
Abstract

The paper is an introduction into General Ether Theory (GET).

We start with few assumptions about an universal \ether" in a New-

tonian space-time which ful�ls

@t�+ @i(�v
i) = 0

@t(�v
j) + @i(�v

ivj + pij) = 0

For an \e�ective metric" g�� we derive a Lagrangian where the

Einstein equivalence principle is ful�lled:

L = LGR � (8�G)�1(�g00 � �(g11 + g22 + g33))
p
�g

We consider predictions (stable frozen stars instead of black holes,

big bounce instead of big bang singularity, a dark matter term), quan-

tization (regularization by an atomic ether, superposition of gravita-

tional �elds), related methodological questions (covariance, EPR cri-

terion, Bohmian mechanics).
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1 Introduction

The purpose of the present work is to present an alternative metric theory

of gravity. The Lagrangian of the theory

L = LGR � (8�G)�1(�g00 � �(g11 + g22 + g33))
p
�g

is very close to the GR Lagrangian, and in the limit �;�! 0 we obtain

the classical Einstein equations.

The key point is that this Lagrangian may be derived starting with

a few assumptions about the \ether" { a classical medium in a classical

Newtonian background with Euclidean space and absolute time R3
R. We

need only a few general principles: a Lagrange formalism and its relation

with standard conservation laws. The gravitational �eld g�� is de�ned by

the \general" steps of freedom of the ether { density �, velocity vi, pressure

pij .1 The matter �elds describe its material properties. What explains the

Einstein equivalence principle is that the ether is universal: all �elds describe

properties of the ether, there is no external matter. Therefore, observers

are also only excitations of the ether, unable to observe some of the ether

properties. This explains that we are unable to observe all steps of freedom

of the ether. We need no arti�cial conspiracy or highly sophisticated model

to obtain relativistic symmetry in an ether theory.

1As usual, we use latin indices for three-dimensional indices and greek indices for four-

dimensional indices. We also use the notation ĝ�� = g
��
p�g.
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The only di�erence to GR are two additional terms which depend on

the preferred coordinates X i; T . In \weak" covariant formulation (with the

preferred coordinates handled as \�elds" X i(x); T (x)) we obtain:

L = LGR � (8�G)�1(�g��T;�T;� � �g��ÆijX
i
;�X

j
;�)
p
�g

Instead of no equation for the preferred coordinates, we obtain a well-

de�ned general equation for these coordinates: the classical conservation

laws, which appear to be the harmonic coordinate condition.

But this changes a lot. It is, essentially, a paradigm shift as described

by Kuhn [44]. We revive the metaphysics of Lorentz ether theory in its

full beauty. This requires the reconsideration of the whole progress made in

fundamental physics in this century. Therefore, after derivation of the theory

and their comparison with existing theories of gravity we reconsider di�erent

domains of science from point of view of the new paradigm. Of course,

this may be only a raw overview, a program for future research instead of a

summary of results. But this raw overview does not suggest serious problems

for the new paradigm, while essential problems of the relativistic paradigm

disappear.

The preferred background leads to well-de�ned local energy and momen-

tum conservation laws. Moreover, the additional terms seem to be useful to

solve cosmological problems. The �-term de�nes a nice homogeneous dark

matter candidate. The �-term is even more interesting: it avoids the big

bang singularity and leads instead to a bounce. Such a bounce makes the

cosmological horizon much larger and therefore solves the cosmological hori-

zon problem without in
ation. This term stops also the gravitational collapse

immediately before horizon formation. Because of the underlying Euclidean

symmetry, the 
at universe is the only homogeneous universe. Therefore,

GET is not only in agreement with observation, but allows to solve some

serious cosmological problems solved today by in
ation theory.

A very strong argument in favour of GET is the violation of Bell's inequal-

ity. In our opinion, it is a very simple and decisive proof of the existence of a

preferred foliation { as simple and decisive as possible in fundamental physics.

Only if we try to avoid this simple conclusion, the issue becomes complicate

{ we have to reject simple fundamental principles like the EPR criterion of

reality or causality. In our opinion, there is a lot of confusion in this question.

For example, it is often assumed that the EPR criterion is in contradiction
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with quantum theory. But the existence of Bohmian mechanics proves that

there is no such contradiction.

In quantum �eld theory the reintroduction of a preferred frame does not

lead to problems. Instead, it allows to generalize Bohmian mechanics into the

relativistic domain and clari�es the choice of the Fock space in semiclassical

�eld theory.

The \ether hypothesis" suggests also a simple solution for the problem

of non-renormalizability. Technically, this solution is already known as \ef-

fective �eld theory". In this concept, it is assumed that below a certain

cuto� scale the theory becomes really di�erent. This concept has two fea-

tures where GET suggests modi�cation: First, in the standard concept the

nature of the theory below this cuto� remains completely unspeci�ed. In-

stead, GET suggests a well-de�ned framework: canonical quantum theory,

Newtonian space-time, and some \atomic ether theory". Second, the cuto�

length is supposed to be the Planck length. Instead, GET makes a pre-

diction which is inconsistent with Planck length { the cuto� is de�ned by

g00
p
�gVcutoff = 1. As a consequence, the cuto� length seems to increase in

a homogeneous \expanding" universe.

Remarkably, all these results are only side-e�ects. It was not the origi-

nal intention of the author to revive old ether theory. Instead, the author

shares the common admiration for the beauty of GR. It was also not the

intention to solve cosmological problems { they have been considered only

after the derivation of the Lagrangian. We also have not tried to save the

EPR criterion or to generalize Bohmian mechanics.

The original motivation was di�erent. It was a quantum gravity thought

experiment which has convinced the author that a Newtonian framework is

necessary. The question is if a \one world theory" as GR is suÆcient to

describe superpositions of di�erent gravitational �elds, or if such a super-

position depends on relations between the superposed �elds, their \relative

position". To decide this question, we consider a simple interaction of a

superposition of quasiclassical �elds with a test particle. We observe a tran-

sition probability which depends on such relative information. To describe

such transition probabilities in quantum gravity it seems necessary to intro-

duce a common background.

Last not least, it seems necessary to criticize some aspects of the relativis-

tic paradigm for quantum gravity. \Because of the lack of data, quantum

gravity is strongly in
uenced by philosophical prejudices of the researchers"
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[20], therefore, these prejudices have to be considered. We use Rovelli [63]

as a base for this consideration. It includes an excellent methodological part

we agree with. We criticize his relativistic argumentation and argue that our

consideration is in much better agreement with the proposed methodology.

2 General Ether Theory

Let's now de�ne general ether theory. We have a Newtonian framework {

absolute Euclidean space with orthonormal coordinates X i and absolute time

T. We have also classical causality { causal in
uence A! B between events

A and B is possible only if T (A) � T (B).

The ether is described by steps of freedom which are usual in condensed

matter theory: there is an \ether density" �(X;T ), an \ether velocity"

vi(X;T ) and an \ether pressure" pij(X;T ). As usual for a density, � > 0.

These steps of freedom de�ne the gravitational �eld. The theory is a

metric theory of gravity, and the metric g�� is de�ned algebraically by the

following formula:

g00
p
�g = �

gi0
p
�g = �vi

gij
p
�g = �vivj + pij

This formula is a variant of the ADM decomposition. Especially, vi is the

ADM shift vector.

Because the density � is always positive, this formula de�nes a Lorentz

metric if and only if the tensor pij is negative de�nite. Therefore, we make

the additional assumption that pij is negative de�nite.

2.1 The material properties of the ether

These are not all steps of freedom of the ether. Instead, there are other steps

of freedom, the \material properties" 'm(X;T ) of the ether. But these steps

of freedom are not de�ned by GET. Instead, GET is a general theory only, it

describes only a few general properties, not all properties of the ether. It is,

therefore, a meta-theory, a general scheme for an ether theory. Di�erent ether
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theories can �t into this scheme. Ether theories with well-de�ned material

properties and material laws we name \complete ether models".

This is in no way strange for a theory of gravity. All metric theories of

gravity are general schemes in the same sense. They do not specify the mat-

ter steps of freedom and the matter Lagrangian. Nonetheless, they specify an

essential and very important property of the matter Lagrangian { that it ful-

�ls the Einstein equivalence principle. Thus, the meta-theoretical character

is a common feature of theories of gravity.

GET in some sense explains this subdivision into a universal gravitational

�eld and matter �elds. Indeed, there is a similar subdivision in condensed

matter theory { the subdivision between the few basic steps of freedom (like

density, velocity, pressure) which are common for very di�erent materials and

the \material properties" which di�er for di�erent materials. In GET this

subdivision �ts with the subdivision into gravity and matter �elds: Density,

velocity and pressure are used to describe the gravitational �eld, while the

other material properties describe the matter �elds.

This is an essential di�erence to classical ether theory. In the classical

concept, the ether is assumed to be something di�erent from usual matter. In

GET, usual matter is described by continuous �elds, and these �elds describe

various properties of the ether.

But we not only assume that there are material properties of the ether

described by some matter �elds. We assume more: all matter �elds describe

material properties of the ether. There is no ethr-external matter:

Axiom 1 (universality) There is nothing except the ether. All �elds de-
scribe steps of freedom of the ether.

Thus, the complete ether model is the theory of everything.

2.2 Conservation laws

In our covariant formalism, the conservation laws are the Euler-Lagrange

equations for the preferred coordinates X� (see (A.2)). Now, let's try to �nd

these conservation laws. The main hypothesis is that these conservation laws

coinside with the classical conservation laws we know from condensed matter

theory.
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Axiom 2 (continuity equation) The mass of the ether is conserved. This

conservation is described by the classical continuity equation:

@t�+ @i(�v
i) = 0 (1)

The other important equation of classical condensed matter theory is the

Euler equation. It is the conservation law for momentum:

Axiom 3 (Euler equation) The momentum of the ether is conserved.

This conservation is described by the classical Euler equation:

@t(�v
j) + @i(�v

ivj + pij) = 0 (2)

Note that we have no terms for external forces or interaction with external

matter. The reason is that we have already incorporated here the universality

axiom { there is no momentum exchange with external matter, there are no

external forces. All \matter �elds" are \material properties" of the ether.

These are already all ether equations speci�ed by GET. All other equa-

tions are \material laws" of the ether, they depend on the \material proper-

ties" 'm which have to be de�ned only by the complete ether model. GET

does not specify them.

Now, a key observation is what happens if if we rewrite the classical

conservation laws as equations for the e�ective metric g�� . We obtain a

well-known equation { the harmonic condition:

2X� = @�(g
��
p
�g) = 0

2.3 Lagrange formalism

Amajor assumption is that we have a Lagrange formalism. We use the covari-

ant formulation of the theory: the preferred coordinates X� are considered

as �elds, the Lagrangian depends on the �elds X�(x) in a covariant way

(see xA.1). In this formalism, the conservation laws are the Euler-Lagrange

equations for the preferred coordinates (see (A.2)).

On the other hand, we have already found the conservation laws and

observed that they may be written as equations for the preferred coordinates.

Thus, it seems reasonable to assume that they are proportional:
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ÆS

ÆX�
= 
�2X

�

Now, the coeÆcients 
� may be di�erent. We can use Euclidean symmetry

to argue that 
1 = 
2 = 
3, but there is no reason to suppose a relation

between 
0 and the 
i.

Instead of the 
� we introduce introduce a diagonal matrix 
�� with 
�� =

�4�G
�. The factor 4�G is well-known from GR, and it seems natural to

introduce it here: in this case, the two constants � = 
00, � = �
ii appear in
a similar way as Einstein's cosmological constant �. Now we can formulate

the

Axiom 4 (Lagrange formalism) There exists a \weak covariant" La-
grange formalism so that the Euler-Lagrange equations for the preferred co-
ordinates X� and the classical conservation laws for the ether 2X� = 0 are

related in the following way:

ÆS

ÆX�
= �(4�G)�1
��2X� (3)

Now, let's �nd the general Lagrangian which ful�ls this assumption.

Theorem 1 The general Lagrangian for GET is

L = �(8�G)�1
��g��
p
�g + LGR(g��) + Lmatter(g�� ; '

m) (4)

Proof: First, we �nd a Lagrangian which ful�ls the condition (3):

LGET = �(8�G)�1
��X�
;�X

�
;�g

��
p
�g

For the di�erence we obtain

Æ
R
(L� LGET )

ÆX�
= 0

Thus, the remaining part is \strong" covariant, that means, it is not only

covariant, but does not depend on the preferred coordinates X� too. But this

is the classical requirement for the Lagrangian of general relativity. Thus, we

can identify the di�erence with the classical Lagrangian of general relativity.
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L = LGET (g�� ;X
�) + LGR(g��) + Lmatter(g�� ; '

m)

In the preferred coordinates LGET may be rewritten as

LGET = �(8�G)�1(�g00 � �(g11 + g22 + g33))
p
�g

or in a more compact form as

LGET = �(8�G)�1
��g��
p
�g

This proves the theorem.

It should be noted that we have no theoretical reason to �x the signs for

the cosmological constants �;�;�. Their values should be �xed by observa-

tion.

3 Simple properties

Now we have de�ned GET and can describe its properties.

First, let's write down the other Euler-Lagrange equations. As equations

for g�� we obtain the Einstein equations with two additional non-covariant

terms:

G�
� = 8�G(Tm)

�
� + (� + 
��g

��)Æ�� � 2g��
�� (5)

As in GR, the equations for the matter �elds 'm depend on the matter

Lagrangian and remain unspeci�ed.

The expression of the GET Lagrangian in terms of the original ether

variables is quite nice:

4�G��1LGET =
1

2
(�jvj2 + pii ����1�)

3.1 Energy-momentum tensor

Now, we have derived the GET Lagrangian using assumptions about the

conservation laws. Therefore, to write dowm the energy-momentum tensor

is easy:
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T �
� = (4�G)�1
��g

��
p
�g

In this form, the tensor does not depend on the material properties 'm of

the ether. But how is this energy-momentum tensor related with the usual

energy-momentum tensor for the matter �elds? Now, the answer is simple.

We have to multiply the GET variant of the Einstein equation (5) with
p
�g

and obtain the following decomposition of the full energy-momentum tensor:

T �
� = (Tm)

�
�

p
�g + (8�G)�1

�
(� + 
��g

��)Æ�� �G�
�

�p
�g

Thus, we obtain immediatelywhat is missed in GR: an energy-momentum

tensor for the gravitational �eld.

3.2 Constraints

If we want to formulate an initial value problem for GR as well as GET,

we cannot simply de�ne the initial values g0��(x) = g��(x; 0) and k0��(x) =

@tg��(x; t)jt=0. Instead, we obtain the problem that the four equations

G0
� = :::

do not contain second order derivatives in time, that means, they de�ne

constraints for the initial values. This is a common property in above theo-

ries, because the additional terms of GET do not add second order derivatives

of the g�� . Moreover, in GET the four conservation laws are also only �rst

order in time.

Nonetheless, their character is completely di�erent. In GR, these con-

straints play a very special role in the ADM Hamilton formalism { the energy

H itself is a constraint. This is a consequence of the covariance of the GR

Lagrangian. In GET, as we have already seen, we have a well-de�ned local

energy and momentum density.

Even if the constraints are much more harmless in GET, they remain

to be constraints, which is not very nice. But there is some interesting

insight into the nature of the constraints in GET which has been found

for GR in harmonic coordinates by Choquet-Bruhat [22]. This insight was
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important for his proof of local existence and uniqueness theorems for GR. It

is remarkable in itself that this proof has been done in harmonic coordinates.

First, as has been observed by Lanczos [46], the Ricci tensor essentially

simpli�es in harmonic coordinates:

R(h)
�� = �

1

2
g��

@2g��

@x�@x�
+H��

where H�� does not contain second derivatives of the metric. Now, in

GET we have the harmonic condition �� = @�(g
��
p
�g) = 0 as an equation.

Therefore, for the initial values we have

��(0; x) = 0 @t�
�(0; x) = 0

The second condition contains a second order time derivative. But this

is true also for the Ricci tensor in harmonic coordinates. Now, if we use the

appropriate combination of this second initial condition and the equation in

harmonic coordinates, we obtain the four other �rst order constraints (see

[30], Lemma 22). Thus, all constraints are closely related to the harmonic

condition.

The ether interpretation gives additional insight. The point is that in

this interpretation the components �vi = g0i
p
�g are already velocities. A

second order equation for these components would be a third order equation

for the ether particles them-self. Therefore, it is very natural that there are

no such third order terms in the equations them-self.

4 Derivation of the Einstein equivalence

principle

The Einstein equivalence principle (EEP) is an immediate consequence of

the GET Lagrange density: the matter Lagrangian is covariant in the strong

sense, does not depend on the preferred coordinates X�. The question we

want to consider here is if there are generalizations of the GET axioms so

that the EEP remains correct.

At �rst we have to formulate the EEP in an appropriate way. The equa-

tions for matter do not depend on the preferred coordinates. In our covariant
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formalism there is a natural way to do formulate this property. The \equa-

tions for the matter" we identify with the Euler-Lagrange equations for 'm,

and the property that they do not depend on the preferred coordinates X�

can be written as

Æ

ÆX�

ÆS

Æ'm
= 0

To obtain a proof, let's look how this property may be proven for the

GET Lagrangian:

Theorem 2 (Einstein equivalence principle) Let L be a weak covariant
Lagrangian with the conservation laws

@�T
�
� = 0:

If the conservation laws do not depend on the variables 'm, then the
Einstein equivalence principle holds for these variables.

Proof: The conservation laws in the weak covariant formalism are de�ned

as

ÆS

ÆX�
= @�T

�
� = 0

The EEP follows immediately:

Æ

ÆX�

ÆS

Æ'm
=

Æ

Æ'm
ÆS

ÆX�
=

Æ

Æ'm
@�T

�
� = 0

As we see, the �rst property we need is that the material properties are

not used in the conservation laws. This property depends on our choice of

pij as an independent variable. But this is only a technical question. More

important is the universality axiom { that the matter �elds 'm describe only

\material properties" of the ether. External steps of freedom, that means

other, non-ether �elds which interact with the ether have some momentum

exchange with the ether. Therefore, there will be some interaction terms in

the momentum conservation laws.

But this may be partially weakened. If some steps of freedom  n are

external forces or external matter, while other steps of freedom 'm describe
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material properties of the ether, than the EEP does not hold for the external

steps of freedom, but remains valid for the material properties. The proof

remains the same.

The other property is that the conservation laws are the Euler-Lagrange

equations for the preferred coordinates:

ÆS

ÆX�
= @�T

�
�

Now, this may be generalized for the case where we have explicit depen-

dencies on the preferred coordinates, and, therefore, no conservation laws.

All we need is that the equation does not depend on the material properties

'm.

Therefore, we conclude that the EEP holds for material properties 'm

even in more general situations, if we have other external �elds, external

forces, even explicit dependencies of the Lagrangian from the coordinates.

Let's summarize: The EEP holds for a step of freedom 'm only if it describes

a material property of the ether. The universality axiom explains why the
EEP holds for all matter �elds.

4.1 Higher order approximations in a Lagrange for-

malism

Let's consider now another possibility for generalization. We consider the

situation where we have to consider di�erent approximations for a Lagrange

formalism. All we assume is that all approximations are consistent. For a

condensed matter theory that means that the conservation laws are valid.

Let's compare now two approximations. For the approximation S = S0 +S1
we have

ÆS0

ÆX�
= @�T

�
�

as well as

ÆS

ÆX�
= @�T

�
�

Now, in this situation we do not even need that these conservation laws

do not depend on some �elds 'm. All we need now is that the two approx-

imations of the conservation laws are identical. This leads immediately to

the Einstein equivalence principle for the additional part of the Lagrangian:
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ÆS1

ÆX�
= 0

This consideration suggests that it may be even easier to detect relativistic

symmetry in the higher order approximations. Sequences Sn of approxima-

tions appear in e�ective �eld theory.

4.2 Weakening the assumptions about the Lagrange

formalism

We have obtained the conservation laws with reference to condensed matter

theory. Then we have identi�ed them with the conservation laws from the

weak covariant formalism. This is a quite natural, but non-trivial identi�ca-

tion. There are many di�erent variants of the conservation laws, and even if

they are equivalent if the equations of motion are ful�lled, their functional

dependencies di�er. Therefore, it would be nice to weaken this assumption.

Unfortunately, it seems impossible to prove something without an explicit

assumption which relates a certain conservation law with the Euler-Lagrange

equations. The property \there exists a Lagrange formalism" for some equiv-

alent system of equations is too weak. The problem is that there are various

methods of transformation of a given system of equations { multiplying them

with \integrating factors", Lagrange multipliers, replacement of �elds by po-

tentials. That's why a general method which allows to decide if a given set of

equations is equivalent to a system of Euler-Lagrange equations is not known

[77]. That means, we are not even able to �nd all Lagrange formalisms for a

given set of equations.

It seems natural to assume that the equations already have the form of

Euler-Lagrange equations. Such systems of equations are \self-adjoint" and

have been considered in detail [66]. Especially there exist standard methods

to construct Lagrange densities which are also tests if the system is self-

adjoint [77]. Thus, let's assume that the conservation laws are part of such

a self-adjoint system of equations, that means, are Euler-Lagrange equations

for some variables c�:

ÆS

Æc�
= @�T

�
�
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This allows to derive a similar symmetry property of the equations for

'm:

Æ

Æc�
ÆS

Æ'm
=

Æ

Æ'm
ÆS

Æc�
=

Æ

Æ'm
@�T

�
� = 0

Thus, we have a symmetry group with four continuous parameters, only

the relation between these parameters and the coordinates has been lost.

4.3 Explanatory power of the derivation

Last not least, it should be noted that the derivation of the EEP has very high

explanatory power. First, as we have seen, it is based on a few very general

principles. We do not need any special assumptions about the ether, no

\mechanical explanation", no strange \mechanism", no \conspiracy". We

make non-trivial assumptions, but these non-trivial assumptions are very

natural for a condensed matter theory.

Evidence for the high explanatory power is that we can describe the proof

in a simple verbal way: The conservation laws can be understood as equations

for the preferred coordinates. Now, the conservation laws do not depend on

the material properties. Therefore, because of the principle \action equals

reaction", the equations for the material properties do not depend on the

preferred coordinates.

5 Does usual matter �t into the GET

scheme?

If we compare the Einstein equations with usual hydro-dynamical equations,

they look very di�erent. The Einstein equations depend on second order

derivatives of the g�� . At a �rst look, there seems to be no chance to unify

them.

GET suggests such a way. Indeed, in the derivation of GET we have

used only a few general properties of the ether. None of these assumptions is

obviously wrong for usual condensed matter theory. The material properties

of the GET ether remain unspeci�ed. We cannot even tell if the ether is solid
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or liquid.2 This suggests that usual condensed matter may be described by

a GET-like Lagrangian.

5.1 The role of the Einstein Lagrangian

The problem with the second derivatives which appear in the Einstein equa-

tions can be easily solved: we have identi�ed the \remaining part" of the

GET Lagrangian with the Einstein Lagrangian because of its strong covari-

ance. None of the GET axioms requires to include the Einstein-Hilbert term

LGR = R
p
�g into the GET Lagrangian. It is simply a possible term in the

GET Lagrangian, not a necessary one. The same holds for covariant terms

with higher order.3 Moreover, in comparison with the three \cosmological

terms" g00
p
�g; gii

p
�g;

p
�g of GET the Einstein-Hilbert term is a higher

order term. Therefore, in the �rst approximation for usual condensed matter

the Einstein-Hilbert term may be simply omitted. In this case, the GET

equation becomes an algebraic relation between the gravitational �eld de-

�ned by �; vi; pij and the material properties 'm. This is already much more

close to usual condensed matter theory.

On the other hand, GET suggests that the Einstein-Hilbert Lagrangian

should be used in higher order approximations of condensed matter theory.

The physical meaning of curvature-dependent term in condensed matter the-

ory is easy to understand: if curvature is zero, then there exists an undis-

torted reference state which remains unchanged in time. Therefore, curvature

describes inner stress and its change in time.

5.2 The role of Lorentz symmetry

Another property seems to be much more in contradiction with usual hy-

drodynamics { the Lorentz invariance of the GET Lagrangian. The physical

meaning of this Lorentz invariance is not clear.

2It may be assumed that the condition that the pressure tensor pij is negative de�nite

tells something about the ether { that the ether is a material with negative pressure. But

the only reason for naming the tensor �eld p
ij \pressure" is that it appears like usual

pressure appears in the usual Euler equation. And this allows to identify pij with usual

pressure only modulo a constant.
3As described by Weinberg [78] \there's no reason in the world to suppose that the

Lagrangian does not contain all the higher terms with more factors of the curvature and/or

more derivatives, all of which are suppressed".
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One possibility is that it has none, and it simply as a consequence of

the fact that there are not very much possibilities for quadratic Lagrangians,

therefore, symmetries appear more or less by accident. With another choice

of the constants, especially Xi < 0, we would obtain an SO(4) symmetry,

also without any physical meaning.

Nonetheless, a consequence is that we cannot describe with GET a

Galilean-invariant theory. On the other hand, we can use GET to describe

special-relativistic condensed matter. The reverse method would be to de-

scribe a Galilean invariant theory as the limit �! 0 of a GET theory.

5.3 Existing research about the similarity

Considering the mentioned problem to obtain a Galilean invariant theory

it is no wonder that the usual Lagrange formalisms for non-relativistic 
uid

dynamics in Euler coordinates (as far as considered in Wagner [77]) do not �t

into our scheme. Remarkably, to use the three-dimensional Einstein-Hilbert

Lagrangian to describe dislocations has been proposed by Malyshev [51].

On the other hand, it is widely acknowledged in the condensed matter

community that phonons in various matter move in an e�ective Lorentz met-

ric g�� which is usually curved. Various aspects have been considered here.

Katanaev and Volovich [43] compare wedge dislocation with cosmic strings.

See also Guenther [35]. A lot of research has been related with the idea of

\dumb holes" { an analog of \black holes" in acoustics. These \dumb holes"

may be used to study quantum gravity e�ects like Unruh radiation in usual

condensed matter (Unruh [69], Jacobson [40], Rosu [62], Visser [74]).

The most interesting example of usual condensed matter is super
uid
3He. Here not only a curved Lorentz metric has been identi�ed, but also chi-

ral fermions and non-abelian gauge �elds (Volovik [76], Jacobson and Volovik

[41]).

Of course, the amount of research which connects condensed matter the-

ory and fundamental �eld theory is much greater. As noted by Wilczek [79],

\the continuing interchange of ideas between condensed matter and high en-

ergy theory, through the medium of quantum �eld theory, is a remarkable

phenomenon in itself. A partial list of historically important examples in-

cludes global and local spontaneous symmetry breaking, the renormalization

group, e�ective �eld theory, solitons, instantons, and fractional charge and

statistics."
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6 Comparison with RTG

There is also another theory with almost the same Lagrangian { the \rela-

tivistic theory of gravity" (RTG) proposed by Logunov et al. [49]. In this

theory, we have a Minkowski background metric ��� . The Lagrangian of

RTG is

L = LRosen + Lmatter(g�� ;  
m)�

m2
g

16�
(
1

2
���g

��
p
�g �

p
�g �

p
��)

If we identify the Minkowski coordinates in RTG with the preferred coor-

dinates in GET, the Lagrangians are equivalent as functions of g�� for the fol-

lowing choice of constants: � = �m2
g

2
< 0, � = ��11m

2
g

2
> 0, � = �00

m2
g

2
> 0.

In this case, the equations for g�� coincide. The harmonic equation for the

Minkowski coordinates hold in RTG [49]. As a consequence, the equations

of the theories coincide.

Nonetheless, the Euler-Lagrange equations are not all. In above theories

we have additional restrictions related with the notion of causality { causality

conditions. In GET, causality is related with the Newtonian background {

the preferred time T (x) should be a time-like function. This is equivalent

to the condition � > 0. In RTG, causality is de�ned by the Minkowski

background. The light cone of the physical metric g�� should be inside the

light cone of the background metric ��� .

Once RTG is a special-relativistic theory, it is also incompatible with the

EPR criterion of reality and Bohmian mechanics. This question should be

considered as the most serious di�erence.

There is also a di�erence in the quantization concept. RTG suggests

to apply standard quantum �eld theory on a Minkowski background, while

GET suggests to understand quantum �eld theory as an e�ective �eld theory.

The GET prediction about the cuto� length depends on the interpretation

of g00
p
�g as the density of the ether and is not Lorentz-invariant.

RTG has a completely di�erent metaphysical background. Therefore,

RTG has a completely di�erent justi�cation of the Lagrangian. While such

metaphysical di�erences are often considered to be unimportant in physics,

we do not agree. Metaphysical interpretations and esthetic feelings often

in
uence preferences for theories. Because the simplicity and beauty of the

explanation of the Einstein equivalence principle is one of the main advan-

tages of GET, this question should not be underestimated.
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7 Comparison with GR with four dark mat-

ter �elds

There is also another theory with the same Lagrangian { GR with four scalar

\dark matter �elds" X�(x)4. Let's denote it as GRDM. The Lagrangian is

LGRDM = �(8�G)�1
��X�
;�X

�
;�g

��
p
�g + LGR(g��) + Lmatter(g�� ; '

m)

and therefore formally equivalent to GET. But we have completely for-

gotten the physical meaning of the �elds X�(x) as coordinates. In GRDM,

they are really only scalar �elds.

We have to consider here the usual GR energy conditions. They require

the following signs: � < 0 and � > 0.

There is another di�erence between GET and GRDM which is essential

and important to understand. In GET, we have additional global restrictions:

� First, the �elds X�(x) are global coordinates in GET. In GRDM, there

will be many solutions where the dark matter �elds do not de�ne a

global system of coordinates. Moreover, it will be even the typical so-

lution of GRDM. Indeed, solutions which de�ne global coordinates have

unusual boundary conditions. Moreover, complete classes of solutions

are excluded: all solutions with non-trivial topology are forbidden.

� Second, the coordinate T (x) = X0(x) is a global time-like function.

This is equivalent to � > 0. Again, a whole class of solutions of GRDM

is excluded: all solutions with closed time-like curves.

� We have also other, unusual boundary conditions for the �elds X�(x):

their boundary values go to in�nity.

These properties do not follow from the Euler-Lagrange equations. In-

stead, we have to remember that the original axioms are axioms about an

ether in a Newtonian space-time. The Lagrange formalism with the \�elds"

X�(x) is only derived, not fundamental.

Therefore, it is in no way a weakness of GET that the additional global

restrictions do not follow from the GET equations. Instead, this proves

4Kuchar [45] has considered similar scalar �elds in GR as \clock �elds".
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additional predictive power of GET in comparison with GRDM. Indeed, if

we observe a solution of GRDM which does not ful�ll the additional global

restrictions we have falsi�ed GET, but not GRDM. Thus, in GET we have

additional possibilities for falsi�cation, therefore, higher empirical content.

This di�erence is of principal, conceptual character { similar global re-

strictions are impossible in general-relativistic theories. Therefore, it helps to

understand the di�erence between general-relativistic theories and theories

with preferred frame. We consider this question also in appendix B.

8 Comparison with General Relativity

Let's consider now the di�erences between the predictions of GET and GR

itself. There are, �rst, the di�erences between GET and the variant of GR

with four dark matter �elds we have already considered. This restricts GET

to global hyperbolic solutions with trivial topology, moreover, of a special

type { with global harmonic coordinates and global harmonic time-like func-

tion.

8.1 Dark matter and energy conditions

The other part of the di�erence between GET and GR can be understood

as the di�erence between GRDM and GR. First, the additional terms de�ne

\dark matter" in the sense that the scalar �elds X�(x) do not interact with

usual matter.

To understand the most interesting property of this new type of \dark

matter" we have to consider the energy conditions. GET does not yet relate

energy conditions with general properties of the ether. But because GR does

not provide an explanation too, this is unproblematic. We can introduce

them { as in GR { as additional, yet unexplained, properties of the matter

Lagrangian. But if we introduce it in this way, as a property of the matter

�elds, the energy conditions do not restrict the sign of � and �. Therefore,

without violating the GET version of the energy condition, it is possible to

set � > 0. And, because of the interesting predictions which follow from this

choice, we really set � > 0.

From point of view of GRDM, this choice violates all energy conditions.

Therefore, GRDM contains a very special, strange type of \dark matter"
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which violates all energy conditions of GR. Therefore, all general theorems

about GR which use various energy conditions fail. Especially the theorems

about big bang and black hole singularities fail.

8.2 Homogeneous universe: no big bang singularity

Let's consider at �rst the homogeneous universe solutions of the theory. Be-

cause of the Newtonian background frame, only a 
at universe may be ho-

mogeneous. Thus, we make the ansatz:

ds2 = d� 2 � a2(� )(dx2 + dy2 + dz2)

Now, we see that in this ansatz the spatial coordinates xi are already

harmonic. It remains to �nd the harmonic time. The equation for harmonic

time is dT=d� = 1=a3. The metric in harmonic coordinates is therefore:

ds2 = a6(t)dT 2 � a2(t)ÆijdX
idXj

Note that � = g00
p
�g = 1, thus, in this ansatz the ether has constant

density, and the universe does not expand. The observable expansion is an

e�ect of shrinking rulers. In GR this would be only one of the possible

interpretations, without physical importance. Instead, in GET this is the

preferred interpretation because of symmetry reasons. Thus, if the universe

is homogeneous, the universe does not expand, but our rulers are shrinking.

But, as in GR, the global universe looks like expanding.

Below we use standard relativistic language and usual proper time � (that

means, _a = @a=@� ). Using some matter with p = k" we obtain the equations

(8�G = c = 1):

3( _a=a)2 = ��=a6 + 3�=a2 + �+ "

2(�a=a) + ( _a=a)2 = +�=a6 + �=a2 + �� k"

The �-term in
uences only the early universe, its in
uence on later uni-

verse may be ignored. But, if we assume � > 0, the qualitative behavior of

the early universe changes in a remarkable way. We obtain a lower bound a0
for a(� ) de�ned by

24



�=a60 = 3�=a20 + �+ "

The solution becomes symmetrical in time. Therefore, before the big

bang there was a big crush, and the whole story can be named big bounce.

For some simple situations, analytical solutions are possible. For example, if

" = � = 0;� > 0;� > 0 we have the solution

a(� ) = a0 cosh
1=3(

p
3�� )

8.3 Is there independent evidence for in
ation theory?

Now, such a big bounce scenario solves the problems of the big bang scenario

with the small horizon. For the description of these problems and their

current solution in in
ation theory we follow Primack [60]. There are two

such problems with a small horizon: First, \the angular size today of the

causally connected regions at recombination (p++ e� ! H) is only �� � 3o.

Yet the 
uctuation in the temperature of the cosmic background radiation

from di�erent regions is very small: �T=T � 10�5. How could regions far

out of causal contact have come to temperatures that are so precisely equal?

This is the `horizon problem'." (p.56)

Even more serious seems the following problem: In the standard hot big

bang picture, \the matter that comprises a typical galaxy, for example, �rst

came into causal contact about a year after the big bang. It is hard to see

how galaxy-size 
uctuations could have formed after that, but even harder

to see how they could have formed earlier" (p.8).

Last not least, there is the \
atness problem". In GR, the assumption

that the universe is 
at does not seem to be natural. But for a curved

universe, the initial curvature has to be extremely small in comparison to a

natural dimensionless constant for curvature.

Now, these three problems seem suÆcient to rule out the standard Big

Bang model without in
ation. But all three problems are solved in GET

without in
ation: the two variants of the horizon problem are solved because

the horizon in a universe with big bounce is much larger, if not in�nite. And

the 
at universe is certainly preferred as the only homogeneous universe,

therefore, there is no 
atness problem.
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Therefore, it seems reasonable to question the necessity for in
ation in

GET cosmology. There are some other problems solved by in
ation: that it

\dilutes any preceding density of monopoles or other unwanted relics", and

predictions about a \nearly constant curvature spectrum ÆH = constant of

adiabatic 
uctuations" (p.59). If these will be serious problems for a GET

universe without in
ation is hard to say. If such \relics" are really necessary

because of particle theoretical reasons, it seems possible to use a large enough

�. Then the critical temperature which causes the creation of the various

\relics" may not be reached during the Big Bounce. What GET allows to

predict about the spectrum of adiabatic 
uctuation will be a question for

future research, but it seems not unreasonable to assume that the simplest

imaginable spectrum { the constant one { may be compatible with GET.

Another question is if in
ation is a necessary consequence of particle

theory. This seems to be not the case. To obtain in
ation, we have to make

non-trivial assumptions about this phase transition.5 Particle theory does

not give independent evidence in favor of in
ation. Thus, it seems that GET

cosmology with � > 0 is a viable theory without in
ation, while GR requires

in
ation.

The existing evidence for a hot state of the universe may be used to obtain

upper bounds for �.

5\In the �rst in
ationary models, the dynamics of the very early universe was typ-

ically controlled by the self-energy of the Higgs �eld associated with the breaking of

a Grand Uni�ed Theory (GUT) into the standard 3-2-1 model: GUT ! SU (3)color 

[SU (2) 
 U (1)]

electroweak
. ... Guth (1981) initially considered a scheme in which in
ation

occurs while the universe is trapped in an unstable state (with the GUT unbroken) on

the wrong side of a maximum in the Higgs potential. This turns out not to work ... The

solution in the `new in
ation' scheme ... is for in
ation to occur after barrier penetration

(if any). It is necessary that the potential of the scalar �eld controlling in
ation (`in
aton')

be nearly 
at (i.e. decrease very slowly with increasing in
aton �eld) for the in
ationary

period to last long enough. This nearly 
at part of the potential must then be followed

by a very steep minimum, in order that the energy contained in the Higgs potential be

rapidly shared with the other degrees of freedom (`reheating'). A more general approach,

`chaotic' in
ation, has been worked out ... However, ... it is necessary that the in
aton

self-coupling be very small ... This requirement prevents the Higgs �eld from being the

in
aton." [60], p. 57. This consideration suggests that in
ation is in no way a necessary

consequence of the phase transition related with a GUT.
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8.4 A new dark matter term

The in
uence of the �-term on the age of the universe is easy to understand.

For � > 0 it behaves like homogeneously distributed dark matter with p =

�(1=3)". It in
uences the age of the universe. A similar in
uence on the age

of the universe has a non-zero curvature in GR cosmology.

It seems not unreasonable that a non-zero value for � may be part of the

solution of the dark matter problem. According to Primack [60], there seems

to be a large amount of \cold dark matter" (CDM), but this is not suÆcient

to �t the data. The models favored in this paper have some additional

homogeneous component: some \hot dark matter" part (CHDM) or a non-

zero cosmological constant (�CDM). Now, the \dark matter" term proposed

here is also homogeneous, and something between homogeneous \hot dark

matter" and a cosmological constant.

Thus, the �-term de�nes a reasonable candidate for dark matter. Current

observation seems to favor � > 0.

8.5 Stable frozen stars instead of black holes

Let's consider now spherical symmetric stable solutions. Of course, for sym-

metry reasons, we want to have static preferred coordinates too. For the

preferred coordinates X i the metric should be harmonic. Of course, we de-

scribe this metric using the \preferred radius" r =
p
ÆijX iXj . Fortunately,

there is a simple general formula for the harmonic metric. For a given func-

tion m(r); 0 < m < r, the metric

ds2 = (1 �
m@m=@r

r
)(
r �m

r +m
dt2 �

r +m

r �m
dr2)� (r +m)2d
2

is harmonic in X i. For constant m, this formula reduces to the

Schwarzschild metric in harmonic coordinates. Therefore, m(r) de�nes the

(harmonic) Schwarzschild radius of the mass inside the radius r.

Now this general solution of the harmonic equation may be used to con-

struct various partial solutions for special matter equations. We start with

an arbitrary distribution of mass m(r) with 0 < m < r; @m=@r � 0. The

Einstein equations de�ne "(r) and p(r), and we obtain a solution for some

material law which depends on the radius: p = k(r)". As a simple example,

let's consider the ansatz m(r) = (1��)r. We obtain
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ds2 = �2dt2 � (2 ��)2(dr2 + r2d
2)

0 = ����2 + 3�(2��)�2 + �+ "

0 = +���2 + �(2��)�2 + �� p

Now, in GR we obtain only the trivial solution " = p = 0. Once the

cosmological constants are suÆciently small, nothing changes for moderate

values of �. But for suÆciently small � � 1 the situation changes { we

obtain a stable solution p = " = ���2. This is a stable star with a radius

very close to the Schwarzschild radius, with time dilation ��1 =
p
"=� �

M�1 for a frozen star of mass M.

It is seems obvious that this is not a special property of this solution,

but a rather general e�ect. Even a very small �-term becomes important

close enough to the horizon size and allows to obtain stable solutions. For

a collapsing star this term de�nes a counter-force which stops the collapse

immediately before horizon formation and leads to a subsequent explosion.

This explosion does not follow immediately, because near the bounce the

movement is time-dilated too.

Thus, we obtain very interesting di�erences for the gravitational collapse.

For the outside observer, we can �t the GR predictions making � small

enough. But even for arbitrary small � > 0 we have remarkable qualitative

di�erences { there is no region \behind the horizon", no singularity, and

every infalling observer can observe this di�erence.

9 General-relativistic quantization problems

The quantization of gravity is usually considered as one of the major prob-

lems of fundamental physics. But, it seems, this problem should be named

instead \quantization of general relativity". Indeed, Butter�eld and Isham

[20] note that \... most workers would agree on the following ... diagnosis of

what is at the root of most of the conceptual problems of quantum gravity.

Namely: general relativity is not just a theory of the gravitational �eld {

in an appropriate sense, it is also a theory of spacetime itself; and hence a

theory of quantum gravity must have something to say about the quantum

nature of space and time."
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Now, in GET the theory of gravity is not a theory of space-time itself,

instead, it is a theory of a medium in a classical Newtonian space-time.

This problem is, obviously, much easier { the most serious problems simply

disappear. On the other hand, it is much less interesting { we do not learn

anything new about \the quantum nature of space and time", instead, the

classical Newtonian space-time de�nes the �xed stage for quantization. While

the Newtonian background is very simple, it is also not very interesting and

remains as unexplained as in Newton's theory. The really hard, conceptual,

interesting problems of relativistic quantum gravity disappear into nothing.

What remains seem to be only a few technical problems as complex as the

quantization of usual condensed matter.

Once these conceptual problems disappear, they can be considered as

additional fundamental support for GET and are therefore worth to be con-

sidered in this context. In appendix D we consider in more detail a problem

related with superposition of gravitational �elds which I have named the

\scalar product problem". This problem has several nice properties: it sug-

gests a simple solution { a �xed space-time background which is common for

di�erent gravitational �elds. Moreover, it is based on an interesting quantum

observable { a transition probability. And this transition probability may be

computed in the non-relativistic limit { multi-particle Schr�odinger theory.

The notorious \problem of time" is mainly a conceptual problem. It

appears if we make a deliberate theoretical decision: that the time measured

with clocks { the time of general relativity { has to be uni�ed with the notion

of time of quantum mechanics. We discuss these metaphysical questions in

x C.

Nonetheless, some other well-known problems of quantum GR which do

not exist in quantum GET are also worth to be considered: the problem of

causality, and the information loss problem.

9.1 Causality

The problem of time is also closely related with causality: \General relativity

accustoms us to the ideas that (i) the causal structure of spacetime depends

on the metric ... and (ii) the metric and causal structure are in
uenced

by matter ... In general relativity, these ideas are `kept under control' in

the sense that in each model, there is of course a single metric tensor g�� ,

representing a single metric and causal structure. But once we embark on
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constructing a quantum theory of gravity, we expect some sort of quantum


uctuations in the metric, and so also in the causal structure. But in this

case, how are we to formulate a quantum theory with a 
uctuating causal

structure?" [20]

This conceptual problem has also technical aspects. \For example, a

quantum scalar �eld satis�es the micro-causal commutation relations

h
�̂(X); �̂(Y )

i
= 0

whereby �elds evaluated at space-like separated spacetime points com-

mute. However, the concept of two points being space-like separated has

no meaning if the spacetime metric is probabilistic or phenomenological. In

the former case, the most likely scenario is that [the commutator] never van-

ishes, thereby removing one of the foundations of conventional quantum �eld

theory."

9.2 Information loss problem

Another problem which disappears is the \information loss problem" pro-

posed by Hawking [38]. The problem is that the black hole contains informa-

tion. But the Hawking radiation cannot take away this information because

it is determined only by the geometry of the black hole outside the horizon,

and the black hole has no hair that records any detailed information about

the collapsing body. The key constraint comes from causality { once the

collapsing body is behind the horizon, it is incapable of in
uencing the radi-

ation. Now, suppose the black hole evaporates. That means, the black hole

has been replaced by the radiation completely. It is a familiar fact of life

that information is often lost in practice. But here the information is lost in

principle. It seems that an initially pure state becomes after evaporation a

mixed state. And this is in contradiction with the fundamental principles of

quantum mechanics.

Preskill [58] in a review of the problem writes that initially he \was in-

clined to dismiss Hawking's proposal as an unwarranted extrapolation from

an untrustworthy approximation". But as \I have pondered this puzzle, it

has come to seem less and less likely to me that the accepted principles of

quantum mechanics and relativity can be reconciled with the phenomenon

of black hole evaporation."
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Now, it is hard for me to judge about the seriousness of this problem.

Personally I'm convinced that the correct black hole evaporation scenario

in GR is di�erent from the usually accepted one. In my opinion it is the

scenario of black hole evaporation proposed by Gerlach [32]. In this scenario,

no black hole horizon is formed. As far as I understand, relativists do not

like this scenario because it seems to prefer the coordinates of the outside

observer. But I don't think this argument is justi�ed { the preference is

prede�ned by the preference for the Minkowski vacuum state in the initial

situation before the collapse. In Gerlach's scenario we have no information

loss problem because no horizon is formed.

Anyway, in GET the information loss problem disappears together with

the black holes. We have stable frozen stars which do not radiate Hawking

radiation once they have reached a stable state. We also have not to be afraid

of some similar situations { there is always a global absolute time, and this

global time has to be used in quantum GET to de�ne an unitary evolution.

10 Atomic ether theory

With the Newtonian background only the conceptual problems related with

relativistic space-time quantization disappear. The problem with non-re-

normalizability remains. But there is a natural solution for this problem in

the context of a condensed matter theory { an atomic hypothesis. Therefore,

we assume that our mediumhas an atomic structure. This leads to an explicit

cuto�. The regularization becomes physical. The concept of gravity as an

e�ective �eld theory is well-known and goes back to Sakharov [65]. 6

One property of this widely accepted e�ective �eld theory picture is that

it makes a certain assumption about the cuto� length. It is assumed to be

the Planck length aP ' 10�33cm. This property has even used to name this

concept: \Planck ether", \Planck solid" [42] or \Planck condensed matter"

[76]. But this is de facto the only property of the \Planck ether" which is

known. 7

6Jegerlehner notes that ideas that \the relationship between bare and renormalizes

parameters obtains a physical meaning ... are quite old and in some aspects are now com-

monly accepted among particle physicists" [42]. Weinberg describes this as \the present

educated view on the standard model, and of general relativity, ... that these are leading

terms in e�ective �eld theories" [78].
7\The curvature of space-time is relevant and special relativity is modi�ed by gravita-
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The \atomic ether hypothesis" di�ers from this concept in everything

except the fact that current �eld theory should be replaced by another one

below some cuto�. First, a well-de�ned space-time concept has been �xed

{ the classical Newtonian background with Euclidean space, absolute time

and classical causality. Moreover we have well-de�ned conservation laws. We

have also �xed the quantization concept { classical canonical quantization for

a theory with a discrete number of steps of freedom. Momentumquantization

is part of this concept. Moreover, the number of ether atoms will not vary

in this scheme too. Thus, we �x an extremely simple, very special class of

underlying microscopic theories. 8

Another property of atomic ether theory is especially interesting: the

interpretation of the \ether density" � = g00
p
�g as the number of \ether

atoms" per volume. This leads to an interesting prediction for the cuto�:

�(x)Vcutoff = 1:

The point is that this prediction is di�erent from the usual Planck length

aP . This can be illustrated with the example of the \homogeneous universe"

solution (see x 8.2). In this solution, � remains constant in time. Therefore,

the cuto� length remains constant in time too. On the other hand, our rulers

shrink. Thus, the cuto� length is not constant in our cm scale, it cannot be

the Planck length. From point of view of our rulers, the cuto� length is

expanding. For � < 0 or small enough � the cuto� was below Planck scale

in the past, for � > 0 or small enough � it will be greater than Planck scale,

but even greater than the cm scale, in future. Thus, in this case we will be

able to observe in a far away cosmological future the e�ects of the atomic

ether.

tional e�ects. One expects a world which exhibits an intrinsic cuto� corresponding to the

fundamental length aP ' 10�33cm. But not only Poincare invariance may break down,

also the laws of quantum mechanics need not hold any longer at �P ." [42]
8It may be argued that we are unable to do experiments in this domain, therefore, it is

also unreasonable to make a hypothesis about nature in this domain. All we can do is to

describe their universality class. Nonetheless, even if we are unable to do experiments, we

can use general principles as Ockham's razor to make a choice. Moreover, there is no need

to make a de�nite choice. A situation where we have several metaphysically completely

di�erent models which are all in ideal agreement with experiment would be satisfactory

too { it gives a clear account about the boundaries of scienti�c research.
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11 Canonical atomic ether quantization

Ether theory suggests to solve the ultraviolet problems with explicit, physical

regularization, based on the idea of an atomic ether. This idea leads to the

following canonical atomic ether quantization scheme:

1. First, we need the full continuous ether theory, that means, a continu-

ous \theory of everything" (TOE) which describes the complete ether.

This in no way implies that we need some \grand uni�cation" to ob-

tain this TOE. There is no requirement that there should be only one

uni�ed force. We can as well try to start with GET + SM.

2. Then, we have to �nd an atomic ether model which gives the TOE in the

large scale limit. There are obviously many of them, because the large

scale limit �xes only the universality class. This uncertainty remains as

long as there is no experimental evidence in the short distance domain.

Therefore simple standard models would be suÆcient.

The possibly critical problem is to prove that the large scale limit of

the discrete model is indeed the original theory.

3. Then, this classical atomic ether theory has to be quantized in the

canonical way. If the atomic model is close enough to usual atomic

models of usual condensed matter, this step will be unproblematic.

Note that in this case we can apply also Bohmian mechanics. Once

this step has been �nished, we have quantized gravity.

4. Now, for actual quantum computations it is necessary to derive the

large scale limit of the quantum atomic ether theory, which will be

quantum �eld theory.

Note that this step is already purely phenomenological and not nec-

essary for the theory itself. That mean, problems which appear in

this last step are problems of large scale approximations in classical

quantum theory, but not fundamental problems of quantum gravity.

Now, for this quantization program we have to distinguish di�erent prob-

lems. The �rst problem is if this scheme works at all. Here, we are in a very

good situation. We have an example in reality where the the whole quanti-

zation scheme is realized { super
uid 3He�A. In the theory of 3He�A, we
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obtain in the large scale limit the most important ingredients of the current

standard model. Volovik writes: \In this sense the super
uid phases of 3He,

especially 3He�A, are of most importance: the low-energy degrees of free-

dom in 3He�A do really consist of chiral fermions, gauge �elds and gravity"

[76]. Thus, if we do not have an (uncommon among physicists) desire for

mathematical rigor, for at least one �eld theory with gravity, fermions and

gauge �elds an atomic ether quantization scheme works. Moreover, it works

in reality.

This is very important { the existence of such a model in reality gives

certainty that the program may be realized, and it provides suggestions how

this has to be done.

11.1 Regularization using a moving grid

Let's see how this works on the example of our second step { the derivation

of an atomic model for a given continuous ether theory.

Without the ether interpretation, it would be natural to try to regularize

the theory with a regular lattice, following lattice gauge theory. Based on

the space-time interpretation, we would try to develop a discrete variant of

geometry { something like the Regge calculus or dynamical triangulations

[50].

The ether interpretation suggests something di�erent { a discretization

which remains as close as possible to the real atomic grid. That means, we

do not have to use a regular, static lattice. Instead, we have to use a grid

with the following properties:

� The grid node density is the \ether density" �:

X
xk2V

1 �
Z
V

�d3x

� The grid moves, with \ether velocity" vi(xk);

Without additional information about the other material properties of

the ether we cannot say anything reasonable about their discretization. But

in the case of the Minkowski space-time, this prescription reduces to a ho-

mogeneous, static grid. Therefore, we can use the lectures of lattice gauge

theory [36] to understand how to discretize them.
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Let's consider shortly some details: as a �rst step to obtain an atomic

model we have to switch from Euler (local) coordinates to Lagrange (mate-

rial) coordinates. Once GET is de�ned by a Lagrange formalism, the �rst

interesting problem is if this transformation is possible in the Lagrange or

Hamilton formalism too. This is known to be possible in hydrodynamics. In

the Hamilton formalism this can be done with a canonical transformation

[19], [64], [34]. In the following we assume that this is possible in GET too.

The next important step is the discretization. Here, it is useful to have

in mind that we want to quantize the theory later. Therefore, to be able to

use canonical quantization, we need a Lagrange or Hamilton formalism for

the discrete theory. For this purpose, it is not reasonable to discretize the

equations them-self. Instead, it is much more reasonable to discretize the

Lagrange function and to de�ne the discrete equations as Euler-Lagrange

equations for the discrete Lagrangian.

The usual method to obtain a discrete function on a grid is the �nite

element method. In this method, we de�ne functions on the grid as a sub-

space of the space of all functions. In the simplest case, this is the space

of piecewise linear function on the simplices. These functions are uniquely

de�ned by their function values on the grid nodes: f(xk) = fk. This de�nes

an embedding of the grid functions into the space of all functions. In the

other direction, we can use orthogonal projection of this subspace to de�ne

the discrete image of a continuous function. Thus, the function values in the

nodes fk are not de�ned by the function values of the original continuous

functions, but by integral formulas: fk =
R
f(x)�k(x)dx, where �k(x) is the

piecewise linear function de�ned by �k(xl) = Ækl.

In our case, we have an interesting modi�cation of this method: the

density �(x) should not be described by a variable grid function �i. Instead,

an integral containing � should be interpolated on the grid in another way.

The simplest way would beZ
A

f(x)�(x)dx!
X
xk2A

fk

Therefore, in the discrete Lagrange formalism the density simply disap-

pears. Now, there are various variants of this method, and which is the best

one depends on the material properties of the ether. Therefore, further spec-

i�cation of the scheme in this general context does not seem to be justi�ed

and has to be left to future research.
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11.2 Constraints and conservation laws in a moving

grid

Now, it is reasonable to ask about the advantage of this type of discretization,

for example in comparison with a regular, static lattice. As far, the only

argument was that this looks more natural from point of view of the atomic

ether interpretation.

But, if we look at the remaining problems, we observe that they become

essentially simpli�ed. Indeed, once we have a well-de�ned discrete Lagrange

formalism, the most serious remaining quantization problem are constraints.

Unfortunately, without speci�cation of the material properties we cannot say

anything about possible constraints related with these material properties.

But there are well-known constraints in GR, and as we have seen in x 3.2,

they remain to be constraints in GET. Moreover, the conservation laws them-

self are constraints too.

Now, these constraints essentially change their character. The continuity

equation simply disappears. It is no longer an equation of the discrete theory.

The density � is no longer part of the equations. Instead, the continuity

equation becomes a tautology { the number of grid nodes remains constant.

Moreover, the Euler equations become second order equations: the �rst order

derivative of g0i
p
�g becomes a second order derivative of the grid node

position:

@t(g
0i
p
�g) = @t(�v

i)! m �xi

Moreover, we have seen in x 3.2 that the other constraints also may be

explained by the requirement that there are no second order equations for �

and �vi.

Therefore, the constraint problem essentially simpli�es. Closely related

with the constraints is the question how the conservation laws are realized.

The conservation of ether particles in this approach is realized automatically,

as the conservation of the number of grid nodes. Therefore, we have no

\quantum 
uctuations" of the ether particle number.

Note that this property holds in the fundamental, atomic ether theory.

We do not make any claim about the large scale quantum �eld theory approx-

imation and the behavior of a �eld operator �̂(x) which ful�lls an operator

version of the continuity equation. This approximation is nothing we have

to care as long as we consider fundamental questions.
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11.3 Universality

Now, considering the previously discussed program, it seems to suggest that

almost every ether theory may be quantized in this way. But a completely

di�erent question is how a typical ether theory looks like. For this question,

the consideration of long distance universality is important.

The �rst point of long distance universality is that very di�erent atomic

theories can have the same large scale limit. \Long distance universality is

a well-known phenomenon from condensed matter physics, where we know

that a ferromagnet, a liquid-gas system and a super-conductor may exhibit

identical long range properties (phase diagram, critical exponents, etc.)" [42].

This point is important for the justi�cation of the \moving grid" method

{ it suggests that it is not very meaningful to search for the \true" atomic

theory without experimental evidence in this domain. All we can do is to

search for a theory which is suÆciently simple and natural in comparison with

their competitors. Even without experimental evidence Ockham's razor may

be used to choose between theories.

The other side of large scale universality is that the theories which appear

as large scale approximations have some very typical properties. Existing

research in this domain has already given important and interesting results:

\The extraction of the leading low energy asymptote is equivalent to the

requirement of renormalizability of S-matrix elements, and this has been

shown to be necessarily be a non-Abelian gauge theory which must have

undergone a Higgs mechanism if the gauge bosons are not strictly massless.

... only a renormalizable �eld theory can survive as a tail, the possible

renormalizable theories on the other hand are known and are easy to classify"

[42].

At a �rst look, this seems to be in con
ict with our atomic ether quanti-

zation scheme. There seems to be no point where similar restrictions appear.

But there is no contradiction { these are simply di�erent questions. One

question is if a quantization in this way is possible in principle. Another

question is if a theory has the typical properties of a large scale limit of an

atomic ether theory. The answer for the �rst question may be very well a

positive one, but the related atomic ether theory may require a very strange

conspiracy of their coeÆcients.

But, if we have seen, for the basic ingredients of the SM { fermions and

gauge �elds { the situation is very nice. It is well understood in theory why
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such renormalizable theories appear as large scale limits of a typical atomic

ether theory, and we have observed them in reality in condensed matter, in
3He�A.

Considering all these facts, it seems likely that this scheme works, and

that problems which appear on this way may be solved. Instead, the problem

of canonical GR quantization we discuss in x D suggests that a quantization

without a �xed background fails in principle.

12 Comparison with canonical quantization

of general relativity

It is interesting to compare our canonical program for GET quantization

with the real way of development of quantization programs for general rela-

tivity, especially the canonical program. The point is that the progress of the

canonical quantization program is much more in agreement with ether phi-

losophy than with general relativistic philosophy. Let's consider the di�erent

steps in the standard canonical quantization approach:

12.1 ADM formalism

The ADM decomposition [1] is essentially the decomposition of g�� into

�; vi; pij . Therefore, it is an essential part of the GET approach.

This decomposition is in obvious disagreement with relativistic philoso-

phy. Space and time are no longer considered as a unit, they are separated.

We have a special time coordinate t(x). Moreover, the general spacetime

manifold becomes subdivided into a product S 
 R, that means, changes of

topology in time are excluded. This modi�cation of relativistic metaphysics

is so important that the ADM formalism is often considered as a di�erent in-

terpretation of general relativity { geometrodynamics. In this interpretation,

GR no longer describes a spacetime, but the evolution of three-dimensional

geometries.

Of course, the Hamilton formalism of general relativity and that of ether

theory remain quite di�erent. In GET, the Hamiltonian is not a constraint.

We have equations for the preferred coordinate T (x) used to de�ne the folia-

tion. And we have additional physical steps of freedom: density and velocity

of the ether.
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12.2 Tetrad and triad formalism

The next important step is the introduction of the tetrad formalism. In this

formalism, the metric g�� becomes derived. We have a tetrad �eld { four

vector �elds e�a(x) which form an orthonormal basis in each point, so that

g�� = e�ae
�
b�

ab:

This is necessary for the incorporation of fermions into general relativity.

Obviously this step is also a gross violation of relativistic ideology. Indeed,

according to this ideology the �eld g�� has already a fundamental interpre-

tation, it de�nes spacetime. The other argument in favor of this procedure

is that GR becomes a gauge theory, with the gauge group SO(3,1).

The next step on this way is the combination of above approaches: The

time coordinate of the ADM composition is used to �x the time-like tetrad

vector. After this \time gauge" we have a triad { three vector �elds in space,

with compact gauge group SO(3). The technical problems with non-compact

gauge groups are a main argument for this choice.

Now, a triad �eld looks very natural from point of view of ether theory.

If we imagine the ether as a crystal, the three triad vector �elds may be

considered as de�ning locally the orientation of the crystal structure. Thus,

to introduce triad variables may be an interesting possibility for canonical

GET quantization. Of course, as in the case of the ADM variables, we cannot

take the formulas as they are, because we have a di�erent Hamiltonian and

di�erent steps of freedom.

Instead, to consider this triad formalism as something natural from point

of view of relativistic ideology seems impossible.

12.3 Ashtekar variables

The next step is a canonical transformation to Ashtekar variables [4] which

simpli�es the constraints. There are two variants of the Ashtekar formalism:

the �rst was a complex formalism. In this complex formalism, an additional

simpli�cation of the Hamiltonian constraint happens. For this advantage it is

necessary to pay with the problem of \reality conditions". But the problem

with these reality conditions was too hard, that's why following Barbero [8]

the real version of the Ashtekar formalism is preferred now. This seems to

be a good idea from point of view of the ether approach { the real variant
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of the formalism clearly better �ts into ether ideology in comparison with a

complex formalism.

The physical meaning of the Ashtekar variables is not obvious at all in

the relativistic approach. On the other hand, we already know that we

have to do something similar, with similar results, but with clear physical

interpretation in canonical ether quantization: the transformation from Euler

to Lagrange coordinates. As we have already mentioned, this is a canonical

transformation, and it results in a simpli�cation of the constraints.

12.4 Discrete models of geometry

An important part of existing attempts to quantize gravity are discrete mod-

els. In some sense, discrete models are also not in ideal �t with classical

spacetime ideology. It would be much more natural to have a continuous

spacetime for all distances. But the problems with non-renormalizability

suggest to use discrete regularizations.

On the other hand, the consideration of discretemodels is a natural part of

canonical ether quantization, with clear physical motivation: an atomic ether

theory. Of course, the grids used in ether theory are three-dimensional grids

in a standard Newtonian space, moving in continuous time. The position of

the grid nodes are steps of freedom of the ether. These steps of freedom do

not exist in the purely geometrical approaches. Nonetheless, we can learn

from these approaches how to discretize the geometric steps of freedom.

For example, it seems quite natural to use the basic ideas of Regge calculus

[61] to discretize the pressure pij. We obtain a discretization where the

pressure pij is described by a scalar on each edge between neighbor nodes.

This discretization has a natural interpretation as the force between neighbor

atoms.

12.5 Summary

The interesting observation is that, while searching for a way to quantize

general relativity, most success has been reached in a direction which is in

no way close to standard GR ideology:

� introduction of a preferred time and a Hamilton formalism;
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� introduction of other variables so that the metric g�� no longer funda-

mental;

� canonical transformations to simplify the constraints;

� discretization of the theory;

Instead, all these steps are quite natural in the ether approach. We have

formulated most of them in our canonical ether quantization program. The

steps of freedom in GET are di�erent from the steps of freedom in canonical

GR, and the formulas for the GET approach have yet to be worked out.

Nonetheless, our observation suggests that the canonical ether quantization

concept is on the right way.

13 Quantum �eld theory

Now, the question how to quantize an ether theory is conceptually completely

di�erent from the quantization of GR. The main question we want to consider

here is if this leads to di�erences in semi-classical QFT.

In principle, the way we have to quantize continuous ether theory is to

quantize a discrete atomic ether model in a canonical way and then to con-

sider the large scale limit. Thus, we have to quantize gravity similar to the

quantization of hydrodynamics by extrapolation of the microscopic theory,

as done by Landau [47]. But it has been found (Davydov [25]) that the same

result may be obtained by canonical quantization, without using microscopic

theory. Therefore, without having reasonable microscopic models, it is rea-

sonable to apply canonical quantization to the continuous GET equations.

To consider microscopic models seems necessary only for a better under-

standing of the way we have to regularize the in�nities. For example, we can

learn why the renormalization of the vacuum energy is justi�ed. This can be

seen using super
uid 3He as a model (Volovik [76]).

Once we use canonical quantization, it is no wonder that we obtain the

same formulas as usual in quantum �eld theory. Nonetheless, some remarks

seem to be interesting.

First, even if in our covariant formulation the preferred coordinates for-

mally appear as �elds X�(x), this does not mean that they should be quan-

tized as scalar �elds. This would be a serious misunderstanding about the
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purpose of the covariant formulation. Instead, the X� remain classical pre-

ferred coordinates. This is an immediate consequence of the basic idea for

quantization: to quantize a microscopic atomic model in a canonical way,

using classical Schr�odinger theory.

13.1 Semi-classical quantization of a scalar �eld

Let's consider as an example the canonical quantization of a scalar �eld on

a classical GET background. We have the Lagrangian

L =
1

2

p
�g(g���;��;� �m2�2)

We have a well-de�ned preferred frame de�ned by the coordinates X�,

and we quantize the �eld in this frame. Note that canonical quantization is a

very arti�cial procedure from point of view of general relativity - it destroys

its covariance ideology. Instead, it is a very natural procedure from point of

view of ether theory. Using the standard formalism of canonical quantization,

we obtain

� =
@L
@�;0

= ĝ0��;�

H = ��;0 � L =
1

2
(ĝ00)�1(� � ĝ0i�;i)

2 �
1

2
ĝij�;i�;j +

m2

2
�2
p
�g

Note that these expressions look beautiful in the original ether variables

too:

� = ��;0 + �vi�;i

H =
1

2
(��1�2 � 2�vi�;i � pij�;i�;j) +

m2

2
�2
p
��jpijj

As we see, our ADM-like decomposition is in good agreement with the

canonical formalism. We de�ne now � and � as operators with the standard

commutation rules (~ = 1):

[�(x); �(y)] = iÆ(x� y)
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As we see, this de�nition does not depend on the gravitational �eld. This

is an important observation. The background space, its aÆne symmetry, the

related Hilbert space for the �eld �(x), the commutation relations and the

algebra of observables on this Hilbert space do not depend on the gravita-

tional �eld. This does not seem to be important in semi-classical theory,

but it becomes very important if we consider superpositions of gravitational

�elds (see appendix D). In this case, the de�nition of the Hilbert space

may be used as it is, and scalar products between states de�ned for di�erent

gravitational �elds are well-de�ned.

This is a very important di�erence between quantization of GR and GET.

In GR, the spacetime points and therefore the Hilbert spaces for the �elds

'(x) have no independent meaning.

13.2 Particle operators and vacuum state

One of the main lectures of quantum �eld theory is that the fundamental

object are the �elds, not the particles. The notion of particles is derived,

secondary. 9 GET does not question this insight. Instead, in the canonical

GET quantization scheme this becomes exceptionally obvious. The classical

continuous ether is described by continuous �elds { properties of the ether.

The �elds are fundamental. Their description does not depend on the gravi-

tational �eld { as we have seen, the Hilbert space for the quantum �eld '(x)

is de�ned independent of the gravitational �eld. On the other hand, the no-

tion of particles and the vacuum state do not appear in a gravity-independent

way. For the vacuum state we have a natural de�nition: it is the state with

minimal energy. But the Hamilton operator depends on the gravitational

�eld, therefore, the de�nition of the vacuum state and the notion of particles

too. In the case of a constant metric g�� particle operators are de�ned by

the formulas:

9\In its mature form, the idea of quantum �eld theory is that quantum �elds are the

basis ingredients of the universe, and particles are just bundles of energy and momentum

of the �elds" [78]. What \quantum �eld theory uniquely explains is the existence of

di�erent, yet indistinguishable, copies of elementary particles. Two electrons anywhere in

the Universe, whatever their origin and history, are observed to have exactly the same

properties. We understand this as a consequence of the fact that both are excitations of

the same underlying ur-stu�, the electron �eld. The electron �eld is thus the primary

reality" [79].
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�k =

Z
eikx�(x)dx

�k =

Z
eikx�(x)dx

a+k =
1

p
2!k

(�k � i(ĝ0iki � !k)�k);

ak =
1

p
2!k

(�k � i(ĝ0iki + !k)�k);

!2
k = ĝ00(�ĝijkikj +m2

p
�g)

with

H =

Z
Hdx =

1

2

Z
�2k + !2

k�
2
kdk

[ak;H] = !kak

akj0i = 0

Now, in the case of a non-trivial gravitational �eld, these particle states

are no longer eigenstates of the the Hamilton operator. They interact with

the gravitational �eld. Nonetheless, they remain to be an approximation.

We can introduce wave packets:

�kx =

Z
eiky��(y�x)

2

�(y)dy

�kx =

Z
eiky��(y�x)

2

�(y)dy

a+kx =
1

p
2!kx

(�kx � i(ĝ0iki � !kx)�kx)

akx =
1

p
2!kx

(�kx � i(ĝ0iki + !kx)�kx)

!2
kx = ĝ00(�ĝijkikj +m2

p
�g)

We obtain
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[akx;H] � !kxakx

akxj0i � 0

Here the vacuum state j0i remains to be de�ned as the state with min-

imal energy, it's expression using the local particle operators becomes an

approximation.

This local de�nition of particle is useful for comparison with existing

semi-classical �eld theory (cf. [13]). In this theory, we have the problem

how to de�ne the vacuum state and the Fock space. It is usually solved by

de�nition of a set of observers. For these observers, the vacuum state is the

state where they do not observe particles.

Now, a similar problem does not appear in our canonical scheme. for

our scalar �eld we have a natural choice { the vacuum state as the state

with minimal energy. But this choice may be understood in a similar way

as the de�nition of a set of preferred observers { the observers which are in

rest compared with the preferred frame. Now, our local particle operators

may be interpreted as the particle operators which are important for the

local observers and their particle detectors. In the vacuum state they do not

observe particles. Therefore, our de�nition of the vacuum is in agreement

with the de�nition of the vacuum state related with the set of preferred

observers which are in rest.

13.3 Di�erent representations

The major technical problem in quantum �eld theory on a curved background

(M;g�� ) is the existence of in�nitely many unitarily inequivalent representa-

tions of the canonical commutation relations. Isham [39] describes it in the

following way: \The real problems arise if one is presented with a generic

metric g�� , in which case it is not at all clear how to proceed. A minimum re-

quirement is that the HamiltoniansH(t), or the Hamiltonian densities should

be well-de�ned. However, there is an unpleasant possibility that the repre-

sentations could be t dependent, and in such a way that those corresponding

to di�erent values of t are unitarily inequivalent, in which case the dynamical

equations are not meaningful."

Now, GET gives all what may be wanted to prove that this does not

happen: we have a simple equation for the metric (the harmonic equation),
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conservation of some important quantities (ether mass and momentum), we

can use inequalities for � and p of type " < � < R (which may be interpreted

as boundaries for the validity of GET) if necessary. Possibly this will be

suÆcient to solve this technical problem.

On the other hand, this problem appears also in thermodynamics for

states with di�erent temperature { something which in reality sometimes

changes in time. Therefore it would not be strange if the problem nonetheless

remains. I consider it to be an artifact of the limit lcutoff ! 0.

13.4 Gauge �eld quantization

Let's consider now questions related with the quantization of gauge �elds, at

�rst the simplest case of QED in 
at space. There are di�erent well-known

quantization schemes which may be used to incorporate the gauge condition.

In the variant of Bjorken and Drell [14] the gauge condition (Coulomb gauge)

is incorporated into the con�guration space:

[ _Ai(x; t); Aj(x
0; t)] = �iÆtrij (x� x0)

The other possibility is to consider a large con�guration space

[ _A�(x; t); A�(x
0; t)] = �iÆ��Æ(x� x0)

and to incorporate the gauge condition as an additional restriction for

the states:

(@�A�(x))+j�i = 0

This scheme leads to a problem with the interpretation of the particle

operators. We have

[ck�c
y

k0�] = ���Æk � k0

therefore the role of ck0 is reversed: ck0 behaves like c
y

kj . Now, there are

two variants of the interpretation of these commutation relations. In the

�rst, classical, Fermi-Dirac quantization [29], [26] we accept that the Lorentz

symmetry is broken in the large space: the vacuum is de�ned by

cyk0j�0i = ckij�0i = 0
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In the other, explicitly relativistic variant introduced by Gupta and

Bleuler [36], [15] we de�ne the vacuum in the invariant way

ck�j�0i = 0

and obtain an inde�nite Hilbert space:

h�0jck0c
y

k0j�0i < 0

Again, we have a con
ict between relativistic symmetry and a fundamen-

tal physical principle { the de�niteness of the Hilbert space. Of course, it

is well-known that these di�erences do not lead to observable di�erences.

Nonetheless, this particular quantization problem is further illustration of

the general picture we have found in Bohmian mechanics as well as for the

local energy and momentum of the gravitational �eld: every more fundamen-

tal description requires to break relativistic symmetry. It is obvious that in

this case we prefer the de�nite Hilbert space. Therefore, GET suggests to re-

ject the Gupta-Bleuler approach and to use, instead, the older, non-covariant

Fermi-Dirac quantization scheme.

The choice between Fermi-Dirac quantization and the scheme used by

Bjorken and Drell is more complicate. We prefer the Fermi-Dirac quantiza-

tion scheme because it is based on the Lorenz condition

@�A
� = 0:

This condition is interesting for GET because of the known analogy be-

tween gauge theory and gravity. Once GET modi�es the understanding of

gravity and the EEP, a similar modi�cation of gauge symmetry would be

natural. In this scenario, the Lorenz condition would be the natural can-

didate for a physical equation, similar to the harmonic condition in GET.

It also allows a physical interpretation as a conservation law of some ether

property.

The incorporation of exact conservation laws into a �eld theory is a subtle

thing: while integrals over a �nite domain very in time, the integral over the

whole space should be exactly conserved, without any quantum 
uctuations.

An atomic ether model suggests natural ways to reach this property { if con-

servation laws are interpreted as conservation laws for numbers of atoms, and

canonical multi-particle Schr�odinger theory is used to quantize the theory,
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this number is conserved automatically. In �eld theory I don't know such

a way. But it should be noted here again that if this is a problem, it is a

problem of the �eld theory approximation and therefore not a fundamen-

tal problem of the ether approach. Field theory is only an approximation,

their problems are therefore not fundamental problems, but problems of an

inconsistent approximation.

13.5 Non-abelian gauge �eld quantization

We do not consider here the quantization of non-abelian gauge �elds. The

reason is not that this seems to be very hard. It is certainly not impossible,

because they appear in real condensed matter (SU(2) in super
uid 3He�A
[76]). They may be justi�ed as renormalizable theories which appear in a

natural way in the large scale limit [42]. For the development of discrete

atomic ether models we can also use the large amount of experience with

lattice QCD [37]. The reason is simply that I have not considered this domain

yet in suÆcient detail.

13.6 Hawking radiation

For an instationary gravitational �eld the vacuum state and the particle

operators depend on time. Therefore, the original vacuum becomes a state

with particles. Once the basic concept remains unchanged, we obtain the

same results:

Theorem 3 Let g��(X;T ) be a background metric in preferred coordinates

X i; T and let's denote the set of observers in rest compared with the preferred
coordinates the \preferred observers". Then in the canonical formalism we
obtain the same results for Hawking radiation as in the usual formalism for

the preferred set of observers.

Indeed, the formalism does not depend on the question if the background

metric is a solution of GET or GR. The only di�erence with the standard

formalism is the well-de�ned choice of the preferred observers in every mo-

ment of time. But this is simply the application of the general formalism to

this special choice of preferred observers.

But this does not mean that semi-classical GET predicts Hawking ra-

diation similar to semi-classical GR. The equivalence holds only as long as
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we use the same metric g�� . For usual con�gurations this can be done, the

cosmological constants � and � may be ignored. But for the interesting case

of the gravitational collapse this is not the case. We obtain a stable \frozen

star" without horizon (see x8.5).
Therefore, during the collapse we obtain Hawking radiation. But once the

collapse has stopped, the radiation goes away and no new radiation appears,

as for stable stars in GR too. The remarkable result is that this does not

depend on the actual value of � > 0. Even for very small � the collapsing

star needs only a short time to reach the critical size of the frozen star. Once

a stable state has been reached, the radiation disappears. Stable stars do

not radiate.

Therefore, GET predicts no Hawking radiation from frozen stars. For

small enough \frozen balls" this leads to observable di�erences between GR

and GET. In GET they remain stable and don't evaporate.

14 Methodology

Because of the lack of data, in the domain of quantum gravity methodologi-

cal and philosophical questions become much more important than in other

domains of science. In some sense, they become decisive.10 Does it mean that

it is impossible to �nd agreement about methodological issues? Fortunately,

the methodological concepts proposed by Rovelli [63] are in good agreement

with the method used here. The key idea of his methodology is the following:

... con�dence in the insight that came with some theory, or `tak-

ing a theory seriously', lead to major advances that largely ex-

tended the original theory itself. Of course, far from me sug-

gesting that there is anything simple, or automatic, in �guring

10Butter�eld & Isham [20] describe this situation in the following words: \there are no

phenomena that can be identi�ed unequivocally as the result of an interplay between gen-

eral relativity and quantum theory - a feature that arguably challenges the right of quan-

tum gravity to be considered as a genuine branch of science at all! ... theory construction

inevitably becomes much more strongly in
uenced by broad theoretical considerations,

than in mainstream areas of physics. More precisely, it tends to be based on various prima

facie views about what the theory should look like { these being grounded partly on the

philosophical prejudices of the researcher concerned ... In such circumstances, the goal

of a research programme tends towards the construction of abstract theoretical schemes

which are compatible with some preconceived conceptual frameworks".
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out where the true insights are and in �nding the way of making

them work together. But what I am saying is that �guring out

where the true insights are and �nding the way of making them

work together is the work of fundamental physics. This work is

grounded on the con�dence in the old theories, not on random

search of new ones. ... The `wild' scientist observes that great

scientists had the courage of breaking with old and respected

ideas and assumptions, and explore new and strange hypothesis.

From this observation, the `wild' scientist concludes that to do

great science one has to explore strange hypotheses, and violate
respected ideas. The wildest the hypothesis, the best. I think

wilderness in physics is sterile. The greatest revolutionaries in

science were extremely, almost obsessively, conservative.

Now, we are in full agreement with this \conservative" view on funda-

mental physics, against the popular \wilderness". Based on this common

methodological background, we disagree mainly in one point: in the deci-

sions what are the \true insights" of the old theories which should be taken

seriously and extended into the domain of quantum gravity, and which should

be explained, derived, and therefore not extended into quantum gravity.

Now, based on these methodological rules, we present the existence of a

preferred frame as the deep insight of Bohmian mechanics. In other parts

we criticize the usual \insights" of general relativity: the relativistic notion

of \time" (x C) and relationalism (x B).

14.1 The insights of Bohmian mechanics

In some sense, the disagreement starts with the de�nition of the theories we

want to unify in quantum gravity. Usually this is presented as the problem

of uni�cation of general relativity and special-relativistic quantum �eld the-

ory. But it is completely ignored that there exists already a quantum theory

of gravity { multi-particle Schr�odinger theory for the Newtonian interaction

potential. And, moreover, there is an interesting variant of this theory {

Bohmian mechanics (BM). While it is in no way suggested that the interest-

ing and important insights of quantum �eld theory should be ignored, the

theories we really have to unify are general relativity and non-relativistic

Bohmian mechanics.
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We consider some details of BM in appendix F. This theory proves that

vagueness, subjectivity, and indeterminism of the usual interpretations of

quantum theory are not forced on us by the experimental facts. These are

very interesting and important insights into the nature of quantum theory {

in my opinion, insights of much more fundamental character in comparison

with the domain of applicability of particular space-time symmetries.

The problem with BM is that it requires a preferred frame, in contra-

diction with the relativity principle. In this context, it seems useful to

quote again Rovelli [63]: \So, Einstein believed the two theories, Maxwell

and Galileo. He assumed that they would hold far beyond the regime in

which they had been tested. ... If there was contradiction in putting the

two together, the problem was ours: we were surreptitiously sneaking some

incorrect assumption into our deductions."

Now, is there a possibility to believe above theories? If we require Lorentz

invariance on the fundamental level, Bohmian mechanics should be simply

rejected and does not give any insight. This certainly violates the recom-

mendation to take above theories seriously. The choice of GET is to preserve

Lorentz invariance for observable e�ects, but to accept a preferred frame on

the fundamental level.

Now, the question is how much this weakens the insights of relativity.

Obviously, we do not destroy the insights of relativity completely. Instead

of \the stage does not exist" we obtain \the stage is not observable". This

remains to be an important and non-trivial insight.

14.2 Relativity as a theory about observables

But we want to go farther. We argue that relativity is only a theory about

observables. Therefore, nothing changes if we replace \the stage does not

exist" with \the stage is not observable".

Indeed, if there would be a di�erence, then there should be a method to

show the existence of unobservable objects. In classical realism, there are

such methods { the EPR criterion of reality allows to prove the existence of

such hidden objects. But this criterion has been rejected. Moreover, this is a

necessity. Without the rejection of the EPR criterion relativity would be sim-

ply falsi�ed. Thus, after the rejection of the EPR criterion we have no longer

a chance to prove the existence of an unobservable stage. Lorentz invari-

ance is only observable Lorentz invariance. The original principle \all laws
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of nature should be Lorentz-invariant" has been replaced by \all observable

e�ects should be Lorentz-invariant" at least after Aspect's experiment.

Therefore, from point of view of relativity the statements \the stage does

not exist" and \the stage is not observable" are simply identical. If we

interpret the relativistic insight \the stage does not exist" as \the stage is

not observable" we do not weaken relativity. Instead, we take the relativistic

preference for observables seriously.

Thus, we conclude that the acceptance of a preferred frame is in natural

agreement with the methodology recommended by Rovelli, which requires to

take above theories seriously.

15 The violation of Bell's inequality

Before learning the details of the violation of Bell's inequality, I have thought

that it gives some weak evidence in favour of a preferred frame. It was a

real surprise for me that the evidence is, instead, very strong { its not an

exaggeration to name it simply a falsi�cation of relativity.

The whole problem is a very simple one. While relativity forbids any

superluminal causal in
uence, the Lorentz ether allows them, as long as their

observable consequences allow two explanations: (A ! B or B ! A). In

this case, they cannot be used to measure absolute time, which is forbidden

in the Lorentz ether. Now, Bell's inequality may be violated only if (A! B

or B ! A). And, because it is violated, relativity is falsi�ed and we have to

return to the Lorentz ether. A very nice, interesting but simple example of

an indirect existence proof.

But, instead of accepting this elementary experimental falsi�cation, the

simple but fundamental principles used in this proof are questioned, even

rejected. The argumentation used in this context is a classical example of

immunization. Some arguments are nonsensical enough to describe the situa-

tion as a \
ight from reason in science" (Goldstein [33]). Fortunately, reading

Kuhn's \structure of scienti�c revolutions" [44] has recovered my optimism

about the presence of reason in science. Kuhn observes that paradigms are

never falsi�ed by experiment alone. Their rejection always requires another

paradigm for replacement. And, without GET, the ether paradigm was sim-

ply not a viable competitor.

But with GET the ether paradigm becomes a reasonable competitor of
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relativity. Now, with GET as the background, the violation of Bell's inequal-

ity should be reinterpreted. From point of view of competition between ether

and relativity it becomes a simple and beautiful experimental falsi�cation of

relativity.

Of course, there seems no necessity to copy the well-known proofs of the

various variants of Bell's inequality. Nonetheless, to explain some features

(like the simplicity of the theorem itself, the classical character of the de-

cisions and the observations and the existence of applications) the simplest

way seems to be a simple \proof for schoolboys":

15.1 Bell's inequality for schoolboys

There are three cards, left, middle, right, with red or black color. I have to

choose them so that:

� the left and middle cards have the same color;

� the middle and right cards have the same color;

� the left and right cards have di�erent color.

Obviously, one of the three claims is wrong. Now, if you open two cards,

you can test one of these claims. What's the probability p to detect a wrong

claim? Obviously p � 1=3.

What if you win only with p < 1=3? Obviously, something is manipulated.

What? That's easy: after you have chosen the �rst card, another card may

be manipulated. For example, imagine one card is marked. If you open this

card, you hand becomes marked. And the other card may be manipulated

so that if touched by a marked hand it changes its color.

Let's try to avoid this possibility for manipulation. We use two rooms

and assume that no information transfer between the two rooms is possible.

In every room we have three cards, and your team has to choose one card in

every room. How can you be sure that the cards in the two rooms are the

same? Very simple, you can ask for the same card in above rooms as often

as you like, and in this case these cards should always have the same color.

Without information about the question in the other room your opponents

cannot be sure if you ask about di�erent cards or the same cards. They have

no better strategy than to use the same prede�ned color for the same card.
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Therefore, we are in the same situation as before, but without the pos-

sibility to manipulate based on the information about the other question.

Therefore, we have again p � 1=3. And, if not, there is a hidden information

transfer from one room to the other.

That's all { we have proven Bell's theorem. Let's formulate it in the

following way:

Theorem 4 (Bell's theorem) If Bell's inequality p � 1=3 is violated for

measurements at A and B, then there exists a causal in
uence (A ! B or

B ! A).

15.2 The di�erence between special relativity and

Lorentz ether

As far, we have used only classical common sense, and proven that from the

violation of Bell's inequality follows (A ! B or B ! A). The question is

now how relativity and ether theory are involved.

In special relativity, we have no absolute time. Instead, in pre-relativistic

Lorentz-Poincare ether theory we have an absolute time, but we cannot mea-

sure it. Because of the ether, moving clocks are dilated and moving rulers

contracted. Now, the formulas for SR and Lorentz ether are identical. There-

fore, it is often said that above theories are identical in their predictions. But

this is not true. The violation of Bell's inequality is an interesting di�erence.

In special relativity we have Einstein causality. This is a consequence

of two axioms: that there are no causal loops, and that causality is a law

of nature, and therefore has to be Lorentz invariant. Einstein causality is

Lorentz-invariant, but a notion of causality which allows faster than light

causal in
uences leads to causal loops. Therefore, any causal in
uence faster

than light is forbidden. That means, as A ! B, as B ! A is forbidden by

Einstein causality. Therefore, (A! B or B ! A) is forbidden too.

But in the Lorentz ether the situation is di�erent. We have classi-

cal causality. Therefore, causal in
uences faster than light are not forbid-

den. There is only one restriction: all observable e�ects should be Lorentz-

invariant. Now, it seems to follow that such faster than light in
uences cannot

have observable consequences. But that's wrong { observable e�ects between

space-like separated events A and B may be very well Lorentz-invariant if

they allow two explanations: (A ! B or B ! A). If in absolute time
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tA < tB, we use the explanation A! B, but if tA > tB, we use explanation

B ! A. Thus, (A! B or B ! A) is not forbidden in the Lorentz ether.

We conclude that there is an interesting di�erence in the predictions of

special relativity and Lorentz ether theory: observable correlations between

space-like separated events A and B which may be explained by causal in-


uences (A! B or B ! A) are forbidden in special relativity, but allowed

in Lorentz ether theory.

Bell's inequality is a simple example of an e�ect of this type. We have

above explanations. If Alice is able to send information to Bob, they can

always win. If Bob is able to send information to Bob, they can always win

too. Thus, if they win with probability p < 1=3, we can explain this as

(A! B or B ! A). Violations of Bell's inequality are obviously observable.

We see that it is not correct to claim that special relativity and Lorentz ether

are equivalent as physical theories. They are not. In special relativity, we

can prove Bell's inequality for space-like separated events. In the Lorentz

ether violations of Bell's inequality are allowed.

15.3 Aspect's device

Now, there is no need to understand how Aspect's device [5] works. It's

suÆcient to consider it as a black box, or, more accurate, a device consisting

of two black boxes, one for each room. You can press one of three buttons {

left, middle, right { and it gives the answer { red or black. And if Alice and

Bob use this device, your probability to �nd the wrong answer is p = 1=4.

That's all.

We conclude that we have to reject special relativity and to return to

the Lorentz ether. Bell's conclusion was similar: \the cheapest resolution is

something like going back to relativity as it was before Einstein, when people

like Lorentz and Poincare thought that there was an ether | a preferred

frame of reference | but that our measuring instruments were distorted by

motion in such a way that we could no detect motion through the ether. Now,

in that way you can imagine that there is a preferred frame of reference, and

in this preferred frame of reference things go faster than light." [11]
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15.4 Should we question everything?

We have presented a very simple proof of Bell's inequality. Unfortunately

proofs are certain only in mathematics. As far as we consider reality, nothing

is certain. And, therefore, everything in this proof may be (and has been)

questioned. This reaction is justi�ed in a situation where relativity is an

unquestioned paradigm of science. But it is no longer justi�ed in a situation

where we have a competition between two paradigms { relativity vs. ether

theory.

In this situation, the previously justi�ed search for explanations becomes

a simple method of destruction { a method which may be applied to every

experimental falsi�cation of a physical theory: take an arbitrary sentence

in the proof we have presented. Then, name it an \unproven hypothesis",

explain that we \cannot be sure" that it holds, and that \far away from

our everyday experience" this common sense assumption is possibly invalid.

That's suÆcient, you have found a \loophole" in the proof. Moreover, you

will have a lot of fun if somebody tries to justify the statement you have ques-

tioned { especially because he cannot be successful. Whatever he presents,

you have a simple counter-attack: take an arbitrary sentence from his reply,

and ... you already know. This is the method described by Rovelli [63] as

\wilderness":

The `wild' scientist observes that great scientists had the courage

of breaking with old and respected ideas and assumptions, and

explore new and strange hypothesis. From this observation, the

`wild' scientist concludes that to do great science one has to ex-

plore strange hypotheses, and violate respected ideas. The wildest
the hypothesis, the best. I think wilderness in physics is sterile.

The greatest revolutionaries in science were extremely, almost

obsessively, conservative.

That we have to stop somewhere with the questioning is well-known in

scienti�c methodology. Every test of a theory requires to stop questioning at

some point. That's a well-known fact in scienti�c methodology. For example,

Popper [57] writes:

Every test or theory ... must stop at some basic statement or

other which we decide to accept . If we do not come to any deci-

sion, ... then the test will have led nowhere.... Thus if the test is
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to lead us anywhere, nothing remains but to stop at some point

or other and say that we are satis�ed, for the time being.

Note that this is not dangerous at all: we do not have to accept something

forever, in a dogmatical way, we can remove our acceptance whenever we have

reason to doubt. Now, the question may be only what are reasonable criteria

to stop questioning some principles, at least for time. In our case, a simple

rule seems to be that an objection should be justi�ed by something more

than the simple and trivial remark that it is an unproven hypothesis. Based

on this basic rule let's reject now some well known objections against our

resolution of the violation of Bell's inequality.

Thus, unjusti�ed, pure doubt into some common sense principle, without

reason, that means without independent evidence against the questioned

principle, should be rejected. Let's look now at the common objections

against the obvious resolution of the violation of Bell's inequality { the ac-

ceptance of a preferred frame.

15.5 No application for the violation

One common counter-argument is that we cannot use the violation of Bell's

inequality for information transfer. This is really strange, because to use it

for information transfer is forbidden in the Lorentz ether too. It is simply

in contradiction with the requirement that two explanations of the violation

are possible: (A ! B or B ! A). If we use this device for information

transfer A! B this is certainly in contradiction with the explanation B !
A. Therefore, we have the strange situation that it is considered to be an

argument against a theory that the prediction of this theory holds.

A variant of this argument is that the violation of Bell's inequality cannot

be applied. That's simply wrong. In our proof, we have described an appli-

cation { Aspect's device allows Alice and Bob to improve their coordination

and to win in the game with probability p = 3=4 instead of 2=3. But to im-

prove coordination in similar game-like situations is the classical application

of information transfer. Therefore, even if pure communication is impossible

{ for known reasons { we can apply it in a similar way to improve coordina-

tion. Moreover, it should be noted that this objection, while common, is in

no way an argument in favour of one of the competitors.
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15.6 Objections against a preferred frame

One argument which was really justi�ed in the past is that there was no

theory of gravity with a preferred frame comparable with general relativity.

Now, with the theory presented here this argument is obsolete. Of course, all

other known arguments against the Lorentz ether may be presented in this

context. Most of them, again, are obsolete in GET.

One speci�c argument is worth to be considered: It is argued that it

is not natural to use two di�erent explanations for the same observation.

But two Lorentz-equivalent con�gurations are not \the same" in the Lorentz

ether. That's the general situation in the Lorentz ether. In di�erent but

Lorentz-equivalent situations all other observable e�ects are explained in a

di�erent way. In this context it is natural to have di�erent explanations for

the violation of Bell's inequality too, much more natural than to have the

same explanation.

Now, you may like or not like the properties of the Lorentz ether { the

question is if (A ! B or B ! A) is allowed in the Lorentz ether or not,

if there are arguments against the experimental falsi�cation of relativity.

To count here metaphysical arguments against the other competitor is re-

ally strange. If we accept arguments about metaphysical beauty as decisive

against an experimental falsi�cation, this is simply the end of science.

15.7 No contradiction with quantum mechanics

Then where is a whole class of common objections: objections related with

the strangeness of quantum theory. The strangeness of the double slit ex-

periment or the quantum eraser seems to suggests that the preferred frame

is not the problem, and that the common sense principles we have used in

our proof are in contradiction with quantum theory. Of course, we can argue

here that the burden of proof is on the side of the people who claim that

there is such a contradiction. But we don't have to { instead, we can prove

that there is no such contradiction.

Theorem 5 There is no contradiction between the principles used in the
proof of Bell's theorem and the predictions of non-relativistic quantum theory.

The proof is given by Bohmian mechanics { a hidden variable theory of

quantummechanics found by David Bohm [16]. In a \quantum equilibrium",
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this theory makes the same predictions as non-relativistic quantum theory,

therefore, no prediction of non-relativistic quantum theory is in contradiction

with the predictions of Bohmian mechanics. But Bohmian mechanics is in

full agreement with the common sense principles used in the proof of Bell's

theorem. We consider Bohmian mechanics in appendix F.

Thus, \quantum strangeness" is not a reason to reject the proof. All

arguments related with double slit experiments, spin, quantum erasers, the

\wholeness" of quantum theory and so on are irrelevant. It gives no support

for the thesis that something is wrong with the proof of Bell's theorem.

15.8 Objections in con
ict with Einstein causality

There is another class of objections which may be rejected as a whole. It is

based on the assumption that Einstein causality is considered as a prediction

of relativity. The idea is a detailed consideration of an assumed faster than

light phone line. Let's assume such a phone line exists. In this case, we

obviously have to give up relativity as falsi�ed. Nonetheless, let's consider

the seemingly nonsensical question how we can prove this based on the ob-

servation. The point is that we can play here the same game of \questioning

everything". Now, in this situation this looks certainly nonsensical. Surpris-

ingly, we look at the details, we �nd that we have to use assumptions which

may be and have been questioned in the discussion about Bell's inequality.

We propose the following criterion: all assumptions and principles which
have to be used to prove that a really working superluminal phone line falsi�es

Einstein causality should not be questioned in the proof of Bell's theorem.
Now, let's look how to prove this. Let's consider the basic device which

transfers one bit of information. The FTL phone consists of two black boxes.

We make some decision and press a button on our box. Our friend makes a

measurement on his side of the box and obtains a result. Then, we meet later

and compare our decisions with his observations. If we observe a signi�cant

correlation we conclude that the phone works.

We see that the experimental situation is very close to the situation in

the violation of Bell's inequality, and really includes parts which have been

questioned:

� The device is a black box, we don't know how it works. This is similar

to our presentation of Aspect's device as a black box. Therefore, every
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argumentation which requires some insight into this black box before

accepting that some causal information transfer has happened should

be rejected.

� We essentially use the free will of the experimenter. Of course, as

in Bell's theorem, the experimenter may be replaced by various other

random number generators to obtain certainty that the input { the

decision of the experimenter { is not prede�ned. But that's enough.

Every argument which does not accept this as suÆcient to establish the

independence of the decision of the experimenter should be rejected.

� We can verify the existence of a non-trivial correlation only after the

experiment has �nished, using other methods of information transfer.

It is typical for \many world" explanations or explanations based on

\superpositions of observers": nothing non-local happens, only if the

observers meet again, with usual subluminal speed, something collapses

and we obtain the correlations in a miraculous quantum way. These

explanations should be rejected too.

� Note also the general objection what we observe only a correlation.

Having only a correlation, we cannot conclude that there really exists

a causal relation in reality. We need some principle which allows to

make the step from observable correlations to the conclusion that there

exists a real causal interaction. Every criticism which rejects the way

this has been done in the proof of Bell's inequality but does not describe

an alternative way to conclude from observation that a real, causal

relation exists should be rejected.

� We know that as A! B, as B ! A is forbidden by Einstein causality.

Therefore, (A ! B or B ! A) is forbidden too. This is obvious.

But there exists a well-known psychological bias known as \disjunction

fallacy" [67]: if there are two alternatives, and above alternatives lead

to the same conclusion (in our case: the falsi�cation of relativity), but

we are not sure which alternative happens, we tend not to make the

conclusion. It seems, this fallacy is the base for arguments of type \we

are unable to detect the direction of in
uence".

Again, our argumentation allows to reject a whole class of common ob-

jections. Of course, it works only if we want to defend Einstein causality
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as a physical prediction of relativity. It does not work against the idea of

rejection of causality itself, for example following Price [59].

15.9 Discussion

Bell's inequality is a prediction of SR which does not hold in LET. Therefore

the violation of Bell's inequality falsi�es SR and requires to accept a preferred

frame. The proof is indirect but so simple and straightforward that it is hard

to imagine a stronger indirect falsi�cation of a physical theory.

The consideration of the common counter-arguments has not given any

serious loopholes. Instead, most of the common arguments are part of two

classes we have rejected: objections based on assumed contradictions with

quantum principles, and objections which, if accepted, would allow to immu-

nize relativity even if we have working superluminal phone lines.

What remains is the possibility to question everything. Certain proofs

exist only in mathematics, not in physics. Immunization of a physical theory

is always possible. In principle, objections are always possible. Last not

least, we are talking about reality, not about pure mathematics. But there is

no independent evidence which suggests that some part of this proof should

be questioned. Therefore, the rejection of the proof of Bell's inequality has

to be quali�ed as an ad hoc immunization of relativity.

Nonetheless, in x E we consider the EPR criterion in more detail. We

present there evidence for the thesis that the principles used in the proof

of Bell's inequality { principles we denote as \EPR realism" { are of more

fundamental character than space-time symmetries.

16 Conclusions

General ether theory proposes a paradigm shift back from relativity to a clas-

sical Newtonian background. It heals the main problems of the old Lorentz

ether:

� relativistic symmetry is explained in a general, simple way;

� the ether is generalized to gravity;

� the ether is compressible, changes in time;
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� there is no longer an action-reaction problem;

In various parts of fundamental physics we �nd advantages of the new

approach:

� we obtain local energy and momentum density for gravity;

� the problem of time of quantum gravity is solved;

� singularities in physical important situations disappear;

� frozen stars instead of black holes solve the information loss problem

of quantum gravity;

� we obtain a reasonable dark matter term;

� a big bounce instead of a big bang solves the cosmological horizon

problem without in
ation;

� the EPR criterion of reality holds;

� a generalization of Bohmian mechanics into the relativistic domain be-

comes unproblematic;

Even in the domain of beauty GET seems to be able to compete with GR:

it seems that some of the most beautiful aspects of the mathematical appara-

tus of GR obtain a physical interpretation in the context of GET: harmonic

coordinates, ADM decomposition, triad formalism, Regge calculus. Espe-

cially the beautiful relation between covariance and conservation laws has to

be mentioned here: it gives in GET two nice expressions for the conservation

laws, but in GR it makes energy conservation highly problematic.

Reconsidering the metaphysical foundations of relativity, we have found

serious 
aws:

� A reconsideration of the violation of Bell's inequality suggests its in-

terpretation as a falsi�cation of relativity; the rejection of the EPR

criterion of reality should be interpreted as an immunization of rela-

tivity: except its contradiction with the relativity principle there is no

independent evidence against the EPR criterion.
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� A new quantization problem { named scalar product problem { suggests

that a really relativistic covariant quantum theory fails to describe the

non-relativistic limit.

� The consideration of the \insight" of relativity into the nature of time

suggests that it is based on con
ation of di�erent physical notions {

clock time and \true" time. All they have in common is that they have

been named \time".

� The consideration of general covariance and relationalism shows that

these are not advantages of relativity, but can always be reached { by

forgetting valuable information.

On the other hand, we have been unable to detect serious diÆculties of

the new approach: there is no evidence that the introduction of a preferred

frame is problematic in any part of modern physics.

But, of course, a lot of interesting questions remain open, especially the

physical interpretation of gauge �elds and fermions, Lagrange formalisms

for condensed matter compatible with the GET scheme, the details of the

related hidden relativistic symmetry in usual condensed matter. The uni�-

cation of the geometrical methods developed for GR quantization with the

canonical quantization schemes for condensed matter will be interesting for

above domains: it de�nes how to regularize in quantum gravity, and it gives

geometrical interpretation in condensed matter theory.

A Covariant description for theories with

preferred coordinates

The covariant description we consider here is quite simple: we handle the

preferred coordinates formally as \scalar �elds" X�(x). This allows to de-

scribe a theory with preferred coordinates in a covariant way. An interesting

point of this covariant description is that the Euler-Lagrange equations for

the preferred coordinates are the conservation laws.

This is quite obvious and may be considered as a \folk theorem".

Nonetheless, confusion about the physical meaning of \covariance" seems

quite common, and it does not seem to be widely known. That's why it
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seems reasonable to describe the \weak covariant" description we use in more

detail.

A.1 Making the Lagrangian covariant

We assume that we live in a Newtonian framework. That means, there is

an absolute Euclidean space and absolute time. To describe this absolute

background, we use preferred coordinates X i; T = X0. As usual, Latin

indices vary from 1 to 3, Greek indices from 0 to 3. Of course, to use other

coordinates x� is not forbidden, the coordinates X i; T are only preferred {

the laws of nature are simpler in these coordinates.

Now let's consider how to obtain a covariant description starting from a

non-covariant one:

Theorem 6 Let S =
R
L(T ���

���
; @�T

���

���
) be a functional which depend on com-

ponents T ���

���
and �rst derivatives @�T

���

���
of tensor �elds T.

Then there exists a covariant functional Sc =
R
Lc(T

���

���
; @�T

���

���
;X�

;�) which

depends on the components and �rst derivatives of the same tensor �elds T
and on the �rst derivatives X�

;� of four scalar �elds X�(x) so that

S(T ) = Sc(T;X
�
;�)

for X�(x) = x�.

Proof: In L we replace the tensor components by expressions using the

following replacement rules for all indices:

T �������
���

!
@X�

@x�
T �������
���

T ���

������� !
@x�

@X�
T ���

�������

T ���

���;� !
@x�

@X�
T ���

���;�

T �������
���;� !

@X�

@x�
T �������
���;�

T ���

�������;� !
@x�

@X�
T ���

�������;�
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The matrix @x�

@X� is the inverse matrix of @X�

@x�
. We use this property to

express all occurrences of @x�

@X� by these rational functions ofX
�
;� . ForX

�(x) =

x� these are obviously identical transformations. Moreover, each argument is

now a covariant scalar. Indeed, the indices � of theX�
;� are not tensor indices,

but enumerate the scalar �elds X�(x). But indices of this type are the only

open indices in the expression. Therefore, being a function of covariant scalar

expressions, the modi�ed function Lc is a covariant scalar function, qed.

Covariant functions like Lc which do not depend on the �elds X�(x) we

name \strong covariant", to distinguish them from \weak covariant" func-

tions which depend on the �elds X�(x).

Of course, what is not part of this theorem is how to interpret something

de�ned only in the preferred coordinates as a component of some tensor �eld.

This is, essentially, the real problem if we have to make a theory covariant.

There are usually di�erent possibilities: a 3D scalar may be a 4D scalar as

well as a component of a 4D vector or tensor �eld. But this is a question of

the de�nition of the theory itself. We are interested here only in a special

way to obtain a covariant description of a well-de�ned theory.

A.2 Conservation laws in the covariant formalism

This formalism raises two interesting questions. First, once we have a co-

variant formalism, we obtain the known problems with conservation laws {

Noether's theorem does not give non-trivial conservation laws. Second, we

have four new Euler-Lagrange equations for S =
R
L { the Euler-Lagrange

equations for the preferred coordinates X�. What is their physical meaning?

Now, the answer is simple and beautiful { the Euler-Lagrange equations for

the preferred coordinates are the conservation laws. All we need is to look

at the Euler-Lagrange equations for the preferred coordinates:

Theorem 7 If a Lagrangian L does not depend explicitly on the coordinates,
then the Euler-Lagrange equation of the related weak covariant Lagrangian Lc
for the preferred coordinates X� de�nes conservation laws for the tensor

T �
� = �

@Lc

@X�
;�

If the original Lagrangian L is covariant, then T �
� = 0.
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If there was no explicit coordinate-dependence in the original Lagrangian,

there is none in Lc too. Note also that for a covariant Lagrangian L we

have L � Lc and does not depend on X� and X�
;nu. This follows from the

construction. The theorem now follows immediately from the the Euler-

Lagrange equation for the X�:

ÆS

ÆX�
=

@L

@X�
� @�

@L

@X
�
;�

= 0

The results about the existence of conservation laws are equivalent to

Noether's theorem, but the energy-momentum tensor is not the same. The

relation between preferred coordinates and conservation laws is a much more

direct one in this formalism: de facto one line was suÆcient for the proof. We

have not used the other Euler-Lagrange equations. That's why we consider

this variant of the conservation law as the more fundamental one.

We conclude: the Euler-Lagrange equations for the preferred coordinates
are the conservation laws.

B Relationalism

The confusion about covariance has historical reasons. Initially covariance

was believed to be a special, distinguishing property of GR. Later it has

been recognized that every physical theory allows a covariant formulation.

For example, Fock [31] has given a covariant formulation for special relativity.

A simple way to do this is to use the curvature tensor of a metric gij . The

equation Ri
jkl = 0 de�nes a 
at metric in a covariant way. Once a 
at

background has been de�ned, all partial derivatives of the equations in the

preferred frame may be replaced by covariant derivatives of this background

metric. This method has been widely used to present theories of gravity with

prede�ned geometries, for example [48], [52].

Nonetheless, this does not mean that this question is completely clear

now. The situation is confusing. On one hand, every theory allows a covari-

ant formulation, on the other hand, there is a non-trivial symmetry property

{ the property we have named \strong covariance" in GET. Rovelli [63] de-

scribes it using the notions \active vs. passive di� invariance":

All this is coded in the active di�eomorphism invariance (di�

invariance) of GR. Passive di� invariance is a property of a formu-
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lation of a dynamical theory, while active di� invariance is a prop-

erty of the dynamical theory itself. A �eld theory is formulated in

manner invariant under passive di�s (or change of coordinates), if

we can change the coordinates of the manifold, re-express all the

geometric quantities (dynamical and non-dynamical) in the new

coordinates, and the form of the equations of motion does not

change. A theory is invariant under active di�s, when a smooth

displacement of the dynamical �elds (the dynamical �elds alone)

over the manifold, sends solutions of the equations of motion into

solutions of the equations of motion.

This is in agreement with our understanding. The problematic part is

how to distinguish dynamical and non-dynamical �elds. Rovelli continues:

Distinguishing a truly dynamical �eld, namely a �eld with

independent degrees of freedom, from a non-dynamical �eld dis-

guised as dynamical (such as a metric �eld g with the equations

of motion Riemann[g]=0) might require a detailed analysis (for

instance, Hamiltonian) of the theory.

That means, it is assumed that an analysis of the equations of the theory

{ the dynamics { allows to distinguish the non-dynamical and the dynamical

steps of freedom of the theory. The example of GET and its relation with

general relativity with four scalar dark matter �elds (GRDM) allows to proof

that this is impossible:

Thesis: It is impossible to distinguish a non-covariant theory with a

\preferred frame in disguise" from a \truly" covariant physical theory by
evaluation of the equations of motion and the Lagrange formalism.

Indeed, in GET, the preferred coordinates X� are non-dynamical, and

their presentation as \dynamical �elds" X�(x) �ts exactly with the descrip-

tion of a \non-dynamical �eld disguised as dynamical". As we have seen,

the equation for the preferred coordinates X�(x) is simply the harmonic

equation, thus, the usual general-relativistic equation for scalar �elds. On

the other hand, in GRDM the four scalar �elds are dynamical. But the

Lagrange formalism for GET is exactly the Lagrange formalism for GRDM.

A variant of this argument is the consideration of GET with the four

\preferred coordinates in disguise" X�(x) and a few additional free scalar
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�elds 'm(x). Then, looking at the equations and the Lagrangian, there is no

way to tell what are the truly dynamical scalar �elds 'm(x) and what are

the coordinates in disguise X�(x). We need additional a-priori information,

additional insight.

Once the equations are identical, even a \Hamiltonian analysis" (what-

ever this means in detail) cannot help. But there is an interesting point: the

Hamilton formalism is di�erent for GET and GRDM. In GRDM we have

the typical problems of general-relativistic theories where the Hamiltonian

is a constraint. Instead, in GET we have a classical Hamilton formalism,

and the Hamiltonian is not a constraint. But we cannot derive the Hamilton

formalism of GET without the additional information that the �elds X�(x)

are the preferred coordinates. Without this information we cannot decide

which Hamilton formalism is the appropriate one.

Note that our thesis does not mean that there are no di�erences between

GET and the \truly relativistic" theory GRDM. The di�erences we have

considered in x 7. Our thesis is that we need additional insight { the insight

that the �elds X� are preferred coordinates { to be able to distinguish a

theory with absolutes from a \truly relativistic" theory.

B.1 What is the true \insight" of general relativity?

This observation seems to destroy the whole concept described by Rovelli

[63]:

One of the thesis of this essay, is that general relativity is the

expression of one of these insights, which will stay with us \for-

ever". The insight is that the physical world does not have a

stage, that localization and motion are relational only, that di�-

invariance (or something physically analogous) is required for any

fundamental description of our world . . . .

In GR, the objects of which the world is made do not live over a

stage and do not live on spacetime: they live, so to say, over each

other's shoulders.

But, as we have seen, this is not an insight, but a tautological reformula-

tion. If the theory has a stage, we can reformulate it and name the stage a

dynamical �eld. Instead of \absolute motion" we talk about \motion relative

to the stage �eld". Let's see how Rovelli describes Einstein's \insight":
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Of course, nothing prevents us, if we wish to do so, from singling

out the gravitational �eld as \the more equal among equals",

and declaring that location is absolute in GR, because it can be

de�ned with respect to it. But this can be done within any rela-

tionalism: we can always single out a set of objects, and declare

them as not-moving by de�nition. The problem with this atti-

tude is that it fully misses the great Einsteinian insight: that

Newtonian spacetime is just one �eld among the others.

The situation between GET and GRDM is the reverse one. The �elds

X�(x) are not just scalar �elds among others. But this is a non-trivial in-

sight. If we forget this insight, and the �elds X�(x) are interpreted just

as �elds among others, we have lost important information and interesting

predictions. In this way, by forgetting interesting information, a relational

description is always possible. Therefore, the existence of a relational descrip-

tion is only an insight into the mathematical formalism of physical theories

in general, not an insight of GR. Instead, in GET the existence of absolutes

{ the preferred coordinates X�(x) { is a non-trivial insight which leads to

interesting predictions: the �elds X�(x) may be used as global coordinates,

the �eld X0(x) is time-like.

B.2 What are insights which are \forever"?

What would be an important insight is that a theory with a certain type of

absolutes is impossible in nature. But for this insight general relativity is not

enough. This can be, by its nature, only an impossibility proof for certain

classes of theories. Such an insight may be based on certain observational

facts, for example, observations of a worm-hole. This would be incompatible

with a whole class of theories with 
at background. Such an observation of

a non-trivial topology, for example a worm-hole, would be really an insight

which remains forever.11 But we have not observed such non-trivial topology.

A lecture which can be learned from history of science is that metaphys-

ical preferences like between relationalism and the existence of a prede�ned

11Another example of this type of insight is the violation of Bell's inequality, which

excludes a whole class of theories { theories which allow the proof of Bell's inequality

for space-like separated observations. This can be named also an \insight of quantum

theory". But this would be a very sloppy description: the proof of Bell's is classical, and

the violation of Bell's inequality has been observed in real experiments.
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stage should not be justi�ed based on the current physical theory. Rovelli

himself has presented the best example of this type { Newton's insight, re-

lated with the famous rotating bucket, that there exists an absolute space.

This insight, which was thought to remain forever too, was rejected by Ein-

stein. In Einstein's theory, we have relationalism, no absolutes. But this

insight may be as well superseded by another theory. GET proves that this

is possible.

There is another example of an interesting metaphysical question where

we tend to use current physical theory: probability versus determinism. Here

we have even more switches between probabilistic chaos and determinism.

Bohmian theory (deterministic), quantum theory (probabilistic), classical

mechanics (deterministic), chaos in the many-particle situation (probabilis-

tic), classical thermodynamics (deterministic), and chaos in its large scale

predictions. Therefore, to base the metaphysical decision between chaos and

determinism on current physical theory is highly speculative. To guess that

this property remains forever is suÆciently falsi�ed by historical evidence.

There are important insights of general relativity. For example that a

special physical entity which was absolute in Newton's theory is not abso-

lute in reality. It is the entity which de�nes inertial forces and causes the

di�erence between a rotating bucket and a bucket in rest. This entity is the

gravitational �eld. This insight into the nature of gravity and clock time will

stay forever.

Another insight is the Einstein equivalence principle. Because this is an

exact symmetry claim, we cannot be sure that it remains forever { but we

can be sure that it survives at least as an approximative symmetry.

C The problem of time

It is well-known that the problem of time may be solved by the introduc-

tion of a preferred foliation as in GET: \in quantum gravity, one response

to the problem of time is to `blame' it on general relativity's allowing ar-

bitrary foliations of spacetime; and then to postulate a preferred frame of

spacetime with respect to which quantum theory should be written. Most

general relativists feel this response is too radical to countenance: they regard

foliation-independence as an undeniable insight of relativity." [20]
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C.1 clock time vs. true time

To meet this argument, we have to consider the \insight of relativity" about

the nature of time and the metaphysical aspects of the \problem of time" in

more detail. In some sense, the problem of time may be discussed based on

Newton's de�nition [53]. Newton distinguishes two notions of time:

... I do not de�ne time, space, place, and motion as being well

known to all. Only I observe, that the common people conceive

these quantities under no other notions but from the relation they

bear to sensible objects. And thence arise certain prejudices, for

the removing of which it will be convenient to distinguish them

into absolute and relative, true and apparent, mathematical and

common.

I. Absolute, true and mathematical time, of itself, and from its

own nature, 
ows equable without relation to anything external,

and by another name is called duration: relative, apparent, and

common time, is some sensible and external (whether accurate

or unequable) measure of duration by means of motion, which is

commonly used instead of true time; such as an hour, a day, a

month, a year.

This de�nition is in agreement with GET. Here, we have an unob-

servable harmonic \true time" T (x) together with the \apparent time"

� =
R p

g��dx�dx� measured with clocks. These two notions of time may be

roughly identi�ed with \time of quantum theory" and \time of relativity":

Indeed, in quantum theory we have no self-adjoint operator for time mea-

surement. Instead, it is closely related with the fundamental aspects of quan-

tum theory: physical quantities have to be measured at a given time, the

scalar product is conserved under time evolution. Thus, it ideally �ts with

Newtons \true time" and should be distinguished from \apparent time".

On the other hand, time in relativity is de�ned to be apparent time.

General-relativistic time is the time measured by clocks { \measure of dura-

tion by means of motion". And its most interesting physical property is that

it is unequable. The �t with Newton's de�nition of apparent time is simply

ideal.

Therefore, if we deny Newton's insight into the di�erent nature of true

and apparent time, and try to develop quantum gravity without making this
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distinction, we are immediately faced with the problem to unify these two

di�erent notions of time. This is the metaphysical base of the notorious

\problem of time" in quantum gravity.

C.2 About positivistic arguments against true time

The standard relativistic argumentation against this understanding of time

is the rejection of \true time" based on positivistic arguments. The typical

argument is that a physical notion needs an operational de�nition. If we

cannot measure something, then it is not part of physics.

Now, this argumentation is based on positivistic methodology of science,

which has been rejected by Popper [57]. According to Popper's \logic of

scienti�c discovery" theory is prior to observation. Therefore, the fundamen-

tal objects of a theory are not based on observation, they do not need any

operational de�nition. It is not the observation which decides about the fun-

damental notions of the theory. Instead, observation is always theory-laden.

In Einstein's famous words, it is the \theory which decides what is observ-

able". Positivism reverts the relation between theory and observation. All

what is required in science is that the theory, as a whole, makes a lot of fal-

si�able predictions. An operational de�nition of some fundamental notions

of the theory is a useful tool to obtain such predictions, but not more. Posi-

tivism is simply wrong. Again, in Einstein's words about Bohr's positivism:

"Perhaps I did use such a philosophy earlier, and even wrote it, but it is

nonsense all the same."

Moreover, in our case we do not have to rely on such methodological

considerations. Instead, we have a beautiful example of a theory with unob-

servable \true time" { classical quantum theory. We have already mentioned

that there is no self-adjoint operator for time measurement. As a conse-

quence, no physical clock can provide a precise measure of time. There is

always a small probability that a real clock will run backward with respect

to it [70]. Nonetheless, the time of quantum theory is not only an important

part of quantum theory. A lot of people have tried hard to remove time from

quantum theory, without success.

The example of time in quantum theory is not only a powerful illustration

of the failure of positivistic argumentation, but answers the question about

the physical meaning of true time: the simple answer is \the same as in

classical quantum theory". The advantage of this answer is that we do not
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need any vague metaphysical considerations about the nature of \true time".

C.3 Relativity as an insight about true time

On the other hand, positivistic argumentation against true time is not the

only relativistic argumentation. It seems, a lot of relativistic scientists ac-

knowledge very well that there is more behind the notion of time than simple

clock measurement.

Indeed, let's for this argument accept the positivistic argumentation that

there is nothing like \true time", and the only physically meaningful notion

of time is clock time. What, in this case, is the physical meaning of the

following { rather typical { relativistic argumentation [68]:

One often hears that what General Relativity did was to make

time depend on gravity ... Such a dependence of time on grav-

ity would have been strange enough for the Newtonian view, but

General Relativity is actually much more radical than that.12 ...

Rather the theory states that the phenomena we usually ascribe

to gravity are actually caused by time's 
owing unequable from

place to place.... Most people �nd it very diÆcult even to imag-

ine how such a statement could be true. ... That gravity could

a�ect time, or rather could a�ect the rate at which clocks run,

is acceptable, but that gravity is in any sense the same as time

seems naively unimaginable.

As we see, the point is not that apparent time { time measurement with

clocks { is in
uenced by gravity. This is only the part which is already

\acceptable" to people who have not really understood relativity. The point

which is considered to be the \naively unimaginable" insight of relativity is

the identi�cation with \time" { obviously not \apparent time", but \true

time". Thus, the non-existing ghost of true time revives here in its full

beauty, as an important, fundamental insight of relativity.

In my understanding we have here a con
ict between two common rela-

tivistic argumentations. On one hand, the rejection of the notion of \true

12We have to disagree with this claim that a dependence of apparent time on gravity

would have been strange for the Newtonian view. Last not least, a classical clock based

on Newtonian theory { the pendulum clock { obviously depends on gravity.
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time" and the reduction of time to clock time measurement, on the other

hand the metaphysical identi�cation of the same \true time" with time mea-

surement, presented as an \insight of relativity". This contradiction shows

that there is not much in support of this \insight" except methodological

confusion:

Or we accept that there is nothing behind \time" except clock measure-

ment. Then no non-trivial insight into the nature of \true time" exists. The

(nonetheless very important) insight of relativity is about the in
uence of

gravity on clocks.

Or we accept that time is more than clock measurement. Then there is

no empirical base for the identi�cation of clock time with this other notion

of time. The identi�cation is not only a purely metaphysical hypothesis

without empirical support. Moreover, this metaphysical hypothesis is highly

questionable, it seems to be based only on misunderstanding because the

two notions are usually described with the same word { time. Simply two

completely di�erent notions of time which have been distinguished already

by Newton have been mingled.

C.4 Technical aspects of the problem of time

The metaphysical choice to identify quantum true time with relativistic clock

time leads to subsequent technical problems. In di�erent approaches to quan-

tum gravity the problem of time shows in di�erent ways. It is not the purpose

of this paper to consider them, we refer here to [20], [39], [6] for further de-

tails. But an example may be informative. In the canonical approach which

seems to be the closest to our approach, some \internal coordinates" have to

be chosen. But this leads to a \multiple choice problem" [39]:

Generically, there is no geometrically natural choice for the in-

ternal spacetime coordinates and, classically, all have an equal

standing. However, this classical cornucopia becomes a real prob-

lem at the quantum level since there is no reason to suppose that

the theories corresponding to di�erent choices of time will agree.

The crucial point is that two di�erent choices of internal coor-

dinates are related by a canonical transformation and, in this

sense, are classically of equal validity. However, one of the cen-

tral properties/problems of the quantization of any non-linear
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system is that, because of the well-known Van-Hove phenomenon

[73], most classical canonical transformations cannot be repre-

sented by unitary operators while, at the same time, maintaining

the irreducibility of the canonical commutation relations. This

means that in quantizing a system it is always necessary to select

some preferred sub-algebra of classical observables which is to be

quantized.

D Quantum gravity requires a common back-

ground

In this section, we consider an interesting problem of the quantization of GR.

This problem has been the starting point for the author. It strongly suggest

that for successful quantization GR should be modi�ed, especially that it is

necessary to introduce a common background manifold.

The main di�erence between GR and other theories including SR is that

GR is a \one world theory". It does not have a possibility to compare di�erent

gravitational �elds. In other theories we have some common background.

This allows to talk about values at \the same point" for di�erent solutions.

In GR, this is not possible. Another solution may be de�ned even on another

manifold.

This is not problematic because a possibility to compare di�erent solu-

tions is not necessary in the classical domain. As long as we consider classical

gravitational �elds, there is only one solution we can observe, there is only

\one world". Therefore, in the classical domain a \one world theory" does

not cause problems. But what about quantum superposition? In a superpo-

sitional state we can consider di�erent classical solutions in a single state. Is

a \one world theory" suÆcient to describe superpositions? Or is there more

information hidden in a superpositional state? Especially, is there informa-

tion about relative position between the states which are in superposition?

This simple question may be the key for the understanding of quantum

theory. There seem to be only two ways to answer this question: yes or no.

The relativistic answer is a clear no. Our answer is a clear yes. A nice way

to formalize the two possible answers has been proposed by Anandan [3]:

the notions of c-covariance and q-covariance. We consider superpositions of
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quasi-classical gravitational �elds. Now, we have to look what happens if we

apply di�eomorphisms. We have di�erent �elds, and this raises the question

if we are allowed to use di�erent di�eomorphisms for these di�erent �elds

or not. This leads to two ways to generalize classical covariance: The �rst,

weak generalization is c-covariance { it requires covariance only if we apply

the same di�eomorphism. The second, strong generalization is q-covariance

{ it allows di�erent di�eomorphisms for the di�erent states in superposition.

Now, the relativistic answer is unique { the only appropriate generaliza-

tion is q-covariance. The reason is that c-covariance requires an essential

modi�cation of classical GR. Indeed, the Einstein equations of classical GR

de�nes a pair of solutions only modulo q-covariance. The GR Lagrangian

is also q-covariant. Thus, to de�ne the evolution of c-covariant but not q-

covariant objects we simply do not have appropriate equations in classical

GR. Moreover, even the notion of \the same di�eomorphism" is not appro-

priately de�ned in GR. Di�erent GR solutions live on di�erent manifolds,

and there is no well-de�ned notion of \the same di�eomorphism" on another

manifold. This is the solution which has been proposed by Anandan too.

We have chosen the other way. We think that the description of a su-

perposition requires additional, non-q-covariant information. The purpose of

this section is to justify this choice.

Let's start with a simple question { the superposition of a state with a

shifted version of itself: jgij(x)i+ jgij(x�x0)i. Do you really think this may

be simply the original state, not a non-trivial superposition? I'm not. But,

of course, this simple argument does not seem to be suÆcient.

Fortunately, we can present a much stronger argumentation. As we see,

already a very simple scattering experiment on such superpositional states

gives observables which depend on \relative position".

D.1 A non-relativistic quantum gravity observable

In the consideration of quantum gravity, people usually consider two basic

theories: classical general relativity and relativistic quantum �eld theory on

a �xed background. But these are not really the theories which have to be

uni�ed { the gravitational �eld is classical in above theories. The interesting

point of quantum gravity is, of course, the consideration of superpositions of

gravitational �elds. It is, last not least, superposition which makes quantum

theory di�erent from classical statistics. And this di�erence will be the point

76



of our experiment: what we want to measure is the transition probability

which decides if a superposition has been destroyed by measurement or not.

The problem with semi-classical QFT is that it does not give a base for such

considerations.

On the other hand, it is not at all diÆcult to compute such transition

probabilities in a reasonable approximation. For this purpose, we can use a

well-known simple theory which allows to consider non-trivial superpositions

of gravitational �elds. This theory is simply non-relativistic quantum grav-

ity { classical multi-particle Schr�odinger theory with Newtonian interaction

potential.

There is nothing ill-de�ned with this theory. From theoretical point of

view it works as well as multi-particle Schr�odinger theory with Coulomb

interaction potential. The fact that we have no data is not really problematic.

Indeed, the theory uni�es classical quantum principles with classical gravity

in an ideal way. If somebody tends to doubt simply because there are no data,

quantum gravity is a forbidden area for him. Thus, to assume the correctness

of Schr�odinger theory in the non-relativistic limit is not problematic. But,

of course, it is a non-trivial decision: We assume that classical Schr�odinger
theory is the non-relativistic limit of quantum gravity.

Now, based on this non-relativistic theory we can consider simple gravi-

tational scattering. This gives some insight into features of superpositions of

gravitational �elds, even if the �eld itself is not quantized. We simply have

to consider superpositional states of an otherwise neutral particle. We need

the particle only as a source of gravity. Thus, let's consider a situation like a

double slit experiment, with some superpositional state j 1i+j 2i of a source
of gravity. For the interaction with a test particle j'i only the gravitational

�eld of the source is important. Thus, it is possible to interpret the inter-

action also as an interaction of the test particle j'i with a superpositional

state of the gravitational �eld jg1i+ jg2i.
Now, let's make some simplifying assumptions. First, let the mass M of

the source particle be much greater than the mass m of the test particle:

M � m. In this case, the state of the heavy particle is much less in
uenced

by the interaction than the state of the test particle. Let's also assume

that the state of the source particle is highly localized:  1(x) � Æ(x � x1),

 2 � Æ(x� x2). In this case, we can use single particle theory to compute

the result of the interaction. Let's denote with '1; '2 the solution of the

Schr�odinger equation for the source particle located in x1 resp. x2. Then, for
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the two-particle problem with the initial values j 1i
j'i resp. j 2i
j'i we
obtain approximately a tensor product solution j 1i
 j'1i resp. j 2i
 j'2i.
For the superpositional state (j 1i + j 2i) 
 j'i we obtain the solution by

superposition:

j 1ij 
 j'1i + j 2ij 
 j'2i:

But this is equivalent to

(j 1i + j 2i)
 (j'1i + j'2i) + (j 1i � j 2i)
 (j'1i � j'2i)

Now, we are interested in the transition probability j 1i+ j 2i ! j 1i �
j 2i. We obtain

ptrans =
1

2
(1 �Reh'1j'2i)

To understand why we are very interested in this transition probability

let's consider the limiting cases: if h'1j'2i = 1, gravitational interaction is

not important, the position of the source particle does not in
uence the state

of the test particle. Thus, the superpositional state remains unchanged, the

interaction with the test particle was not a measurement of position of the

source particle. We have a tensor product state. Therefore, we can ignore

the test particle and obtain a pure one-particle state for the source.

In the other limiting case, the resulting states are orthogonal, h'1j'2i = 0,

therefore, the transition probability is 1
2
. We do not have a product state.

If we ignore the test particle, we do not obtain a pure source particle state.

Instead, we obtain a classical mixed state:

1

2
(j 1ih 1j+ j 2ih 2j)

Thus, the transition probability de�nes if the interaction was a measure-

ment which has destroyed the superposition or not. If there is something

which allows to distinguish a superposition from a classical mixed state,

than this \something" gives us information about the transition probability.

If not, then we cannot distinguish the superposition from a mixed state.
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D.2 The problem: generalization to relativistic quasi-

classical gravity

Therefore, this transition probability is very important. If it is not observ-

able, what distinguishes the theory from a classical statistical theory? Is a

theory which does not allow to distinguish a superposition from a classical

mixed state worth to be named \quantum theory"? This seems questionable.

Thus, the assumption that this transition probability remains observable in

full, relativistic quantum gravity seems to be a very natural one.

Now, to compute the transition probability, we need the scalar product

h'1j'2i. For the derivation of this formula, we have used only very few

fundamental principles. Therefore, it seems reasonable to assume that this

formula may be generalized. We make the following hypothesis: The scalar
product h'1j'2i is well-de�ned in relativistic quantum gravity.

Now, let's consider how to generalize it into the relativistic domain. The

basic states of the source particle  1(x) � Æ(x� x1) resp.  1(x) � Æ(x� x1)
we generalize into relativistic gravitational �elds g1ij(x) resp. g2ij(x). For

'(x) we have to solve now, instead of the classical Schr�odinger equation, a

similar wave equation on these background metrics. We ignore the related

�eld-theoretical problems with particle creation and so on and assume that

the �eld equations may be solved without problems. Thus, we obtain two

solutions '1(x) resp. '2(x) for the two gravitational �elds.

Now let's consider the computation of the scalar product h'1j'2i, using
the following naive formula as a base:

h'1j'2i =
Z

�'1(x)'2(x)dx3

The point is that this integral simply cannot be de�ned from point of view

of classical general relativity. Indeed, if g1ij(x) is a solution of the Einstein

equations, we may apply an arbitrary transformation of coordinates and

obtain the same solution in other coordinates. Now, if we apply such a

transformation to g1ij(x), the same transformation has to be applied to '1(x)

too to obtain the same solution in the other coordinates. But nothing requires

to apply the same transformation to g2ij(x) and '2(x). Now, if we apply

a coordinate transformation to '1(x), but not to '2(x), the result of the

integral changes in a completely arbitrary way.
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The same result may be formulated in another way: the functions '1(x)

resp. '2(x) are de�ned on di�erent manifolds { the manifolds de�ned by the

spacetime metrics g1ij(x) resp. g
2
ij(x). And scalar products between functions

on di�erent manifolds are simply unde�ned.

A third way to formulate this result is that this scalar product is only

c-covariant but not q-covariant. Indeed, the integral does not change if we

apply the same di�eomorphism to above con�gurations, but changes if we

apply di�erent di�eomorphisms to above con�gurations. Therefore, it cannot

be observable in q-covariant quantum GR.

A consequence of this situation is that GR is completely unable to make

predictions for the scalar product, even if the scalar product is given for some

initial values. Indeed, assume we have �xed some initial values g1ij(x), '
1(x),

g2ij(x), '
2(x)jx0=0 and an appropriate number of derivatives. Thus, for the

initial values we have restricted the freedom of choice of di�eomorphisms.

But this does not help: there are di�eomorphisms which are identical for

the initial values, with all derivatives. And the Einstein equations de�ne the

solution only modulo arbitrary di�eomorphisms.

What seems to be even more serious is that the problem appears al-

ready in the non-relativistic limit. In Schr�odinger theory, the scalar product

is well-de�ned. But the gravitational �eld may be as close as possible to

the non-relativistic situation, the scalar product remains completely unde-

�ned in relativistic theory. It seems therefore highly problematic to obtain

Schr�odinger theory as the non-relativistic limit of a q-covariant theory of

quantum gravity.

D.3 The solution: a �xed space-time background

Let's look now how this problem is solved in GET. We have some well-de�ned

Newtonian background which is common for all �eld con�gurations. The

additional term in the Lagrangian does not only give some additional term in

the Einstein equations, but breaks relativistic di�eomorphism invariance. We

have four additional equations { the harmonic coordinate equations. They

de�ne the solution uniquely, not only modulo di�eomorphism.

Of course, \uniquely" is also a relative notion, it means relative to the

Newtonian background. We can use the covariant formulation of GET, with

a covariant equation for the variables used to de�ne the background. The

conceptual di�erence is that this background is common for all solutions.
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The resulting quantum theory is not q-covariant, but only c-covariant. The

relative position between a general �eld con�guration and the common New-

tonian background de�nes relative positions between di�erent �eld con�gu-

rations. This allows to de�ne scalar products as well as the notion \the same

di�eomorphism" which is necessary to de�ne c-covariance.

Are there other ways to de�ne the evolution of these scalar products? No.

By accepting the existence and observability of the scalar product we have

de facto accepted a common background manifold with preferred coordinates

for all semi-classical gravitational �elds. Indeed, we need only a few number

of simple and natural restrictions to obtain a common position measurement

for all gravitational �elds.

Assume as before that we have two con�gurations of gravitational �elds

g1ij(x), g
2
ij(x) on manifolds M1 resp. M2 and some Hilbert space of appro-

priate wave functions H(M1) and H(M2). Now, we assume the element

'1(x) 2 H(M1) has well-de�ned \scalar products" with all elements of

H(M2). But in this case it de�nes a linear functional on H(M2). A linear

functional on H(M2) uniquely de�nes an element of H(M2). This construc-

tion de�nes a map H(M1)! H(M2).

Now, this map seems to be the appropriate place to de�ne additional

natural requirements. First, we need transitivity. If there are three spaces,

the map H(M1)! H(M3) should be the same as the composition H(M1)!
H(M2) ! H(M3). As a special case M1 = M3 we obtain that the map

H(M2) ! H(M1) is the inverse of H(M1) ! H(M2). Another property is

that they are norm-preserving. This is required to have a consistent proba-

bility interpretation. Above restrictions may be justi�ed in the same way we

have justi�ed the existence of the scalar product itself: these properties are

ful�lled in Schr�odinger theory.

But, once we have a norm-preserving map H(M1)! H(M2), we can use

it to transfer a measurement fromM2 to M1. Especially, we can transfer the

position measurement for the manifold M2 to H(M1). Now, we can choose

an arbitrary solution as a reference solution and transfer its position mea-

surement to all other states as the common background. Thus, we obtain

a common background manifold for all �eld con�gurations. We are de-facto

back to the scheme we use in GET, with a �xed common space-time back-

ground.

Thus, if we follow the relativistic paradigm and develop a q-covariant

quantum theory of gravity, important observables of non-relativistic quantum

81



gravity remain unde�ned. If we assume that they are well-de�ned, we have

to reject the relativistic paradigm and to introduce a common background

manifold into the theory. This consideration justi�es the introduction of a

�xed space-time background into GET.

D.4 Comparison of Regge calculus and dynamical tri-

angulation

It is interesting to compare two well-known discrete approaches to quantum

gravity { the Regge calculus [61] and dynamical triangulations (DT) from

point of view of scalar product. In the Regge calculus, we have a �xed grid

and the geometry is described by the edge lengths of the grid. In contrast,

in DT the edge lengths are �xed but the triangulation varies.

Now, if we have some discrete functions de�ned for di�erent geometries in

the Regge calculus, we can de�ne their scalar product without problem { we

have the same grid as the base, therefore, for each point of one geometry we

have a well-de�ned notion of \the same point" on the other geometry. There-

fore, the Regge calculus is a nice example of a discrete c-covariant theory.

Instead, in DT we do not have such a possibility. The scalar product between

discrete functions on di�erent triangulations is meaningless. Therefore, it is

an example of a discrete q-covariant approach.

Thus, according to the ideology presented here, DT should be the \cor-

rect" way to quantize geometry in a di�eomorphism-invariant way, but leads

to problems with the classical limit, while it should be reverse for the Regge

calculus. Indeed, the review [21] shows exactly these properties of the two

approaches: the Regge calculus with �xed grid contains steps of freedom

which are unphysical from point of view of relativity, especially modes cor-

responding to general coordinate transformations, but it \possesses a weak

�eld expansion in which contact can be made with continuum perturbation

theory".

It is also noted that, at least for 2D, \the DT method a�ords a good

prescription for regulating quantum gravity". But \there is no weak coupling

limit in which contact can be made with continuum perturbation theory.

Indeed, the attractive feature of this formulation { that it is purely geometric,

making no reference to coordinates and metric tensors also poses a problem;

how do such classical quantities emerge from the model at large distance".
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I hope, these remarks help to clarify my understanding of the role of

the scalar product problem: it does not claim that q-covariant theories are

impossible. Instead, DT provides an example of the regularized version of

such a theory. It also does not claim that by accepting the existence of

a scalar product we immediately end with ether theory: there is a certain

di�erence between Regge QG and our ether approach, especially in our ether

approach the grid is not �xed, but moves, and the position of the grid nodes

are steps of freedom of the ether approach.

The point is that a q-covariant approach has to be rejected because of

the failure to de�ne a scalar product between functions de�ned on di�erent

solutions, because such scalar products are necessary in the non-relativistic

limit.

E Realism as a methodological concept

In x 15 we have not considered the EPR criterion of reality. There was no

necessity for this, because we have considered it as part of common sense.

To separate one of the common sense principles used in this proof and to

name it \EPR criterion" is not necessary in our approach. Instead, it is part

of the destruction strategy we have considered in section x 15.4.

Unfortunately, this destruction strategy was already successful. There-

fore, it seems necessary to consider the part of common sense which has been

named \EPR criterion of reality" and questioned in more detail.

E.1 Principles of di�erent importance

If we have a contradiction between theory and experiment, there are always

di�erent parts of the theory which may be blamed for the problem. But

often it is not too diÆcult to �nd the critical part. Usually it is very helpful

that di�erent parts are not on the same level of fundamentality. We usually

can distinguish more and less fundamental parts of the theory, and in case of

con
ict we usually blame the less fundamental parts to be the cause of the

problem. Let's consider, for example, the dark matter problem. We observe

a di�erence between the Einstein equations and observation:

G�� 6= 8�GT
��

obs
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In this case, we do not reject GR because it's main equation is falsi�ed

by observation. Instead, we simply de�ne the energy-momentum tensor of

\dark matter" as

T
��

dark = G�� � 8�GT
��

obs

and obtain that the Einstein equations are ful�lled. In this case, our

existing theory of matter is considered to be less fundamental. In this case,

this seems to be a reasonable choice.

We argue here that the situation is di�erent for the violation of Bell's

inequality. The other principles involved in the proof of Bell's inequality,

which we denote here as the principles of realism and which include the

EPR criterion of reality, are more fundamental than the particular assump-

tion about space-time symmetry known as relativity. Especially, we argue

that these other principles are fundamental methodological principles, part

of the methodological foundations of science. Thus, they are important as in

physics, as in other sciences.

Note that this argument is only additional support for our argumentation.

There is already another argumentation which is completely suÆcient for a

unique decision in favor of realism: There is independent evidence against

relativity { their problems with quantum gravity, especially the problem of

time (appendix C). Moreover, there is a viable competitor of relativity { ether

theory { which has been developed to solve these other problems. Instead,

nobody has proposed a theory which, for independent reasons, rejects realism.

Moreover, there is simply no independent evidence against realism: as we

have seen, quantum theory is compatible with realism.

E.2 A de�nition of reality and causal in
uence

Let's try to de�ne classical realism in a way which allows a strong mathemat-

ical proof of Bell's inequality based on this notion of realism. Realism in the

common sense proposes the existence of an observer-external reality which

exists independent of our observation. The results of observations may be re-

sults of complex interactions between reality and observer, nothing requires

a possibility of direct observation. To de�ne realism we need at least the

following three entities: of course the observables, but also the decisions

of the experimenters what to measure, and last not least the reality. But

that's all we need:
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Axiom 1 (reality) Assume we have an experiment described by observables

X with the observable probability distribution �X(X;x)dX. It depends on a

set of control parameters x which describe the experimental setup (the deci-

sions of experimenters).
A theory is realistic if it describes such probability distributions based on

a notion of reality { a space � (reality) with probability distribution ��(�)d�

{ and a realistic explanation { a function X(x; �) { so that for a test

function f

Z
f(X)�X (X;x)dX =

Z
f(X(x; �))�(�)d�

This formal de�nition is in quite good agreement with the common sense

idea that reality � exists independent of our decisions x: the probability dis-

tribution �(�) indeed does not depend on x. But it already incorporates the

insight that there is no pure observation, that our observations are only the

result of complex interactions between observer and reality. An argumenta-

tion that classical realism is invalid because observations are only the result

of such interactions is, therefore, invalid: this possibility is already part of

classical realism.

Note that already on this level, without any relation to space-time, we

can de�ne causal in
uences in a natural way:

Axiom 2 (causal in
uence) If in a realistic theory an observable X de-
pends on a control parameter x in the realistic explanation X(x; �), then we
have a causal in
uence of x on X.

E.3 Bell's inequality as a fundamental property

These de�nitions are already suÆcient for the proof of Bell's inequality. In

the case of Bell's inequality, the control parameters are the questions: your

question a to Alice and your friends question b to Bob. The observables are

their answers A and B. Using the de�nition of realism we obtain the existence

of two functions:

A = A(a; b; �) = �1; B = B(a; b; �) = �1

We also obtain the expectation value for the product AB as
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P (a; b) =

Z
�(�)A(a; b; �)B(a; b; �)d�:

Now we have to consider causality. If there is no causal in
uence of the

decision b on the result A, then we have A = A(a; �) and resp. B = B(b; �).

Thus, we obtain

P (a; b) =

Z
�(�)A(a; �)B(b; �)d�

which is simply formula (2) of [10]. After this, Bell's inequality follows as

derived in [10].

As a consequence, we obtain the proof of Bell's inequality on a level where

even the existence of something like space-time has not been mentioned, and

therefore in a space-time independent form: if it is violated, this proves the

existence of causal in
uences (a! B) or (b! A).

E.4 The methodological character of this de�nition

A remarkable property of this de�nition is its unfalsi�able character. What-

ever we observe, it is possible to describe it using a probability distribution

�X(X;x)dX. Whatever this probability distribution is, we can always con-

struct a realistic theory which leads to this distribution { all we have to

do is to use a (suÆciently arti�cial) functional space to describe the real-

ity. Especially, reality may be described simply by the measure �X(X;x)dX

itself.13

The reasonable question is about the purpose of this de�nition if it is

unfalsi�able. Now, there is a surprisingly simple answer: realism is simply

a methodological rule. It enforces to describe certain parts of the theory as

really existing. As well, the subsequent de�nition of a causal in
uence is also

unfalsi�able. The purpose of this de�nition is, as well, to enforce to name

some relations causal in
uence. In other words, this de�nition of realism and

causality enforces ontological clarity. A realistic theory is a theory where we

13As the many worlds interpretation, as Bohmian mechanics may be considered as re-

alistic theories obtained as variants of this \cheap" way { they simply accept the wave

function as reality.
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are forced to name some things real and some in
uences causal, even if this

violates our metaphysical prejudices or principles of the theory we prefer.

Especially this de�nition of realism and causality, a de�nition already

enforces that any violation of Bell's theorem should be explained by causal

in
uences { or a! B or b! A.

E.5 Causality requires a preferred frame

It does not follow from the de�nition that these causal in
uences happen

in a preferred frame. To prove the existence of a preferred frame we need

a little bit more. First, the connection between causality and space-time.

Until now, even the existence of something like a space-time has not been

mentioned. Only now we have to de�ne causality on space-time as a relation

x ! y between space-time events x, y: x ! y if there exists some a ! A

so that the decision a is localized at x and the observation A localized at

y. Moreover, we need the most important property of causality: the causal

order along a world line and the absence of causal loops.

Axiom 3 (space-time causality) Causality de�nes a partial order x! y

on space-time with the property that on time-like trajectories 
(t) we have

(t0)! 
(t1) if t0 < t1.

Now, we can simply prove the existence of a preferred foliation: 14

Theorem 8 (existence of a preferred foliation) If for all pairs of

events Bell's inequality may be violated, then there exists a preferred foli-
ation. It is de�ned by the property that if x ! y than T (x) < T (y) for the
function T(x) which de�nes this foliation.

Proof: Let's de�ne the foliation as a time-like function T (xi; t). For this

purpose, we set T (0; t0) = t0 and de�ne the points contemporary to A =

14That the existence of a preferred foliation follow is nothing new. Valentini [71] suggests

\that a preferred foliation of spacetime could arise from the existence of nonlocal hidden-

variables" [39]. Bell himself concludes [11]: \the cheapest resolution is something like going

back to relativity as it was before Einstein, when people like Lorentz and Poincare thought

that there was an aether | a preferred frame of reference | but that our measuring

instruments were distorted by motion in such a way that we could no detect motion

through the aether."
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(0; 0; 0; t0) on the line B(t) = (x1; x2; x3; t). We use the Dirichlet algorithm

on the line B(t). We start with a large enough interval (a0; b0) so that there

exists causal in
uences B(a0) ! A ! B(b0). Assume at step n we have

found an interval B(an) ! A ! B(bn) with jbn � anj < 2�njb0 � a0j. Now,
we consider the element B(h = (bn + an)=2). Then we observe a violation

of Bell's inequality between A and B(h). It follows from Bell's theorem

that there should be A ! B(h) or B(h) ! A. In the �rst case, we set

an+1 = an; bn+1 = h, else an+1 = h; bn+1 = bn. In above cases we have found

an interval with B(an+1)! A! B(bn+1) with jbn+1�an+1j < 2�n�1jb0�a0j.
Therefore, we have a limit l = liman = lim bn. This limit de�nes a function

T (x1; x2; x3; t0) = l.

To prove that the function T (x) is correctly de�ned, Lipschitz continuous,

and that the de�nition of the foliation does not depend on the choice of

coordinates is straightforward. What we need is that in every environment

of B(l) we have points an with B(an) ! A as well as points bn with A !
B(bn), the non-existence of causal loops, and the existence of causal ordering

B(a)! B(b), a < b on time-like trajectories B(t).

E.6 Relation between our de�nition and the EPR cri-

terion

Let's consider now the di�erence between this de�nition of realism and the

EPR criterion of reality [28]:

If, without in any way disturbing a system, we can predict with

certainty ... the value of a physical quantity, than there exists an

element of physical reality corresponding to this physical quantity.

Now, this is a natural consequence of our de�nition of realism: We have

no \disturbance", thus, no dependence of A on b: A = A(a; �). If it is a

prediction, because we have no in
uence backward in time, we have no de-

pendence of B on a: B = B(b; �). It is a prediction with certainty, thus, these

functions are identical as functions: A(:; �) = B(:; �). Last not least, � is the

\element of reality" and the function A(:; �) describes the correspondence to

the physical quantity A.

The advantages of our new de�nition are, in our opinion, the following:

we have a general de�nition, while the EPR mentions a special situation {
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a correlation which allows to predict something with certainty, and we do

not depend on the notion of space-time, while the EPR criterion includes an

implicit reference to time (\predict"). Moreover, the formal character of the

de�nition allows to show its methodological character: it does not restrict

physical theories, but restricts our way to talk about them.

E.7 Methodological principles as the most fundamen-

tal part of science

Once we defend realism as a fundamental methodological principle it seems

useful to look how other fundamental principles of science may be defended.

There is another such fundamental methodological principle { classical logic,

especially the law that there should be no contradictions, nor in the theory,

nor between theory and observation. As our de�nition of realism and causal-

ity these principles are unfalsi�able themself { simply because the principle

of falsi�cation itself relies on classical logic.15 Therefore, other arguments

have to be used to defend them. In this context, it is interesting how Popper

defends classical logic against \dialectical logic" ([56], p.316):

Dialecticians say that contradictions are fruitful, or fertile, or pro-

ductive of progress, and we have admitted that this is, in a sense,

true. It is true, however, only so long as we are determined not

to put up with contradictions, and to change any theory which

involves contradictions; in other words never to accept a contra-

diction: it is solely due to this determination of ours that criti-

cism, i.e. the pointing out of contradictions, induces us to change

our theories, and thereby to progress. It cannot be emphasized

too strongly that if we change this attitude, and decide to put

up with contradictions, then contradictions must at once lose any

kind of fertility.

Thus, the point of the argumentation is not to prove that there can be no

contradictions. The basic idea is that we have to consider not the hypothesis

15If they are false, then the method of falsi�cation is false too, therefore, cannot be used.

Even if the use of rational arguments, especially the \therefore" in the last sentence, is

also unjusti�ed, this argument seems to show that an experimental falsi�cation of classical

logic is impossible.
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itself, but their in
uence on the future development of science. That means,

Popper defends classical logic as a methodological rule of science.

The main advantage of this argumentation is that we do not have to rely

on \common sense" { a notion which has a bad name in current science and

is usually compared with 
at Earth theory. Classical logic is not a particular

common sense theory like 
at Earth theory which may be false, but de�nes

the scienti�c method, therefore, if we reject classical logic, we simply reject

the scienti�c method.

Our notion of realism is fertile in the same sense as classical logic. It is the

rule to search for realistic, causal explanations for observable correlations. A

non-trivial, unexplained correlation plays the same role as the contradiction

in logic: it de�nes a scienti�c problem. We have to include a realistic expla-

nation into our theory. Nobody forces us to search for explanations, it is only

our own methodological decision not to accept unexplained correlations, and

to accept only a realistic explanation. If we give up the search for realistic

explanations, we loose an important way to reach scienti�c progress.

E.8 The methodological role of Lorentz symmetry

The great importance of Lorentz symmetry in modern physics is often pre-

sented as if it is a decisive argument against a preferred frame. But this sug-

gests that Lorentz symmetry would have been less important in the Lorentz

ether. Is there any evidence for this claim? I have never seen any justi�cation

for this assumption. It is simply claimed, without justi�cation, that people

would have been less eager to search for relativistic symmetry. The reverse

may be closer to truth. Instead, with the Lorentz ether as the leading ide-

ology, people would have tried to detect hidden Lorentz symmetry in usual

condensed matter theory.

Moreover, without doubt any part of the hidden variables which can be

made Lorentz-covariant would have been made Lorentz-covariant. An exam-

ple are the equations of GET presented here. The new equation for the pre-

ferred coordinates is a nice, well-known relativistic equation { the harmonic

equation. Moreover, the thesis is in obvious contradiction to the history of

the Lorentz ether. In the context of the Lorentz ether, by Poincare, the pro-

gram to make all physical theories Lorentz-invariant has been proposed in

general and realized for kinematics. The decision to reject the existence of a

preferred frame made by Einstein was in no way necessary for the develop-
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ment of this program.

The point is that to require a particular symmetry is not a general

methodological rule of scienti�c research. At best there is the related method-

ological rule to search for symmetries in general. But even this rule seems

much less fundamental than classical logic and realism: last not least, we

search for symmetries in reality. Symmetries are a powerful tool to study

realistic theories, to detect contradictions in such theories or between theory

and experiment { but only a tool, in no way a fundamental principle.

E.9 Discussion

As presented here, the preferred frame is the unavoidable consequence of the

violation of Bell's inequality. Relativity is falsi�ed by Aspect's experiment,

and its current status should be rejected as an immunization. This is so

obvious that it becomes problematic to explain the unreasonable decision of

mainstream science to reject realism. But there are several factors which

may be blamed here:

� The absence of a reasonable theory of gravity with preferred frame.

This problem is solved now by GET.

� The widely accepted belief, based on von Neumann's [54] theorem, that

hidden variable theories are impossible. This was justi�ed at the time

the EPR criterion was proposed, but many seem to believe it even

today.

� The ignorance of Bohmian mechanics because it requires a preferred

frame.

� The extreme positivism and subjectivism during the foundational pe-

riod of quantum theory.

� The general ignorance of fundamental problems of quantum theory

today.

But the most important explanation seems to be Kuhn's theory of

paradigm shifts [44]. According to Kuhn, paradigms are never falsi�ed by

experiments. A paradigm may be rejected only if a new paradigm appears.
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Until now, no alternative paradigm has been proposed, therefore, to pre-

serve the relativistic paradigm was justi�ed { in full agreement with Kuhn's

paradigm shifts.

We propose here a new paradigm { a return to classical Newtonian space-

time and ether theory. With this paradigm as a competitor of the relativistic

paradigm it is no longer necessary to reject realism or causality.

F Bohmian mechanics

An essential property of non-relativistic Schr�odinger theory is the existence of

a simple deterministic interpretation { Bohmian mechanics (BM). We refer

to this theory in our proof that EPR realism is not in con
ict with non-

relativistic quantum theory. Unfortunately, BM is widely ignored. The main

reason for this ignorance seems to be that it requires a preferred frame {

thus, a feature which makes it particularly attractive in the context of GET.

Therefore, it seems reasonable to consider the basic features of BM here.

F.1 Simplicity of Bohmian mechanics

BM may be considered as a straightforward way to complete quantum me-

chanics. In BM, we have two entities: the \guiding wave" 	(q) de�ned on

the con�guration space which ful�lls the classical Schr�odinger equation

i@t	 = H	

and the con�guration Q(t) which ful�lls the so-called \guiding equation".

This guiding equation may be obtained in a straightforward way from quan-

tum mechanics. The basic observation is the following: quantum mechan-

ics provides us with a probability current ji(q) as well as with a probabil-

ity density �(q) = 	�(q)	(q). In classical mechanics they are related by

ji(q) = �(q)vi(q). Now it requires no great imagination to write the guiding

equation

dQ

dt
= vi =

ji

�

This de�nes the evolution of the state. Now, if in initially the state is in

the so-called \quantum equilibrium" �(q), then it remains in this state. This

follows from the continuity equation
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@t�(q; t) + @ij
i(q; t) = 0

That's already all what is necessary. There is no need for further axioms.

Therefore, all we need for the de�nition of Bohmianmechanics is the quantum

probability current. For example, in non-relativistic multi-particle theory

H = �
NX
k=1

~
2

m2
k

r2
k + V (q1; : : : ; qN)

this probability current is given by

jk =
~

mk

=( �rk )

Therefore, we obtain the guiding equation

dQk

dt
=

~

mk

=
rk 

 

F.2 Clarity of the interpretation

The �rst thing we have to note here is the ontological clarity. To quote Bell

([9], p.191):

Is it not clear from the smallness of the scintillation on the screen

that we have to do with a particle? And is it not clear, from

the di�raction and interference patterns, that the motion of the

particle is directed by a wave? ... This idea seems to me so

natural and simple, to resolve the wave-particle dilemma in such

a clear and ordinary way, that it is a great mystery to me that it

was so generally ignored. ...

This solution of the wave-particle confusion not the main point: in BM

there is also nothing strange with Schr�odinger's cat. The wave function of the

cat remains in its superpositional state, but the actual cat is in a well-de�ned

state. \There is no need in this picture to divide the world into `quantum'

and `classical' parts. For the necessary `classical terms' are available already
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for individual particles (their actual positions) and so also for macroscopic

assemblies of particles." ([9], p.192)

Another interesting question is worth to be mentioned: why are the states

we observe in quantum equilibrium? This question has an interesting answer:

decoherence. \One of the best descriptions of decoherence, though not he

word itself, can be found in Bohm's 1952 `hidden variables' paper [16]. We

wish to emphasize, however, that while decoherence plays a crucial role in

the very formulation of the various interpretations of quantum theory loosely

called decoherence theories, its role in Bohmianmechanics is of quite di�erent

character: For Bohmian mechanics decoherence is purely phenomenological

{ it plays no role whatsoever in the formulation (or interpretation) of the

theory itself" [27].

The most important property of BM is it's compatibility with classical

principles: the EPR criterion of reality, classical causality, determinism. Let's

quote again Bell ([9], p.163):

It is easy to �nd good reasons for disliking the de Broglie-Bohm

picture. Neither de Broglie nor Bohm liked it very much; for both

of them it was only a point of departure. Einstein also did not

like it very much. He found it `too cheap', although, as Born

remarked, `it was quite in line with his own ideas'. But like it

or lump it, it is perfectly conclusive as a counter example to the

idea that vagueness, subjectivity, or indeterminism, are forced on

us by the experimental facts covered by non-relativistic quantum

mechanics.

F.3 Relativistic generalization

Let's consider now the main point why many researchers dislike BM { its

relativistic generalization. The same basic scheme works as well in relativistic

theory and �eld theory. For example, for multiple Dirac particles Bohm [17]

has proposed the following guiding equation:

vk =
 +�k 

 + 

For the general case of quantum �eld theory, we have to accept the lec-

tures of quantum �eld theory what is the appropriate notion of the wave
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function: \Certainly the Maxwell �eld is not the wave function of the pho-

ton, and for reasons that Dirac himself pointed out, the Klein-Gordon �elds

we use for pions and Higgs bosons could not be the wave functions of the

bosons. In its mature form, the idea of quantum �eld theory is that quantum

�elds are the basis ingredients of the universe, and particles are just bundles

of energy and momentum of the �elds. In a relativistic theory the wave

function is a functional of these �elds, not a function of particle coordinates"

[78]. Thus, it does not make sense to search for a guiding equations for par-

ticles in the general case, and we have to consider Bohmian �eld theory [17]

where we obtain a guiding equation for generalized coordinates { the �eld

con�guration.

Thus, the generalization itself is not problematic. It is an essential prop-

erty of this generalization { that it has an explicit preferred frame on the

fundamental level. The predictions are nonetheless Lorentz-invariant. For

example,  + is an equivariant ensemble density in the chosen reference
frame. It reproduces the quantum predictions in this frame. These pre-

dictions don't contain a trace of the preferred frame. Lorentz invariance

holds on the observational, but not on the fundamental level. The 4-tuple

( + ; +�k ) is not a 4-vector for N > 1.

This is not an accident. \There does not in general exist a probability

measure P on N-paths for which the distribution of crossing �� agrees with

the quantum mechanical distribution on all space-like hyper-planes �" [12].

This assertion is a more or less immediate consequence of Bell's inequality:

by means of a suitable placement of appropriate Stern-Gerlach magnets the

inconsistent joint spin correlations can be transformed to (the same) incon-

sistent spatial correlations for particles at di�erent times [12]. Thus, we have

the probability measure � = j j2 only in one frame. But this measure in

just one frame is suÆcient to derive the quantum mechanical predictions for

observations at di�erent times.

F.4 Discussion

The fact that Lorentz invariance does not hold on the fundamental level is

often considered as a decisive argument against BM. But from point of view

of ether theory this becomes a virtue rather than a vice: every argument

in favour of BM becomes an argument in favour of the preferred frame we

use in ether theory. To use the argument \there is no fundamental Lorentz-
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invariance" against BM in this context would be simply circular reasoning

{ a main concept of ether theory is as well that there is no fundamental

Lorentz-invariance.

Thus, BM gives additional support for one of the main ingredients of

GET { the preferred absolute time. One the other hand, GET gives support

to BM { it shows a way to generalize BM to gravity. We do not have to

try to �nd Lorentz-invariant versions of BM, as tried, for example, in [12].

Instead, we can apply BM as it is, with a preferred frame, in GET or, even

better, in an atomic ether theory.
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