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Abstract

A criterion for the calmness of a class of multifunctions between �nite-dimensional

spaces is derived in terms of subdi�erential concepts developed by Mordukhovich.

The considered class comprises general constraint set mappings as they occur in

optimization or mappings associated with a certain type of variational systems. The

criterion for calmness is obtained as an appropriate reduction of Mordukhovich's

well-known characterization of the stronger Aubin property (roughly spoken, one

may pass to the boundaries of normal cones or subdi�erentials when aiming at

calmness).

1 Introduction

Frequently, the stability analysis of multifunctions M : Y � X between metric spaces

X;Y , relies on the Aubin property, which is said to hold at some (�y; �x) 2 GphM ( =

graph of M), if there exist neighborhoods V;U of �y; �x, respectively, as well as some L > 0

such that

d(x;M(y2)) � Ld(y1; y2) for all y1; y2 2 V, for all x 2M(y1) \ U :

This property is well known to be equivalent with the metric regularity of the inverse

multifunctionM�1 (cf. e. g. [8], Th. 9.43). In case of �nite-dimensional spaces X;Y , it is

possible to characterize equivalently the Aubin property of closed multifunctions by the

following algebraic criterion (see [5]):

D�M(�y; �x)(0) = f0g , (1)

where D�M refers to Mordukhovich's coderivative. A weaker concept of Lipschitz-like

behaviour of multifunctions is calmness, which is satis�ed at some (�y; �x) 2 GphM , if

there exist neighborhoods V;U of �y; �x, respectively, as well as some L > 0 such that

d(x;M(�y)) � Ld(y; �y) for all y 2 V, for all x 2M(y) \ U :

The concept of calmness, applied to value functions of optimization problems, goes back

to Clarke [1], who pointed out its relevance as a constraint quali�cation for obtaining

nondegenerate Lagrange multipliers in optimization problems. To illustrate the analogous

role that calmness of multifunctions plays in the same context, assume that M is a closed

multifunction and that �x is a local minimizer of some locally Lipschitzian function f on
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M(�y). Then, there is some K > 0 such that f(�x) � f(x) + Kd(x;M(�y)) for all x in a

neighborhood of �x (see Prop. 2.4.3. in [2]). Now, if M is calm at (�y; �x), then the last

inequality may be extended to f(�x) � f(x)+KLd(y; �y), which holds true for all x 2M(y)

with x close to �x and y close to �y. This, however, is exactly the calmness condition which

was shown in [2] (Prop. 6.4.4) to yield a nonsmooth (nondegenerate) multiplier rule for

�nite-dimensional optimization problems with Lipschitzian data.

For the derivation of multiplier rules, it is usual to indicate appropriate constraint quali�-

cations which have a chance to be veri�ed for the given data. Frequently, such constraint

quali�cations are associated with the Aubin property rather than calmness of the un-

derlying constraint set mapping. This, however, may result in too strong conditions as

is most easily seen from the convex example, in which f(x) = x is minimized subject

to g(x) = jxj � 0. Here, the Aubin property of the constraint set mapping (which is

equivalent to Slater's condition) fails to hold for the minimizer due to 0 2 @g(0) = [�1; 1].

On the other hand, calmness is ful�lled and, consequently, one has the multiplier rule

0 2 @f(0) + �@g(0) = [1 � �; 1 + �] for some � � 0. An appropriate constraint qual-

i�cation in this example would be the condition 0 =2 bd @g(0), where bd refers to the

topological boundary. This can be considered as a weak Slater's condition, which is

actually satis�ed in the above example.

To put this idea into a more general context, we consider the following class of �nite-

dimensional multifunctions:

M(y) := fx 2 !jg(x) + y 2 �g;

where ! � R
p;� � R

m are closed subsets and g : Rp ! R
m is locally Lipschitz. This

class covers constraint sets of nonsmooth, �nite-dimensional optimization but also some

generalized equations, in particular nonlinear complementarity problems. Applying the

criterion (1) for the Aubin property to this structure gives[
y�2N�(g(�x))nf0g

D�g(�x)(y�) \ (�N!(�x)) = ;; (2)

where N refers to Mordukhovich's normal cone. Now, the main result of this paper states

that, under mild assumptions on ! and g, the weaker calmness property can be guaranteed

under the weaker condition[
y�2N�(g(�x))nf0g

D�g(�x)(y�) \ (�bdN!(�x)) = ;:

Indeed, this criterion applies without any further assumptions on g given that the ab-

stract constraint set ! (which typically has a simple structure) is convex or de�ned as an

intersection or union of a �nite number of smooth inequalities under the usual regularity

condition. The result is no longer true for arbitrary closed sets !, but at least for those

being Clarke-regular it can be saved under the additional assumption that either g or !

is semismooth. If, moreover, g is Clarke-regular in the special case � = R
m

�
(modelling
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a �nite number of inequalities), one can even sharpen the above condition by passing to

the boundary on the left-hand side as well. In this way, for instance the simple convex

example mentioned above will be covered. Finally, the obtained criterion is applied to the

case of nonlinear complementarity problems.

2 Basic concepts and notation

The following notation is employed throughout this paper: k � k2 is the Euclidean norm

in Rn and B 2 is the respective unit ball. k � k is an arbitrary norm in Rn, k � k� is the
corresponding dual norm, and B � is the unit ball associated with k � k�. For a set !, �!
and de

!
denote the indicator and the euclidean distance function, respectively. Finally, ']'

refers to the cardinality of sets.

Next, we recall some basic concepts from nonsmooth analysis needed in this paper. For

a closed subset A � R
k, the contingent and Clarke's tangent cone, respectively, to A at

some point �x 2 A are de�ned by

KA(�x) =
�
d 2 Rkj 9tn # 0; dn ! d : �x+ tn dn 2 A

	
:

T c

A
(�x) =

�
d 2 Rkj 8tn # 0; xn ! �x (xn 2 A)9dn ! d : xn + tn dn 2 A

	
:

The respective normal cones are obtained as

N̂A(�x) (N
c

A
(�x)) =

�
d� 2 Rkj hd�; di � 0 8d 2 KA(�x) (T

c

A
(�x))

	
:

In contrast, the Mordukhovich normal cone is de�ned as a generally nonconvex object via

NA(�x) =
n
d� 2 Rkj 9d�

n
! d�; xn ! �x (xn 2 A) : d�

n
2 N̂A(xn)

o
:

A is called (Clarke-) regular at �x, if KA(�x) = T c

A
(�x) or, equivalently, NA(�x) = N c

A
(�x) =

N̂A(�x). By epi f =
�
(x; �) 2 Rk+1jf(x) � �

	
, denote the epigraph of a lower semicontin-

uous function f : Rk ! R. Now, the normal cones induce subdi�erentials of f via

@f(�x) (@cf(�x)) =
�
x� 2 Rkj(x�;�1) 2 Nepif (�x) (N

c

epi f(�x))
	
;

where @ and @c refer to Mordukhovich's and Clarke's subdi�erentials respectively. A

more general construction is Mordukhovich's coderivative D�Z(�x; �y) : Rl
� R

k of some

multifunction Z : Rk ! R
l at some point (�x; �y) 2 clGphZ:

D�Z(�x; �y)(y�) =
�
x� 2 Rkj(x�;�y�) 2 NGphZ(�x; �y)

	
.

For single-valued, locally Lipschitzian mappings g = (g1; : : : ; gl) : Rk ! R
l, the ba-

sic relation between coderivative and subdi�erential of its components is D�g(�x)(y�) =

@
�P

l

i=1 y
�

i
gi

�
(�x). For a detailed treatment of the objects mentioned here, we refer to [8],

[2] and [6].

For technical reasons, we shall make use of the concept of semismooth functions introduced

by Mi�in in [3]:
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De�nition 2.1 A function F : Rk ! R is called semismooth at �x 2 R
k if it is locally

Lipschitz at �x and the following property holds true: for each d 2 Rk and for any sequences

tn # 0; dn ! d; �n 2 @cF (�x+ tndn), the limit lim
n!1

h�n; di exists.

The following statement was shown in [3] (Lemma 2):

Lemma 2.2 If F : Rk ! R is semismooth at �x 2 R
k, then the directional derivative

F 0(�x; d) exists for all d 2 R
k and equals the limit lim

n!1

h�n; di, where �n is any of the

sequences from De�nition 2.1.

Via the euclidean distance function de, the concept of semismoothness may be carried

over to sets.

De�nition 2.3 A set A � R
k is called semismooth at �x 2 clA if for any sequence

xn ! �x with xn 2 A and kxn � �xk�1 (xn � �x) ! d it holds that h�n; di ! 0 for all

selections �n 2 @cde
A
(xn).

Proposition 2.4 If A � R
k is closed and de

A
is semismooth at �x 2 A, then A is semis-

mooth at �x.

Proof. Let xn; �n be arbitrary sequences in De�nition 2.3. Taking tn := kxn � �xk and

dn := t�1
n
(xn � �x) in De�nition 2.1, we derive from Lemma 2.2 the existence of the

directional derivative de0
A
(�x; d) as well as

h�n; di ! de0
A
(�x; d) = lim

t#0;d0!d

t�1(de
A
(�x+ td0)� de

A
(�x))

= lim
n!1

t�1
n
(de

A
(xn)� de

A
(�x)) = 0;

where the representation of the directional derivative relies on de
A
being Lipschitz.

3 Characterization of calmness

We start with the main result of this paper.

Theorem 3.1 Consider the multifunction M : Rm
� R

p given by

M(y) := fx 2 !jg(x) + y 2 �g; (3)

where ! � R
p and � � R

m are closed subsets and g : Rp ! R
m is locally Lipschitz at

some �x with (0; �x) 2 GphM . Assume that
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1. ! is regular at �x;

2. One of the following two conditions holds true:

(a) There is some norm k�k+ on Rm such that the value function

P (x) := min
z2�

kz � g(x)k+ is semismooth at �x;

or

(b) ! is semismooth at �x.

3. the constraint quali�cation[
y�2N�(g(�x))nf0g

D�g(�x)(y�) \ (�bdN!(�x)) = ;: (4)

holds true.

Then, M is calm at (0; �x).

Proof. Assume by contradiction that M is not calm at (0; �x). By de�nition, there exist

sequences xn ! �x, xn 2 M(yn), yn ! 0, such that d(xn;M(0)) > nd(0; yn), where the

distance on the right-hand side is generated by k � k+. Hence,

d(xn;M(0)) > nd(0;M�1
(xn)): (5)

In particular, xn 2 M(yn) implies that xn 2 !. Clearly, d(xn;M(0)) > 0 for all n due to

(5). Further, for the function de�ned in assumption 2, we have

P (x) = d(g(x);�) = d(0;�g(x) + �) = d(0;M�1(x)) 8x 2 !: (6)

We observe that P (xn) > 0 since otherwise xn 2M(0) in contrast to the statement above.

Consequently, each xn is an "-minimizer of the function P + �! with " := P (xn), (recall

that �x 2 M(0), hence �x 2 ! and inf(P + �!) = P (�x) = 0). Since P + �! is a proper,

lower semicontinuous function, the application of Ekeland's variational principle (with "

as above and � := (n=2)P (xn)) yields for each n 2 N the existence of a point ~xn such that

P (~xn) + �!(~xn) � P (xn) + �!(xn) (7)

k~xn � xnk � (n=2)P (xn) (8)

~xn 2 argminfP (x) + (2=n) k~xn � xk jx 2 !g: (9)

Note that (7) implies P (~xn) + �!(~xn) � P (xn) due to xn 2 !, hence �!(~xn) = 0. As a

consequence, ~xn 2 ! and the formulation of (9) is justi�ed. From (8), (6) and (5), we

infer that ~xn ! �x and P (~xn) > 0. Indeed, P (~xn) = 0 would imply the contradiction to

(5)

d(xn;M(0)) � k~xn � xnk � (n=2)P (xn) = (n=2)d(0;M�1(xn)):
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Applying the necessary optimality conditions to (9), we deduce that

0 2 @P (~xn) +N!(~xn) + (2=n)B � .

Hence, there exist sequences �
n
2 @P (~xn) and �n

2 �N!(~xn) such that k�n � �
n
k� � 2=n

for all n 2 N. Since P is Lipschitz near �x, the sequence f�
n
g is bounded. Consequently,

due to the last relation, f�
n
g must be bounded too. By extracting appropriate subse-

quences, one arrives at

�
n0
! � 2 @P (�x) and �

n0
! � 2 �N!(�x) (10)

by virtue of the multifunctions @P (�) and N!(�) having closed graph.

Next, we verify the following relation

� 2 fD�g(�x)(y�)jy� 2 N�(g(�x)) n f0gg : (11)

To this aim, denote �(x; z) := kg(x)� zk+ and A(x) := fz 2 �jP (x) = �(x; z)g. Since
� 6= ; (due to g(�x) 2 �), one has that A(x) 6= ; for each x 2 Rp. Furthermore, well-known

results from parametric optimization (e.g. [8], Cor. 7.42) imply that GphA is closed and

A is uniformly bounded around each x 2 Rp. This, along with the fact that � is locally

Lipschitz, allows to apply Theorem 4.1 in [4] to the function P . One gets the inclusion

@P (~xn) �
[

y�2Rm;z2A(~xn)

fx�1 + x�2 2 Rpjx�1 2 D�Q(~xn; z)(y
�); (x�2; y

�) 2 @�(~xn; z)g ;

where Q : Rp
� R

m denotes the constant multifunction Q(x) := � 8x 2 R
p. Clearly

GphQ = R
p � �, NGphQ(~xn; z) = f0g � N�(z), and the de�nition of the coderivative

implies that

D�Q(~xn; z)(y
�
) =

�
0 if y� 2 �N�(z)

; else
.

Consequently,

@P (~xn) �
[

y�2�N�(z);z2A(~xn)

fx� 2 Rpj(x�; y�) 2 @�(~xn; z)g : (12)

Putting F (x; z) := g(x) � z, we have � = k�k
+
� F , and the chain rule for Lipschitz

mappings in [6] (Cor. 5.8) yields that

@�(~xn; z) �
[

s2@k�k+(g(~xn)�z)

@ hs; F i (~xn; z): (13)

Since hs; F i (x; z) = sTg(x)� sT z, the sum rule in [6] (Cor. 4.6) provides that

@ hs; F i (~xn; z) = [@ hs; gi (~xn)� f0g] + [f0g � f�sg] = @ hs; gi (~xn)� f�sg:
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Furthermore, since P (~xn) > 0 implies F (~xn; z) 6= 0 for all z 2 A(~xn), we derive from

convex analysis that

@ k�k+ (g(~xn)� z) =
�
s 2 S�j hs; g(~xn)� zi = kg(~xn)� zk+

	
(z 2 A(~xn));

where S� denotes the unit sphere in Rm equipped with the dual norm of k�k+. Combining
the previous relations with (13), one arrives at

@�(~xn; z) � fD�g(~xn)(s)� f�sgjs 2 S�g (z 2 A(~xn));

where we used the relation D�g(~xn)(s) = @ hs; gi (~xn) which is valid for Lipschitzian

mappings, cf. [6] (Prop. 4.6). Inserting the last inclusion into (12) gives

@P (~xn) �
[

z2A(~xn)

fD�g(~xn)(s)js 2 S� \N�(z)g ;

which holds for all n 2 N since n was arbitrarily �xed. Therefore, along with the sequence

�
n0
de�ned in (10), we have sequences sn0 and zn0 such that

�
n0
2 D�g(~xn0)(sn0); sn0 2 S� \N�(zn0); zn0 2 A(~xn0):

Since ~xn0 ! �x and A is uniformly bounded around �x, we may extract subsequences such

that sn00 ! �s 2 S� and zn00 ! �z. By closedness of GphA (see remark above), it follows that

�z 2 A(�x) = fg(�x)g (due to g(�x) 2 �). Furthermore, (�
n00
;�sn00) 2 NGphg(~xn00 ; g(~xn00))

according to the de�nition of the coderivative. Since the graph of the normal cone mapping

NGphg is closed, we infer that �s 2 N�(g(�x)) and, by (10),

(�
n00
;�sn00)! (�;��s) 2 NGphg(�x; g(�x)):

Consequently, � 2 D�g(�x)(�s) with �s 2 S� \N�(g(�x)), which eventually implies (11).

Now, (5), (6) and (8) yield kxn � �xk > nP (xn) � (n=2)P (xn) � k~xn � xnk. Taking into
account the already obtained relations P (�x) = 0 < P (~xn) � P (xn) (see (7)), one arrives

at

0 <
P (~xn)� P (�x)

k~xn � �xk � P (xn)

kxn � �xk � k~xn � xnk
<

2

n
: (14)

From the sequence ~xn0 (corresponding to �n0 in (10)) we extract a subsequence ~xn� (recall

that ~xn0 6= �x) such that

lim
n�!1

~xn� � �x

k~xn� � �xk = � for some � 2 Rp with k�k = 1

Clearly, � 2 K!(�x) = T c

!
(�x) by assumption 1. Since �

n�
2 @P (~xn�) and �

n�
2 �N!(~xn�)

(see derivation on top of (10)), the trivial representation

~xn� = �x+ �n��n� with �n� := k~xn� � �xk # 0 and �n� :=
~xn� � �x

k~xn� � �xk ! �;
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provides that �
n�
2 @P (�x+ �n��n�) and �

n�
2 �N!(�x+ �n��n�). Under assumption 2(a),

Lemma 2.2 gives

h�; �i = lim
n�!1

h�
n�
; �i = P 0(�x; �). (15)

With P being locally Lipschitz and using (14), its directional derivative may be repre-

sented as

P 0
(�x; �) = lim

t#0;�0!�

P (�x+ t�0)� P (�x)

t
= lim

n�!1

P (�x+ �n��n�)� P (�x)

�n�
= 0; (16)

whence h�; �i = 0. Let us verify the same relation under assumption 2(b): It is evident

in case � = 0, so let � 6= 0. Due to (10) it follows that �
n�
6= 0 for n� large enough. Next,

we refer to the identity N!(~xn�) \ B 2 = @de
!
(~xn�) (see Ex. 8.53 in [8]). Consequently,

with ~�
n�

:= ��
n�
= k�

n�
k2, we obtain ~�

n�
2 @de

!
(~xn�) � @cde

!
(~xn�). Assumption 2(b) then

yields

k�k�1 h�; �i = � lim
n�!1

D
~�
n�
; �
E
= 0;

whence again h�; �i = 0.

Using that h�; �i = 0 under any of the two assumptions 2(a) or 2(b), one gets for arbitrarily

small " > 0 that h� � "�; �i = �" < 0. Since � 2 T c

!
(�x), this implies that ��"� =2 �N c

!
(�x).

On the other hand, � 2 �N c

!
(�x) according to (10). Consequently, � 2 bd�N c

!
(�x) =

�bdN c

!
(�x), which together with (11) provides a contradiction to (4).

Note that, as a result of the regularity assumption 1 in Theorem 3.1, one may replace N c

!

by N! in the constraint quali�cation (4). The obtained result may be illustrated in one

dimension as follows:

Example 3.2 In Theorem 3.1, let � := R�; g(x) := x and ! := R+. Then, the multi-
function M in (3) is easily veri�ed to be calm at the point (0; 0) of its graph. Clearly,
assumptions 1 and 2 (actually both, 2(a) and 2(b)) are satis�ed. Furthermore, the con-

straint quali�cation (4) reduces to the condition rg(0) (= 1) =2 �bdN c

!
(0) (= f0g), which

is certainly satis�ed. On the other hand, we have rg(0) 2 �N!(0) (= �N c

!
(0) = R+), so

that the criterion (2), designed for the stronger Aubin property, fails to apply.

The following example illustrates that the regularity of ! in assumption 1 of Theorem 3.1

and Corollary 4.1 cannot be dispensed with ingeneral, so the constraint quali�cation (4)

is not su�cient for calmness in case of arbitrary closed sets !:

Example 3.3 In the context of Theorem 3.1, de�ne � := R�, g(x) := x2 and ! :=

fn�1=2jn 2 Ng [ f0g. Then, ! is closed but fails to be regular at �x := 0. Obviously,
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M(0) = f0g, hence (0; �x) 2 GphM . Furthermore, assumption 2(a) of Theorem 3.1 is
satis�ed since

P (x) = min
z�0

jz � g(x)j = maxfg(x); 0g

is semismooth as the maximum of two semismooth functions ([3], Th. 5). Finally, one

easily veri�es that T c

!
(�x) = f0g, hence N c

!
(�x) = R. As a consequence, �bdN c

!
(�x) = ; so

that assumption 3 is trivially ful�lled. On the other hand, M is immediately seen not to be
calm at (0; �x) (take sequences xn := n�1=2 and yn := �n�1 for establishing a contradiction

to the de�nition of calmness).

Let us recall that regularity and semismoothness of a set ! are completely independent

properties (assumptions 1 and 2(b) of Theorem 3.1):

Example 3.4 Let ! := epi(�jxj) � R
2. Then,

de
!
(x; y) = maxf0;minf(x� y)=

p
2;�(x+ y)=

p
2gg

is semismooth as a min-max-composition of semismooth functions (cf. [3]). Invoking

Proposition 2.4, we see that ! is a semismooth set which clearly fails to be regular at
(0; 0). Conversely, de�ne

! :=
[
n2N

f(x; y) 2 R2jx � �n�1, 0 � y � n�2g:

Calculating K!(0; 0) = T c

!
(0; 0) = R�, we verify that ! is regular at (�x; �y) = (0; 0). On

the other hand, taking the sequence (xn; yn) := (�n�1; n�2), we get (xn; yn) 2 ! and

k(xn; yn)� (�x; �y)k�1 ((xn; yn)� (�x; �y))! d := (�1; 0):

Since (1; 0) 2 @cde
!
(xn; yn), it follows with �n � (1; 0) the contradiction h�n; di = �1 to

De�nition 2.3. Hence, ! is not semismooth at (�x; �y):

In the rest of this section we are going to identify structures of the abstract constraint

set ! which render super�uous all technical assumptions of Theorem 3.1 such that the

constraint quali�cation (4) becomes the only condition of calmness for M . First, we

indicate a situation where ! satis�es assumptions 1 and 2(b) of Theorem 3.1. To this

aim, let a set A be described by the following system of inequalities:

A = fx 2 Rkjfi(x) � 0; i = 1; : : : ; lg. (17)

Further, for x 2 A denote by I(x) the standard set of active inequalities

I(x) := fi 2 f1; 2; : : : ; lg j fi(x) = 0g:

9



Lemma 3.5 Let A be given as in (17). Assume that the fi are continuously di�erentiable
and that the set of gradients

frfi(x)ji 2 I(x)g (18)

is positively linearly independent at each x 2 A. Then, A is regular and semismooth at

each of its points.

Proof. For the regularity part see [2] (Cor. 2, p.56). The same reference con�rms that

N c

A
(x) =

(
lX

i=1

�irfi(x)j�i � 0; �i = 0 for i =2 I(x)

)
for all x 2 A:

As for the semismoothness of A at some arbitrary �x 2 A, let xn; �n and d be arbitrarily

given as in De�nition 2.3. The index set

I := fi 2 f1; : : : ; lg j there is a subsequence fxn0g with i 2 I(xn0)g

satis�es I � I(�x) (by continuity of the fi's) as well as

hrfi(�x); di = lim
n0!1

�
rfi(�x);

xn0 � �x

kxn0 � �xk

�
= 0 for all i 2 I (19)

(by di�erentiability of the fi's and by fi(�x) = fi(xn0) = 0 for i 2 I). Since xn 2 A and

�n 2 @cde
A
(xn) � N c

A
(xn) \ B 2 (cf. [2], Prop. 2.4.2. and Th. 2.5.6), there exist �

(n)

i
� 0

such that

�n =

lX
i=1

�
(n)

i
rfi(xn) and �

(n)

i
= 0 for i 2 f1; : : : ; lg n I(xn).

By de�nition, one has I(xn) � I for n large enough, hence

h�n; di =
X
i2I

�
(n)

i
hrfi(xn); di : (20)

Now, assumption (18) is well known to be equivalent with the existence of some � 2 Rk

such that hrfi(�x); �i > 0 for i 2 I(�x). Hence, for some " > 0 and for n large enough, one

has hrfi(xn); �i � " (i 2 I(�x)). This implies

h�n; �i =
X
i2I

�
(n)

i
hrfi(xn); �i

and, using k�nk � 1, we deduce that

0 � �
(n)

i
� h�n; �i
hrfi(xn); �i

� k�k
"

(i 2 I):

10



This boundedness property allows to pass to the limit n ! 1 in (20) upon taking into

account (19). One gets the desired relation h�n; di ! 0 in order to verify semismoothness

of A at �x.

As a consequence, the result of Theorem 3.1 simpli�es as follows for common structures

of the abstract constraints:

Corollary 3.6 In the setting of Theorem 3.1, let ! be convex or described by a �nite

number of smooth inequalities as in (17) which satisfy the regularity condition (18). Then,

the constraint quali�cation (4) implies calmness of M at (0; �x).

Proof. In both cases, ! is a regular and semismooth set. For the second case, this was

shown in Lemma 3.5. For convex !, regularity is clear, while semismoothness follows from

semismoothness of the convex distance function de
!
([3], Prop. 3) via Proposition 2.4.

Another relevant instance of abstract sets ! which allow direct application of the criterion

(4) without further technical assumptions is given by unions of smooth inequalities (in

contrast to intersections as in (17)). At the same time, this structure re�ects a situation

where our criterion (4) coincides with condition (2) ensuring the Aubin property. Note

that in general, as pointed out by Example 3.2, both conditions di�er signi�cantly.

De�nition 3.7 We call A � R
k a 'disjunctive set' if there exists a continuously di�eren-

tiable mapping f : Rk ! R
l for some l 2 N such that

A =
�
x 2 Rkj9i 2 f1; : : : lg : fi(x) � 0

	
and

rank frfi(x)ji 2 J(x)g = ]J(x)8x 2 A,

where J(x) = fi 2 f1; : : : lg jfi(x) = min
j2f1;:::lg

fj(x) = 0g denotes a modi�ed set of active

indices.

Similar to conventional sets of active indices, the continuity of f implies that J(x) � J(�x)

for x close to �x (x; �x 2 A).

Proposition 3.8 Let A � R
k be a disjunctive set. Then

NA(�x) = R+ �
[

i2J(�x)

frfi(�x)g (21)

for all �x 2 A.

Proof. The assertion is obvious for the cases ]J(�x) � 1, since then either J(�x) = ; (hence
�x 2 intA and NA(�x) = f0g) or J(�x) = fi�g for some i� 2 f1; : : : lg (then, locally around �x,

the set A is described by the single continuously di�erentiable inequality fi�(x) � 0 with,

11



according to Def. 3.7, rfi�(�x) 6= 0; hence NA(�x) = R+ � rfi�(�x)). Now, let ]J(�x) � 2

and, without loss of generality, assume that f1; 2g � J(�x), hence f1(�x) = f2(�x) = 0. Since

rf1(�x) and rf2(�x) are linearly independent according to De�nition 3.7, there exists some

� with hrf2(�x); �i � 0 and hrf1(�x); �i > 0. Clearly, for the polar to the contingent cone,

introduced in Section 2, it holds that N̂A(�x) � R+ � rf1(�x) due to fxjf1(x) � 0g � A.

On the other hand, the �rst of the preceding inequalities ensures that � belongs to the

contingent cone of the set fxjf2(x) � 0g � A at �x, hence � belongs to KA(�x). Then, by

the second of the preceding inequalities, rf1(�x) =2 N̂A(�x). Summarizing, we arrive at

N̂A(�x) = f0g.
Now, let x 2 A be close to but di�erent from �x: In each of the cases ]J(x) = 0; 1, the cones

N̂A(x); NA(x) coincide, and one has N̂A(x) = f0g or N̂A(x) = R+ � rfi�(x), respectively,
for some i� 2 J(�x) according to the remarks above related to �x rather than x. If, instead,

]J(x) � 2, then N̂A(x) = f0g (again according to the remarks above related to �x rather

than x). Recalling, how NA is generated from N̂A (see Section 2), this altogether yields

the inclusion '�' in (21). For the reverse inclusion, it su�ces to show that rfi(�x) 2 NA(�x)

for all i 2 J(�x). This, however, follows again from the full rank condition in De�nition

3.7 which ensures, for each i 2 J(�x), the existence of some sequence xn ! �x such that

fi(xn) = 0 and fj(xn) > 0 for j 2 J(�x) n fig. Then, J(xn) = fig and (see above)

N̂A(x) = R+ �rfi(xn), so 0 6= rfi(xn) 2 N̂A(x). Passing to the limit n!1, one obtains

the desired relation rfi(�x) 2 NA(�x) by continuous di�erentiability of f .

Corollary 3.9 Let A � R
k be a disjunctive set and k > 1. Then NA(�x) = bdNA(�x) for

all �x 2 A.

The last corollary con�rms the coincidence of Mordukhovich's and our criterion ((2) and

(4), respectively) for disjunctive sets !, so there is no chance to distinguish algebraically

between calmness and Aubin property in this situation. As a simple example, take x = 0

and ! = epi(�jxj), which is a disjunctive set with f1(x) = x; f2(x) = �x. Then, formally,

Theorem 3.1 cannot be applied due to violation of assumption 1. Nevertheless, (4) can

be invoked by virtue of its coincidence with (2) according to Corollary 3.9.

4 Application to optimization and nonlinear comple-

mentarity problems

With particular choices of �, we can specialize the results of Section 3 for various con-

straint mappings arising in applications. The simplest case corresponds to standard math-

ematical programs with inequality constraints, where � = R
m

�
and, consequently,

N�(g(�x)) = fy� 2 Rmjy�
i
� 0 for i 2 I(�x) and y�

i
= 0 otherwiseg; (22)

with I(�x) := fi 2 f1; : : : ;mgjgi(�x) = 0g being the set of active indices.
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Corollary 4.1 Consider the multifunction M in (3) with � = R
m

�
at a point (0; �x) 2

GphM . Assume that

1. ! is regular at �x.

2. One of the following two conditions holds true:

(a) All components gi of g are semismooth at �x.

or

(b) ! is semismooth at �x.

3. The following constraint quali�cation holds true:X
i2I(�x)

�i@gi(�x) \ (�bdN c

!
(�x)) = ; for all �i � 0 with

X
i2I(�x)

�i = 1 (23)

Then, M is calm at (0; �x).

Proof. Choosing k � k+ as the l1- norm, the speci�c structure � = R
m

�
considered here

provides

P (x) = max
1;��� ;m

[gi(x)]+ = max
�
g1(x); : : : ; gm(x); 0

	
: (24)

Now, the last expression is a composition of the semismooth functionmaxf�; : : : ; �g with a
mapping having semismooth components according to assumption 2. Applying Theorem

5 in [3], one derives the semismoothness of P at �x. Obviously, it su�ces now to check

assumption 3 of Theorem 3.1. Assuming its violation, there would exist some � with

� 2
[

v�2N�(g(�x))nf0g

D�g(�x)(v�) \ (�bdN c

!
(�x)).

In particular, according to (22), there exists some v� 2 R
m

+ n f0g such that v�
i
= 0 for

i =2 I(�x) and

� 2 D�g(�x)(v�) = @

0
@X

i2I(�x)

v�
i
gi

1
A (�x) �

X
i2I(�x)

v�
i
@gi(�x),

where we used that @(�f) = �@(f) for � � 0 and the sum rule @(f1+ f2) � @(f1)+ @(f2)

for locally Lipschitzian functions. Since v� 6= 0 and �bdN c

!
(�x) is a cone, we have c�1� 2

�bdN c

!
(�x) for c :=

P
i2I(�x)

v�
i
> 0 as well as

c�1� 2
X
i2I(�x)

(c�1v�
i
)gi(�x).
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This contradicts assumption 3 above, hence assumption 3 of Theorem 3.1 has to be

satis�ed.

It is clear that the technical assumptions 1 and 2 of Corollary 4.1 can be circumvented

in special situations in the same way as described in Section 3 with respect to Theorem

3.1. Hence, constraint quali�cation (23) is automatically su�cient for calmness of M in

the following cases:

� ! is convex or described by a �nite number of smooth inequalities as in (17) which

satisfy the regularity condition (18);

� ! is a disjunctive set as in De�nition 3.7;

� ! is a regular set and g is convex or continuously di�erentiable or a maximum

or minimum over a continuously and compactly indexed family of continuously

di�erentiable functions (in all of which cases g becomes semismooth, see [3]).

The constraint quali�cation (23) can be weakened under the additional assumptions of

regularity for g:

Theorem 4.2 Consider the multifunction M in (3) with � = R
m

�
at a point (0; �x) 2

GphM . Assume that

1. ! is closed and regular at �x.

2. All components gi are regular and semismooth at �x.

3. The following constraint quali�cation holds true:0
@bd

X
i2I(�x)

�i@gi(�x) (�x)

1
A \ (�bdN c

!
(�x)) = ; for all � 2 Rm

+ with
X
i2I(�x)

�i = 1.

Then, M is calm at (0; �x).

Proof. We de�ne P as in the proof of Corollary 4.1 and introduce the function

Q(x) = max
�
g1(x); : : : ; gm(x)

	
,

which is regular according to assumption 2. If Q(�x) < 0, i.e., g(�x) 2 int�, then the

continuity of g entails calmness ofMat (0; �x) in a trivial way. Hence, let Q(�x) = P (�x) = 0.

Then, due to the regularity in assumption 2, one has (see [2], Th. 2.8.2)

@cQ(�x) =

8<
:
X
i2I(�x)

�i@
cgi(�x)j�i � 0 (i 2 I(�x));

X
i2I(�x)

�i = 1

9=
; . (25)
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Suppose now that M fails to be calm at (0; �x). Repeating the proof of Theorem 3.1, one

may deduce the existence of some � 2 T c

!
(�x) and some � 2 �bdN c

!
(�x) satisfying h�; �i =

P 0(�x; �)(see (15)). Furthermore, the relation P (~xn) > 0 from the proof of Theorem 3.1

implies that Q(~xn) = P (~xn). In view of (16), the relation above now turns into

h�; �i = Q0(�x; �) = maxfh�0; �i j�0 2 @cQ(�x)g ,

where the second equality relies on the fact that, again by assumption 2, the conventional

directional derivative of Q coincides with its directional derivative in the sense of Clarke.

This, in turn, is the support function of Clarke's subdi�erential (see [2]). As a consequence,

� 2 bd @cQ(�x), which contradicts assumption 3 according to (25).

In the trivial case of a single inequality g(x) � 0 (without abstract constraints), the con-

straint quali�cation in Theorem 4.2 turns into the condition 0 =2 bd @g(�x). Of course, in

the smooth case, this amounts to the condition rg(�x) 6= 0 which is su�cient even for the

stronger Aubin property of the constraint set mapping. A substantial gain over the crite-

rion 0 =2 @g(�x) (su�cient for the Aubin property) therefore occurs in a nonsmooth setting,

for instance in the simple convex example discussed in the Introduction. Combining the

last remarks with those following Corollary 3.9 and with Example 3.2, we have identi�ed

several signi�cant circumstances - independently for the set ! and for the function g -

under which the criteria (4) and (2) di�er or coincide.

We now give an example that highlights the necessity of the additional regularity assump-

tion on g in Theorem 4.2:

Example 4.3 In the context of Theorem 4.2, let m = 2 and de�ne g1(x) := x2; g2(x) :=

� jxj ; ! := R; �x := 0. Then, M(0) = f0g, hence (0; �x) 2 GphM . Obviously, assumptions
1 and the semismoothness part of assumption 2 are satis�ed (convex and concave functions

are semismooth, see Prop. 3 in [3]). Furthermore, we have for all �1; �2 � 0; �1+ �2 = 1

that 0
@bd

X
i2I(�x)

�i@gi(�x)

1
A \ (�bdN c

!
(�x)) =

(bd f�1 � f0g + �2 � [�1; 1]g) \ (�bdf0g) = (bd [�1; 1]) \ f0g = ;.

This entails assumption 3. Hence, all assumptions of Theorem 4.2 with the exception of

the regularity of g2 are satis�ed. Now, with the same sequences as in the end of Example

3.3, it is easily checked, that M fails to be calm at �x.

Consider now a situation associated with a parametric nonlinear complementarity problem

(NCP):

For a given p 2 Rk, �nd x 2 Rn

+ such that

F (p; x) � 0; hx; F (p; x)i = 0; (p; x) 2 !; (26)
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where F : Rk�Rn ! R
n is assumed to be continuously di�erentiable and ! � R

k�Rn is

closed. Putting �(p; x) := (x;�F (p; x)), the non-abstract part of (26) can be equivalently

written in the form �(p; x) 2 GphNRn
+
, in which case N reduces to the classical normal

cone of convex analysis. We de�ne a multifunction M : R2n
� R

k �Rn by

M(y) =
n
(p; x) 2 !j�(p; x) + y 2 GphNRn

+

o
:

Theorem 4.4 Let (0; �p; �x) 2 GphM and assume that

1. ! is closed and regular at (�p; �x).

2. the constraint quali�cation�
� [rpF (�p; �x)]

T
z;w � [rxF (�p; �x)]

T
z
�
2 �bdN c

!
(�p; �x)

for some (w; z) 2 NGphNRn
+

(�x;�F (�p; �x))

)
=) w = 0; z = 0

is satis�ed.

Then, M is calm at (0; �p; �x).

Proof. Our aim is to apply Theorem 3.1 with

m := 2n; p := k + n; g := �; � := GphNRn
+
.

Endowing the space Rn�Rn with the norm

k(v1; v2)k+ :=

vuut nX
i=1

(maxfjvi1j ; jvi2jg)
2
,

the following point-to-set distance has been calculated in [7] (Prop. 5.1):

dist(0;��(p; x) + GphNRn
+
) = kminfx; F (p; x)gk2 ;

where the minimumhas to be understood componentwise. The left-hand side, however, is

exactly the value function P of assumption 2(a) in Theorem 3.1. Since concave functions

(like 'min') and convex functions (like k�k2) are semismooth, P itself is semismooth as a

composition.

Finally, observing that

D��(�p; �x)((w; z) =

�
0 � [rpF (�p; �x)]

T

In � [rxF (�p; �x)]
T

� �
w

z

�
;

we verify that assumption 2 above entails assumption 3 in Theorem 3.1. Summarizing,

assumptions 1, 2(a) and 3 of that Theorem are satis�ed.
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5 Conclusion

In a number of perturbed equilibrium problems, including the above NCP, the map M

attains the form

M(y) = f(p; x) 2 ! j�(p; x) + y 2 GphQg ; (27)

where � : Rk � R
n ! R

2n is continuously di�erentiable and Q : Rn
� R

2n is a multi-

function with the closed graph. In this situation the presented theory can be applied,

provided we endow R
2n with a suitable norm k�k+ such that the value function

P (p; x) := min
z2GphQ

kz ��(p; x)k+

satis�es the requirements of Theorem 3.1. The choice of this norm depends naturally on

the structure of the (possibly complicated) nonconvex set GphQ.

Consider now the optimization problem

minimze �(x)

subject to

x 2M(0) \ !;

(28)

where � : Rn ! R is a lipschitzian objective, and assume that x̂ is its local solution. By

virtue of [9], Lemma 3.1, under the assumptions of Theorem 3.1 there exists a real R > 0

and neighborhood U of x̂ such that x̂ solves the penalized problem

minimize �(x) +RP (x)

subject to

x 2 ! \ U :
(29)

Function P can thus be used as a penalty for the numerical solution of (28). Moreover,

on the basis of (29) one can derive necessary optimality conditions for (28) so that the

assumptions of Theorem 3.1 create a (rather nonrestrictive) constraint quali�cation.
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