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Abstract. We study the e�ciency of the approximate solution of ill�posed prob-

lems, based on discretized observations, which we assume to be given afore�hand.

We restrict ourselves to problems which can be formulated in Hilbert scales.

Within this framework we shall quantify the degree of ill�posedness, provide gen-

eral conditions on projection schemes to achieve the best possible order of accuracy.

We pay particular attention on the problem of self�regularization vs. Tikhonov

regularization.

Moreover, we study the information complexity. Asymptotically, any method,

which achieves the best possible order of accuracy must use at least such amount

of noisy observations.

We accomplish our study with two speci�c problems, Abel's integral equation

and the recovery of continuous functions from noisy coe�cients with respect to a

given orthonormal system, both classical ill�posed problems.

1. Introduction and statement of the main problem

We study optimal discretizations of ill�posed problems in Hilbert scales. On the
class of problems, which will be introduced in Section 2, the best order of accuracy
for a given noise level is well known. But this quantity does not take into account
any discretization. So we address two issues.

First, can this best possible order of accuracy be achieved by fully discretized regu-
larization methods? More precisely, we aim at presenting general conditions, which
allow to achieve this best possible order. This is made explicit for convergence analy-
sis of corresponding schemes of Tikhonov regularization as well as for regularization

by projection methods, self�regularization. In particular we pay attention to the
limitations of self�regularization and indicate, how these naturally occur, when the
design is given afore�hand.

A second issue to be addressed concerns the size, say N = N(Æ) of the design,
necessary for a given noise level Æ > 0, to enable best order of accuracy. This may be
understood as the information complexity of the problem, since, in the asymptotic
setting, no numerical method can achieve the best order of accuracy using less
amount of noisy observations. We establish the asymptotic behavior N(Æ); Æ ! 0.

We shall study ill�posed problems, where we wish to recover some element x from
some Hilbert space from indirectly observed data near y = Ax, where A is some
injective compact linear operator acting from X to X. Such linear inverse problems
often arise in scienti�c context, ranging from stereological microscopy (Abel's inte-
gral equation), physical chemistry (Fujita's equation) to satellite geodesy (gravity
gradiometry equation). In practice indirect observations cannot be observed exactly
but only in discretized and noisy form. To be more precise, we have only a vector

'(yÆ) = fyÆ;igni=1 2 Rn de�ned by

yÆ;i = hyÆ; 'ii = hAx;'ii+ "i; i = 1; : : : ; n;(1.1)

where h; i denotes the inner product in X, 'i; i = 1; : : : ; n is some orthonormal
system, usually called design, and "i; i = 1; : : : ; n is the noise, which is assumed to
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be at some level Æ and we will write "i = Æ�i with �i denoting the normalized noise.
The unknown solution is supposed to belong to some set M� Y .

At this point it is important to note, that we assume to have observations without
repetitions, which means, that each of the functionals hyÆ; 'ii is observed only once.
The problem becomes di�erent, if we allow repetitions. In that case the behavior

depends very much on the kind of noise.

For deterministic noise we do not gain from repetitions; only the space spanned
by the design elements is important. If we know, that the noise is random and

independent, then we may use this to decrease the noise level at each functional by
suitable repetitions. Under these circumstances one can asymptotically even achieve
arbitrary accuracy. We postpone further discussion to Section 9.

Form our discussion above we can summarize, that given an equation

yÆ = Ax+ Æ�;(1.2)

and assuming that the noise is either deterministic or random, the ill�posed problem
is completely characterized by the triple (A : Y ! X;M; Æ), where X indicates the
space where noisy observations are given, Y denotes the space in which we agree
to measure the accuracy. The operator A in equation (1.2) determines the way the

observations are indirect. The set M � Y describes our a priory knowledge on
the exact solution and Æ > 0 indicates the noise level. We shall think of (A : Y !
X;M; Æ) as being the mathematical problem under consideration.

This mathematical problem is accompanied with a numerical one. When seeking

approximate solutions to a given mathematical problem (A : Y ! X;M; Æ), we have
to specify the class of admissible numerical methods. This class will generically be
denoted by U . Each method u 2 U must be based on some design, say f'1; : : : ; 'ng,
which describes the way we obtain noisy observations, see (1.1). The resulting
approximation based on such design may be obtained by any (measurable) mapping
S : Rn ! Y , hence

u = S(hyÆ; '1i; hyÆ; '2i; : : : ; hyÆ; 'ni):
Let Un denote the class of all methods based on design of at most n elements. We as-
sume, that U =

S
1

n=1 Un and �nd it convenient to denote (A : Y ! X;U ;M; Æ), the
numerical problem, corresponding to the mathematical problem (A : Y ! X;M; Æ).

We will make this clear in an example which is very simple.

Example 1. Let us �x the Hilbert space l2 of square summable sequences and

suppose we observe a sequence yÆ = x+ Æ�; yÆ 2 l2, and we want to recover x 2 l2
under a priory knowledge, that for a certain � > 0,

P
1

k=1 k
2� jxkj2 � R2. Then,

letting

M :=W
�
R :=

(
(xk)

1

k=1 ;

1X
k=1

k2� jxkj2 � R2

)
;

we can rephrase this as studying the mathematical problem (I : l2 ! l2;W
�
R; Æ).
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If observations in this setup are given by

yÆ;k = xk + Æ�k; k = 1; : : : ; n;(1.3)

then we restrict ourselves to method u 2 U , based on such observations. We thus
aim at recovering a sequence, based on noisy coordinates, when some additional
summability is known.

There is a considerable literature concerned with deterministic noise, the classical
approach to inverse problems. We mention Tikhonov and Arsenin [41], Morozov
[26], Vainikko and Veretennikov [46], Traub, Wasilkowski and Wozniakowski [43],
Louis [21], Werschulz [48], Engl, Hanke and Neubauer [12]. On the other hand for
stochastic noise, in which case we deal with a statistical problem, we refer to Wahba

[47], Nychka and Cox [32], Johnstone and Silverman [17], Nussbaum [30], Donoho
[10], Mair and Ruymgaart [24], Golubev and Khasminskii [14], Lukas [22], Cavalier
and Tsybakov [6], Chow, Ibragimov and Khasminskii [7].

As far as the design is concerned it is sometimes possible to chose it. In this case
one might prefer to chose elements from the singular value decomposition of the
operator A or the wavelet�vaguelette decomposition. For such designs the recovery
of x from noisy data as in (1.1) was studied by [38] and more recently studied
by Johnstone and Silverman [17], Donoho [10] and Golubev and Khasminskii [14].
Often the design is given and independent of the operator. An example for this is
the estimation of a probability density function x from discretized (binned) data or
histogram as yÆ. In this case we assume that the operator A is of the form

Ax(t) =

Z 1

0

a(t; � )x(� )d�;(1.4)

acting in X = L2(0; 1). A particular example for this is Abel's equation, see exam-
ple 4 below. The data are given as averages of histogram bins [ui�1;n; ui;n) with bin
limits 0 = u0;n < u1;n < � � � < un;n = 1, i.e.,

yÆ;i =
1

ui;n � ui�1;n

Z ui;n

ui�1;n

Ax(t)dt+ "i; i = 1; : : : ; n:(1.5)

This corresponds to equation (1.1) with design 'i = 'i(t) = (ui;n � ui�1;n)
�1�i;n(t),

where �i;n denotes the characteristic function of the interval [ui�1;n; ui;n). The ap-
proximate solution of Abel's integral equation based on histograms was studies by

Nychka and Cox [32]. It is easy to verify that such histogram design does not
correspond to neither the singular value decomposition nor the wavelet�vaguelette
decomposition of the Abel integral operator, for example.

It is the aim of this paper to study e�ciency issues for recovering the unknown

element x from indirect and noisy discrete observations, as described above in terms
of the numerical problem (A;U ;M; Æ).

For any given method u 2 U , its error at the exact solution x will be measured as

edet(A;u; x; Æ) = sup fkx� u(yÆ)kY ; k�kX � 1g
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for deterministic noise, while for stochastic noise we put

eran(A;u; x; Æ) =
�
Ekx� u(yÆ)k2Y

�1=2
;(1.6)

where E denotes the expectation with respect to the random noise.

As usual, the uniform error over x 2 M is de�ned to be the supremum over pointwise
errors with respect to x 2 M, e.g. for deterministic noise we let edet(A;u;M; Æ) =
supx2M edet(A;u; x; Æ). These quantities measure the quality of some speci�c method
u. If we let u vary within class U of methods, then we may consider the minimal error
within this class, edet(A;U ;M; Æ) = infu2U e

det(A;u;M; Æ), and the corresponding
version eran(A;U ;M; Æ) for stochastic noise. In accordance with usual terminology
in Information-based complexity, see [43] we denote

rdetn (A;M; Æ) := edet(A;Un;M; Æ)(1.7)

denote the nth minimal radius of information within class U , and rrann (A;M; Æ) its
stochastic counterpart.

For any class U of methods a lower bound for edet(A;U ;M; Æ) or eran(A;U ;M; Æ) is
certainly given by

Edet(A;M; Æ) := inf
u:X!X�

sup
x2M

sup
k�kX�1

kx� u(Ax+ Æ�)kY ;

with the corresponding version for stochastic noise. Above the inf is taken over all

possible (measurable) mappings. Most investigations on ill�posed problems have
centered around this quantity.

Within the classical framework of optimal recovery (formally we may let Æ = 0) we
have edet(A;Un;M; Æ)! 0, as n increases,which means that we can recover x with
arbitrary accuracy by enlarging the design properly. In contrast, under the presence
of noise Æ > 0 the sequence rdetn (A;M; Æ) will decrease, but there will be a positive
limit

lim
n!1

rdetn (A;M; Æ) = edet(X;U ;M; Æ) � Edet(A;M; Æ) > 0;

depending on the noise level. This limit cannot be beaten by any numerical method

within class U .
Thus we measure the quality of any numerical method u against this lower bound.
For this purpose we �x C > 1 and seek for n with rdetn (A;M; Æ) � Cedet(A;U ;M; Æ).
This results in a number n = n(Æ) which measures the minimal amount of informa-

tion necessary to recover x by methods from class U with best possible accuracy up
to constant C,

Ndet(A;U ;M; Æ) := inf
�
n; rdetn (A;M; Æ) � Cedet(A;U ;M; Æ)

	
and the respective version within the framework of stochastic noise. We agree to
call these numbers the information complexity of the numerical problem (A;U ;M; Æ)
under deterministic or random noise, respectively.

Thus our focus will be on two problems. Given a numerical problem, can we describe
the asymptotic behavior of the information complexity? We shall establish lower
bounds and then indicate, how these bounds can be achieved by regularization
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methods based on fully discrete projection schemes. Moreover, we will discuss,
whether self�regularization of projection methods, based on given design is possible,

or some other regularization is required.

2. Degree of ill-posedness in Hilbert scales

We recall that we are given the mathematical problem (A : Y ! X;M; Æ), where
Æ describes the level of noise in the data. We wish to ensure that any possible
solution xÆ also varies within a ball, proportional to Æ. It is easy to see, that this
is exactly the case if kA�1 : X ! Y k < 1. Otherwise the problem is ill�posed
and we lose accuracy when recovering x from noisy data. Thus we want to assign
each mathematical problem its degree of ill�posedness, a notion which was �rst be

coined by Wahba [47]. In general it is hard to quantify this degree of ill�posedness.
If we formulate the problem in a parametric scale of spaces, then we may express the
degree in terms of these parameters. Therefore we shall study problems in Hilbert
scales.

A Hilbert scale
�
X�
	
�2R

is a family of Hilbert spaces X� with inner product

hu; vi� := hL�u;L�vi, where L is a given unbounded strictly positive self�adjoint
operator in a dense domain of some initial Hilbert space, say X. To be more pre-
cise, X� is de�ned as the completion of the intersection of domains of the operators

L� ; � � 0, accomplished with norm k � k� de�ned as kxk� := hx; xi1=2� = kL�xk0,
where k � k0 = k � kX . Usually

�
X�
	
�2R

are speci�c Sobolev spaces, say H�(0; 1);

for this reason and for de�niteness of scaling we assume � be chosen to �t the usual
smoothness as e.g., in H�(0; 1). This goal is achieved by assuming that the canonical
embedding J� : X� ! X;� > 0, obeys

an(J�) := inf fkJ� � UkX�!X ; rankU < ng � n��:(2.1)

Thus an(J�) denotes the nth approximation number (see [34]) and � means equiv-
alent in order.

Example 2. Consider the diagonal mapping L (xk)
1

k=1 2 l2 ! (kxk)
1

k=1 2 l2. This

operator generates the scale W �, as described above. It is immediate, that the set
W

�
R introduced in Example 1 is just the ball in W � of radius R.

We will, as this is often done for problems formulated in Hilbert scales assume, that
the operator A is adapted to the scale in the following sense: For some parameter
a > 0 there exist constants D; d > 0 such that

dkxk��a � kAxk� � Dkxk��a(2.2)

for all � 2 R and x 2 X��a. In other words, the operator A acts along the Hilbert
scale with step a as isomorphism between pairs X��a and X�.

Within the scale W �; � 2 R, any diagonal mapping Da (xk)
1

k=1 ! (k�axk)
1

k=1 is

easily seen to establish isometries between W � and W �+a.

There is substantial literature devoted to inverse problems with operators acting
along Hilbert scales. We mention Natterer [28], Neubauer [29], Mair [23], Hegland
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[15], Tautenhahn [40] and Dicken and Maass [9]. These papers studied only prob-
lems with deterministic noise. Moreover, the recovery problem from �nitely many

observations, i.e., a �nite design with elements not necessarily depending on the
operator A was not considered.

We illustrate this setup by two examples.

Example 3. We introduce Symm's equationZ
�

log(ju� vj)z(v)dSv = g(u); u 2 �;(2.3)

arising from the Dirichlet boundary value problem for the Laplace equation in a
region with boundary curve �. We assume that � admits a C1�smooth 1�periodic
parametrization 
 : [0; 1]! �. Then we can rewrite equation (2.3) as

Ax(t) :=

Z 1

0

log(j
(t)� 
(� )j)x(� ) = y(t); t 2 [0; 1];

where x(t) := z(
(t)) j
0(t)j and y(t) := g(
(t)). It can be seen that the operator A
obeys condition (2.2) with a = 1 within the scale X� := H�(0; 1); � 2 R of Sobolev

spaces of 1�periodic functions (distributions), see e.g., Bruckner et al. [5] for details.

Further examples of integral operators can be found in Neubauer [29], Mair and
Ruymgaart [24].

Often a given operator does not �t any of the known scales. However in many cases
one can construct a scale adapted to the operator. This is the case, when A acts
compactly and injectively in some Hilbert space X. Then A meets condition (2.2)
with a = 1=2 in the scale generated by the operator L := (A�A)�1, see Natterer [28]
and Hegland [15]. It should however be noted that further veri�cation is required to
see that scaling is according to (2.1). We illustrate this by introducing the following

important example.

Example 4. Let X = L2(0; 1) and the operator A be Abel's integral operator

Ax(t) :=
1p
�

Z 1

t

x(� )p
� � t

d�; t 2 (0; 1):(2.4)

If now X� is generated by L = (A�A)�1, where

A�x(t) =
1p
�

Z t

0

x(� )p
t� �

d�;(2.5)

then we indeed have

Proposition 1. The Hilbert scale generated by L = (A�A)�1 from Abel's integral

operator satis�es

an(J� : X� ! X) = an(L
�� : X ! X) � n��; � > 0:

Proof. We �rst observe

an(J� : X� ! X0) = an((A
�A)�) = sn((A

�A)1=2)2� = sn(A
�)2�;(2.6)
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above sn denotes the n�th singular number, see [34]. We shall provide a simple
argument yielding

sn(A
�) � n�1=2(2.7)

The exact asymptotics was derived in [11].

To this end we recall the integral modulus of continuity

!2(f; h) := sup
0<t�h

�Z 1�t

0

jf(t+ � )� f(t)j2 d�
�1=2

and introduce the corresponding space H
1=2
2 � L2(0; 1) of square integrable functions

for which

kfk
H

1=2
2

:= kfkL2
+ sup

0<h<1

!2(f; h)p
h

<1:

It is well known, that the embedding H
1=2
2 ! L2(0; 1) is compact. More speci�cally,

if 0 = u0;n < u1;n < : : : < un;n = 1; n 2 N is a sequence of partitions of [0; 1], and
Qn denote the corresponding projections in L2(0; 1) onto the subspaces of piecewise
constant functions on these subintervals, then

kf �Qnfk � max
j=1;:::;n

q
(uj;n � uj�1;n)kfkH1=2

2

:(2.8)

In particular, if

max
j=1;:::;n

juj;n � uj�1;nj � n�1;(2.9)

then kf �Qnfk � Cn�1=2kfk
H

1=2
2

.

This is important in connection with the operators A and A�, since both act contin-

uously from L2(0; 1) ! H
1=2
2 , we refer to [36, Thm. 14.2]. By factorization through

H
1=2
2 we derive

k(I �Qn)Ak
� kA : L2 ! H

1=2
2 kkf �Qnf : H

1=2
2 ! L2(0; 1)k � Cn�1=2

(2.10)

and respectively

k(I �Qn)A
�k

� kA� : L2 ! H
1=2
2 kkf �Qnf : H

1=2
2 ! L2(0; 1)k � Cn�1=2

(2.11)

whenever the partitions obey (2.9). Therefore sn(A
�) � Cn�1=2.

On the other hand, using the semigroup properties of fractional integration, see e.g.
[36], we see that

(A�)2x(t) =

Z t

0

x(� )d�:

For this operator the singular numbers are well known, see [21, Beisp. 2.1.5],
sn((A

�)2) = ([n+ 1=2]�)�1. This leads to

sn(A
�)2 � s2n((A

�)2) = ([2n+ 1=2]�)�1;
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which establishes a lower bound for sn(A
�). Both (2.6) and (2.7) provide the desired

asymptotics.

Returning to our problem (A;M; Æ) we assume that the noisy data are given in
X = X0 and we measure accuracy in Y := X� . Suppose now, that A : X� ! X0

has a bounded inverse. Then we may formally invert it and rewrite

yÆ = Ax+ Æ�;(2.12)

as

x = A�1yÆ � ÆA�1�:(2.13)

So, if the noise is deterministic with k�k0 � 1, and A has a bounded inverse, then in
principle we can recover the unknown solution x up to order Æ; Otherwise it might
be ill�posed and the quantity

� := sup
�
�; kA�1 : X0 ! X�k <1

	
(2.14)

is less than or equal to �. So it is natural to de�ne (� � �)+ to be the degree of
ill�posedness.

In case the operator A obeys property (2.2) for some a the supremum in condi-
tion (2.14) is attained. and (� � �)+ = (� + a)+ as the degree of ill�posedness of
the operator A. We mention, that for � = 0 the notion of degree of ill�posedness
coincides with the one introduced by Wahba [47].

For stochastic noise the situation is a little more di�cult. Even if we arrive at equa-
tion (2.13), and assume that the operator A has a bounded inverse, then, since the
noise is stochastic, we cannot guarantee that the accuracy is kept, since EkA�1�k2�
may be unbounded. So, in analogy to the deterministic setting we will say, that the

problem is well�posed, if the above expectation is bounded and ill�posed otherwise.
If the latter is the case, then we let

� := sup
�
�; EkA�1�k� <1

	
:

Again we agree do denote the degree of ill�posedness by (� � �)+, now for random
noise.

We make this precise for the white noise model, where � is a weak or generalized
random element, such that for any f 2 X the inner product hf; �i is a measurable

function, mapping a probability space (
;�;P) into R equipped with its Borel �-
�eld. Moreover, for any f; g 2 X the functions hf; �i; hg; �i are square-summable
with respect to the probability measure P and

Ehf; �i = Ehg; �i = 0; Ehf; �ihg; �i = hf; gi:(2.15)

For such noise we can compute the degree of ill�posedness.

Proposition 2. An operator A : X� ! X0, which obeys assumption (2.2) has

degree of ill�posedness (� + a+1=2)+, when the noise in equation (2.12) is assumed

to be white noise.
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Proof. Suppose, we have �xed some �, for which EkA�1�k2� <1. Using the prop-
erties of white noise and the generator L of the Hilbert scale, we may rewrite this

expectation as

EkA�1�k2� = EkL�A�1�k20 =
1X
k=1

�2k(L
�A�1);(2.16)

where �k(L
�A�1) denotes the kth singular number of the operator L�A�1 : X0 !

X0. In particular, this operator needs to be compact, which in turn implies, that
� < �a. Since L�A�1 acts in a Hilbert space, the singular numbers coincide with
the approximation numbers, see e.g., [34, Prop. 11.3.3]. But, since L� : X� ! X0

is an isometry, we derive at

�k(L
�A�1) = ak(L

�A�1) = ak(A
�1 : X0 ! X�):

Now we study the imbedding J�
�a : X�a ! X�, which is compact, since � < �a.

Since by assumption (2.2) the operator acts along the Hilbert scale, we use the
factorization J�

�a = A�1A : X�a ! X0 ! X� to derive ak(J
�
�a) � kAkak(A�1). By

our scaling assumption (2.1) and using property (2.2) this yields a lower bound

ak(A
�1) � D�1ak(J

�
�a) � ka+�

. By (2.16) we arrive at
1X
k=1

k2(a+�) � C

1X
k=1

�2k(L
�A�1) <1;

which is true whenever � < �a� 1=2. Thus � = �a� 1=2, which corresponds to a

degree of ill�posedness of (� + a+ 1=2)+.

We end our short digression with the remark, that for deterministic noise, the bound
� was attained, assuming property (2.2). For white noise this is not the case; but
as we will see below, the best possible accuracy will nevertheless be re�ected by the
degree of ill�posedness as just de�ned.

In addition, we assumed that the actual solution belongs toM� X� . IfM is a ball
in some X�, then this requires � � � and we let ��� be the e�ective smoothness of
M. Thus our problem is characterized by (� + a)+ and (�� �) in the deterministic
case, whereas for white noise these parameters are (� + a+ 1=2)+ and (�� �).

3. Minimal errors: Lower bounds

In this section we shall provide lower bounds for minimal errors for the numerical
problem (A;U ;M; Æ), using the asymptotics of the corresponding best possible ac-

curacies Edet(A;M; Æ) and Eran(A;M; Æ). For this purpose we �xM being the ball
X

�
R in X� of radius R > 0.

We �rst note, that in the deterministic setting, as in our discussion above, we have

well�posedness for � � �a. This yields Edet(A;M; Æ) � Æ. For � > �a, the
asymptotics of Edet(A;M; Æ) is well known. We recall the following result, see e.g.
Natterer [28] and Tautenhahn [40], but also [12].
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Proposition 3. Under assumption (2.2) we have for �; a > 0 and � 2 [�a; �] the
following asymptotics.

Edet(A;X�
R; Æ) � Æ

���
(���)+(�+a)+ :(3.1)

Below,we shall obtain the stochastic analog of estimate (3.1) under the additional
assumption, that the operator A and the generator L of the Hilbert scale are properly
related. Following Mair and Ruymgaart (1996) we assume that the eigenvectors of
the operator L coincide with the eigenvectors of A�A. This means that both the
operator L�1 and the operator A can be represented in the form

L�1g =

1X
k=1

lk(g; fk)fk; Ag =

1X
k=1


k(g; fk)uk;(3.2)

where ffkg; fukg are some orthonormal bases of X. Taking into account assump-
tions (2.1) (2.2) (3.2), we see, that

lk � k�1; 
k � k�a:(3.3)

We have

Proposition 4. Let the assumptions (2.1), (2.2) and (3.2) be ful�lled. Then for

�; a > 0 and � 2 [�a; �] we have

Eran(A;X�
R; Æ) � Æ

���
(���)+(�+a+1=2) :

The proof relies on the following Lemma, originally proven in Korostelev and Tsy-

bakov [18, Chapt. 9], see also [3].

Lemma 1. Suppose we are given

vk = �k + Æ�k�k; k = 1; 2; : : : ;(3.4)

where �k are i.i.d N(0; 1), �k � kb and � = (�1; �2; : : : ) is unknown, but belongs to

Bs
R := f� :

X
k

�2k�
2
k � R2; �k � ksg:

Then for b; s > 0 the following asymptotics holds,

inf
�̂(v)

sup
�2Bs

R

Ek� � �̂(v)k2l2 � Æ
2s

s+b+1=2 ;

where the inf is taken over all estimators �̂(v) based on observations (3.4).

Let us mention, that this Lemma may also be viewed in connection with Example 1.
When putting this carefully into that framework, we see, that the corresponding
ill�posed problem has degree of ill�posedness b+ 1=2.

We note also, that Donoho [10] obtained an analog of Lemma 1 in the more general
situation with Besov bodies and lp�norm. We turn to the
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Proof of Proposition 4. Using (3.2) and (3.3) we can represent the observations (1.2)

in the equivalent form (3.4) with vk = 
�1k l��k (yÆ; uk) �k = 
�1k l��k � k�+a and
�k = (L�x; fk); k = 1; 2; : : : Here it as important that no repetitions are allowed.
Since we assumed x 2 X�

R, the ball in X� of radius R, we conclude that � :=

(�1; �2; : : : ) 2 Bs
R for s := � � �. Indeed, since �k = l

�(���)
k we derive

1X
k=1

�2k�
2
k =

1X
k=1

l
�2(���)
k (L�x; fk)

2 =

1X
k=1

l
�2�
k (x; fk)

2 = kL�xk2 � R2:

Note, that any estimator �̂(v) of � based on observations (3.4) yields an approxima-

tion u :=
P

1

k=1 �̂k(v)fk for L
�x and vice versa. Therefore, applying Lemma 1 with

b := � + a and s := � � � we obtain the desired asymptotics

Eran(A;X�
R; Æ) � Æ

���
�+a+1=2 ;

completing the proof.

Comparing the asymptotics from Proposition 4 with the one in (3.1) we conclude
that indeed white noise introduces an additional degree 1=2 of ill�posedness, this
time caused by the stochastic nature. This in�uence of white noise to the degree of
ill�posedness was observed by Nussbaum [30] for the special case, when the operator
A denotes a�fold integration considered in Sobolev spaces. He also gave a heuristic
explanation, see [31].

The above bounds on the optimal accuracy yield respective lower bounds on the
minimal error. This will be discussed below. We turn to the main result of this
section, a lower bound for the minimal errors in the deterministic as well as for the
stochastic setting for the class U of methods based on designs consisting of linear

functionals, as in equation (1.1). Recall that, given n we denote by Un the class of
all methods based on design of at most n elements.

Corollary 1. We assume that (2.1) and (2.2) hold.

In the deterministic setting, we have for �a � � � � the lower bound

rdetn (A;X�
R; Æ) � c

n
n�(���) + Æ

���
�+a

o
:(3.5)

In the white noise model, and under the additional assumption (3.2) we have for

� 2 [�a; �] the lower bound

rrann (A;X�
R; Æ) � c

n
n�(���) + Æ

���
�+a+1=2

o
(3.6)

Proof. We shall indicate the proof only for stochastic noise. We omit the proof for
deterministic noise, since it is very similar. To make arguments easier, we consider
x as well as u(yÆ) as elements in L2(X

�), thus we rewrite (1.6) as

eran(A;u; x; Æ) =
�
Ekx� u(yÆ)k2�

�1=2
= kx� u(yÆ)kL2(X�):
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To shorten notation we assume that each method u 2 Un uses its own design
'1; : : : ; 'n. We now estimate

rrann (A;X�
R; Æ) � inf

u2Un
sup
x2X�

R
hAx;'ii=0
i=1;:::;n

kx� u(Æ�)kL2(X�)

� inf
u2Un

sup
x2X�

R
hAx;'ii=0
i=1;:::;n

max
�
kx� u(Æ�)kL2(X�); kx+ u(Æ�)kL2(X�)

	

� inf
u2Un

sup
x2X

�
R

hAx;'ii=0
i=1;:::;n

kxkL2(X�)

= inf
u2Un

sup
x2X

�
R

hAx;'ii=0
i=1;:::;n

kxk� � inf
'1;:::;'n

sup
x2X

�
R

hx;'ii=0
i=1;:::;n

kxk� ;(3.7)

since x was deterministic. The last expression in (3.7) is just the nth Gelfand number
of the embedding J�

� : X� ! X� , see [25] for details on optimal approximative
methods and s�numbers. Since for operators acting between Hilbert spaces all s�
numbers coincide, see ibid., we conclude

rrann (A;X�
R; Æ) � an(J

�
�) � n�(���):(3.8)

Since on the other hand, by the very de�nition

rrann (A;X�
R; Æ) � Eran(A;X�

R; Æ) � Æ
���

�+a+1=2(3.9)

we arrive together with estimate (3.8) at

rrann (A;X�
R; Æ) � c

n
n�(���) + Æ

���
�+a+1=2

o
:(3.10)

This completes the proof for white noise.

The above lower bounds are important as they connect the level of accuracy, ex-

pressed in terms of Æ with n�(���), which depends only on the size of the design. As
the proof indicated, this quantity actually is determined by the Gelfand numbers
of the embedding J�

� . Therefore, in more general classes of Banach spaces we will
meet situations where nonlinear approximation may be superior to linear, we refer
to [10] for approximation in Besov scales. In Hilbert scales this cannot be observed,
since all s-numbers coincide.

4. Discretized noisy observations as data for projection schemes.

Regularization and self�regularization of projection methods

In Sections 5 and 6 it will be shown, that the minimal error as indicated in Corollary 1
can be attained for a variety of designs when applying some regularization method
to some projection schemes. We recall that the noisy equation is given by

yÆ = Ax+ Æ�;
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where at the moment noise may be deterministic or random. When �xing a design
f'1; : : : ; 'ng we may rewrite (1.1) as

Qn(yÆ) = Qn(Ax+ Æ�);(4.1)

where Qn denotes the orthogonal projection onto span f'1; : : : ; 'ng. Note that (4.1)
is the standard form of a projection scheme for the approximate solution of the noisy

operator equation (1.2). But if this is ill�posed, then some regularization may be
required for solving (4.1).

The classical approach to regularization was proposed by Tikhonov; its application

to non�discretized equations (1.2) in Hilbert scales was analyzed by Natterer [28].

For the particular case of deterministic noise and a Hilbert scale, generated by the
operator L = (A�A)�1, Tikhonov regularization was extended to the situation, when
the operator A in equation (1.2) is only known up to some deterministic noise, i.e.,
instead of A we have Ah, with kA � AhkX!X � h. We refer to Va��nikko and
Veretennikov [46, Chapt. 4]. If we understand Ah as an approximation to the origi-
nal operator after some discretization, then the essence of their considerations is the
following. If h � Æ, then applying appropriate regularization to the noisy equation
Ahx = yÆ, we can obtain the best possible accuracy, as indicated in Proposition 3
with � = 0; a = 1=2. For the projection scheme (4.1) this has the following inter-
pretation. Suppose that we choose the number n of observations in such a way,
that

kA�QnAkX!X � Æ;(4.2)

and we apply to (4.1) some regularization method. Then the result just mentioned
guarantees the best order of accuracy. But, as can be drawn from Plato and Vainikko

[35], we refer also to the example studied in Section 7, the number of observations
chosen from (4.2) is far from being optimal. Therefore, in general the discretization
e�ect of projection schemes cannot be reduced to this general setup.

Another approach to the approximate solution of equation (1.2) was undertaken
by Engl and Neubauer [13] and Neubauer [29], who studied semi�discrete methods.
Within this framework of semi�discrete methods the operator equation is discretized
only from one side, passing from (1.2) to

APm;sx = yÆ;(4.3)

where Pm;s denotes the orthogonal projection (now in some Xs) onto some �nite
dimensional subspace Vm � Xs. An application of Tikhonov regularization to semi�
discrete equation was studied by Engl and Neubauer [13] and Neubauer [29]. If we
apply the scheme as proposed by these authors, then this will result in a discretiza-
tion of the data yÆ with respect to a basis which is determined by the operator A, as
will be discussed in Remark 1 in Section 5. But, as the example of binned data (1.5)
shows, the discretization with respect to the noisy data yÆ is often given afore-hand.

For this reason it is important to study the �two�sided� discretization of (1.2),
namely

QnAPm;sx = QnyÆ:(4.4)
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Regularization of this fully discretized equation was studied by Plato and Vainikko

[35], when the scale was generated by L := (A�A)
�1
. We delay further discussion to

Remark 2 in Section 5, where consequences of the discretization of the operator A
will be addressed.

The fully discrete equation (4.4) may not require further regularization by some
Tikhonov method. Instead it may happen, that regularization may be achieved by
just choosing the discretization parameters properly. This is called self�regularization,
see Natterer [27], which is based on a stability property, see Lemma 4 below. In fact,
assumption(2.2), made on the operator A has an important feature, since for suit-
ably chosen sequences Qn; Pm , the operators QnAPm also enjoy similar properties,
uniformly in m;n, when large enough.

Self�regularization of speci�c ill�posed problems in Hilbert scales through projection
methods based on special orthonormal design elements has been analyzed in [5] and
[9]. In a more general framework, but still not in Hilbert scales, self�regularization

has been studied in [45]. To the best of our knowledge, all projection schemes
which were applied and enjoy the property of self�regularization may in principle
be derived from the standard form of the least�square method, as introduced in
equation (6.1). They necessary lead to a one�sided discretization as in (4.3), hence
require speci�c projections Qn.

Therefore we will study a modi�cation of least square methods for two�sided dis-
cretization, applicable for deterministic as well as for stochastic noise. We add that
in all previous study of self�regularization only deterministic noise was considered.

We close this section mentioning that assumptions to be made on the design which
enable self�regularization are more restrictive than for Tikhonov regularization. This
issue will be addressed in Section 6 in more detail. Therefore, if these assumptions
are not met, than some di�erent regularization is unavoidable. We shall provide an
example in Section 7.

5. Tikhonov regularization of projection schemes in Hilbert scales

The classical variant of Tikhonov regularization based on observations (1.1) or in
equivalent form (4.1) is obtained by minimizing the functional

kQnAx�QnyÆk20 + �kxk2s(5.1)

over some �nite dimensional subspace Vm � Xs; where we assume that the true
solution x0 = A�1y 2 X

�
R � Xs: In statistics this kind of regularization is called

regularization estimator and its behavior was studied by Li [19] and Speckman
[39]. It can be seen from Neubauer [29], that the unique minimizer, say xÆ�;n;m of

problem (5.1) has the form

xÆ�;n;m = xÆ�;n;m(�) = G�;n;m(yÆ);(5.2)

where

G�;n;m = (T#
n;mTn;m + �I)�1T#

n;m = L�s(B�

n;mBn;m + �I)�1B�

n;m;
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Tn;m = QnAPm;s; Bn;m = QnAPm;sL
�s;

Pm;s is the orthogonal projector form Xs onto Vm and B�; T# denote the adjoint
operators of B : X ! X and T : Xs ! X, respectively. In particular

T#
n;m = Pm;sL

�2sA�Qn; B�

n;m = LsPm;sL
�2sA�Qn:

Let us return to Example 1 introduced in Section 1. For �xed s and x 2 l2 we have
Qn being the projection onto the �rst n coordinates, and the projections Pm;s are
the same mappings, but considered as acting in W s. Then it is easy to see, that

for any choice of regularization parameter � > 0 the corresponding solution to the
problem in Example 1 based on observations (1.3) can be written as

G�;n;m(x) =

(
xk

1+�k2s
; if k � minfm;ng,

0; else
:(5.3)

To estimate the performance of the approximating xÆ�;n;m, additional properties of

the design f'1; : : : ; 'ng as well as of the choice of spaces Vm are required.

To be precise, we assume that

kI �QnkXa+t!X � c n�(a+t); t � s:(5.4)

Note, that by assumption (2.1) the best possible order of approximation of elements

from Xa+t in X0 using designs of at most n elements is n�(a+t) . We thus assume
that this is achieved by our chosen design. For the projections Pm;s, projecting onto
Vm � Xs we require, as e.g. in Neubauer [29] that

kI � Pm;skXa+2s!Xs � c m�(a+s):(5.5)

If s � (� � a)=2 and (5.5) is ful�lled, then standard interpolation techniques, we

refer to Babu�ska and Aziz [2] for details, yield

k(I � Pm;s)x0ks � c m�(��s);(5.6)

whenever x0 = A�1y 2 X�
R, which will be useful below.

Since we have

x0 � xÆ�;n;m(�) = x0 �G�;n;mAx0 � ÆG�;n;m�

= (I �G�;n;mA)x0 � ÆG�;n;mQn�;
(5.7)

we will estimate both contributions separately. Precisely, we shall estimate

b�;n;m(x0) := k(G�;n;mA� I)x0k; v�;n;m(�) := ÆkG�;n;m�k;
separately.

Lemma 2. Let the assumptions (2.2), (5.4), (5.5) be ful�lled. Assume that for some

{ < 1

kI �QnkXa!X � { D�1(2ads)
1

a+s�
a

2(a+s) ;(5.8)

where D; d are the constants from (2.2). Then

b�;n;m(x0)�c
h
�

�
2(a+s) +m�s

�
1 +m�a�

�
a

2(a+s)

��
�

��s
2(a+s) + k(I � Pm;s)x0ks

�i
:
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Proof. Let y = Ax0 be the true free term of our equation. Consider the elements
x0�;n;m = G�;n;my and

x0�;m = (T#
mTm + �I)�1T#

my;

where Tm = APm;s; T
#
m = Pm;sL

�2sA�. It follows from Lemma 2.2, Lemma 3.2 by
Neubauer (1988) that

k(T#
mTm + �I)�1T#

mkX!X � (2ads)�
1

a+s�
�

a
2(a+s) ;(5.9)

and

kx0 � x0�;mk

� c
h
�

�
2(a+s) +m�s

�
1 +m�a�

�
a

2(a+s)

��
�

��s
2(a+s) + k(I � Pm;s)x0ks

�i
:

(5.10)

Note that

b�;n;m(x0) = kx0 � x0�;n;mk � kx0 � x0�;mk+ kx0�;m � x0�;n;mk:(5.11)

Moreover, from (2.2), (5.8) and (5.9) it follows that

kx0�;m � x0�;n;mk
= k(T#

mTm + �I)�1[(T#
m � T#

n;m)y � (T#
mTm � T#

n;mTn;m)x
0
�;n;m]k

= k(T#
mTm + �I)�1T#

m [(I �Qn)y � (I �Qn)APm;sx
0
�;n;m]k

= k(T#
mTm + �I)�1T#

m (I �Qn)A(x0 � x0�;n;m)k
� (2ads)�

1
a+s�

�
a

2(a+s)kI �QnkXa!X0
kA(x0 � x0�;n;m)ka

� D(2ads)�
1

a+s�
�

a
2(a+s)kI �QnkXa!X0

b�;n;m(x0)

� {b�;n;m(x0):

(5.12)

Combining (5.11) and (5.12) we obtain

b�;n;m(x0) � (1� {)�1kx0 � x0�;mk:(5.13)

The assertion of the lemma follows from (5.10) and (5.13).

Lemma 3. Let the assumptions (2.2), (5.4), (5.5) be ful�lled. If n � m � �
�

1
2(a+s)

then

kG�;n;mkX!X � c�
�

a
2(a+s) ;

where c does not depend on �; n;m.

Proof. It is well known that for an arbitrary compact operator B from X to X

k(B�B + �I)�1B�kX!X � 1

2
p
�
; kB(B�B + �I)�1B�kX!X � 1:(5.14)

In particular we have for any f 2 X the bound

kG�;n;mfks = kLsG�;n;mfk

= k(B�

n;mBn;m + �I)�1B�

n;mfk �
1

2
p
�
kfk:(5.15)
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Moreover, from (2.2) and (5.14) it follows that

kG�;n;mfk�a � d�1kAG�;n;mfk
= d�1kAL�s(B�

n;mBn;m + �I)�1B�

n;mfk
� d�1kBn;m(B

�

n;mBn;m + �I)�1B�

n;mfk
+ d�1k(AL�s �Bn;m)(B

�

n;mBn;m + �I)�1B�

n;mfk

� d�1
�
1 +

1

2
p
�
kAL�s �Bn;mkX!X

�
kfk:

(5.16)

Now we derive an estimate for kAL�s �Bn;mk:

kAL�s �Bn;mkX!X � kAL�s �APm;sL
�skX!X

+ kAPm;sL
�s �QnAPm;sL

�skX!X :
(5.17)

By (2.2) and (5.5) we can continue

kAL�s �APm;sL
�skX!X � k(I � Pm;s)L

�skX!X
�a

= kL�a(I � Pm;s)L
�skX!X

= kLsL�s�a(I � Pm;s)L
�skX!X

= kL�s�a(I � Pm;s)kXs!Xs

= k(I � Pm;s)L
�s�akXs!Xs

= k(I � Pm;s)kX2s+a!Xs

� c m�(s+a):

(5.18)

(Note that L�� : Xt ! Xt is self-adjoint for � � t). Further, using (2.2) and (5.4)
we �nd

kAPm;sL
�s �QnAPm;sL

�skX!X � kI �QnkXa+s!XkAPm;sL
�skX!Xa+s

� c n�(a+s)kPm;sL
�skX!Xs

� n�(a+s)kPm;skXs!Xs = n�(a+s):

(5.19)

If n � m � �
�

1
2(a+s) then (5.16)�(5.19) imply

kG�;n;mfk�a � c kfk:

Interpolation together with (5.15) yields

kG�;n;mfk0 � kG�;n;mfk
a

a+s
s kG�;n;mfk

s
a+s

�a � c �
�

a
2(a+s)kfk:

The lemma is proved.

In order to optimize the rate of convergence in the above Tikhonov regularization
we will determine � = �(Æ) in such a way, that the contributions in both terms in
the decomposition (5.7) are of the same order as Æ ! 0. This is accomplished in
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Theorem 1. Let the assumptions (2.2), (5.4) and (5.5) be ful�lled and suppose that

the unknown solution belongs to X
�
R. We further assume, that s � maxf�; (� � a)=2g :

If, for deterministic noise, we chose

� � Æ
2(a+s)
�+a ; n � m � Æ

�
1

�+a ;

then

kx0 � xÆ�;n;m(�)k� � cÆ
���
�+a ; � 2 [�a; �]:(5.20)

For Gaussian white noise satisfying (2.15) a choice of

� � Æ
2(a+s)

�+a+1=2 ; n � m � Æ
�

1
�+a+1=2

leads for � 2 [�a; �] to a bound�
Ekx0 � xÆ�;n;m(�)k2�

�1=2 � cÆ
���

�+a+1=2 :(5.21)

(The constants above in estimates (5.20) and (5.21) do not depend on �; Æ;m and
n.)

Proof. The proof is carried out in two steps. We �rst provide the required estimates
for � = 0.

It follows from assumption (5.4) that for t = 0 and n � �
�

1
2(a+s) condition (5.8) is

ful�lled. Thus we may apply Lemmas 2 and 3. Together with the bound (5.6) we

obtain with n � m � �
�

1
2(a+s) for any realization of � the estimate

kx0 � x�;n;m(�)k0 � b�;n;m(x0) + v�;n;m(�)

� c�
�

2(a+s) + ÆkG�;n;mkX!XkQn�k0
� c

h
�

�
2(a+s) + Æ�

�
a

2(a+s)kQn�k0
i
:(5.22)

For deterministic noise kQn�k0 � k�k0 � 1. Therefore, letting � � Æ
2(a+s)

�+a , we arrive
at the desired estimate (5.20) in case � = 0.

On the other hand, for white noise, property (2.15) implies

EkQn�k20 =
nX
i=1

Eh'i; �i2 =
nX
i=1

k'ik20 = n;

such that, letting n � �
�

1
2(a+s) � Æ

�
1

�+a+1=2 , we can continue from (5.22) as follows.

Ekx0 � xÆ�;n;m(�)k20 � c
h
�

�
a+s + Æ2��

a
a+sn

i
� c

h
�

�
(a+s) + Æ2�

�
2a+1
2(a+s)

i
� cÆ

2�
�+a+1=2 :

This is estimate (5.21) for � = 0.

We now turn to the general case � 6= 0. We note that, if we let xÆ;��;n;m(�) :=

L�xÆ�;n;m(�), then this is the unique minimizer of the functional

kQnAL
��x�QnyÆk20 + kxk2s� ;



19

where we let s� := s � �; on the space Vm;� := L�Vm � Xs�� . Moreover, the
orthogonal projector Pm;s�� := L�Pm;sL

�� in Xs�� onto this subspace obeys the

corresponding variant of (5.5)

kI � Pm;s��kXa�+2s�!Xs�
� c m�(a�+s� );

with respective a� := a+ �, since

kI � Pm;s��kXa�+2s�!Xs�
= kI � L�Pm;sL

��kXa�+2s�!Xs�

= kI � Pm;skXa+2s!Xs

� cm�(a+s) = cm�(a�+s� ):

The same is true for (5.4). Moreover, the operator A� := AL�� obeys condition (2.2)

with a� , and �nally x�0 := L�x0 � X
���
R . Thus, using the estimates of the �rst part

of the proof for A�; a�; �� := � � �; s� and projection Pm;s� we obtain, for example

in the white noise setting for � � Æ
2(a�+s� )
a+�+1=2 that�

Ekx0 � xÆ�;n;m(�)k2�
�1=2

=
�
EkL�x0 � L�xÆ�;n;m(�)k20

�1=2
=
�
Ekx�0 � xÆ;��;n;m(�)k20

�1=2
� cÆ

��
��+a�+1=2 = cÆ

���
�+a+1=2 :

This concludes the proof for � 6= 0 and of the Theorem.

We mention explicitly, that the same method was chosen to yield the optimal ap-
proximation in all spaces X� . This will be optimal as long as the parameter s is
chosen large enough.

Theorem 1 asserts among others that the best possible accuracy Edet(A;X�
R; Æ) and

respectively Eran(A;X�
R; Æ) of problems (A;X�

R; Æ); indicated in Proposition 3 and
4, can be achieved using an appropriate Tikhonov regularization. In conjunction
with the lower bounds for the respective radii of information rdetn (A;X�

R; Æ) and
rrann (A;X�

R; Æ), as provided in Corollary 1 we arrive at the following asymptotics for
the information complexities, as introduced at the end of Section 1.

Theorem 2. In the deterministic case, for � 2 [�a; �], and under assumptions (2.2)
and (2.1) the following asymptotics holds true.

Ndet(A;U ;X�
R; Æ) � Æ

�
1

�+a(5.23)

If, for white noise in addition condition (3.2) is ful�lled, then for � 2 [�a; �]

N ran(A;U ;X�
R; Æ) � Æ

�
1

�+a+1=2 :(5.24)

In both cases, the optimal order of information complexity is achieved by Tikhonov

regularization (5.1), if only the design obeys (5.4).

Proof. We shall indicate the proof only for estimate (5.24). The respective arguments
for (5.23) are similar. FromTheorem 1 we draw that by choosing n � n(Æ) � m(Æ) �
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�
�

1
2(a+s) � Æ

�
1

�+a+1=2 the following estimate holds true.

eran(A;U ;X�
R; Æ) � rrann (A;X�

R; Æ)

� rrann(Æ)(A;X
�
R; Æ) � cÆ

���
�+a+1=2 :

(5.25)

Since by Proposition 4

Æ
���

�+a+1=2 � Eran(A;X�
R; Æ) � eran(A;U ;X�

R; Æ);

we conclude, that actually eran(A;U ;X�
R; Æ) � Æ

���
�+a+1=2 , such that for some su�-

ciently large C we have

N ran(A;U ;X�
R; Æ) � n(Æ) � Æ

�
1

�+a+1=2 :

On the other hand, using Corollary 1 and estimate (5.25) we deduce

fn; rrann (A;X
�
R; Æ) � Ceran(A;U ;X�

R; Æ)g

�
n
n; rrann (A;X�

R; Æ) � CÆ
���

�+a+1=2

o
�
n
n; n�(���) � ~CÆ

���
�+a+1=2

o
:

Hence

N ran(A;U ;X�
R; Æ) � inf

n
n; n�(���) � ~CÆ

���
�+a+1=2

o
� Æ

�
1

�+a+1=2 ;(5.26)

which concludes the proof of the Theorem.

Remark 1. As already mentioned in Section 4, previous study of Tikhonov regular-
ization was restricted to the semi�discrete setup, see [13]. There the approximate
solution of equation (1.2) is determined by

xÆ�;m := argmin
�
kAx� yÆk20 + �kxk2s; x 2 Vm � Xs

	
;

which can be represented also as xÆ�;m =
�
�I + T#

mTm
��1

T#
myÆ, where Tm := APm;s

and T#
m := Pm;sL

�2sA�, cf. (5.2). From this representation it follows, that in order

to construct xÆ�;m one needs the following discrete information of the data, namely

yÆ;i = h i; A
�yÆi = hyÆ; A ii; i = 1; 2; : : : ;m;

where f igmi=1 is some orthonormal basis of Vm � Xs. Now this immediately implies,
that in the version of Tikhonov regularization just described, the design cannot be
chosen independently of the operator A, which is a drawback, since it is often given,
e.g., as histogram (1.5).

Remark 2. Note that representation (5.2) is needed only for the analysis of the rate
of convergence. The construction of xÆ�;n;m actually reduces to solving a system

of linear algebraic equations and is completely determined by the choice of design
f'1; : : : ; 'ng, parameter s and f igmi=1, a basis for the �nite dimensional subspace
Vm � Xs and �nally by choosing the regularization parameter �. Then we can
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construct the regularized solution in the form xÆ�;n;m =
Pm

i=1 xi i, with unknown
coe�cients obtained from the system

�xi +

mX
k=1

aikxk = bi; i = 1; : : : ;m(5.27)

with coe�cients

aik :=

nX
j=1

hA i; 'jihA k; 'ji; bi :=

nX
j=1

hA i; 'jih'j ; yÆi:

We stress, that to obtain such a system it is crucial, that the f igmi=1 were orthogonal
in Xs, which may hardly be constructed unless in special cases, e.g., if we let s = 0.
This simple Tikhonov regularization, combined with projection scheme

QnAPmx = QnyÆ;(5.28)

here Pm is the orthogonal projection onto Vm � X0 was studied before; in particular
by Plato and Vainikko [35]. But it is well known, that Tikhonov regularization for

s = 0 has a saturation and cannot yield better asymptotic rates than Æ2=3. Hence,
if we want to use a simple projection scheme, as (5.28) and we want to achieve
the optimal order of accuracy for x 2 X�

R, then there are only two possibilities.
One either applies so�called higher skilled methods, as for example the iterated
Tikhonov method or Landweber iteration to (5.28), which signi�cantly complicates
the numerical procedure, this was considered by Plato and Vainikko [35] and more

recently by Pereverzev and Solodky [33] in the particular case, when the Hilbert
scale is generated by L = (A�A)�1 and the noise was assumed to be deterministic,
or we try to use the phenomenon of self�regularization, the topic we will study in
the next section.

6. Self�regularization properties of projection methods.

Two�sided discretization of the least�square method

As we have already discussed in Section 4, the most prominent projection scheme
with self�regularization properties is the least�square method, where we agree to
consider as regularized solution of equation (1.2) any element xÆm, which minimizes

xÆm := argminfkAx� yÆk0; x 2 Vmg :(6.1)

The least�square method in the form as given above has extensively been studied
by Natterer [27], Va��nikko and Khyamarik [45], Louis [21] and Dicken and Maass
[9].

As it turns out, this leads again to a one�sided discretization, because (6.1) is

equivalent to Gauss symmetrization of the one�sided discretized equation

APmy = yÆ:(6.2)

More precisely, xÆm solves the equation

PmA
�APmx = PmA

�yÆ:(6.3)
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This leads to discretized information of the form

yÆ;i = h i; A
�yÆi = hA i; yÆi; i = 1; : : : ;m;

where again f igmi=1 is an orthonormal basis of Vm � X. Thus in its standard
form (6.1), (6.3), the least�square method probably cannot use given observations,
as e.g. in (1.1), independently of the operator A. Of course, this can be overcome
when using instead of (6.3) the equation

APmx = QnyÆ;

and obtain the regularized solution x̂Æn;m from the resulting symmetrization

PmA
�APmx = PmA

�QnyÆ;

being equivalent to

x̂Æn;m := argminfkAx�QnyÆk0; x 2 Vmg :(6.4)

But this is inconvenient, since it requires two di�erent discretizations of the operator
A, instead of the simple projection scheme (5.28).

For the fully discrete projection scheme (5.28) a little more e�orts have to be made,
in order to even assume solvability. In fact, even if the original operator A was
invertible, it may occur, that the sections PnAPn are not. Böttcher [4] gave a simple
example for an operator in Hilbert space l2 and Pn the �nite sections, where such
e�ect occurs for all odd n. We refer to the paper for more details. But after Gauss

symmetrization of (5.28), by which we mean turning to

PmA
�QnAPmx = PmA

�QnyÆ;(6.5)

there is always a solution, say xÆn;m. This however need not be unique, since the set

of possible solutions of (6.5) is determined by

QnAPmx = �n;mQnyÆ;(6.6)

where �n;m is the orthogonal projection onto the image Im(QnAPm). So, unique-
ness can be achieved only if ker (QnAPm) \ Im(Pm) = f0g ; which was observed by
Va��nikko and Khyamarik [45]. This in turn can be achieved when the operators
QnAPm obey the following stability property: there is a constant cs > 0, such that

for all u 2 Vm we have

cskPmuk� � kQnAPmuk�+a;
see Lemma 4 below.

We now turn to the assumptions, both of Jackson and Bernstein type, made on
the projections Pm onto the subspace Vm and Qn corresponding to the design ' =
f'1; : : : ; 'ng, in order to make the projection scheme e�cient. Precisely we assume
that there is a positive s > 0, and there are constants b; q > 0, such that Pm obeys
for � 2 [�a; �] the estimate

kI � PmkX�!X� � q m�(���);(6.7)

and

kPmuks+� � b mskPmuk� ; � 2 [�a; �]:(6.8)
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The projections Qn satisfy

kI �QnkXs+�+a!X�+a � q n�s;(6.9)

and also

kQnuk�+a � b n�+akQnuk0:(6.10)

For the white noise case we additionally assume

kI �QnkX�+a!X0 � q n�(�+a):(6.11)

Assumptions of this kind were also made in [8]. Under the above assumptions the
following bounds for the approximate solutions xÆm and x̂Æn;m, as de�ned through (6.1)

and (6.4), respectively, have been proven, see e.g. [21, Satz 4.5.6]

Proposition 5. Assume that assumptions (6.7) and (6.8) hold. Then for operators

A along the Hilbert scale satisfying (2.2) and for x0 := A�1y 2 X� we have

kx0 � xÆmk� � c
�
k(I � Pm)x0k� + Æm�+ak�k0

�
;

and respectively

kx0 � x̂Æn;mk� � c
�
k(I � Pm)x0k� + Æm�+aky �QnyÆk0

�
:

Usually this kind of stability is assumed to be ful�lled for a given projection scheme,
see e.g. [5], or it can be deduced from properties of the operator A, here we refer
to [37], who studied Symm's equation. If we allow m 6= n, then we may deduce
stability from our assumptions made above.

Lemma 4. Assume (2.2) and (6.8), (6.9) to hold. Then there is 0 < c0 < 1, such
that for m = c0n stability

cskPmuk� � kQnAPmuk�+a(6.12)

holds.

In particular, for c0 := (d=(2Dqb))1=s we have (6.12) with cs = d=2.

Proof. We derive from Assumption (2.2), that

dkPmuk� � kAPmuk�+a � k(I �Qn)APmuk�+a + kQnAPmuk�+a
for every u 2 Vm. Using now the assumption made above, this yields

k(I �Qn)APmuk�+a � qn�skAPmuks+�+a
� Dqn�skPmuks+� � Dqb(m=n)skPmuk�:

This implies

[d�Dqb(m=n)s]kPmuk� � kQnAPmuk�+a:
It is now easy to derive the remaining assertion for c0 := (d=(2Dqb))1=s.

We turn to the main result of this section.
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Theorem 3. Assume that the operatorA obeys (2.2) and that the assumptions (6.7)�
(6.10) are ful�lled. In the deterministic noise setting, for x0 = a�1y 2 X

�
R and

m = c0n � Æ�1=(�+a), where c0 from Lemma 4, there is a constant c, for which we

can bound the error of the approximate solution obtained from (6.5) by

kx0 � xÆn;mk� � cÆ
���
�+a :(6.13)

If, for white noise, we additionally assume that (6.11) holds, then for m = c0n �
Æ�1=(�+a+1=2) we have �

Ekx0 � xÆn;mk2�
�1=2 � cÆ

���
�+a+1=2 :(6.14)

Proof. We shall prove only estimate (6.14) and outline the one for (6.13) roughly.
Using Proposition 5 and assumptions (6.7) as well as (6.11) we derive for m = c0n

kx0 � xÆn;mk� � kx0 � x̂Æn;mk� + kx̂Æn;m � xÆn;mk� :(6.15)

The �rst norm can further be estimated as

kx0 � x̂Æn;mk� � c[k(I � Pm)x0k� +m�+ak(I �Qn)yk0 +m�+aÆkQn�k0]
� c[m�(���)kx0k� +m�+am�(�+a)kyk�+a +m�+aÆkQn�k0]
� c[m�(���)kx0k� +m�+aÆkQn�k0]:

(6.16)

If we now use x̂Æn;m; x
Æ
n;m 2 Vm, then we can derive from (6.10) and (6.12) the

following chain of estimates for the second summand in (6.15).

kx̂Æn;m � xÆn;mk� � c�1s kQnAPm(x̂
Æ
n;m � xÆn;m)k�+a

� c�1s bn�+akQnAPm(x̂
Æ
n;m � xÆn;m)k0

� cn�+a[kQnAPmx̂
Æ
n;m �QnyÆk0 + kQnAPmx

Æ
n;m �QnyÆk0]:

(6.17)

Now xÆn;m from equation (6.5) has a representation as

xÆn;m = argminfkQnAPmx�QnyÆk0; x 2 Vmg :
Using (6.7) we can continue

kQnAPmx
Æ
n;m �QnyÆk0 � kQnAPmx0 �QnyÆk0

� kQnAx0 �QnyÆk0 + kQnA(I � Pm)x0k0
� ÆkQn�k0 + k(I � Pm)x0k�a
� cm�(�+a)kx0k� + ÆkQn�k0:

Moreover, from the de�nition of x̂Æn;m in (6.4) and assumption (6.11) we conclude

kQnAPmx̂
Æ
n;m �QnyÆk0 � kAPmxÆn;m �QnyÆk0 � kAPmx0 �QnyÆk0

� kA(I � Pm)x0k0 + k(I �Qn)yk0 + ÆkQn�k0
� c[m�(�+a)kx0k� + ÆkQn�k0]:

(6.18)

Thus, for m = c0n the previous estimates (6.16) and (6.17), after being inserted into
(6.15) yield

kx0 � xÆn;mk� � cm�(���)kx0k� + Æm�+akQn�k0:
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Since, as in the proof of Theorem 1 EkQn�k20 = n, we deduce for n � m � Æ
�

1
�+a+1=2

�nally �
Ekx0 � xÆn;mk2�

�1=2 � c[m�(���)kx0k� + Æm�+a+1=2] � cÆ
���

�+a+1=2 ;

which proves (6.14). The corresponding estimate (6.13) for deterministic noise is
obtained using xÆm instead of x̂Æn;m. We then conclude, using Proposition 5

kx0 � xÆn;mk� � kx0 � xÆmk� + kxÆm � xÆn;mk�
� c[m�(���)kx0k� + Æm�+a] + kxÆm � xÆn;mk� :

Moreover, from the de�nition (6.1) of xÆm and assumption (6.7) we obtain

kQnAPmx
Æ
m �QnyÆk0 � kAPmxÆm � yÆk0 � kAPmx0 � yÆk0

� ky � yÆk0 + kA(I � Pm)x0k0
� Æ + cm�(�+a)kx0k�:

So, using these estimates instead of (6.16) and (6.18) we arrive at the desired

bound (6.13). Note, that in this case condition (6.11) was not used.

Theorems 2 and 3 show, that the simple projection scheme (5.28) has after Gauss

symmetrization (6.5) the self�regularization property. It is also order optimal in
the sense of Information complexity. This means, that if the involved projections
obey assumptions (6.7)-(6.10) (in the white noise setting additionally (6.11)), and
the discretization parameters are properly chosen, then no further regularization
is required, to approximately solve the problem (1.1), (1.2). The conditions (6.9)
and (6.10) in particular require, that the design elements are smooth enough, i.e.,
'i 2 X�+a; i = 1; : : : ; n. This smoothness ensures the stability property (6.12),
which is the key for self�regularization. On the other hand, if the design is given afore
hand, then this smoothness might not be ful�lled. In this situation one can try to use

Tikhonov regularization instead, because there the requirements, in particular (5.4)
are less restrictive.

7. Application to Abel's equation

We will apply the results of the previous sections to Abel's equation as introduced
in Example 4 in Section 2. It will be important to assume, that the design is
given afore-hand in form of histograms (1.5). Noisy Abel's equation (2.12), with
operator (2.4) arises from a diverse range of applications in the physical sciences
and in stereological microscopy. Some pertinent references are Nychka and Cox [32],
Johnstone and Silverman [17] and Donoho [10]. As already mentioned in Example 4,

we study the problem in the Hilbert scale generated by L := (A�A)�1, such that
assumption (2.2) is ful�lled with a = 1=2. We shall restrict to the case, where the
exact solution belongs to X1

R, thus � = 1. In this case, the exact solution admits a
representation

x0 = A�Ag0;(7.1)
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for some g0 2 L2(0; 1); kgk0 = R. Using Corollary 1 in Samko (1968) we obtain
the following representations

Af(t) = A�V f(t);(7.2)

where A� is given by (2.5). and the operator

V f(t) :=
1

�
p
t

1Z
0

p
�f(� )d�

� � t

acts boundedly from L2(0; 1) into the space L2;2"(0; 1) of functions that are square-
summable on (0,1) with weight t2", where " > 0 is arbitrarily small. This means
that for any f 2 L2(0; 1) there exists f" 2 L2(0; 1) such that

V f(t) = t�"f"(t) and kf"k � ckfk:(7.3)

Then (7.1) and (7.2) together with the semigroup property of fractional integration
imply that

x0(t) = A�Ag0(t) = A�A�V g0(t) =

tZ
0

��"g0;"(� )d�:(7.4)

Thus, x0 has derivative x
0

0 2 L2;2"(0; 1) for any small " > 0. In terms of the modulus
of continuity we can estimate the smoothness of the solution x0 by

!2(x0; h) = O
�
h1�"

�
(7.5)

for any small " > 0.

As in Nychka and Cox [32] we will assume that bin limits of histograms (1.5)
obey (2.9). As before we represent (1.5) in the form (4.1), where Qn is the orthogo-
nal projector on the subspace of piecewise constant functions having discontinuities
at the points fui;ng.
Finally we agree to measure the error in X = L2(0; 1). Note, that under these
assumptions the histogram design does not meet conditions (6.9) and (6.10)., which
are required for self�regularization. Indeed, assumption (6.9) would require, that

Im(Qn) � X1=2 = Im(A�A)�1=2 = Im(A�). But for the constant function '0(t) � 1,
which is certainly in the range of Qn, this would imply the existence of a function
v0 2 L2(0; 1), for which

A�v0(t) =
1p
�

Z t

0

v0(� )p
t� �

d� = '0(t) = 1:(7.6)

But we can use the inversion formula to see

v0(t) =
1p
�

d

dt

Z t

0

d�p
t� �

=
1p
�t
:

But it is immediate, that this function cannot belong to L2(0; 1), which in turn

implies Im(Qn) 6� X1=2. Therefore the histogram design does not give rise to self�
regularization and we are lead to apply Tikhonov regularization based on the de-
sign (1.5).
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We �rst observe, that the bound (2.10) derived in Example (4) is just condition (5.4)
for t = 0. A straightforward application of Theorem 1 in the present case requires to

take s � ��a
2

= 1
4
. On the other hand, it is inconvenient to use Tikhonov functional

(5.1), (5.2) when s is a fraction. But for s = 1 the condition (5.4) breaks down for
our case because using Qn we cannot obtain an accuracy being superior to O(n�1).
Therefore we let s = 0. Then condition s � ��a

2
is violated, but if we only slightly

change the value m (m = ��
1

1�" instead of m = ��1) then estimate (7.5) allows to
obtain the same order of accuracy as in Theorem 1.

Since s = 0, we let Pm;0 = Qm, the orthogonal projector like Qn but corresponding
to m bins. Estimate (7.5) implies

k(I � Pm;0)x0k0 = k(I �Qm)x0kL2
� c!2(x0;m

�1) � cm�1+";(7.7)

for any small " > 0. Using (7.7) instead of (5.6) we arrive at

Theorem 4. Suppose, that the exact solution of Abel's integral equation satis�es (7.1).
Let xÆn;m be the solution obtained from noisy data (1.5) when applying Tikhonov reg-

ularization (5.1), (5.2) for s = 0; Pm;0 = Qm.

For uniformly bounded deterministic noise we have the error bound

kx0 � xÆ�;n;mk0 � cÆ2=3;

which is achieved by letting � � Æ2=3; n � Æ�2=3 and m � Æ�2=(3�3") for any �xed

1 > " > 0.

In case of white noise (2.15) we obtain�
Ekx0 � xÆ�;n;mk20

�1=2 � cÆ1=2;

which is achieved for � � Æ1=2; n � Æ�1=2 and m � Æ�1=(2�2") for any �xed 1 > " > 0.

We note that the information complexity Ndet(A;U ;X1
R; Æ) and correspondingly

N ran(A;U ;X1
R; Æ) can be achieved by the given histogram bins (1.5).

Remark 3. We mention, that the assumptions (2.10), (2.11) and (7.1), are exactly
those used by Plato and Vainikko [35] to apply Theorem 3 in that paper. Within the

deterministic noise model this theorem guarantees the optimal accuracy as presented
in Theorem 4, but with a value of m � Æ�4=3, which is worse than the one presented
above.

Remark 4. We mentioned in the discussion in Section 2, that a su�cient discretiza-
tion amount could be derived from (4.2). Taking into account the behavior of (2.7),
in the case under consideration this would yield n � Æ�2, which is far from being

optimal, as can be seen from Theorem 4 above.

8. Application to stable summation of Fourier series with noisy

coefficients

The problem of stable summation of Fourier series with respect to a given orthonor-
mal system of function f'k; k = 1; 2; : : : g under small changes in the coe�cients,
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measured in l2 is a classical example of an ill�posed problem, in particular if we
want to measure the error in the sup�norm. To be more speci�c we study functions

belonging to C(0; 1), the space of continuous functions on [0; 1]. The problem may
now be formulated as follows. We want to recover a continuous function y from
noisy (Fourier) coe�cients with respect to a given system f'k; k = 1; 2; : : : g, but
instead of yk = hy; 'ki; k = 1; 2; : : : we are given only a noisy sequence of numbers

(yÆ;k)
1

k=1
; satisfying

1X
k=1

(yk � yÆ;k)
2 � Æ2:(8.1)

This classical ill�posed problem was studied in [41, Chapt. 6], in an appendix to the
textbook [16], in papers by Aliev [1] and many others. In all cases the application of
Tikhonov regularization was considered. Standard assumptions on the smoothness
of the true solution were expressed in terms of spaces W

�
2 , associated with the given

system f'k; k = 1; 2; : : : g, i.e.,

W
�
2 :=

(
y 2 L2(0; 1); kyk2� :=

1X
k=1

k2� jhy; 'kij2 <1
)
:

Under these assumptions, Il'in and Pozniak [16] for the trigonometrical system and

Aliev [1] for the more general case of any system with uniformly bounded norm
k'kk1 � C; k = 1; 2; : : : , proved that for p 2 (1=2; 2�� 1) Tikhonov regularization
y� :=

P
1

k=1
yÆ;k

1+�kp
'k yields ky� y�k1 � C(

p
�+ Æ=�). So, the optimal choice for �

is �0 = Æ2=3 for which

ky � y�k1 � CÆ1=3:(8.2)

To the best of our knowledge, we refer also to the survey by Liskovets [20], this is
the culmination of all previous work on this particular problem. Still some questions
remain open.

First, the estimate (8.2) does not take into account the given smoothness. Moreover,
it does not indicate the actual degree of ill�posedness of the problem. It is common
belief, that this degree depends on the growth of k'kk1 ! 1. We will study this
problem under two di�erent assumptions on the growth, a summability one and an

element wise one. More precisely, we assume

1X
k=1

k'kk21
k2�

<1(M�)

for some � > 0. On the other hand we will assume

k'kk1 � k�; k = 1; 2; : : : ;(K�)

now for some � � 0. It is immediate, that systems f'1; '2; : : :g, which obey (K�),
will satisfy (M�), with � = � + 1=2 + " for any small " > 0. The trigonometric
system has property (K�) for � = 0, whereas the system of Legendre polynomials
requires to take � = 1. One way to obtain systems from M� is to consider lacunary
sequences f'k =  nk ; nk = �(k)g, where �(k) increases. If f k; k = 1; 2; : : : g obeys

(K�), then f nk ; k = 1; 2; : : : g satis�es (M�), if �(k)
�k�� is square summable.
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We now return to the problem of stable summation. Below it will turn out, that the
solution to the problem of stable summation heavily depends as well on the classes

of systems of functionals as on the kind of noise. Within the deterministic noise
framework, functionals which enjoy property (M�) best �t to our previous discussion,
and the solution can easily be derived from previous results. The pointwise growth
does not exactly �t, but still a slight modi�cation allows to complete the proof.

For white noise, the situation is completely di�erent, since the behavior of the noise
is very much dependent on geometric properties of the underlying space. This e�ect
is especially seen, when measuring the noise in C(0; 1). It does not allow to work in
Hilbert scales. We have to argue directly in the space of continuous functions. We
start with systems which obey property (M�). We will show, that Theorems 1 and
3 apply to this situation. To achieve this goal we will need to �nd a formulation
of a related problem in a suitable Hilbert scale. For this purpose we observe, that
under (M�) we can conclude

k
X

xk'kk1 �
�X

jxkj2 k2�
�1=2�X k'kk21

k2�

�1=2

<1;(8.3)

if only
P
jxkj2 k2� <1. Thus we may switch to a di�erent point of view. We �rst

try to recover the sequence y = (yk)
1

k=1 of coe�cients from the noisy data (8.1),
considered as data (1.3) to obtain f�ykg, and then use

P
�yk'k as approximation of

the unknown function y 2 C(0; 1).

Because of (8.3) this permits us to study the recovery problem in the scaleW �; � 2 R
for the identity mapping, thus example 1. We need to �nd an approximate solution
in W � to deduce

P
�yk'k 2 C(0; 1). As has already been discussed in Section 5, the

approximation to x0 2 W � based on observations (1.3), obtained from Tikhonov
regularization has the form presented in (5.3). Thus in this particular case (a = 0)
Theorem 1 translates into

Theorem 5. Let f'k; k = 1; 2; : : : g obey assumption (M�). For a function y 2 W �
2 ,

corresponding to this system with � > � the following result is true. If we are given

noisy observation (8.1), Tikhonov regularization, applied with s � maxf�=2; �g and

parameter � � Æ2s=�, using only n = m � Æ�1=� noisy data allows the following error

estimate

ky �
nX

k=1

yÆ;k

1 + �k2s
'kk1 � Æ(���)=�kyk�:(8.4)

We note that in the present context self�regularization simply means to take the
truncated series

Pn
k=1 yÆ;k'k as approximation.

We turn to the corresponding result for systems, which obey (K�).

Theorem 6. Let f'k; k = 1; 2; : : : g obey assumption (K�). For a function y 2 W �
2 ,

corresponding to this system with � > � + 1=2 the following result is true. If we
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choose the number of observations n � Æ�1=�, then the error can be bounded as

ky �
nX

k=1

yÆ;k'kk1 � cÆ(����1=2)=�kyk�:

We note, that the bound given above is stronger, than the one we would obtain,
simply using that (K�) implies (M�) for � = � + 1=2 + " and applying Theorem 5.

Proof. Direct calculations show, that for � > � + 1=2 and y 2 W �
2 we obtain

ky �
nX

k=1

yk'kk1 �
1X

k=n+1

jhy; 'kij k'kk1

� ckyk�

 
1X

k=n+1

k2(���)

!1=2

� cn��+�+1=2kyk�:

(8.5)

Moreover, if Qn denotes the projection onto the �rst n functions '1; : : : ; 'n, then
for any u we have the following Nikolsky type inequality.

kQnuk1 � k
nX

k=1

uk'kk1 � c

nX
k=1

jukj k�

� c

 
nX

k=1

jukj2
!1=2 nX

k=1

k2�

!1=2

� cn�+1=2kQnuk0:

Thus for n � Æ�1=� this gives for kyk� � R a bound

ky �
nX

k=1

yÆ;k'kk1 � ky �Qnyk1 + kQn(

nX
k=1

(yk � yÆ;k)'k)k1

� c[n��+�+1=2 + n�+1=2Æ] � cÆ
����1=2

� ;

which completes the proof of the theorem.

We mention, that this theorem evolved during discussions with V. Temlyakov, Univ.
of South Carolina.

We also note, that a similar statement can be proven for systems, satisfying (K�),
when we use the method obtained by Tikhonov regularization, applied with � �
Æ2s=�, 2s > � and n � Æ�1=�.

The problem of stable summation of Fourier series with random noise

yÆ;k = hy; 'ki+ Æh�; 'ki; k = 1; : : : ; n;

has also been studied in [41], and more recently by Tsybakov [44]. For trigonometric
systems f'k; k = 1; 2; : : : g and y 2 W �

2 Tsybakov indicated the best possible order
for the expected value of of the error, measured in C(0; 1). This turns out to be of

the order (Æ log1=2(1=Æ))
��1=2

� . He proved that this order cannot be improved even if
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the trigonometric system is replaced by any other orthonormal system, still assum-
ing y 2 W

�
2 , associated to the trigonometric system. It is worth mentioning, that

in this paper, discretized Tikhonov regularization was used and that the regulariza-
tion parameter � was chosen adapting to the unknown smoothness. Therefore he
required, that the number n of observations was at least

n � Æ�2=(minf1;�0�1=2g);(8.6)

where �0, the minimal smoothness, was supposed to be known.

Using some geometric property of C(0; 1) we will show, that for given � the necessary

number of observations can be reduced to n � (Æ
p

log(1=Æ))�1=�, still retaining the
best order of accuracy.

We shall however again turn to the more general setup of systems obeying prop-
erty (M�) or (K

�), respectively.

Theorem 7. Suppose we are given data

yÆ;k = hy; 'ki + Æh�; 'ki; k = 1; : : : ; n;

where � is white noise. We assume to know, that the unknown function y belongs to

W
�
2 .

For a system f'k; k = 1; 2; : : : g satisfying (M�), � > �, Tikhonov regularization

with 2s > maxf� � �; �g, and

n � (Æ
p

log(1=Æ))�1=� and � � (Æ
p

log(1=Æ))2s=�;(8.7)

the following bound holds true 
Eky �

nX
k=1

yÆ;k

1 + �k2s
'kk21

!1=2

� c(Æ
p

log(1=Æ))
���
� :(8.8)

For a system f'k; k = 1; 2; : : : g satisfying (K�), � > � + 1=2, Tikhonov regulariza-

tion with 2s > maxf�� �; �g and � and n chosen as in (8.7), we have the following

bound.  
Eky �

nX
k=1

yÆ;k

1 + �k2s
'kk21

!1=2

� c(Æ
p

log(1=Æ))
����1=2

� :(8.9)

Proof. We shall carry out the proof only for estimate (8.9). The proof for systems
satisfying (M�) is similar. First we decompose the error into the bias and pure
stochastic term as usual,

b�;n := ky �
nX

k=1

yk

1 + �k2s
'kk1 and v�;n := k

nX
k=1

h�; 'ki
1 + �k2s

'kk1:(8.10)

The stochastic term v�;n can now be estimated using the following bound on the
type�2�constant of �nite dimensional subspaces of C(0; 1), see [42, pp. 14-16],
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T2(l
n
1
) � c

p
log(n). This means in the present context

�
Ev2�;n

�1=2 � c
p

log(n)

 
nX

k=1

k'k2
1

(1 + �k2s)2

!1=2

:(8.11)

The following estimates are based on elementary calculus, precisely

max
z2[1;1)

zp

1 + �zq
= ��p=qq�1pp=q(q � p)(q�p)=q; p < q:(8.12)

Inserting this into (8.11) we obtain

�
Ev2�;n

�1=2 � c���=(2s)
p
n log(n); if 2s > �:(8.13)

The bias term also admits a similar representation

b�;n(y) � ky �Qn(y)k1 + �

nX
k=1

k2s

1 + �k2s
jykj k'kk1:(8.14)

The �rst term can be estimated similar to (8.5) above, which yields

ky �
nX

k=1

yk'kk1 � cn��+�+1=2kyk�:(8.15)

Moreover, using (8.12) again we obtain

nX
k=1

k2s

1 + �k2s
jykj k'kk1 � c

p
n��

2s+���
2s kyk�; if 2s > � � �:(8.16)

Gathering the estimates (8.13)�(8.16) and inserting this into the decomposition (8.10)

we obtain under assumptions (8.7)

(Eky �
nX

k=1

yÆ;k

1 + �k2s
'kk21)1=2

� ckyk�(n���+1=2 +
p
n�(���)=(2s)) + cÆ���=(2s)

p
n log(n)

� c(Æ
p

log(1=Æ))
����1=2

� ;

which completes the proof of (8.9).

We note, that the number n of observations and the regularization parameter �,
which provide the optimal order do not depend on properties of the underlying

system f'k; k = 1; 2; : : : g. Therefore, since the trigonometric system belongs to K0,
we obtain the best order of accuracy for this system with a number of observations
much less than the one in (8.6).
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9. Concluding discussion

We want to conclude this study with a discussion of some topics, which seem to be
important.

One of the aims in the present study was to determine the information complexity,
the minimal amount of information required to achieve the best possible accuracy.
This asymptotics was indicated in Theorem 2 in Section 5 and appeared as a conse-
quence of Tikhonov regularization. On the other hand, self�regularization achieves
the same optimal order with asymptotically the same amount of information, see

Theorem 3. Both results were based on assumptions on the design as well as on
the �nite dimensional space, the approximate solution was looked for, see (5.4) and
(5.5) for Tikhonov regularization and (6.9)�(6.11) for self�regularization. As we saw
in Section 7, design based on histogram bins did not allow to use self�regularization,
whereas for stable summation of Fourier series, Section 8 either method worked.

At a �rst glance it is not easy to compare these conditions. We con�ne ourselves on
the condition imposed on the design. If the design elements f'1; : : : ; 'ng are smooth
enough, then this usually implies good approximative power. For example, polyno-
mial splines, which obey (6.10), will automatically satisfy (5.4) in the Sobolev scale,
if only their degree is su�ciently high. But, at the same time, splines, which have an
appropriate degree, but maximal defect, will not satisfy (6.10). So, loosely speeking,
conditions (6.9)�(6.11), which were assumed for self�regularization, are more restric-

tive than (5.4). But, from a practical point of view, self�regularization is preferable,
since it leads to a simpler numerical scheme, than Tikhonov regularization. So, if
we can choose a design, or if it is smooth enough to enable self�regularization, then
this is in favour.

As already mentioned in the discussion at the end of Section 6, the conditions (6.9)
and (6.10) seem to be necessary for order optimal self�regularization, since the were
the key to establish the stability property, see Lemma 4. As far as Tikhonov regu-
larization is concerned, its structure, cf. (5.2) presumes that elements Pm;sL

�2sA�yÆ
are well approximated by Pm;sL

�2sA�QnyÆ. Now observe, that

kPm;sL
�2sA�(I �Qn)kX!X = k(I �Qn)APm;sL

�2skX!X :

Since APm;sL
�2su 2 Xa+s if u 2 X, then it is apparent, that Qn must approximate

well on elements from Xa+s, which is the essence of assumption (5.4).

Another topic shall be mentioned. We already touched the problem, whether ob-
servations as in (1.1) might be replicated to improve performance in Section 1. In
fact, let us look at non�parametric regression, where we observe function values

yÆ;k = f(tk) + Æ�k; k = 1; : : : ; n;

0 � t1 < : : : :tn � 1, say, and we want to recover the unknown function f , which

is assumed to be smooth. We also refer to a more recent example, studied in [18,
Chapt. 9], an example where the observations were indirect. In this kind of regression
problems we may use the closeness of the observation points to decrease the noise
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level. This may typically be done with kernel estimators by choosing an appropriate
bandwidth.

In the present case, where the design is supposed to consist of orthogonal functionals
in some Hilbert space, it is hard to imagine an analogous estimator. Instead we may
think of direct repetitions of observations for each of the functionals 'k. Within

this framework the methods of Sections 5 and 6 apply and we shall indicate their
order of approximation, expressed in the overall number of observations. To be more
precise, let us consider the mathematical problem (A;X

�
R; Æ) and let n be the size

of a design. If we allow k replications at each element, then the overall number of
observations is N = k � n. If we now average the observations at each element

�yÆ;i :=
1

k

kX
l=1

yÆ;i = hAx;'ii + Æ
1

k

kX
l=1

h�li; 'ii;

then we can see, that the data f�yÆ;igni=1 are exactly those, which were considered in
our study. For deterministic noise, we will not gain anything from these replications.

But for white noise, the new data have reduced noise level Æk := Æ=
p
k. If we now

apply one of the order optimal methods, say u, based on the design of size n, then
we obtain an accuracy

e(A;u;X�
R; Æk) � c

�
Æ=
p
k
� ���

�+a+1=2

;(9.1)

if only n �
�
Æ=
p
k
�� 1

�+a+1=2

. This translates to an estimate

e(A; �u;X�
R; Æk) � cN

�
���

2(�+a+1) ;

where �u denotes the compound method, based on the original N = k�n data. Thus
for stochastic white noise, we can even achieve arbitrary accuracy. With a di�erent
attitude, Mair and Ruymgaart [24] ended at a similar method, see Theorem 4.4
there, although these authors used more restrictive assumptions, in particular (3.2)
and considered estimates based on the singular value decomposition, only. The
convergence analysis in [24], which for the present case results in Theorem 4.2,
there, is expressed in terms of the number of repetitions, which is k above. Then it
is easily seen, that the bound given in [24, Thm. 4.2] is exactly the one from (9.1).

Moreover, it can easily be seen, that this method is order optimal in certain cases.
In particular, if we assume (3.2) and use design based on the singular value decom-
position of the operator A.
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