes and orders for different subsystems of DAEs. The implementation of WR methods

results in a highly parallelizable concurrent fraction and low sequential overhead. To our knowledge, WR

methods have been first applied to chemical process simulation by Skellum et all. (1988) and Secci et. all.

(1991,1993). While in general for the block partitioning of systems of linear equations the coupling be-

tween blocks needs to be only topologically weak, the partitioning of the DAE system into numerically

weakly coupled blocks based on a consistent assignment of variables to equations is necessary (see Le-

larasmee et all.,1982). Grund et all. (1996) proposed an improved  assignment and partitioning algorithm

and Michael and Borchardt (1996) proved convergence of the WR method for a simplified tray model.

Nevertheless, convergence problems may occur in real world applications or it can be hard to find a suit-

able partitioning. Because of that, WR methods currently seem to be no all purpose methods for the dy-

namic process simulation of homogeneously modeled plants, but in one or the other way they need to be

considered in the face of a heterogeneous multiple plant simulation (see Paloschi and Zitney, 1999). For

that, Ehrhardt et al. (1999) sketch a quasi-Newton acceleration of the waveform relaxation method using a

block Broyden update approach for approximating the dynamic sensitivities of submodels.

For the homogeneous plantwide dynamic process simulation, a parallelization approach at the level of the

systems of nonlinear equations can be seen as a medium between the two approaches sketched before. It

will be shown in the following, that based on an easily obtainable partitioning, a generally applicable par-

allel approach covering “exact” methods as well as relaxation techniques can be established at this level.

3  A Unit-Oriented Divide and Conquer Strategy

Due to a modular modeling of unit operations in equation-based process flowsheeting, the DAE systems

can be structured into m coupled subsystems

Here each subsystem corresponds to a unit of the plant. Based on this structure, divide and conquer tech-

niques can be used in a hierarchical simulation concept which is suitable for an implementation on parallel

computers. For that, a two level hierarchical structure of the DAE system is considered. The first level of

the structure is built by the subsystems of the DAE system. It is assumed that for each subsystems the

corresponding parts of the function as well as of the Jacobian matrix can be computed independently of

the analogous parts of the other subsystems. The second level of the hierarchy is obtained by merging

subsystems to blocks
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Such a so called block partitioning (2) of the DAE system can be predefined, e.g. by a macro model de-

scription covering functional blocks, or can otherwise be generated automatically by different partitioning

algorithms. For the methods described in the next section, a very simple algorithm using a heuristic ap-

proach has proven to be sufficient in almost all cases. It uses only topological information generated from

the generally known nonzero structure of the Jacobian of (1). In contrast to other graph partitioning algo-

rithms in this field, it does not operate on the level of equations or variables respectively, but on the level

of subsystems. That means, subsystems can only be merged to form blocks and can not be split.

                (a) Equations per subsystem                                                              (b) External variables per subsystem

               (c) Equations per block                                                                       (d) External variables per block

  Fig. 1 Block partitioning statistics for a distillation plant (14 blocks, 225 subsystems, 13 436 equations)

It is the main goal of the algorithm to minimize the number of overall external coupling variables between

blocks while getting as far as possible similarly sized blocks. As it will be shown in the next section, the

number of overall coupling variables between blocks can be viewed as a measure for the sequential com-

putational amount of the methods to be constructed and so it mainly determines the maximally possible

speedup due to Amdahl’s law. At the other hand, a similar block size usually will give a good load bal-

ance. The simplest partitioning strategy following this goal can roughly be described as follows. In each

partitioning step, the subsystem or block with the highest ratio of external variables per equations is

merged with the subsystem or block that has as many as possible external variables in common with the
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first one and for which the number of equations of the resulting block does not exceed a threshold value.

This threshold value is updated dynamically from one partitioning step to the next. The main termination

condition of the algorithm is fulfilled if a given number of blocks is reached. This final block number can

be preset or can be computed from the number of subsystems, the number of equations, and the number of

available processors. Another termination condition is fulfilled, if the average ratio of external variables

per equations of the blocks is fallen below a given bound. The resulting block partitioning can be ap-

praised and some statistics can be viewed. In Figure 1, part of such a block partitioning statistics for a

distillation plant with 225 units is viewed. The resulting DAE system has 13 436 equations and 225 sub-

systems, where each subsystem corresponds to a unit. It can be seen that without block partitioning, i.e.

each subsystem forms a block, the average rate of external variables per subsystem is approximately two

third of the average rate of equations per subsystem (Figures 1a, 1b). For a block partitioning into 14

blocks the average rate of external variables per block is reduced to less then one tenth of the average rate

of equations per block and the block sizes do not differ too much (Figures 1c, 1d), although in this case

the main weight in the partitioning algorithm has been on minimizing the number of coupling variables .

Based on the sketched partitioning, a unit-oriented simulation concept can be applied for a parallelization

approach at the level of nonlinear algebraic equations.

4 Parallel Newton-type methods

If implicit integration methods, e.g. BDF methods (Brenan et al., 1989), are used for solving the initial

value problems (1), then a system of nonlinear equations

has to be solved at each discrete point of time. On the basis of a block partitioning (2), this system can be

formally extended to use block-structured Newton-type methods for its solution on parallel computers.

The extension is done by determining the internal variables T
pxxxx ),,,( 21 �= of the blocks, duplicat-

ing of external variables to form T
pzzzz ),,,( 21 �= , and appending identification equations. The exter-

nal coupling variables enclose ’’original’’ external variables as well as their duplicated counterparts. This

approach yields the extended block partitioned system

where the nonlinear functions : , ,j j jr s q

j j j j jr q r s× → ≤ ≤ +� � � � corresponding to the blocks j�~  in

(2) have disjunctive arguments and the function : ,s r s n+ −→� � �  with
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and corresponding terms for jz
k
j j

z �∂∆ + ,1 and �
jz∂ , the equations to be solved in the kth iteration step of

a Newton-type approach for the extended system (3) are of the form

The Jacobian matrix of the extended system has a block structure, which is formally shown in Figure 2.

                                                                                             Fig. 2 Block structure of  the Jacobian
                                                                                                                              matrix of (3)

This formal extension of the system of nonlinear equations can be exploited for different parallelization
approaches.

4.1 Universally applicable block-structured Newton-type methods

Borchardt (1998) and Borchardt et al. (1999a) propose universally applicable block-structured Newton-

type methods based on a splitting of the block functions j� into T
jjj ),( 21 ��� = . Using the modified

pivoting algorithm of a linear solver, the splitting is obtained by determining jr  pivot elements in the

jj rq × dimensional matrices jx j
�∂ , so that the pivot rows determine 1

j�  (see Figure 3.). This splitting

can change during the numerical integration of (1) to ensure the regularity of 1
jx j

�∂  e.g. after disconti-

nuities.
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                                                  Fig. 3 Splitting of the equations j�

Since the matrices ,)1(1,1 pjjx j
=∂ �  are regular by construction, one gets from (4)

with the abbreviations

It is obvious that, if the first approximates 1ˆ +∆ k
jx for the corrections of the internal variables, the right-

hand sides 1ˆ +k
j� ,  as well as the sensitivity matrices jB , and  the block Schur-complement matrices jC

have been computed for all blocks, then the corrections of the external variables 1+∆ kz  can be computed

from the coupling equations (5b),(5c), forming the so called main system. At last, the corrections of the

internal variables 1+∆ kx can then be computed from the block equations (5a).

So, forming the block diagonal matrix )(diag: jCC =  and collecting the right-hand sides 1ˆ +k
j� to form

1ˆ +k� , one gets from (5) that the evaluation of the corrections  Tk
p

kkk xxxx ),,,( 21 ∆∆∆=∆ � and
Tk

p
kkk zzzz ),,,( 21 ∆∆∆=∆ � in the kth iteration step of a modified  Newton method can be efficiently

realized in the following basic steps:

step 1: do parallel for all :},...,2,1{ pj ∈
 (a) for new Jacobian:  (i) compute the coefficient matrix in (6a)

      and generate its LU-factorization
(ii) solve:
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  (b) compute the function ),( k
j

k
jj zx�  and solve:

             enddo
step 2: do sequential

(a) for new Jacobian: generate the LU-factorization of the main system matrix in (6c)
(b) solve:

             enddo
step 3: do parallel for all :},...,2,1{ pj ∈

            enddo

For the choice of the scalar constant c of the modified Newton method it is referred  to Brenan et al.

(1989). To solve (6a) and (6b) the same LU-factorizations are used several times. Consequently, the linear

solver should be particularly efficient in solving linear systems with multiple right-hand sides. Beside this,

the solver has to be generalized for pivoting rectangular matrices to obtain the splitting of the block func-

tions and it should exploit the special structure of the coefficient matrix for factorization.

In this paper Newton-type methods based on (6a)-(6d) are called Type 1 methods. For these methods, the

operations in step 1, and step 3 can be done concurrently for all block systems. Implementing them on

parallel computers with shared memory, both main parts of the computational amount, namely all the cal-

culation of functions and Jacobian matrices as well as most of the amount for the solution of the linear

systems, can be covered together in one parallel loop built up from step 1.  This results in a coarse-grained

parallelism. The bottleneck of parallelization is the sequential step 2, which is dominated by the LU-

factorization of the main system matrix.

To reduce the sequential computational amount of the algorithm and to increase the efficiency of the im-

plementation on parallel computers, various modifications of the method can be introduced. First of all,

zero elements as well as very small elements of the computed dense sub-matrix blocks jC can be elimi-

nated by sparsing techniques. With that, the number of nonzero elements in the main system matrix can

be reduced to less then 30% for large-scale problems. That decreases the time needed for pivoting of the

main system matrix considerably.

Another well known modification are so called multilevel Newton iteration techniques (Rabbat et all.,

1982). Here it is tried to shift computational costs from the main system solution (outer iteration) to the

solution of the block systems by substituting step 1b by an inner iteration loop:
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Set k
j

k
j xx =+ :ˆ 0,1

do jll )1(0= : compute ),ˆ( ,1 k
j

lk
jj zx +�  and solve:

enddo

set 
1, 11ˆ ˆ:  jk lk

j jx x
+ ++∆ = ∆ and 

1,11 ˆ:ˆ +++ = jlk
j

k
j �� .

Usually only 2 or 3 iterations of the inner loop are performed per outer iteration.

Finally, modifications of block-structured Newton-Type methods can be obtained by introducing relaxa-

tion techniques for the solution of the main system equations. The main goal of this approach is to reduce

the number of main system factorizations. If for example, the main system (6c) is formally extended to:

where C  denotes the old block-diagonal matrix from the last factorized main system matrix, then, using a

Jacobi-type relaxation approach, a new factorization of the main system matrix can be avoided by replac-

ing step 2 by the following iterative scheme:

Set 1,0 1,0: , 0, 1(1) ,k k k
j j jz z j p+ += = =/�

do 0)1(0 ll = :
solve:

do parallel for all :},...,2,1{ pj ∈
solve:

enddo

enddo

set 1,111,11 00 :, : ++++++ ∆=∆∆=∆ lk
j

k
j

lk
j

k
j xxzz .

1 1
1

ˆ ( )
,

( )

k k
k

k
z

C C C z
z

c z

+ +
+    + − ∆∆ = −   ∂   

�
� �

(6 ’)c
1 1,

1, 1
ˆ

( )

k k l
k l

k
z

C
z

c z

+ +
+ +    +∆ = −   ∂   

� �
� �

1 1, 1 1 1,
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� �
�� � )’6( b
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In this modification, the approximation of the defect by using the old factorization instead of the new one

is expressed by a modification of the right-hand side in )’6( c , where 1,k l+�  is formed by the 1,k l
j

+�  of all

blocks 1(1)j p= . The explicit evaluation of the matrices jB and jC  is avoided by computing only the

matrix-vector products 1, 1 1, 1k l k l
j j jx B z+ + + +∆ = ∆  and 1, 1 1, 1( )k l k l

j j j jC C z+ + + += − ∆�  from )’6( a . That

means that the solution of (6a) in step 1 can be skipped in this case and (6d) has to be substituted by

Hence, all  operations except of the solution of )’6( c  can now be performed in parallel for the blocks.

4.2 Block-structured Newton-type methods with input / output specifications

Another possibility to reduce the computational amount for the solution of the coupling system is based on

identifying input and output streams of the units in the flowsheet. If according to this, the external vari-

ables jz  of the block systems can be divided into input variables ju  and output variables jv , with

then the linear function �  can be chosen such that Iv −=∂ �   and uv u ∆∂=∆ � .  Here, s=2(n-r) is as-

sumed for notational simplicity. With it, �u∂  is a permutation matrix and there is only one input per out-

put, but the following can be extended to the multiple input case as well. The resulting special block

structure of the extended nonlinear system (3) is formally shown in Figure 4.

                                                                                                           Fig. 4 Block structure of the Jacobian
                                                                                                                      matrix of (3) for Type 2 methods

.ˆ 111 +++ ∆−∆−=∆ k
j

k
j

k
j xxx )’6( d

,,,),( jjjjj rq
j

qsr
j

T
jjj vuvuz

−−+ ∈∈= ��

jvjx jj
�� ∂∂ ,

juj
�∂
�

ju∂

�

�

1�

1x

2�

p�

�

1v 2u2x1u 2v px pv pu
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If the output variables can be computed from the block system equations together with the internal vari-

ables, then an inverse

exists and it is not necessary to split the block system equations. Using the abbreviation )(
jvv BdiagB = ,

this results into the basic algorithm for Type 2 methods:

step 1: do parallel for all :},...,2,1{ pj ∈
(a) for new Jacobian:  (i) compute the coefficient matrix in (7a)

      and generate its LU-factorization
(ii) solve:

            (b) compute the function ),,( k
j

k
j

k
jj vux�  and solve:

            enddo
step 2: do sequential
            (a) for new Jacobian: generate the LU-factorization of the main system matrix in (7c)
            (b) solve:

             enddo
step 3: do parallel for all :},...,2,1{ pj ∈

            enddo

Compared to Type 1 methods, where only the internal variables have been assigned to the block equations,

here the internal and the output variables are assigned to the blocks. With that, the size of the main system

is reduced to the half. Of course, modifications as sparsing, multilevel Newton iteration, and relaxation

techniques can also be used in the Type 2 case. Apart from the fact that Type 1 methods can be applied to

more general problems, Type 2 methods enable a better parallelization and applicability of relaxation

techniques.

In the case of weakly coupled blocks, a relaxation based modification of a Type 2 method can be intro-

duced by using previous values of u∆  to approximate uBv∆  in (7c). For a Jacobi-type relaxation ap-

proach, the sequential step 2 can then be substituted by

111 ˆ +++ ∆−∆−=∆ k
jx

k
j

k
j uBxx

j

)7( d

[ ] 1 1

1 1

ˆ ,k k
u v

k k
u

B u v

v u

+ +

+ +

∂ + ∆ = −∆

∆ = ∂ ∆

�
�

)7( c

1

1

ˆ
( , , )

ˆj j j j j

k
j k k k

x v j j jk
j

x
c x u v

v

+

+

 ∆ ∂ ∂ =    ∆ 
� � � )7( b

j

j j j

j

x

x j v j u j
v

B

B

 
 ∂ ∂ = ∂     

� � � )7( a

[ ] 1−
∂∂ jvjx jj
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Set 1,0 1ˆ: , 1(1) ,k k
j jv v j p+ +∆ = −∆ =

do 0)1(0 ll = : 

do parallel for all :},...,2,1{ pj ∈
solve:

enddo

enddo

set [ ]01, 11 1 1: , 1(1) , .  
Tk lk k k

j j uv v j p u v+ ++ + +∆ = ∆ = ∆ = ∂ ∆�

Here again, the explicit evaluation of the sensitivity matrices 
jxB  and 

jvB  of the internal and of the out-

put variables with respect to input variables is avoided by computing only the vectors

Because of this, the operations for the solution of (7a) in step 1 can be skipped as well, if (7d) is substi-

tuted by

Except of the permutation operations, all other operations of such a relaxation modification of a Type 2

method can be done in parallel.

For monitoring convergence of the relaxation iteration, one should look to what the replacement of (7c)

with (7c’) means. Because of

with  vu BD +∂= � and T
uvBID )(

~ �∂+= , the solution of (7c) is equivalent to solving

and (7c’) is equivalent to

The transformation of the matrix D  into D
~

  is formally shown in Figure 5. Convergence can now  be

monitored by using the quantities
1jvB for example.

[ ] lkT
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lk vBvv +++ ∆∂−∆−=∆ �

)’7( c

1, 1
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x
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� � � )’7( a

1, 1 1 1, 1ˆk l k k l
j j jv v v+ + + + +∆ = −∆ + ∆
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Fig. 5 Transformation of the main system matrix for Type 2 methods

Successive substitution appears as a special case of this relaxation modification of Type 2 methods, if all

sensitivity matrices 
jxB  and 

jvB  are set to zero. That also implies the possibility that only some of the

sensitivity matrices are updated. Because these sensitivity matrices just represent that kind of information

that is neglected in ordinary waveform relaxation approaches, Type 2 methods can be used to study the

convergence problems that can appear for WR methods. Beside that, the block-structured Newton-Type

methods also offer the possibility to exploit occasionally unequal activity (latency) of units.

5 Implementation and Results

Starting from a unit-based hierarchical modeling, a parallel-modular approach for the dynamic simulation

of large-scale chemical processes is implemented in the prototype of the Block Oriented Process simula-

tion package BOP. The key methods for parallelization are currently the block-structured Newton-type

methods described in Section 4. BOP uses a hierarchically structured data interface (Horn, 1996). The

interface describes the system of DAEs as structured into subsystems corresponding to the units of the

plant and is usable for an independent evaluation of subsystem functions and Jacobian matrices. Until now

it has been generated from the data supplied by the process simulator SPEEDUP (Aspen Technology, Inc.,

1998), but currently a first version of a compiler for a purpose-designed, high-level modeling language for

process simulation, both developed at Weierstrass Institute, is tested. Thus, the data interface for BOP can

upcoming be generated from a problem description with this highly structured language. A tool for trans-

forming a process description with this language to a subset of the language used in SPEEDUP and vise

versa already exists. A comparable tool with respect to the simulator DIVA (Kröner, 1990) is planned.

Currently the data interfaces of DIVA and BOP can be generated mutually. With the modeling language

of BOP also a predefined block partitioning can be described. If no block decomposition is predefined, a

topological block partitioning algorithm is used within BOP. It merges subsystems to blocks and reports
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partitioning statistics. Due to it’s low complexity it is very fast. Usually, a block partitioning is generated

only once during preprocessing, but it is also possible to generate a new one during dynamic simulation.

Currently, only BDF methods are included to apply implicit numerical integration to the usually stiff sys-

tems of DAEs. For that the DASSL code from Petzold (1991) has been modified by replacing the nonlin-

ear and linear solver, adding the handling of discontinuities, and introducing changes in consistent initiali-

zation (Kröner et al., 1992), and error tests. The systems of nonlinear equations are solved with the block-

structured Newton-type methods. This methods require the repeated solution of linear systems. For solv-

ing these systems with unsymmetric and sparse coefficient matrices, an extended version of the linear

solver GSPAR (Grund, 1999) is covered. It uses the Gaussian elimination method. The nonzero elements

of the coefficient matrix are stored in compressed sparse row format. To control sparsity and to ensure

numerical stability, a pivoting algorithm with dynamic reordering of columns and  partial pivoting in the

pivot columns is used. Pivoting strategies with different numerical complexity are implemented. Pseudo

code instructions are generated to perform several factorizations for matrices with the same pattern struc-

ture using the same pivot sequence as well as to solve the linear system for multiple right-hand sides. This

instructions describe the operations that are necessary at one hand for the factorization and at the other

hand for the solution of the linear system. Using the pseudo code technique enables a fast refactorization

as well as an efficient handling of multiple right-hand sides. It can be exploited for vectorization by

grouping independent operations of the same type to vector operations. For using GSPAR within BOP,

GSPAR has been extended for pivoting on matrices for which the number of rows exceeds the number of

columns (see Figure 3 in Section 3) and for exploiting the special structure of the matrices for block-

structured Newton methods of Type 1 during factorization (see (6a),(6b) in Section 4).

The simulation package BOP is currently implemented on shared memory computers Cray J90, SGI Ori-

gin 2000 and Compaq AlphaServer using multiprocessing compiler directives for parallelization (see

OpenMP, 1999). Used for the dynamic process simulation of various large distillation plants of Bayer AG

in Leverkusen, BOP has shown a good parallel performance. Some results are presented below. All times

given in Table 1 to Table 5 have been measured for whole simulation runs on non dedicated computers

Cray J90 and include the times for sequential pre- and post-processing.

   Processors
   Blocks

       1
       1

       1
     21

      7
     21

      8
      8

     21
     21

   Coupling variables        0    819    819    273    819

   CPU (sec.)
   Wall clock (sec.)

1 250
1 285

1 124
1 148

1 161
  245

1 306
   292

1 142
  142

   Speedup factor  1.00  1.12  5.24   4.40  9.05

Table 1. Dynamic simulation with BOP for plant bayer12 (170 units, 19 558 equations)
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    Processors
    Blocks

    1
    1

     1
   24

     4
   24

  12
  24

  24
  24

    CPU (sec.)
    Wall clock (sec.)

 860
 877

 904
 920

 937
 271

920
124

900
  89

    Speedup factor 1.00 0.95 3.24 7.07 9.80

Table 2. Dynamic simulation with BOP for plant bayer14 (190 units, 13 436 equations)

    Processors
    Blocks

    1
    1

     1
   24

     8
   24

  12
  24

  24
  24

    CPU (sec.)
    Wall clock (sec.)

 606
 622

  639
  654

 717
 147

675
116

676
  85

    Speedup factor 1.00  0.95 4.23 5.36 7.32

Table 3. Dynamic simulation with BOP for plant bayer13 (296 units, 18 350 equations)

   Processors
   Blocks

       1
       1

      1
     16

    1
  32

      8
    16

   CPU (sec.)
   Wall clock (sec.)

1 833
1 866

1 071
1 084

 809
 825

1 538
   372

   Speedup factor   1.00   1.72 2.26   5.02

Table 4. Dynamic simulation with BOP for plant bayer01 (785 units, 57 735 equations)

In Table 1 the number of coupling variables, which is related to the size of the main system, is listed

additionally. For the treated examples, a blocksize of about one thousand was found to be efficient, but

that should depend on the complexity of the unit models and the degree of integration in the process

modeling. The results for example bayer01 have to be discussed under the constraint that it was not

possible to perform function as well as Jacobian evaluations for the blocks concurrently for this example.

That was due to common blocks (save variables) used in some library procedures that have been not

accessible. Therefore for this example, the operations for function and Jacobian evaluations had to be

protected by a guarded region or critical section inside the parallel region, what allows only one processor

at a time to do work of this region.

In Table 5 the performance of BOP using different block-structured Newton-type methods is compared to

that of SPEEDUP on a Cray J90. The example is a reactor model built up modularly by a multiphase cell

model which might be associated to a simplified reactive separation volume element. As expected, Type 2

methods have a minor sequential overhead and parallelize better then Type 1 methods.
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  Simulation with Processors Blocks CPU (sec.) Wall clock (sec.)

  SPEEDUP
  BOP

1
1

  1
  1

7 008
5 089

7 516
5 120

  BOP with Type 1
  BOP with Type 2

1
1

18
18

5 814
4 932

5 870
4 967

  BOP with Type 1
  BOP with Type 2

6
6

18
18

6 208
5 140

1 904
1 371

Table 5. Dynamic simulation for reactor600 (45 600 equations) on a CrayJ90

To see which performance could be possible on a dedicated computer, a performance analysis with the

Cray tool ATExpert has been carried out. A result for the example bayer12 can be seen in Figure 6. Here a

16-block partitioning was used to estimate the maximal speedup that can be expected for using up to 16

processors.

Fig. 6 Performance analysis with ATExpert
for the dynamic simulation of bayer12 on a
CrayJ90, using BOP with a 16-block parti-
tioning
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6 Concluding Remarks

In this paper, parallel approaches to the numerical solution of  DAE systems in large-scale dynamic proc-

ess simulation have been discussed. Block-structured Newton-type methods are currently our favorite

candidate for parallelization in homogeneously modeled plantwide dynamic process simulation. For these

methods simple partitioning algorithms based on a unit-oriented modeling can be used to generate the data

structure for a hierarchical simulation concept. The methods have shown to be generally applicable, reli-

able and numerically stable. Convergence problems can be avoided, because it can be switched from the

relaxation modifications to an “exact” method at any point of the dynamic simulation. Since both main

parts of the computational amount for solving the DAE system are covered together in one parallel region,

a coarse grained parallelism is obtained. Often, even  a sequential speedup is gained for large-scale prob-

lems. The implementation of a unit-oriented hierarchical simulation concept within the simulator BOP has

proven to be successful for large-scale real world dynamic simulation applications on parallel computers

with shared memory. A parallelization approach of block-structured Newton-type methods on distributed

memory machines seems to be promising.
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