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Abstract

We consider the component analysis problem for a regression model with an

additive structure. The problem is to test if some of the additive components is of

polynomial structure, e.g. linear, without specifying the structure of the remaining

components. A particular case is the problem of selecting the signi�cant covariates.

The presented method is based on the wavelet transform using the Haar basis, which

allows for applications under mild conditions on the design and smoothness of the

regression function. The results demonstrate that each component of the model can

be tested with the rate corresponding to the case if all the remaining components were

known. The proposed procedure is also computationally straightforward. Simulation

results and a real data example about female labor supply demonstrate the good

performance of the test.

1 Introduction

In multivariate regression problems we study the structural relationship between the

response variable Y and the vector of covariates X = (X1; : : : ;Xd)
> via the regression

curve

F (x) = E(Y jX = x)

with x = (x1; : : : ; xd)
> . Purely nonparametric models do not make any assumption

about the form of the d -variate function F (x) . The problem is then to �t a d -

dimensional surface to the observed data f(Xi; Yi) : i = 1; : : : ; ng . The obvious ap-

proach is to generalize the univariate smoothing techniques based on local `averaging'

to this multivariate situation. A serious problem arising here is that we need much

more data material in higher dimensions in order to have enough data points in a local

neighborhood of each point. Several approaches for dimensionality reduction have been

proposed to deal with this so-called curse of dimensionality. A promising one is additive

modeling as in economic theory it is a favorite structure anyway, see e.g. Deaton and

Muellbauer (1980).

Such a nonparametric additive regression model has the form

y = F (x) + �; x = (x1; : : : ; xd) 2 IRd; (1.1)

F (x) = f1(x1) + : : :+ fd(xd); (1.2)

where y is a scalar variable, ffmgdm=1 is a set of unknown component functions and �

is a random error.

This class of models has been shown to be useful in statistical practice: it gener-

alizes linear regression in a natural way and allows interpretation of marginal changes
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i.e. the e�ect of one variable on the mean function F holding all else constant. Additive

models were considered �rst by Leontief (1947) for input-output analysis speaking of

separable models. In the statistical literature the nonparametric additive regression has

been introduced in the eighties, see Buja, Hastie and Tibshirani (1989) for a survey. An

advantage of additive models is that they combine exible modelling of many variables

with statistical precision that is typical for just one explanatory variable, see Stone (1985,

1986). Algorithmic aspects of additive modelling by back�tting are discussed in Hastie

and Tibshirani (1990) or Venables and Ripley (1994). Tj�stheim, Auestad (1994) and

Linton, Nielsen (1995) proposed a method of analysis based on marginal integration.

An essential advantage in additive models is that they allow component wise in-

ferences. Important problems of component analysis in economics are the question of

signi�cance as well as of linearity, since nonlinearities often rise serious problems e.g. of

identi�cation in equation or economic equilibrium systems. In nonparametrics, among

others Hastie and Tibshirani (1990) or H�ardle and Korostelev (1996) considered also the

problem of selection of signi�cant covariates. In this paper we focus on the much more

general problem of testing for component fm the hypothesis of being of polynomial form,

e.g. constant or linear.

Theory for nonparametric hypothesis testing is well developed. So the problem of

testing a simple null hypothesis versus a univariate nonparametric alternative is studied

in detail, see e.g. Ingster (1993), H�ardle and Mammen (1993), Hart (1997), Stute (1997)

for historical background and further references. Many tests have been shown to be

sensitive against every directional local alternative, e.g. Bierens (1982), Eubank and

Hart (1992), Stute (1997) and references therein. Unfortunately, the power of every

particular test cannot be uniform w.r.t. the \direction" in the function space as shown

in Burnashev (1979) or Ingster (1982). This particularly means that the �nite sample

power of every test could be better for some local alternatives and worse for the others.

The same arguments apply to the so called \intermediate" eÆciency approach of Inglot

and Ledwina (1996).

Ingster (1982, 1993) has shown that a test could be uniformly consistent against

a smooth alternative only if this alternative deviates from the null with the distance of

order n�2s=(4s+1) with s being the degree of smoothness. The structure of proposed rate-

optimal tests also essentially rely on the smoothness properties of the underlying function

though such kind of prior information about the underlying function is typically lacking in

practical applications. Spokoiny (1996) o�ered an adaptive data-driven testing procedure

which does not require knowledge of smoothness properties of the tested function and

allow for a near optimal testing rate up to a log log n factor. The latter can be viewed as

the price for adaptation. Horowitz and Spokoiny (1999) proposed a similar test based on
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kernel smoothers with di�erent bandwidths and shown that it is simultaneously consistent

against any local \directional" alternative which approaches the null hypothesis at the

rate (n= log log n)�1=2 .

It is worth noting that the adaptive testing procedure from Spokoiny (1996) is essen-

tially a theoretical device rather than a practically applicable method since it is devel-

oped for the idealized \signal + white noise" model, simple null, known noise variance

etc. Practically relevant procedures should address numerous issues raising in particu-

lar applications. In the context of multidimensional additive modelling, an additional

challenge comes from the fact that the considered component f1 , even being completely

speci�ed, does not specify the whole model since nothing is assumed about the other

components, f2; : : : ; fd which can be viewed as an in�nite-dimensional nuisance param-

eter. This particularly creates a serious problem with evaluating the critical value of the

proposed test statistics which provides the prescribed type I level.

Therefore, the task is to develop a procedure which, independently on the functional

form of the `nuisance' components f2; : : : ; fd , leads to the given type I error � if f1 is

linear and is sensitive against a smooth alternative with unknown degree of smoothness.

In view of practical applications (see Section 4) we proceed with a deterministic non-

regular design allowing discrete components and with unknown noise variance.

In this paper we apply a Haar decomposition which is a particular and non-regular

case of the wavelet transform. Nevertheless, for the hypothesis testing framework the

application of the Haar basis leads not only to the desired optimal testing rate but also

provides a test which is more stable w.r.t. the design non regularity. This is important

for practical applications allowing to relax and to simplify the conditions on the design,

reduces computational burdens and more!

Our approach is based on the simultaneous approximation of all components f1; : : : ; fd

by Haar sums: we �rst estimate the Haar coeÆcients for all components and then an-

alyze the coeÆcients corresponding to the �rst one. The testing problem is formulated

in the next section, the procedure is described in Section 2. The asymptotic properties

are discussed in Section 3. We compare the sensitivity of our procedure with the ideal

one designed for the case as if the other components and all smoothness properties were

known. The results demonstrate asymptotic optimality of the proposed procedure and

they are stated under mild conditions on the design. The performance of the procedure

for the �nite sample size case is examined by simulations and an application in Section 4.

Extensions to more general problems including model check of additivity and multiple

testing of several components simultaneously are shortly discussed in Section 3.1 and the

proofs are postponed to Section 5.
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1.1 Model and testing problem

We are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 IRd , Yi 2 IR1 , obeying the regression

equation

Yi = F (Xi) + �i (1.3)

where F is an unknown regression function with the additive structure

F (x) = f1(x1) + : : :+ fd(xd); (1.4)

and �i are normal random errors with zero mean and known variance �2 . We allow

for deterministic non-regular design X1; : : : ;Xn with possible replications. It is only

supposed that the design is rescaled to the unit cube [0; 1]d , that is, Xi;` 2 [0; 1] for all

i � n and ` � d .

Our aim is to analyze each component fm , m = 1; : : : ; d . For simplicity we present

the procedure focusing on the �rst component f1, and on the problem of testing linearity,

i.e. the hypothesis H0 : f1(t) = a1 + b1t for some constants a1; b1 .

Let � be a test, a measurable function of observations with values 0 (accept) and 1

(reject). Denote by P F the distribution of the data Y1; : : : ; Yn for a �xed model function

F , see (1.3) and (1.4). Let now F0 be a function with a linear �rst component. The

type I error probability is the probability under F0 to reject the hypothesis: �F0(�) =

P F0(� = 1): Similarly one de�nes the error probability �F (�) of the second type. If the

�rst component f1 is not linear, then �F (�) = P F (� = 0): Given � > 0 , we wish to

construct such a test � that �F0(�) � � for all F0 with a linear �rst component and,

in addition, it is sensitive against a large class of alternatives F .

2 Testing procedure

In order to illustrate the main ideas, we begin with the univariate case i.e. d = 1 .

2.1 The case of d = 1

Consider the univariate regression model

Yi = f(Xi) + �i; i = 1; : : : ; n; (2.5)

which corresponds to (1.3) with d = 1 . We write here f instead of f1 to minimize the

notation. The problem consists in testing the hypothesis that the function f is linear.

Eubank and Hart (1992) nicely pointed out a common feature of the most of proce-

dures for model checking. Let F0 be the set of regression functions considered under the
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null hypothesis (here the linear functions). Then f is written as f(x; �0) +
P

i �j j(x)

with f(x; �0) a member of F0 and f jg an orthonormal system. The testing problem

reduces now to testing �j = 0 for all j , cf. also Stute (1997).

The procedure proposed here follows this idea and relies on a special piecewise con-

stant approximation (the Haar decomposition) of the function f .

Denote by I the multi-index I = (j; k) with j = 1; 2; : : : and k = 0; 1; : : : ; 2j � 1 ,

and by I , the set of all such multi-indices. Let now the function  (t) (the mother

wavelet) be de�ned by

 (t) =

8>><>>:
0; t < 0; t � 1;

1; 0 � t < 1=2;

�1; 1=2 � t < 1:

For every I = (j; k) with j � 0 and k = 0; : : : ; 2j � 1 set

hI(t) =  (2jt� k):

Clearly the function  I with I = (j; k) is supported on the interval AI = [2�jk; 2�j(k+

1)] . Denote also by Ij the index subset corresponding to the j -th resolution level:

Ij = fI = (j; k); k = 0; 1; : : : ; 2j � 1g j � 0:

The idea of the test is to estimate from the data the coeÆcients cI of the approximation

of the unknown regression function f by the sum

c0 + c1x+

jX
`=0

X
I2I`

cIhI(x)

and then to check whether some of estimated coeÆcients cI di�er signi�cantly from zero.

For a formal description, de�ne with I = (j; k) 2 I

�2I =

nX
i=1

h2I(Xi);

 I(Xi) = ��1I hI(Xi):

Clearly �2I is the number of design points in AI , that is, �
2
I = #fi : Xi 2 AIg , I 2 I .

We also de�ne two functions  0 � ��10 and  1(t) = ��11 t with �20 = n and �21 =Pn
i=1X

2
i and introduce the index set

I(j) = f0; 1g +
j[
`=0

I`: (2.6)
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By N(j) we denote the number of indices in I(j) . Obviously N(j) = 2j+1 + 1 . Let

�(j) denote a vector in IRN(j) with entries �I , I 2 I(j) . De�ne the vector b�(j) as

solution to the quadratic problem

b�(j) = arginf
�(j)2IRN(j)

nX
i=1

0@Yi � X
I2I(j)

�I I(Xi)

1A2

To get an explicit expression for b�(j) we introduce vector notation. Let g be a function

observed at point X1; : : : ; Xn . We identify every such function with the column-vector

g in IRn with the entries g(Xi) and de�ne kgkn by kgk2n =
Pn

i=1 g
2(Xi) . Let also

Y stand for the column vector (Y1; : : : ; Yn)
>. Introduce a n�N(j) -matrix 	(j) with

entries  I(XI) :

	(j) =
�
 I(Xi); i = 1; : : : ; n; I 2 I(j)

�
:

Then

b�(j) = arginf
�(j)2IRN(j)

kY �	(j)�(j)k2n

= V (j)	(j)>Y =W (j)>Y ;

where V (j) is the pseudo-inverse of 	(j)>	(j) , that is, V (j) =
�
	(j)>	(j)

	�
and

W (j) = 	(j)V (j) is a n�N(j) -matrix.

Since the errors �i are normal N (0; �2) , we obtain by (2.5) that b�(j) is a Gaus-

sian vector with the mean ��(j) = W (j)>f = V (j)	(j)>f and the covariance matrix

�2V (j) ,

b�(j) � N ���(j); �2V (j)	 :
The entries of the matrix V (j) (resp. W (j) ) will be denoted by vI;I0 (resp. wi;I )

where I; I 0 2 I and i = 1; : : : ; n . All these values depend on j , but do not indicate

this dependence explicitly to simplify the notation.

By b�j we denote the part of the vector b�(j) corresponding to j -th resolution level:b�j = (b�I ; I 2 Ij)> , so that b�j 2 R2j . Obviously b�j =W>

j Y where Wj is the n�2j -
submatrix of W (j) corresponding to the index set Ij : Wj = (wi;I ; i = 1; : : : ; n; I 2 Ij) .
Similarly we de�ne the 2j -vector ��j and 2j�2j -submatrix Vj of V (j) :

��j = (��I ; I 2 Ij); Vj = (vI;I0 ; I; I
0 2 Ij):

Clearly b�j � N (��j ; �
2Vj) and Vj =W>

j Wj .
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2.2 Level test statistic for d = 1

The proposed testing procedure is based on the fact that for f linear, all the empirical

coeÆcients b�I , I 6= 0; 1 , are zero mean Gaussian r.v.'s. We build for every j one test

statistic corresponding to the hypothesis ��j = 0 .

By de�nition b�j = W>

j Y which yields b�j � N (��j ; �
2Vj) with Vj = W>

j Wj . This

naturally leads to the likelihood-based statistic Sj = b�>j V �

j
b�j where V �

j means the

pseudo-inverse of Vj . Under the null hypothesis (that is, for a linear function f ), it

clearly holds ��j = 0 and b�j =W>

j � , and hence,

Sj = �
>WjV

�

j W
>

j � = �
>Rj� (2.7)

where Rj = WjV
�

j W
>

j = Wj

�
W>

j Wj

�
�

W>

j is a projector in the space IRn (that

is, R2
j = Rj ). By Nj we denote the rank of Rj . By de�nition Nj � 2j . The

de�nition (2.7) particularly yields that ��2Sj follows the �
2 -distribution with Nj degree

of freedom.

The level test statistic Tj is de�ned via centering and standardization of Sj . The

following simple properties are useful here:

ESj = E�
>Rj� = �2 trRj = �2Nj; E

�
Sj � �2Nj

�2
= 2�4Nj:

Since the noise variance �2 is usually unknown, we replace it by a pilot estimate b�2 ,
see Section 2.5 below. This leads to the test statistic Tj of the form:

Tj =
b�>j V �

j
b�j � b�2Njb�2p2Nj

(2.8)

An important feature of this statistic is that under the null hypothesis, it has a nondegen-

erated distribution (which approaches the standard normal law as Nj grows). Moreover,

this distribution is known (see Section 2.6 for a closed form expression) which allows to

precisely evaluate the corresponding (1� �) -quantile tj;� de�ned by

P 0 (Tj > tj;�) = � (2.9)

where P 0 means the distribution of Tj under the null hypothesis.

2.3 A multiscale test for d = 1

The proposed test analyzes all statistics Tj for di�erent j simultaneously. Similar ideas

are intensively discussed in the literature. Eubank and Hart (1992) proposed the so called

\order selection" test using a modi�ed Mallows' criterion (Mallows, 1973) for selecting

the number of considered terms of an orthogonal series expansion for the deviation of
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the underlying function f from the null hypothesis, see also Aerts, Claeskens and Hart

(1999). This method leads to the maximum of ��2Sj � (1 + Cn)Nj where (1 + Cn)Nj

is the penalty term for going to a more complicated model. A similar test, called the

data-driven Neyman's smooth test is proposed in Ledwina (1994) and Kallenberg and

Ledwina (1995). Fan (1996), Spokoiny (1996) and Fan and Huang (1998) considered the

tests based on the maximum of centered and standardized sums like Tj . Such a test has

strong appeal: the results from Ingster (1982, 1993) show that the test Tj with a special

choice of the index j is rate optimal against a smooth alternative with a smoothness

degree s . The test based on the maximum of Tj is adaptive in the sense that it is near

optimal against a smooth alternative with unknown degree of smoothness.

Here we apply the method based on the multiscaling idea (see Section 2.3 for more

discussion) which is close to the proposal from Fan (1996) and Spokoiny (1996): the test

statistic T � is de�ned as the maximum of Tj � tj;� over all considered levels j with

tj;� from (2.9). Namely, we consider all j from j = 0 until the �nest resolution level

jn de�ned as jn = [log2(n=3)] where [a] means the integer part of a . We now set

T � = max
0�j�jn

(Tj � tj;�):

A choice of the critical value for this test is discussed in Section 2.6.

2.4 A multiscale test for d > 1

The basic idea of testing is similar to the univariate case and it is based on the approxi-

mation of each component fm from (1.3) by the sum

c1;mxm +

jnX
j=0

X
I2Ij

cI;mhI(xm); m = 1; : : : ; d:

(We skip here the constant term to provide identi�ability of each component.) Let us

�x a level j for the �rst component and a level jn for the remaining ones, and let I(j)
be due to (2.6), I(j) = f0; 1g +S0�`�j I` . We also de�ne I 0(j) = f1g+S0�`�j I` . To
de�ne the level test, we approximate F (x) by

X
I2I(j)

cI;1hI(x1) +

dX
m=2

X
I2I0(jn)

cI;mhI(xm):

Here N = 2jn+1 coeÆcients are used for each component fm , m � 2 , and, assuming

that j � jn , the total number of coeÆcients is at most Nd + 1 . We modify now the

de�nition of jn from the one-dimensional case to provide Nd+ 1 � 2n=3 that leads to

the choice

jn =
h
log2

� n
3d

�i
: (2.10)

8



To de�ne the test, we �rst standardize each basis function:

 I;m(t) = ��1I;mhI(t) with �
2
I;m =

nX
i=1

h2I(Xi;m)

Here (Xi;1; : : : ;Xi;d) is the coordinate representation of Xi .

Let now some j � jn be �xed. Denote by I(d; j) the index set

I(d; j) =
n
(I; 1); I 2 I(j)

o
�

dY
m=2

n
(I;m); I 2 I 0(jn)

o
and let

N(d; j) = N(j) + (d� 1)N = 2j+1 + (d� 1)2jn+1 + 1

be the number of elements in I(d; j) .
Set 	(d; j) for the n�N(d; j) matrix with entries  I;m(Xi) = ��1I;mhI(Xi;m) , i =

1; : : : ; n; (I;m) 2 I(d; j) , and de�ne the vector b�(d; j) in IRN(d;j) as a solution to the

quadratic problem:

b�(d; j) = arginf
�(d;j)2IRN(d;j)

kY �	(d; j)�(d; j)k2n

= arginf
�(d;j)2IRN(d;j)

nX
i=1

�
Yi �

X
I2I(j)

�I;1 I;1(Xi;1)�
dX

m=2

X
I2I0(jn)

�I;m I;m(Xi;m)

�2

:

As in the univariate case, we derive

b�(d; j) = V (d; j)	(d; j)>Y =W (d; j)>Y (2.11)

where the matrix V (d; j) is the pseudo-inverse of 	(d; j)>	(d; j) , i.e. V (d; j) =�
	(d; j)>	(d; j)

	�
and W (d; j) = 	(d; j)V (d; j) . The entries of the matrix V (d; j)

(resp. W (d; j) ) will be denoted by v(I;m);(I0;m0) (resp. wi;(I;m) ).

Similarly to the univariate case, we de�ne the level test making use of the subvectorb�j = (b�I;1; I 2 Ij) and the submatrix Vj = (v(I;1);(I0;1); I; I
0 2 Ij) of the covariance

matrix V (d; j) . Let Wj again denote the submatrix of W (d; j) corresponding the level

j of the �rst component: Wj = (wi;(I;1) ; i = 1; : : : ; n; I 2 Ij) . Then clearly b�j =W>

j Y

and Vj =W>

j Wj . The test statistic Tj is de�ned as follows, cf. (2.8):

Tj =
b�>j V �

j
b�j � b�2Njb�2p2Nj

=
Y >RjY � b�2Njb�2p2Nj

;

where Rj = WjV
�

j W
>

j and Nj is the rank of Rj (or equivalently of Vj ), Nj � 2j .

With tj;� ful�lling (2.9), the �nal test statistic is again of the form:

T � = max
0�j�jn

(Tj � tj;�): (2.12)
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Remark 1 In some practical applications, see e.g. our example in Section 4, one or

more explanatory variables Xm can be discrete with only few possible values, say two or

three. In that case the corresponding component function fm is completely determined

by its values at these points and it can be precisely expanded by a �nite Haar sum with

very few Haar levels. Of course, for such situation it is not reasonable to consider all jn

Haar levels for those components and the required number of levels for every particular

component fm should be determined by the identi�ability reasons, see Section 4 for an

example.

2.5 Estimation of the noise variance

Here we indicate how the noise variance �2 can be estimated from the data. One may

apply two di�erent approaches for variance estimation. One way is based on residuals

from locally polynomial �tting, see e.g. Rice (1984) or Gasser et al (1986) for the univari-

ate case or Hall et al. (1991) and Spokoiny (1999b) and references therein for a detailed

discussion of the multivariate case. Another approach is to retrieve the residuals from

the same orthogonal series expansion which is used for model checking. Here we follow

the last proposal.

Let jn be de�ned in (2.10). Due to this de�nition we have n=3 � d2jn+1 � 2n=3 .

Let b�(d; jn) be the least square estimator from (2.11) with j = jn , that is, the

maximal number of Haar coeÆcients are used for all components fm . This vector is

Gaussian with the mean ��(d; jn) = W (d; jn)F and the covariance matrix �2V (d; jn) .

Moreover, 	(d; jn)b�(d; jn) = �nY where

�n = 	(d; jn)
�
	(d; jn)

>	(d; jn)
��

	T (d; jn)

is the projector in IRn on the subspace generated by additive functions of the form

�0 +

dX
m=1

X
I2I0(jn)

�I;m I;m(xm):

One can easily check that

EkY �	(d; jn)b�(d; jn)k2n = kF ��nF k2n +Ek� ��n�k22
= kF ��nF k2n + �2 tr(In ��n)

= kF ��nF k2n + �2(n� rn)

where In denotes the identity n�n -matrix and rn is the rank of �n . By de�nition

rn � 2n=3 .
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Under usual regularity condition on the function F , see e.g. Lemma 1 in the next

section, the accuracy of approximating F by such expansion tends to zero as n tends

to in�nity in the sense that

n�1kF ��nF k2n ! 0; n!1:

This consideration prompts to use the value

b�2 = 1

n� rn
kY �	(d; jn)b�(d; jn)k2n

for estimating �2 . It is important to mention that if F � 0 , then (n � rn)b�2 =

k� � �n�k2n follows the �2 -distribution with n � rn degree of freedom and b�2 andb�(d; jn) are independent.

2.6 Critical level of the test

First we again discuss the univariate situation with d = 1 . In that case the function

F coincides with the �rst component f1 and its structure is known under the null

hypothesis. Moreover, in view of the method of approximation, the linear trend in f1

has no inuence on the remaining coeÆcients and we may suppose that the function f1

is exactly zero. The same applies for the variance estimate b�2 . This reduces the linear
hypothesis to the case of a simple null hypothesis f1 � 0 , that is, the observations Yi

coincide with the noise �i . In this situation one has Sj = �
>Rj� , b�2 = (n� rn)�1k(1�

�n)�k2n = (n�rn)�1�(1��n)� where Rj =WjV
�

j W
>

j and 1 denotes the unit operator

in IRn and the test statistics Tj can be represented in the form

Tj =
�>Rj� � b�2Njb�2p2Nj

=
�>Rj�(n� rn)

�(1��n)�
p
2Nj

�
q
Nj=2 : (2.13)

Therefore, each Tj is the ratio of two quadratic forms of �i 's and as a consequence, it

does not depend on the noise variance and its distribution can be precisely described

via the Fisher distribution FNj ;n�rn with Nj and n � rn degree of freedom. The

values tj;� de�ned in (2.9) can therefore be calculated using the proper quantile of this

Fisher distribution and they depend only on Nj , n� rn and � . Since all the Tj 's are

constructed on the base of the same data, they are dependent in a rather complicated

way and hence, the closed form expression for the distribution of the maximum T � =

maxj�jn(Tj � tj;�) is diÆcult to obtain and some Monte-Carlo experiments can be used

for �nding a proper quantile � satisfying P 0 (T
� > �) = � where P 0 means that each

Tj follows (2.13) with a standard Gaussian vector � . Having done this, we de�ne the

test �� as

�� = 1(T � > �): (2.14)
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For the general multivariate case one can show that under some regularity conditions (see

Condition (D) in the next section) the inuence of the remaining components f2; : : : ; fm

on the test statistic T � is asymptotically negligible and we therefore determine the critical

value � in the same way using simulated data from the no response d -variate model with

standard Gaussian errors. For further discussion and details respective this Monte-Carlo

method, see Section 4 or Spokoiny (1999a).

Remark 2 Note that the adjustment of Tj by tj;� is more of theoretical nature allowing

for the uni�ed exposition. Indeed, all the test statistics Tj have non-degenerate distri-

bution with the variance 1 and moreover, for large j , this distribution is close to the

standard normal CDF. This means that all the tj;� 's are of the same order and the e�ect

of this adjustment is inessential. This issue is con�rmed by our simulation results, see

Section 4.

3 Main results

In this section we present asymptotic properties of the proposed testing procedure. We

state the results on the type one and type two error probabilities separately since we

evaluate them under di�erent assumptions on the design variables. The result on the

type I error probabilities �F0(�
�) is valid under mild assumptions on the design. But for

high sensitivity of the test, we need slightly stronger regularity conditions on the design

variables.

When testing the �rst component of the function F from (1.4), the remaining com-

ponents f2; : : : ; fd can be viewed as a nonparametrically speci�ed nuisance parameter

which are to be estimated by a pilot estimator. In order to ensure the required accuracy

of estimation, we need some conditions on the rate of approximation of each function

fm with 2 � m � d by the Haar series. We formulate these conditions exactly in the

required form. Later we show that these conditions are met, for instance, under mild

conditions on smoothness of fm and on the design X1; : : : ;Xn .

Recall that we identify every function g on IRd with the vector g = (g(Xi); i =

1; : : : ; n)> in IRn . In particular, each component fm is identi�ed with the vector

fm = (fm(Xi;m); i = 1; : : : ; n)> and  I;m is understood as the vector with the elements

 I;m(Xi;m) = ��1I;mhI(Xi;m) . Recall also the notation kgk2n =
Pn

i=1 g
2(Xi) .

Denote by Lm(j) the linear subspace in IRn generated by the functions (vectors)

f I;mg , I 2 I`; 0 � ` � j ,

Lm(j) =
8<:�0;m + �1;m 1;m +

jX
`=0

X
I2I`

�I;m I;m

9=; :

12



Clearly all the functions (or vectors) from Lm(j) depend only on m -th coordinates Xi;m

of design points Xi , i = 1; : : : ; n . By �m;nfm we denote the projection of fm onto

Lm(jn) w.r.t. the distance k � kn ,

�m;nfm = arginf
g2Lm(jn)

kfm � gkn = arginf
g2Lm(jn)

nX
i=1

jfm(Xi;m)� g(Xi;m)j2:

In our results we impose the following condition:

Condition (D) For some �xed constant C and n large

dX
m=1

kfm ��m;nfmkn � C�n�1=2:

The following lemma shows that condition (D) is satis�ed under mild smoothness con-

ditions on each component fm .

Lemma 1 Let �n;m be the m -th marginal of the empirical design measure �n ,

�n;m(A) = n�1
nX
i=1

1(Xi;m 2 A); m = 1; : : : ; d:

Let further C1 be a constant such that for every 0 � a < b � 1 with b � a > 1=n , it

holds

�n;m[a; b] � C1(b� a):

If each fm , m = 2; : : : ; d , is a Lipschitz function i.e.

jfm(x)� fm(x
0)j � C2jx� x0j; 8x; x0 2 [0; 1];

then condition (D) is ful�lled with C depending on � , C1 and C2 only.

Another situation in which the di�erence kfm��m;nfmkn can be easily controlled,

is the case of a discrete m -th component (i.e. when all Xi;m belong to some �nite set).

In that case, the value kfm ��m;nfmkn is zero provided that n is large enough.

Let �� be the test introduced above in (2.14).

Theorem 1 Suppose that the observations (Xi; Yi) , i = 1; : : : ; n; obey the regression

model (1.3) and (1.4), and let condition (D) hold. If the �rst component f1 of the

function F is linear, then

P F (�
� = 1) � �+ Æ1(n);

where Æ1(n)! 0 as n!1 and it depends on n and constant C arising in condition

(D) only.
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The proof of the theorem is given in Section 5.

We now turn to the results concerning the sensitivity of test �� . The �rst assertion

shows under which conditions we reject an alternative with a high probability.

Theorem 2 Let the function F in model (1.3) be of the form (1.4). Let also ��j =

(��I;1; I 2 Ij) be the subvector of the vector ��(d; j) corresponding to j -th resolution level

of the �rst component and let Vj = (v(I;1);(I0;1); I; I
0 2 Ij) be the covariance submatrix

corresponding this index set. If, for some j � jn , � > 0 and c > 0 , it holds

T �j � (2Nj)
�1=2��2��j

>V �

j �
�

j > tj;� + �+ t0j;� + c
p
log jn;

with t0j;� de�ned by the equality P (T 0
j < �t0j;�) = � , then

P F (�
� = 0) � � + Æ1(n)

where Æ1(n) depends on �; � and c only and Æ1(n)! 0; for n!1.

Remark 3 This result claims that the test �� rejects with a probability close to one

any alternative for which at least one of T �j exceeds c0
p
log jn with some �xed constant

c0 . Therefore, we may suppose that the error of the second type may occur only if

T �j � c0
p
log jn; 0 � j � jn : (3.15)

Now we discuss how this statement can be transformed into the result about the uni-

form rate of testing. Following Ingster (1982, 1993) we consider the class of alternatives

with the �rst component f1 separated from the null (the set of the linear functions) with

distance at least % ,

inf
a;b
kf1(�)� a� b � k � %

where k � k means the usual L2 -norm, and in addition we assume that f1 is smooth in

the sense that f1 belongs to some class of functions F . Ingster (1982) established his

results assuming that the underlying function belongs to a H�older or L2 -Sobolev ball

F , Spokoiny (1998) studied the case of a more general Lp -Sobolev ball with any p � 1 .

We are interested in a minimal separation distance � which still allows for a uni-

form testing. To state the result we need some regularity conditions on the design and

smoothness conditions on the �rst component f1. The reason why stronger conditions

on the design are required can be explained by the fact that a degenerate design leads

to an identi�cation problem: the components cannot be separated and therefore it is

impossible to make any inference about them. Set

u�(j) = inf
I2Ij

2jMI=n; u�(j) = sup
I2Ij

2jMI=n;

14



where, given I = (`; k) , the value MI stands for the number of design points Xi whose

�rst component belongs to the interval AI = [k2�`; (k + 1)2�`) , that is, MI = #fi :
Xi;1 2 AIg . Design regularity means in particular that u�(j) is bounded away from zero

i.e. each interval AI contains enough design points Xi;1 , cf. the condition in Lemma 1.

Recall the notation Vj =
�
v(I;1);(I0;1) ; I; I

0 2 Ij
�
and Nj denotes its rank, Nj � 2j .

Set

v�(j) = kVjk:

Here, the norm kAk of a matrix A is understood as the maximal eigenvalue of this

matrix. We understand design regularity in the sense that Vj is non-degenerate and all

the v�(j) 's are bounded.

Finally, given an integer s , suppose that the function f1 is s times di�erentiable

and the value

r2s =

Z 1

0

jf (s)1 (x)j2dx

is �nite. f
(s)
1 means the s -th derivative of f1 .

Theorem 3 Let condition (D) hold. Suppose there exists an integer s and for some

j � jn , the �rst component f1 of the model function F satis�es the following inequality

inf
a;b
kf1 � a� b 1;1k2n � C1 r

2
s n 2

�js + C2
u�(j)

u�(j)
v�(j) 2j=2�2

p
log jn (3.16)

with  1;1(x) = x1 and constants C1 and C2 depending on s only, then

P F (�
� = 0) � Æ1(n)! 0; n!1;

with Æ1(n) as in Theorem 2.

The proof of this assertion is based only on (3.15) and can be found in H�ardle,

Sperlich, Spokoiny (1997) or Spokoiny (1999a).

Remark 4 By minimizing the sum of the form B1n2
�js+B22

j=2�2
p
log log n with �xed

B1 and B2 with respect to j we �nd that a smooth alternative will be rejected with a

high probability if

inf
a;b
n�1kf1 � a� b 1;1k2n � B3

�
n

�2
p
log log n

�� 2s
4s+1

for a constant B3 depending on B1 and B2 only. Spokoiny (1996) has shown that this

rate is optimal in the problem of testing against a smooth alternative with an unknown

degree of smoothness s .
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3.1 Extensions

Here we briey discussed possible extensions of the test which we introduced previously.

3.1.1 Testing additivity

Though our test was constructed for testing functional forms of the additive components,

it can also be useful when the presence of interaction is at question. Often, the additive

structure is given or wanted by the economic theory the particular model is based on,

see e.g. Deaton and Muellbauer (1980) or also our application in Section 4 However,

not only from a statistical point of view it is interesting to scrutinize this assumption in

some cases. Several approaches of testing additivity are discussed in Hart (1997), but

nonparametric theory for this problem is quite recent, see e.g. Sperlich, Tj�stheim and

Yang (1999), also for more references.

As said at the beginning, our procedure can test signi�cance of a component at

all. Thus, for testing of no interaction one can proceed as follows. Introduce arti�cial

covariates Xm;m0 = XmXm0 for m 6= m0 . No interaction between Xm and Xm0 means

that the covariate Xm;m0 has no response which is a particular case of the problem we

considered before.

3.1.2 Non-Gaussian errors

In our results we suppose Gaussian homoskedastic noise with unknown dispersion �2 .

This assumption allows to simplify the calculations and highlight the main ideas skipping

a lot of technical details which appear when considering non-Gaussian noise. However,

the results from Section 3 apply for i.i.d. errors with unknown distribution under some

moment conditions. We refer to Spokoiny (1999a) for the analysis of non-Gaussian noise

in the univariate case. An extension to the multivariate situation is straightforward.

3.1.3 Multiple testing

The above test was developed for testing one component of an additive model. In statis-

tical practice one would be interested to test all the components of the model simultane-

ously. This leads to a multiple testing problem which requires a more careful evaluation

of the corresponding critical values. Following the rule proposed in Section 2 one can

construct for every component fm the corresponding test statistic T �m and calculate the

corresponding critical level �m . Now we apply the same idea of multiscale testing as one

used for construction of every component test. Namely, to provide a prescribed nominal

level � of the multiple test, which checks all components fm simultaneously, all these
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critical values �m should be slightly increased, e.g. by the same value �� such that

P 0

�
max

m=1;::: ;d
(T �m � �m) > ��

�
� �

where P 0 means the distribution on the space of observations under the no-response

model F � 0 with the standard Gaussian errors (that is, Yi are i.i.d. standard Gaus-

sian).

3.1.4 Local test

In parallel to the test T � based on the maximum of some quadratic forms of the empirical

Haar coeÆcients b�I , one may consider another test which is called the \local" test in

H�ardle et al. (1997). This test is based on the maximum of the standardized empirical

coeÆcients b�I over all I 2 Ij . More precisely, for every j � jn , we de�ne

Tj;loc = max
I2Ij

b�2Ib�2I � �j

where b�2I = b�2v(I;1);(I;1) and �j are such that

P 0 (Tj;loc > �j) = �loc

with P 0 being again the distribution under the no-response model with standard normal

errors. The multilevel \local" test ��loc is de�ned by

��loc = 1

�
max
j�jn

Tj;loc > ��
�

where �� ful�lls

P 0

�
max
j�jn

Tj;loc > ��
�
= �loc:

For applications one can use an approximation �j � 2 logNj � 2 log logNj + 2 log��1loc .

Such de�ned \local" test has been shown to be sensitive against a \non-smooth" alterna-

tive (e.g. an alternative with jumps), see Haerdle et al. (1997). In practical applications

one would be willing to apply both tests T � and T �loc simultaneously which requires

some additional adjustment of the critical levels for both tests. Taking into account the

speci�c structure of the test ��loc , our recommendation is to perform this \local" test at

a very small signi�cance level, e.g. �loc = 0:005 or even smaller which does not require

an additional adjustment of the test �� .

Also the theoretical properties of such de�ned test are presented and discussed in

there.
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4 Simulation studies and an application

The performance of the suggested test procedure for �nite samples has been examined

in a simulation study and was applied for the analysis of female labor supply data.

4.1 Some simulated examples

We considered 3-dimensional regression problems having additive components of the

following form:

f1(x) = 2 sin(�x); f2(x) = 2 sin(3�x); f3(x) = x2 �E[x2]

and thus three components of quite di�erent smoothness.

In our simulations we consider a uniformly distributed design on the cube [�2; 2]3
and standard normal errors. We do not assume to know the standard deviation of the

error terms but estimate � as suggested in Section 2.5 and apply our test procedure for

every component fm; m = 1; 2; 3 independently. The sample size is set to n = 150.

The sensitivity of the test is investigated by calculating the power functions for di�erent

signi�cance levels. We also compare the performance of our procedure with the one for

ideal (\oracle") parametric t-test (or Neymann-Pearson NP), see below, for the sample

sizes 150 and 300.

Let be f1 the function of interest for a moment. The exactness and power of the test

we calculated by considering the data generating process

Y = (1� v)x1 + vf1(x1) + f2(x2) + f3(x3) + �

with v running from zero to one. This parameter v has the same meaning as the

separation distance between the null and the alternative. The t-test means testing the

hypothesis H0 : �2 = 0 in the model

Y = �0 + �1x1 + �2f1(x1) + �3f2(x2) + �4f3(x3) + �

with known f1, f2, f3.

For getting the critical values we did 249 Monte Carlo simulations from a no response

model. To estimate the standard deviation we used j150 = 4 along the rules presented in

Section 2.5 and got, as expected, only slightly overestimated b�� (5 to 15%).

The results for the number of rejections after 500 replications with n = 150 can

be found in the Table 1, together with the average over the resolution levels at which

our procedure rejected. As discussed in Remark 2, we have to decide how to choose

tj;�. We present results for the two most natural choices. First, we set tj;� equal to the

FNj ;n�rn(�)�quantile with � = :01, :05, :1 being the signi�cance level (in tables indicated
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by F (�)); second, we tried our procedure with simply tj;� � 0 (in tables indicated by

000).

Table 1: Percentage of rejections for functions (1�v)xm +vfm(xm), m = 1; 2 , and average of active resolution

level j1 (in parenthesis) for two tests with di�erent tj;�, i.e. F (�) and
000.

f1 f2

vn� .01 .05 .10 .01 .05 .10

F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000

0:0
:018

(3.22)

:004

(3.00)

:060

(3.30)

:054

(2.56)

:108

(2.90)

:104

(2.44)

:010

(3.40)

:004

(2.00)

:050

(3.08)

:048

(1.88)

:102

(2.49)

:106

(2.11)

0:1
:016

(1.25)

:020

(0.70)

:0660

(2.03)

:074

(0.973)

:110

(1.82)

:122

(1.26)

:006

(2.00)

:004

(0.00)

:060

(2.67)

:058

(2.14)

:104

(2.44)

:110

(2.04)

0:2
:038

(0.95)

:100

(0.18)

:172

(0.94)

:228

(0.54)

:266

(0.90)

:320

(0.65)

:024

(2.83)

:028

(2.07)

:128

(2.58)

:128

(1.72)

:232

(2.36)

:224

(1.97)

0:3
:130

(0.51)

:282

(0.14)

:386

(0.46)

:500

(0.25)

:558

(0.56)

:648

(0.36)

:060

(2.77)

:066

(2.18)

:290

(2.72)

:246

(2.35)

:396

(2.73)

:372

(2.42)

0:4
:358

(0.15)

:588

(0.08)

:720

(0.20)

:810

(0.16)

:828

(0.23)

:860

(0.17)

:236

(2.80)

:210

(2.26)

:502

(2.69)

:464

(2.33)

:642

(2.63)

:620

(2.41)

0:5
:566

(0.15)

:774

(0.11)

:866

(0.21)

:918

(0.15)

:940

(0.19)

:964

(0.16)

:454

(2.89)

:398

(2.34)

:738

(2.75)

:712

(2.40)

:838

(2.63)

:820

(2.42)

0:6
:806

(0.12)

:930

(0.07)

:958

(0.12)

:988

(0.10)

:988

(0.12)

:994

(0.10)

:692

(2.94)

:596

(2.64)

:912

(2.82)

:878

(2.67)

:958

(2.77)

:950

(2.68)

0:7
:948

(0.06)

:982

(0.04)

:990

(0.05)

1:00

(0.04)

1:00

(0.04)

1:00

(0.04)

:878

(2.97)

:832

(2.79)

:974

(2.89)

:970

(2.77)

:986

(2.85)

:988

(2.77)

0:8
:976

(0.06)

:990

(0.04)

1:00

(0.05)

1:00

(0.04)

1:00

(0.04)

1:00

(0.04)

:946

(2.94)

:912

(2.72)

:990

(2.85)

:990

(2.68)

:998

(2.78)

:996

(2.68)

We see that the test performs quite well. The di�erence in power for f1, f2 and f3

corresponds to the di�erent smoothness of the underlying function. Also the information

at which resolution level j1 the procedure rejects, clearly depends on the smoothness of

our functions as well as on the distance between null and alternative. It can further be

seen, that only looking at one special level would reduce a lot the power of our procedure.

Figure 1 demonstrates how fast the power of our procedure increases and the separa-

tion distance between the null and the alternative decreases with the number of observa-

tions giving the power functions of our test with tj;� � 0 for signi�cant levels being 5%.

In parallel we present the results for the ideal t-test.

4.2 Applications

We now turn to an application to demonstrate the performance on real data. The data set

is a subsample of the Socio Economic Panel of Germany from 1992. To study the female
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Figure 1: The power functions for n = 150 (upper) and n = 300 (lower), testing linearity of (1� v)xm +

vfm(xm), form = 1 on the left, m = 2 on the right with 5% signi�cance level. Solid line is for using wavelets

with tj;� = 0, dotted line if using t-Test with all information about functional forms.

labor supply in East Germany, 607 women with job and living together with a partner in

East Germany have been asked for their weekly number of working hours. The following

observations have been chosen as explanatory variables: the age of the woman X1, her

earnings per hour X2, the prestige index of her kind of profession X3 (called \Treimann

Prestige Index" , see Treimann, 1978), the monthly rent or redemption X4 for their at

or house, the monthly net income of her partner (in most cases her husband) X5, her

education X6 measured in years, the unemployment rate X7 of the particular country of

the Federal Republic of Germany where the woman is living in and the number of children

younger than 16 years, X8. These data have already been analyzed nonparametrically in

Sperlich (1998), see e.g. for functional forms and further discussion.

The study of female labor supply is quite common in economic empirical research

and usually done with (log-) linear additive models using indicators for which the above

mentioned set of variables is typical, see e.g. Mroz (1987), Blundell, Duncan, Meghir

(1998), Str�m and Wagenhals (1991) or any Handbook of Labor Economics. Among

them, especially Mroz (1987) investigated the sensitivity against model speci�cation in

this context and found tremendous di�erences in results depending on the particular

speci�cation. A �rst natural generalization would be to allow the additive components to
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be non-(log-)linear. Exactly this we now want to investigate. Later, we will additionally

have a look on the additivity assumption.

Since some of these explanatory variables are not only discrete but have even less then

10 di�erent realizations observed (e.g. for children and unemployment rate of country -

there are only �ve countries in East Germany), we have to choose respectively low jn

to avoid overparametrization in this component, see Remark 3. Therefore we chose

j6(n) = 2 for X6, j7(n) = 2 for X7, and for X8 (number of children) only j8(n) = 1. For

X1; X2;X3;X4 and X5 we chose jn = 4. These are also the functions of interest we want

to analyze.

In Figure 2 we have displayed the wavelet coeÆcient estimates used for the test

statistics. They are standardized, i.e. divided by vIb�, but not corrected for the correlation
inside the levels j1 = 0; 1; 2; 3; 4. The length is indicating their absolute value.

Often, the earnings per hour (X2) are modeled log-linear by some reasoning from

economic theory as well as it turned out, that linearity did not �t well. So in a second

run we also want to test the inuence of ln(X2) instead of using X2 against linearity and

gave the coeÆcients in the lower right.

Looking at the construction of Tj ; T
�, Figure 2 gives some ideas where we would

expect the test to reject: e.g. for "earnings per hour" at j1 = 0, "prestige" at j1 = 4,

and "log(earnings per hour)" at j1 = 2, whereas it is not that clear for "age", "income

of partner" or "rent/redemption". For the latter one we even would guess that there is

de�nitely no signi�cance in the coeÆcients.

Actually, the linearity hypothesis was rejected for X1 at only 10% (at j1 = 2), X2 at

1% (at j1 = 0), for X3 at (almost) 5% (p-value� 0:052, at j1 = 4), and for ln(X2) also

at the 1% signi�cance level (at j1 = 2).

Though the additivity assumption is not that of interest for us, we �nally also looked

for possible second order interactions between the regressors. We applied the procedure

described in Section 3.1 to all combinations XjXk, k 6= j, j; k = 1; : : : 8. As before,

we chose j6(n) = j7(n) = 2, j8(n) = 1. It turned out, that the null hypothesis no

interaction between "age" and "prestige" is rejected at 1%, "prestige" and "years of

education" exactly at 5%, and between "age" and "u-rate" and "earnings of husband"

and "u-rate" at the 10% level. Hence, our testing procedure demonstrates that, at least

for the underlying data, the standard additive structural assumption in female labor

supply model is by far not ful�lled.
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Figure 2: The estimated wavelet coeÆcients for some additive component functions. The coeÆcients �I

are �rst standardized by vIb�; the length indicates size. CoeÆcients with no length are zero. Resolution

levels j1 are given at vertical axes. The range of the regressors is normed to [0; 1] in which the coeÆcients

are positioned in the center of the support of its corresponding mother wavelet  , e.g. for j = 0 on 0:5. Not

given are the coeÆcients for the constant nor for the linear term since they do not enter to the test statistic.
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5 Proofs

In this section we collect the proofs of Theorems 1 through 2 and of the other statements

presented in Section 3.

5.1 Proof of Lemma 1

By de�nition of jn it holds 3dn�1=2 � 2�jn�1 � 3dn�1 . Next, de�ne �0m;n as the

projector on the space of piecewise constant functions of the m -th component xm

with the piece length 2�jn�1 . Since �m;n projects on a larger space generated by

piecewise constant functions and the linear function  1;m(x) = xm , it clearly holds

kfm ��m;nfmkn � kfm ��0m;nfmkn .
Let A be an interval of the form A = [k2�jn�1; (k+1)2�jn�1) and let NA;m denote

the number of design points Xi with Xi;m 2 A . The condition of the lemma on the

marginals �m;n of the empirical measure implies that NA;m � C12
�jn�1n . Denote also

by fm;A the arithmetic mean of the values fm(Xi) over all Xi with Xi;m 2 A . Then

�0m;nfm(Xi) = fm;A and the Lipschitz condition on the component functions fm yields

jfm(Xi;m)� fm;Aj � C22
�jn�1 for Xi;m 2 A and henceX

i :Xi;m2A

jfm(Xi)� fm;Aj2 � NA;m

��C22
�jn�1

��2 � C1C
2
2n2

�3jn�3:

We have 2jn+1 such intervals and therefore

kfm ��m;nfmk2n � C1C
2
2n2

�2jn�2 � C1C
2
2d

2n�1

and the assertion follows.

5.2 Some properties of the variance estimate

It is well known that under mild regularity conditions, the unknown variance �2 can be

estimated at the rate n�1=2 . We now show that the proposed estimate b�2 is also root-n

consistent under the condition (D) .

The estimate b�2 can be represented in the form

b�2 = (n� rn)
�1Y >(1��n)Y

= (n� rn)
�1(� + F )>(1��n)(� + F ):

where rn was the rank of �n. Condition (D) provides k(1 � �n)F kn � C�n�1=2 , see

the proof of Lemma 1.
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Lemma 2 Under the condition (D) it holds

P
�����2b�2 � 1

�� >p(n� rn)�1 log n
�
= on(1)

where on(1) denotes a numerical sequence tending to zero as n!1 . Moreover,

P
�
��2

��b�2 � b�20�� > n�1
�
= on(1)

where

b�20 = (n� rn)
�1�>(1��n)�:

Proof. By de�nition

��2(n� rn)
�b�2 � b�20� = ��2F>(1��n)F + 2��2�>(1��n)F :

Condition (D) provides

F>(1��n)F = k(1��n)F k2n � C2n�1:

Next, since ��2�>(1 � �n)F is the linear combination of Gaussian errors �i , it is also

a Gaussian random variable with zero mean and the variance

��4E
����>(1��n)F

���2 = ��4EF>(1��n)��
>(1��n)F

= ��2F>(1��n)F � C2n�1:

This implies for every t � 1

P

 
��2

�b�2 � b�20� C2

n(n� rn)
+
Cn�1=2t

n� rn

!
� e�t

2=2

and the second assertion of the lemma follows in view of n� rn � n=3 .

For the �rst one, it remains to estimate ��2b�20 � 1 = ��2(n � rn)
�1�>(1 � �n)� .

Since ��2�>(1 � �n)� follows the �2 -distribution with n� rn degree of freedom, the

expression
p
(n� rn)=2

�
��2b�20 � 1

�
is asymptotically standard normal and the required

assertion follows.

5.3 Proof of Theorem 1

Let jn be due to (2.10), then with condition (D) ,

dX
m=2

kfm ��m;nfmkn � C�n�1=2
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and each �m;nfm can be represented in the form

�m;nfm =
X

I2I0(jn)

�I;m I;m; m = 2; : : : ; d;

with some coeÆcients �I;m , I 2 I 2 I 0(jn) .
Under the null hypothesis, f1 = �0;1 + �1;1 1;1 . De�ne

F 0 = F � f1 ��2;nf2 � : : : ��d;nfd:

Then the above bound yields

kF 0kn = kF � f1 ��2;nf2 � : : :��d;nfdkn � C�n�1=2: (5.17)

Now we show that the original regression function F can be replaced by F 0.

Lemma 3 The change F for F 0 does not a�ect the test statistics T � = maxj�jn Tj .

Proof. Let some j � jn be �xed. Denote by �(d; j) = (�I;m; (I;m) 2 I(d; j)) the

vector with �I;1 = 0 for I 2 Ij , 0 � j � j , and with the above de�ned �I;m for m � 2 .

Then F 0 = F �	(d; j)�(d; j) and the inequality in (5.17) can be rewritten in the form

kF � 	(d; j)�(d; j)kn � �n�1=4 . De�ne also ��(d; j) = W (d; j)>F and let ��j be the

subvector of ��(d; j) corresponding to the j th resolution level of the �rst component.

This vector can be written in the form ��j = Ej��(d; j) with Ej being the projector from

IRN(d;j) onto IR2j keeping the entries ��I;1 , I 2 Ij , of the vector ��(d; j) corresponding

to the j th resolution level of the �rst component. Then it holds

��j = EjW (d; j)>F =W>

j F :

Since the test statistic T � is calculated via the estimates b�j = W>

j Y for j � jn , and

since W>

j Y = W>

j � +W>

j F , it only remains to check that W>

j 	(d; j)�(d; j) = 0 for

all j � jn . The de�nition of �(d; j) provides Ej�(d; j) = 0 , and hence,

W>

j 	(d; j)�(d; j) = EjW (d; j)>	(d; j)�(d; j)

= Ej
�
	(d; j)>	(d; j)

��
	(d; j)>	(d; j)�(d; j) = 0

as required.

This lemma allows to reduce the statement of the theorem to the case with kF kn �
C�n�1=2 .

Recall that the critical value of the test is evaluated under the condition F � 0 . Now

we intend to show that P F (�
� = 1) = �+on(1) for every regression function F satisfy-

ing kF kn � C�n�1=2 . The test �� is based on the test statistic T � = maxj�jn(Tj�tj;�)
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with

Tj =
Y >WjV

�

j W
>

j Yb�2p2Nj

�
q
Nj=2 =

Y >RjYb�2p2Nj

�
q
Nj=2:

Here Wj is the submatrix of the matrix W (d; j) corresponding to the j th resolution level

of the �rst component, Wj = EjW (d; j) , and Vj = W>

j Wj , so that Rj = WjV
�

j W
>

j is

a projector in IRn on the Nj -dimensional subspace. The model Y = F + � implies

Tj =
�>Rj�b�2p2Nj

�
q
Nj=2 +

2�>RjF + F>RjFb�2p2Nj

:

De�ne

T 0
j =

�>Rj�b�20p2Nj

�
q
Nj=2: (5.18)

We intend to bound the di�erence Tj � T 0
j .

Lemma 4 Let condition (D) be ful�lled and the component f1 be a linear functions.

Then it holds

jnX
j=0

P
�jTj � T 0

j j > �j
�
= on(1): (5.19)

where �j = 3C
q

log jn
nNj

.

Proof. Clearly we have

Tj � T 0
j =

�>Rj�p
2Nj

�b��2 � b��20

�
+
2�>RjF + F>RjFb�2p2Nj

:

Similarly to the proof of Lemma 2 one can show that

�>Rj�p
2Nj

�b��2 � b��20

�
= o(n�1)

and for every t � 1 ,

P

 
2�>RjF

�2
p
2Nj

>
2kRjF knt
�2
p
2Nj

!
� e�t

2=2: (5.20)

Since kRjF kn � kF kn � Cn�1=2 , this inequality applied with t =
p
3 log jn yields

jnX
j=0

P

 
2�>RjF + F>RjF

�2
p
2Nj

> Cn�1 + 2C

s
3 log jn

2nNj

!
� (1 + jn)e

3=2 log jn = on(1):
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Now the required assertion follows in view of the �rst statement of Lemma 2.

By construction, it holds

P

�
max

0�j�jn
(T 0
j � tj;�) > �

�
= �:

The idea is to show that this equality remains valid in the asymptotic sense if we replace

here T 0
j by Tj . Assertion (5.19) yields

P

�
max

0�j�jn
(T 0
j � tj;� � �j) > �

�
� on(1) � P

�
max

0�j�jn
(Tj � tj;�) > �

�
� P

�
max

0�j�jn
(T 0
j � tj;� + �j) > �

�
+ on(1):

Now it suÆces to check that

jnX
j=0

P
�jT 0

j � tj;� � �j � �j
�
= on(1):

The distribution of T 0
j is precisely known and for suÆciently large n it is very close

to the centered and standardized �2 -distribution with Nj degrees of freedom. This

particularly yields that the density of this distribution with respect to the Lebesgue

measure is bounded by 1 and therefore,

jnX
j=0

P

 
jT 0
j � tj;� � �j � 3C

s
log jn
nNj

!
�

jnX
j=0

6C

s
log jn
nNj

= on(1)

and the theorem is proved.

5.4 Proof of Theorem 2

The proof utilizes the following technical

Lemma 5 For suÆciently large n , it holds

max
0�j�jn

tj;� + � � 2
p
log jn:

Proof. The statement obviously follows from the fact that

jnX
j=0

P
�
T 0
j > 2

p
log jn

�
= on(1)

where every T 0
j is de�ned by centering and standardization of a �2 -sum with Nj degree

of freedom, see Spokoiny (1999a) for more details.
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Let, for some j � jn , it holds

T �j = (2Nj)
�1=2��2��j

TV �

j �
�

j � (tj;� + �+ t0j;�) + c
p
log jn

with some c > 0 . This inequality can be represented in the form

F>RjF

�2
p
2Nj

> 2tj;� + �+ t0j;� + a
p
log jn: (5.21)

We will show that under the above assumption,

P F (Tj < tj;� + �) � � + on(1);

which obviously implies the assertion.

Similarly to the proof of Theorem 1 we derive

Tj � T 0
j =

�>Rj�p
2Nj

�
1b�2 � 1b�20

�
+
2�>RjF + F>RjFb�2p2Nj

= o(n�1) +
2�>RjF + F>RjFb�2p2Nj

= o(n�1) +
2�>RjF + F>RjF

�2
p
2Nj

with T 0
j from (5.18). The de�nition of t0j;� provides

P
��T 0

j < �t0j;�
�
= �:

Now (5.20) implies

P F (Tj < tj;� + �) � P �T 0
j < �t0j;�

�
+ P

��j > T �j � tj;� � �� t0j;�
�
+ on(1)

where j =
2�>RjF

�2
p

2Nj

is a Gaussian r.v. with zero mean and E2j = 4T �j (2Nj)
�1=2 . It

remains to check that condition (5.21) and Lemma 5 imply

4T �j (2Nj)
�1=2

(T �j � tj;� � �� t0j;�)
2
= on(1):
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