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Abstract

Two properties of �nite sets fAjg of n�n -matrices are introduced: P-stability

and BV-stability. These properties can be interpreted as two kinds of robustness of

orbits of the form xi+1 = Ajixi + ui with respect to disturbances fuig . Duality

between these properties is established, which proves that they are equivalent, re-

spectively, to the right convergent product (RCP) property and the left convergent

product (LCP) property of �nite sets of matrices. The results can be applied, in

particular, in the theory of polyhedral Skorokhod problems and sweeping processes

with oblique re�ection.

Introduction

We consider here �nite sets � = fA1; : : : ; Akg of n � n -matrices and their �nite and

in�nite products, see [1, 2, 6, 8]. Following [8], by the discrete linear inclusion DLI(�)

we understand the set of all sequences (trajectories of �) xj+1 = Aijxj , j = 0; 1; : : :, of

vectors in Rn , where matrices Aij 2 � are taken in an arbitrary order.

In applications such as control theory, wavelet analysis or Markov chains, it is often

important whether trajectories of the DLI stay bounded or may diverge to in�nity. A DLI

whose trajectories are bounded is called product bounded. Another important property

of the DLI is convergence of any trajectory to some point in Rn (not necessarily to 0).

This property is stronger than product boundedness and is called left convergent products

property or just LCP. As is known [1], LCP is equivalent to convergence of any left-in�nite

matrix product of the form Aj0Aj1 : : :, Aji 2 � , i = 0; 1; : : : , to some n�n -matrix A� .

The dual property RCP (right convergent products) is not equivalent to LCP, but it is,

obviously, equivalent to the LCP property of the dual set �� = fA�

jg , where A� is the

transversed matrix A .

In the theory of polyhedral Skorokhod problems with oblique re�ection [3, 4, 5, 13], it is

often convenient to write conditions of existence and uniqueness of solutions, and also of

Lipschitz continuity of corresponding Skorokhod operators, in terms of di�erent kinds of

stability of a special set � of matrices. For a Skorokhod problem characterized by a �nite

number of pairs (nj; dj) , where nj is the outward normal to j -th face of the characteristic

polyhedral set Z � Rn and dj is the corresponding vector of oblique projection, the

associated projection set � is considered. The set � consists of all matrices Pj of oblique

projection onto Lj = n?j along the line span(dj) :

Pjx = x�
djhnj ; xi

hnj ; dji
; i = j; : : : ; k:
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Apart from product boundedness, two other stability-type properties of the ASP � play

an important role in verifying regularity of the Skorokhod operator. First of them, the

BV-stability, consists in �niteness of length of any trajectory of � , that is, the inequalityX
i=0;1;:::

kxi+1 � xik <1

should hold for any trajectory fxjg of � . This property, in particular, ensures convergence

of discrete-time approximation methods to continuous-time solutions of the Skorokhod

problem.

The second property, the P-stability, see [10], needs an additional construction for its

formulation. Together with any Pi 2 � , let us consider two a�ne operators P+

i and

P�

i of projection along di onto parallel hyperplanes L+i = Li + ni and L�i = Li � ni ,

respectively. The set � is called P-stable if all sequences fx0; x1; : : :g of vectors in Rn

satisfying

xj+1 = �jP
+

i xj + (1� �j)P
�

i xj;

for some i = i(j) 2 J and some �j 2 [0; 1] at each step j , are bounded. This property

is a su�cient condition of Lipschitz continuity of the Skorokhod operator acting in the

space of continuous inputs and outputs [5].

As follows from Proposition 1.3 below, both properties of BV-stability and P-stability

of sets of oblique projections are stronger than product boundedness. In this paper we

extend these notions to sets of general matrices and study their basic properties. In

particular, the following duality principle is proved: The set fAjg is BV-stable if and

only if the dual set fA�

jg is P-stable.

1 Discrete linear inclusions

We will consider �nite sets � = fA1; : : : ; Akg of n�n -matrices and their �nite and in�nite

products. Following [8], by the discrete linear inclusion DLI(�) we will understand the

set of all sequences fxig , i = 0; 1; : : :, of vectors in Rn such that

xi+1 = Ajixi (1.1)

for some Aji 2 � . These sequences will be called trajectories of � ; �nite initial segments

of trajectories will be called �nite trajectories.

Let us also de�ne a more general class of sequences in Rn :

De�nition 1.1 A sequence fxi 2 Rn : i = 0; 1; : : : ; g is a partial trajectory of � if

xi+1 = �ixi + (1 � �i)Ajixi;

for some �i 2 [0; 1] and some ji 2 J = f1; : : : ; kg , i = 0; 1; : : : .

The following notion is central in the theory of discrete linear inclusions.

De�nition 1.2 A set of matrices � = fA1; : : : ; Akg is product bounded if there exists a

C > 0 such that kAj1 : : : Ajmk < C for all �nite sequences ji 2 J , i = 1; : : : ;m .
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The following assertion is an easy consequence of well-known results in the theory of DLIs

(see, for instance, [1]).

Proposition 1.3 For a �nite matrix set � , the following four properties are equivalent:

(1) � is product bounded;

(2) all trajectories of � are bounded;

(3) all partial trajectories of � are bounded;

(4) there exists a norm k � k� in Rn such that

kAxk� � kxk�; A 2 �; x 2 Rn: (1.2)

Any norm k � k� satisfying (1.2) will be called a contraction norm for the set � .

2 BV-stability of matrix sets

Let � = fA1; : : : ; Akg be a �nite set of n�n -matrices.

De�nition 2.1 The set � is called BV-stable if all its trajectories fx0; x1; : : :g have

bounded variation (�nite length), that is, ifX
i=0;1;:::

kxi+1 � xik < +1: (2.1)

Now, let us derive some basic properties of BV-stable sets of matrices.

Proposition 2.2 The set � is BV-stable if and only if any left-in�nite sequence fMmg ,
m = 0; 1; : : : , of products

Mm = AjmAjm�1
: : : Aj0; Aji 2 �; i = 0; 1; : : : ;m;

has bounded variation, that is, if and only if

1X
i=0

kMi+1 �Mik < +1; (2.2)

where k � k is some matrix norm (they are all equivalent, thus, the result does not depend

on the choice of k � k).

Proof. Obviously, (2.2) implies (2.1). Now, let us consider the norm

kxk =
X

s=1;:::;n

jxsj; where x = (x1; : : : ; xn):

If the variation of the sequence Mi of matrices is in�nite, then the sum of variations of

vector sequences fM0ej;M1ej; : : :g over j = 1; : : : ; n (here ej are the coordinate vectors)

is also in�nite because

k(Mi+1 �Mi)k �
X

j=1;:::;n

k(Mi+1 �Mi)ejk:
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Hence, at least one of these sequences has in�nite variation which is a contradiction to

the BV-stability of the set � . �

For completeness, let us also prove that BV-stability of � implies uniform boundedness

of lengths of all trajectories of � starting in any bounded set.

Theorem 2.3 A set � is BV-stable if and only if, for any bounded set B � Rn , there

exists a D > 0 such that X
i=0;1;:::

kxi+1 � xik � D

for any trajectory fx0; x1; : : :g of � satisfying x0 2 B .

Proof. Let us introduce auxiliary functions Fm(x) on Rn by the following recursive

procedure. Set F0(x) = kxk and then de�ne

Fm+1 = max
A2�

(kx�Axk+ Fk(Ax)) (2.3)

if the function Fm(x) is already de�ned. Thus, for each m , Fm(x) is the length of the

longest m -step �nite trajectory of � from x .

Let us show that all Fm(x) are homogeneous symmetric convex functions on Rn . Indeed,

the relation

Fm(�x) = j�jFm(x); � 2 R;

follows immediately from de�nitions. The convexity of Fm+1(x) follows from the convexity

of Fk(x) and convexity of kx�Ajxk for each j 2 J . Indeed, according to (2.3), Fm+1(x)

is the maximum of convex functions Gjm(x) = kx�Ajxk+ Fm(Ajx) over j 2 J .

By construction, Fm+1(x) � Fm(x) for each x 2 Rn . Let us denote

F (x) = lim
m!1

Fm(x)

(we do not exclude the case F (x) = +1). The function F (x) is a convex homogeneous

symmetric function from Rn to R [ f+1g . To prove the theorem, it su�ces to prove

that, for any BV-stable set � , the function F (x) is �nite for any x 2 Rn because this

would imply uniform boundedness of F on any bounded subset of Rn .

Suppose the contrary and denote by H the set of x 2 Rn for which F (x) < +1 .

Obviously, H is a convex set in Rn and, also, 0 2 H , and �H = H for each real � , as

follows from the properties of F (x) . Hence, H is a linear subspace of Rn . We will need

the following auxiliary result.

Lemma 2.4 For each x 62 H there exists a �nite trajectory fx0; : : : ; xmg of � such that

x0 = x;
X

i=0;:::;m�1

kxi+1 � xik � 1; xm 62 H: (2.4)

Proof. Suppose the contrary. Consider a trajectory fx0; x1; : : :g from x = x0 such thatP
kxi+1 � xik > 1 and let p be the minimal index such that xp 2 H . We have xp�1 62 H

and, thus, kx0 � xp�1k � 1 . Hence,

kxpk � (max
j2J

kAjk)kxp�1k � (max
j
kAj2Jk)(kx0k+ 1):
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Denote S := (maxj2J kAjk)(kx0k+1) . Now, since the function F (x) is convex and �nite

on a linear subspace H , it is continuous on H and, hence, uniformly bounded from above

on the ball

BS = fx 2 H : kxk � Sg

by some constant Q > 0 . Hence, by de�nition of F (�) , we have kxp+qk � S +Q for each

q = 0; 1; : : :, and this is a contradiction to the assumption x0 62 H . Lemma 2.4 is proved.

�

Now, choose an arbitrary initial point x0 62 H and construct a trajectory fx0; : : : ; xmg
satisfying (2.4). Then take xm 62 H for a new initial point and repeat the procedure.

Composition of all resulting �nite trajectories is a trajectory of � of in�nite length.

Theorem 2.3 is completely proved. �

Let us also formulate a recent result on equivalent de�nitions of BV-stability [12]. First,

we will de�ne more stability-like properties of �nite sets of matrices.

De�nition 2.5 A set � is LCP (left convergent products) if any left-in�nite matrix

product : : : Aj1Aj0 of matrices Aji 2 � has a limit. This is equivalent to the convergence

of any trajectory of � (not necessarily to the origin), see [2].

De�nition 2.6 The set � possesses the vanishing steps property (VS) if

lim
i!1

kxi+1 � xik = 0

for any trajectory fx0; x1; : : :g of � .

De�nition 2.7 A matrix A is said to be paracontracting with respect to the norm k � k
in Rn if, for all x 2 Rn ,

Ax 6= x, kAxk < kxk:

It is `-paracontracting with respect to k � k if there exists  > 0 such that

kAxk � kxk � kAx� xk

holds for all x 2 Rn .

A set of matrices is called paracontracting or ` -paracontracting with respect to k � k if

all its matrices possess the respective property; and it is called just paracontracting or

` -paracontracting if there exists a norm in Rn such that the set possesses the respective

property for this norm. We use the abbreviations PC and LPC, respectively.

The main theorem in [12] reads

Theorem 2.8 For any �nite set � of n�n-matrices, the properties BV, LCP, PC, LPC,

and VS are equivalent to each other.
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3 P-stability of matrix sets

In order to de�ne P-stability, let us �rst give the following

De�nition 3.1 A sequence fx0; x1; : : :g is called an "-trajectory of the set � if there

exists a sequence of vectors vi 2 Rn , i = 0; 1; : : : , and a sequence of indices ji 2 J ,

i = 0; 1; : : : , such that kvik � " for any i and

xi+1 = vi +Aji(xi � vi); i = 0; 1; : : : (3.1)

De�nition 3.2 A set � of n�n -matrices is called Perron stable (P-stable) if all its

1 -trajectories fx0; x1; : : :g are bounded, see [10].

For sets of oblique projection matrices this de�nition is equivalent to that given in the

Introduction.

Obviously, the de�nition remains the same if instead of 1 -trajectories, any other class of

" -trajectories for some " > 0 is mentioned. Next, we prove some basic results concerning

P-stable sets.

Lemma 3.3 The set of all 1-trajectories of � from 0 is uniformly bounded if and only

if the class of its 1-trajectories from the unit ball is uniformly bounded.

Proof. If fx0; : : : ; xmg is a 1 -trajectory of � then f0; x1 � x0; : : : ; xm � x0g is a (1 +

kx0k) -trajectory of � (this is a direct consequence of de�nitions). It remains to notice

that uniform boundedness of all 1 -trajectories of � from 0 is equivalent to uniform

boundedness of all its 2 -trajectories from 0 . �

The following assertion is analogous to Theorem 2.3.

Theorem 3.4 The set � is P-stable if and only if, for any bounded subset B � Rn ,

there exists a constant D > 0 such that kxmk � D , m = 0; 1; : : : , for any 1-trajectory
fx0; x1; : : :g of � satisfying x0 2 B .

Proof. According to Lemma 3.3, it su�ces to prove the theorem for B = f0g . Suppose
the contrary. Then, again, by Lemma 3.3, for any x 2 Rn and any L > 0 , there exists a

1 -trajectory fx; x1; : : : ; xmg of � such that kxmk > L .

Now, let us construct a �nite 1 -trajectory of � from x0 = 0 to some x1 , kx1k > 1 .

Next, construct a 1 trajectory from x1 to some x2 , kx2k > 2 , and so on. The resulting

composition is an unbounded 1 -trajectory of � which is a contradiction. �

Finally, let us give another de�nition of P-stability which can be interpreted as robustness

of a linear control system to perturbations of a special type.

Denote ui := vi � vi+1 and yi = xi � vi in (3.1). We get the recurrent relation

yi+1 = Ajiyi + ui: (3.2)

6



If the sequence kvik is uniformly bounded then the uniform boundedness of the sequence

kxik is equivalent to that of the sequence kyik . The uniform boundedness of the sequence

kvik itself is equivalent to that of the sequence k
P

j=0;:::;i ujk , i = 0; 1; : : :. Now, we can

rewrite the de�nition of P-stability as follows:

Proposition 3.5 The set � is P-stable if and only if there exists an M > 0 such that

for any sequence ui satisfying

k
X

j=0;:::;i

ujk � 1; i = 0; 1; : : : ;

and any y0 2 Rn satisfying ky0k � 1 , the sequence fyig constructed by the rule (3.2)

satis�es

kyik �M; i = 0; 1; : : : :

4 Duality of BV-stability and P-stability

As follows from de�nitions, a set � = fAj : j 2 Jg of n�n -matrices is product bounded

if and only if the dual set �� = fA�

j : j 2 Jg is product bounded (A� is the transposed

matrix A). It is also clear that the LCP property of � is equivalent to the RCP property

of �� and vice-versa. The following theorem shows that the notions of BV-stability and

P-stability are dual to each other in the same sense.

Theorem 4.1 (Duality principle) The P-stability of the set � is equivalent to the BV-
stability of the set �� and vice-versa, The BV-stability of the set � is equivalent to the

P-stability of the set �� .

Let us �rst prove an auxiliary result (it is elementary and, of course, well known, but we

provide a proof for convenience of the reader).

Lemma 4.2 Let fhjg , j 2 J , be a �nite set of vectors in Rn . Then there exists a subset
J 0 � J such that

k
X
j2J 0

hjk � �(n)
X
j2J

khjk;

where �(n) > 0 is a constant for each n = 1; 2; : : :.

Proof. Since all the norms in Rn are equivalent, we may assume

kxk = max
s=1;:::;n

jxsj; where x = (x1; : : : ; xn): (4.1)

Denote L =
P

j2J kh
jk . Since X

j2J; p=1;:::;n

jhjpj � L;

there exists a coordinate index p such that

X
j2J

jhjpj �
L

n
;
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Hence, for some sequence s(j) = �1 , we get

k
X
j2J

s(j)hjpk �
L

n
:

Denote J 0 = fj 2 J : s(j) = 1g and J 00 = fj 2 J : s(j) = �1g . We have either

k
X
j2J 00

hjpk �
L

2n
or k

X
j2J 0

hjpk �
L

2n

and, hence, one can choose �(n) = L=2n (for this particular norm (4.1)). �

Proof of Theorem 4.1. Suppose that the set � is P-stable and consider a �nite 1 -

trajectory

X = fx0; x1; : : : ; xq+1g:

The following relations hold:

xm+1 = vm +Ajm(xm � vm); kvmk � 1; m = 0; : : : ; q:

After transformations, we get

xm+1 = vm +Mm
m (vm�1 � vm) +Mm

m�1(vm�2 � vm�1)+

: : :+Mm
0
(x0 � v0); m = 0; : : : ; n; (4.2)

where Mm
i = AjmAjm�1

: : :Aji . Let us rewrite (4.2) in the form

xm+1 = (I �Mm
m )vm + (Mm

m �Mm
m�1)vm�1 + : : :

+(Mm
1 �Mm

0 )v0 +Mm
0 x0:

By assumption, the norms of all endpoints xm+1 of 1 -trajectories from x0 have to be

uniformly bounded for any choice of matrices Aji from � and any sequence of disturbance

vectors vi , kvik � 1 , i = 0; 1; : : : . Let us show that this property (Property P1) is

equivalent to the following one (Property P2): All the sums of the form kMm
m �Mm

m�1k+
: : :+ kMm

1 �Mm
0 k are uniformly bounded from above.

Obviously, P2 implies P1; let us prove the reverse implication. Choose vectors hi 2 Rn

such that khik = 1 and

k(M i+1
m �M i

m)hik = kM i+1
m �M i

mkkhik; i = 0; : : : ;m� 1:

Now, using Lemma 4.2, we �nd a subset J 0 � J = f0; : : : ;m� 1g such that

k
X
i2J 0

(M i+1
m �M i

m)hik � �(n)
X
i2J

kM i+1
m �M i

mk:

It remains to choose

vi =

(
hi if i 2 J 0;

0 otherwise:

and get a contradiction with the uniform boundedness of kxik .
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Property P2 is equivalent to the fact that the total variation of any right-in�nite matrix

product Aj0Aj1 : : : is uniformly bounded as well. This is, in turn, equivalent to the

uniform boundedness of variations of left-in�nite products of transposed matrices A�

j .

Finally, the last property is equivalent to the BV-stability of the set �� (see Proposition

2.2).

All the logical implications we made are reversible, thus the required equivalence follows.

Since (��)� = � , the equivalence of the BV-stability of � and the P-stability of ��

follows immediately. �

Corollary 4.3 The class of P-stable sets coincides with the class of RCP (right conver-

gent products) sets.

Proof. The assertion follows fromTheorem 4.1 and Theorem 2.8 because the set � = fAjg
is RCP if and only if the set �� is LCP. �

Corollary 4.4 The set of projections

fPj = Pfnj ;djgg where Pfnj ;djgx = x�
djhnj ; xi

hnj ; dji
; j = 1; : : : ; k;

is P-stable if and only if the set of dual oblique projections fP �

j = Pfdj;njgg is BV-stable.

Proof. Any projection matrix P = Pfp;dg can be represented as P = I � A , where

A = fas;qg and

as;q =
psdq

hp; di
; 1 � s; q � n:

Thus, P � = I � A� = Pfd;pg and, hence, Qi = P �

i . Now, the required statement follows

from Theorem 4.1. �

The author wishes to thank P. Krej£í and L. Elsner for stimulating discussions of the

subject.
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