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Abstract. For the Boussinesq approximationof the equations of coupledheat

and �uid �ow in a porous medium we show that the corresponding system

of partial di�erential equations posesses a global attractor. We give lower

and upper bounds of the Hausdor� dimension of the attractor depending on

a physical parameter of the system, namely the Rayleigh number of the �ow.

Numerical experiments con�rm the theoretical �ndings and raise new questions

on the structure of the solutions of the system.

Introduction.

We consider the equations of coupled heat and �uid transport in a porous

medium in the Oberbeck-Boussinesq approximation (see [NB92]). These equations

can be used to describe geothermal reservoirs, thermal convection in sediment layers

and other processes with bouyancy induced convection. In dimensionless variables,

they have the following form:8><
>:
rx � v = 0; v = rxP � �
T ; P

��
@


= P0

@tT �rx � (rxT � Tv) = 0; T
��
@


= T0

T
��
t=0

= T (0)

(0.1)

where x 2 
, 
 �� Rn is a bounded domain in Rn with a su�ciently smooth

boundary, (T (t; x); P (t; x)) � are unknown functions (temperature and pressure

respectively), 
 = (
1; � � � ; 
n) is a given constant vector (j
j = 1) and � > 0 �

is a given scalar parameter called the Rayleigh number, which is combined from

physical parameters like characteristic lengths ,heights, temperature di�erences,

temperature expansion coe�cients etc. (see [NB92]).

It is observed (see [NB92]) that with growing � the complexity of the �ow pat-

terns grows as well. Our numerical experiments con�rm these observations.

This growing complexity of the �ow regime leads to the suggestion that the

Hausdor� dimension of the attractor of (0.1) should increase with growing Rayleigh

number. This suggestion is con�rmed by the analysis carried out in this paper. We

study this �ow from the dynamical point of view. We prove that the semigroup

generated by the system (0.1) possesses a global attractor in the corresponding

Sobolev space and try to study the complexity of this attractor in dependence of

the Rayleigh number �. Particularly, we present upper and lower bounds for the

dimension of the attractor in terms of Rayleigh number � which in turn shows

growing complexity of dynamics when � is growing. Further, we present results of

numerical experiments which are intended to support the intuition of the reader.

It is remarkable that these experiments in turn pose questions for further research.
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The paper is organized as follows.

A number of a priori estimates for the solutions of the problem (0.1) is obtained in

Section 1. In particular these estimates show that every solution of (0.1) remains

bounded when t ! 1 in the appropriate phase space which will be introduced

below.

Using these estimates we prove in Section 2 the existence of a global solution of

this problem and it's uniqueness. Moreover we prove here the existence of a global

attractor A� for the problem (0.1).

The upper and lower bounds for the Hausdor� dimension of the attractor are

obtained in Sections 3 and 4 correspondingly.

Numerical results which show the di�erent types of the long time behaviour

of solutions (0.1) in dependence of the Rayleigh number and the discretization

parameters are presented in Section 5. While the theoretical results are con�rmed,

questions for further research in this problem area are raised.

1. A priory estimates

In this Section we obtain a number of a priori estimates for the solutions of

the problem (1.1). Note that we will use these estimates only in order to prove the

existence theorems. The sharp estimates for the solutions belonging to the attractor

will be obtained below by using the maximumprinciple. That's why we do not give

the explicit expression for the constants and monotonic functions Q which appear

in these estimates. Moreover, di�erent in general constants and functions may be

denoted by the same symbols (it should not lead to misunerstanding).

A solution of (0.1) is understood to be the pair of functions

(T; P ) 2W (1;2)
p ([0; t0]�
) �W

(1;3)
p ([0; t0]�
)(1.1)

which satisfy (0.1) in the sense of distributions.

Here and below

W
(l1;l2)
p ([0; t0]� 
) = W

l1
p ([0; t0]; Lp(
)) \Lp([0; t0];W

l2
p (
))(1.2)

(i.e., u 2 W
(l1;l2)
p means by de�nition that @ltu; @

m
x 2 Lp([0; t0] � 
) if l � l1 and

jmj � l2). We assume also that the exponent p in (1.2) is chosen in such a way that

W
(1;2)
p

([0; t0]� 
) � C([0; t0]; C
3=2(
))(1.3)

It is known (see [BIN96]) that (1.3) holds if p > 4 + 2n and this embedding is

compact.

It is naturally to assume that the initial date T (0) belongs to the trace space

V0(
) at t = 0 of the class W
(1;2)
p ([0; t0] � 
) and the boundary conditions T0 �

to the space W 0
0 = W

2�1=p
p (@
) and P0 � to the space W0 = W

3�1=p
p (@
). (The

explicit description of the space V0 is given in [LSU67]: V0 =W
2(1�1=p)
p (
).)

It is assumed moreover that the 1st compatibility condition holds

T (0)
��
@


= T0(1.4)

The main result of this Section is the following theorem.

Theorem 1.1. Let the above assumptions hold and let (T; P ) � be a solution of

the problem (0.1). Then the following estimate is valid:

(1.5) kTk
W

(1;2)
p ([t;t+1]�
)

+ kPk
W

(1;3)
p ([t;t+1]�
)

�

� Q(kT (0)kV0)e
��t + Q(kT0kW 0

0
+ kP0kW0

)

where � > 0 and the monotonic function Q are independent of T (0).

Proof. For simplicity we give the proof of this estimate only for the case where
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P0 = 0. The general case P0 6= 0 is completely analogous. This proof will be

divided on a number of Lemmata.

Lemma 1.1. Let the above assumptions be valid. Then for every �xed t � 0 and

for every 1 < r <1 and l � 0

kP (t)kl+1;r � C�kT (t)kl;r(1.6)

(Here and below k � kl;p � k � � �kW l

p
(
).)

Indeed,

�xP (t) = �
rxT (t) 2W
l�1;r(
); P

��
@


= 0(1.7)

Applying the elliptic regularity theorem (see [Tem80]), we obtain (1.6).

Corollary 1.2. The following estimate holds

kPk
W

(1;3)
p

([t;t+1]�
)
� CkTk

W
(1;2)
p

([t;t+1]�
)
(1.8)

Thus, it is su�cient to prove (1.5) only for temperature component of the solution

(T; P ).

Lemma 1.2 (L2-estimate). Let (T; P ) be the solution of (0.1). Then

(1.9) kT (t)k20;2 +

Z
t+1

t

krxT (s)k
2
0;2 ds � CkT (0)k20;2e

��t +

+Q(kT0kW 0

0
)

�
1 +

Z t

0

e
��(t�s)krxT (s)kL1(@
)ds

�

where the function Q, and the constant � > 0 are independent of T (0).

Proof. Let us multiply the T -equation of (0.1) by T , integrate over x 2 
 and

use Green's formula and the fact that rxv � 0. Then we obtain after simple

computations and estimations that

(1.10)
1

2
@tkT (t)k

2
0;2 + krxT (t)k

2
0;2 �

� kT0k0;1

Z
@


j@nT (t)jdS + kT0k
2
0;1

Z
@


jv(t)jdS

Taking into the accordance that T
��
@


= T0 and using Friedrichs inequality we

obtain that

kT (t)k20;2 � �krxT (t)k
2
0;2 +CkT0k

2
W1=2;2(@
) � �krxT (t)k

2
0;2 + C1kT0k

2
W 0

0
(1.11)

Using the estimate (1.6) and Sobolev's embedding theorem we will have

kv(t)kL1(@
) � Ckv(t)k1;2 � C1kT (t)k1;2(1.12)

Inserting these estimates into (1.10) we deduce that

(1.13) @tkT (t)k
2
0;2 + �kT (t)k20;2 + kT (t)k21;2 �

� CkT0k
2
W 0

0
+

+ kT0k0;1

Z
@


j@nT (t)jdS + CkT0k
2
0;1 (1 + kT (t)k1;2)

Applying the inequality CkT0k
2
0;1kT (t)k1;2 � C1kT0k

4
0;1 + 1=2kT (t)k21;2 to the

right-hand side of (1.13) we obtain �nally that

(1.14) @tkT (t)k
2
0;2 + �kT (t)k20;2 + 1=2kT (t)k21;2 �

� kT0k0;1

Z
@


j@nT (t)jdS +C(kT0k
4
0;1 + kT0k

2
W 0

0
)



4 M.A. EFENDIEV, J.FUHRMANN, AND S.V.ZELIK

To complete the proof of Lemma 1.2 it remains to apply Gronwall inequality to the

estimate (1.14) and use the embedding W 0
0 � C(@
). Lemma 1.2 is proved.

Lemma 1.3 (Lq-estimate). Let q > 2 and the assumptions of Lemma 1.2 hold.

Then

kT (t)k
q

0;q � CkT (0)k
q

0;qe
��t + Q(kT0kW 0

0
)

�
1 +

Z
t

0

e
��(t�s)krxT (s)kL1(@
)ds

�(1.15)

where Q is a certain monotonic function independent of T (0).

Proof. Let us multiply the T -equation of (1.1) by T jT jq�2, integrate over x 2 


and use Green's formula.

(1.16)
1

q
@tkT (t)k

q

0;q +
4(q � 1)

q2
krx(jT (t)j

q=2)k20;2 �

� kT0k
q�1
0;1

Z
@


k@nT (t)kdS +
1

q
kT0k

q

0;1

Z
@


jv(t)jdS

Estimating now the last integral in the right-hand side of (1.16) using (1.12) and

arguing as in the proof of Lemma 1.2 we obtain that

(1.17) @tkT (t)k
q

0;q + �kT (t)k
q

0;q �

� C

�
1 + kT0k

2q
W 0

0

��
1 + krxT (t)kL1(@
)

�
+ kT (t)k21;2

Applying Gronwall inequality to (1.17) and using the estimate (1.9) for estimating

the integral from the last term into the right-hand side of (1.17) we obtain (1.15)

with Q(z) = C1(1 + z
2q). Lemma 1.3 is proved.

Now we are in position to complete the proof of Theorem 1.1. To this end we

rewrite the equation for the temperature component in the following form:

@tT ��xT = h(t) � �rxT (t)v(t); T

��
@


= T0(1.18)

and applying the parabolic Lp-regularity theorem (see, e.g., [LSU67]) to the equa-

tion (1.18). According to this theorem,

(1.19) kTk
p

W
(1;2)
p

([t;t�1]�
)
� CkT (0)k

p

V0
e
��t +

+ C

�
kT0k

p

W 0

0
+

Z t

0

e
��(t�s)kh(s)k

p

0;p

�

with � > 0 and [t; t� 1] � [t; 0] if t < 1.

Let us estimate the integral in the right-hand side in (1.19) by Hölder inequality,

the interpolation one and the estimate (1.6):

(1.20)

kh(s)k
p

0;p � kT (s)k
p

1;2pkv(s)k
p

0;2p � CkT (s)k
3p=4

3=2;2pkT (s)k0;2pk
p=4kT (s)k

p

0;2p �

� C1kT (s)k
3p=4

3=2;1kT (s)k
5p=4
0;2p � �kT (s)k

p

3=2;1 +C�kT (s)k
5p
0;2p
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So, it remains to estimate the last term in the right-hand side of (1.20). According

to Lemma 1.3 with q = 2p

(1.21) kT (s)k
5p
0;2p � CkT (0)k

5p
0;2pe

��s +

+ Q(kT0kW 0

0
)

�
1 +

Z
s

0

e
��(s�s1)krxT (s1)k

5=2

L1(@
)
ds1

�
�

� CkT (0)k
5p
0;2pe

��s + Q(kT0kW 0

0
)

�
1 +

Z
s

0

e
��(s�s1)kT (s1)k

5=2

3=2;1ds1

�
�

� C�

�
kT (0)k

5p
V0
e
��s +Q(kT0kW 0

0
)
�
+ �

Z
s

0

e
��(s�s1)kT (s1)k

p

3=2;1ds1

for a certain monotonic function Q and � > 0. Here we have used the fact that

p > 5=2.

The estimates (1.20) and (1.21) after simple calculations imply that

(1.22)

Z t

0

e
��(t�s)kh(s)k

p

0;pds � C�

�
Q1(kT (0)kV0)e

��t + Q(kT0kW 0

0
)
�
+

+ �

Z t

0

e
��(t�s)kT (s)k

p

3=2;1ds

and this estimate holds for every � > 0.

Inserting this estimate into the estimate (1.19) and taking into account the em-

bedding (1.4) we deduce that

(1.23) kT (t)k
p

3=2;1
� C�

�
Q2(kT (0)kV0)e

��t + Q2(kT0kW 0

0
)
�
+

+ �

Z t

0

e
��(t�s)kT (s)k

p

3=2;1ds

Applying Gronwall inequality to (1.23) and �xing � small enough we obtain that

kT (t)k
p

3=2;1 � Q(kT (0)kV0)e
��t + Q(kT0kW 0

0
)(1.24)

for a certain function Q and � > 0.

Inserting this estimate to the right-hand side of (1.19) we obtain the T -part of

the estimate (1.5). The P -part of it follows immediately now from Corollary 1.1.

Theorem 1.1 is proved.

Corollary 1.2. Let (T; P ) be a solution of (0.1). Then

kT (t)k2(1�1=p);p + kP (t)k3�2=p;p � Q(kT (0)kV0)e
��t + Q(kT0kW 0

0
+ kP0kW0

)

(1.25)

Indeed, the estimate (1.25) for the temperature component follows from (1.5) and

from the evident estimate

kT (t)k2(1�1=p);p � kT (t)kV0 � CkTk
W

(1;2)
p

([t;t+1]�
)
(1.26)

the estimate for pressure component can be deduced now using the result of Lemma

1.1.

2. Existence of solutions. Uniqueness. The attractor.

The estimates, proved in previous section, allow us to obtain the existence of

the global attractor for the problem (1.1) by using the standard arguments. For

completeness we give below the sketch of the attractor's construction.

Theorem 2.1. Let the assumptions of previous Section hold. Then the problem

(0.1) possesses at least one solution which satis�es (1.1).
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Sketch of the proof. For simplicity, we again restrict ourselves by considering only

the case where P0 = 0. The proof in general case is completely analogous. The

existence of a solution for our problem can be derived by using the Leray�Schauder

�x point principle (see for instance [HP80]) and based on the a priori estimate,

obtained in previous Section.

Leray-Schauder principle. Let D be a bounded open set in a Banach space W

and let F : D ! W be a compact and continuous operator. Further let the point

h 2 D be such that

w + sF (w) 6= h for all w 2 @D, s 2 [0; 1].(2.1)

Then the equation

w + F (w) = h(2.2)

has at least one solution in D.

In order to apply this principle to our problem we introduce the solving linear

operator for the P -equation

v(t) = LT (t) � ��
�

 +rx(��x)

�1

rx

�
T (t)(2.3)

(note that L is 0-order PDO and the inverse operator is taken with homogeneous

Dirichlet boundary conditions) and rewrite our problem as one equation

@tT ��xT = �rxT � LT; T
��
t=0

= T (0); T
��
@


= T0(2.4)

Note that if we solve (2.4) then the function P would be uniquely determined from

the P -equation.

Now we de�ne a function ~T (t) as the solution of linear problem

@t
~T ��x

~T = 0; ~T
��
t=0

= T (0); ~T j@
 = T0(2.5)

It follows from the parabolic regularity theorem that

~T 2W = W
(1;2)
p ([0; t0]�
)(2.6)

We introduce the function u = T � ~T . Then u
��
t=0

= u
��
@


= 0 and

@tu��xu = �rx(u+ ~T )L(u+ ~T )(2.7)

Applying the inverse parabolic operator P (with homogeneous boundary and initial

conditions) to (2.7) we obtain

u+ F (u) = 0(2.8)

with F (u) = P
�
rx(u+ ~T ) � L(u+ ~T )

�
.

The fact that F is compact as an operator fromW to W can be easily obtained

from the compactness of embedding (1.3) and from the parabolic regularity theorem

which implies that P : Lp([0; t0]� 
)!W .

The condition (2.1) can be veri�ed for D coincides with a su�ciently large ball

in W by using a priori estimates of previous Section. Indeed, assume that (2.1) is

violated, i.e. there exists s 2 [0; 1] and u = us, kuskW= R such that

us + sF (us) = 0(2.9)

Denoting Ts = us + ~T and making the inverse transformations with the equation

(2.9) we deduce that Ts satis�es the equation8><
>:
rx � vs = 0; vs = rxPs � s�
Ts; Ps

��
@


= 0

@tTs �rx � (rxTs � Tsvs) = 0; Ts

��
@


= T0

Ts

��
t=0

= T (0)

(2.10)
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which coincides with the problem (0.1) with � replaced by s�. It is not di�cult

to verify that all estimates of previous section are in fact uniform with respect to

s 2 [0; 1], consequently, Theorem 1.1 implies that kTskW� K for every solution of

(2.10) and therefore

kuskW� K1(2.11)

for every solution of (2.9) and every s 2 [0; 1]. Thus, if the radius R of the ball D

is large then K1 then the assumption (2.1) is valid and consequenttly the equation

(2.8) has a solution. Theorem 2.1 is proved.

Theorem 2.2. Under the assumptions of previous Section the solution (T; p) of

(0.1), constructed in Theorem 2.1, is unique.

Proof. Indeed, let (T1; P1) and (T2; P2) be two solutions of (1.1) and u(t) =

T1(t)� T2(t). Then(
@tu��xu+rxT1(t) � Lu+rxu � LT2 = 0

u

��
@


= u

��
t=0

= 0
(2.12)

Note that according to Theorem 1.1 and the embedding (1.3) krxT1(t)k0;1 � C

and kv2(t)k0;1 � C, hence multiplying (2.12) by u and integrating over x 2 
 we

obtain that

(2.13)
1

2
@tku(t)k

2
0;2 + krxu(t)k

2
0;2 �

� Ckrxu(t)k0;2ku(t)k0;2 +CkLuk0;2kuk0;2 � C1ku(t)k
2
0;2 +

1

2
krxu(t)k

2
0;2

Here we have used the fact that kLuk0;2 � Ckuk0;2.

Applying the Gronwall inequality to (2.13) we prove that u � 0. Theorem 2.2 is

proved.

Corollary 2.1. For every �xed T0 2W
0
0 the equation (0.1) generates a semigroup

St : V0 ! V0 by formula T (t) = StT (0)(2.14)

Moreover, arguing as in the proof of Theorem 2.2 we obtain that

(2.15) kStT1(0) � StT2(0)k
2
0;2 +

Z
t+1

t

krxStT1(0)�rxStT2(0)k
2
0;2dt �

� Ce
KtkT1(0) � T2(0)k

2
0;2

Remark 1. Since the value P (t) for a given t can be calculated if we know T (t)

for the same t then we will construct the attractor only for the T -component of the

solution (T; P ) of the problem (0.1).

Now we are in position to prove the existence of the attractor for the semigroup

St, de�ned by (2.14). To this end we recall �rst the de�nition of the attractor and

some su�cient conditions for it's existence (see [BV89] for details).

De�nition 2.1. The set A is called the attractor for a semigroup St acting in

Banach space V0 if the following conditions hold:

� A is compact in V0;

� A is strictly invariant, i.e., StA = A for t � 0;

� A is the attracting set for the semigroup St in V0, i.e., for every bounded

B � V0 and for every neighborhood O(A) of the attractor A there exists

T = T (B) such that
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StB � O(A); for t � T(2.16)

Proposition 2.1 (see [BV89]). Let the operator St : V0 ! V0 for every �xed

t � 0 have a closed graph, i.e. the set fu; Stu; u 2 V0g is closed in V0 � V0. Fur-

ther, assume that there exists a compact attracting set K �� V0 of St in V0. Then

the semigroup St possesses an attractor A � K. Moreover, it has the following

structure:

(2.17) A =
�
� 2 V0 : 9u(s), s 2 R, such that u(0) = �,

sup
s2Rku(s)kV0 <1, and Stu(s) = u(t+ s), t 2 R+, s 2 Rg:

Theorem 2.3. Let the assumptions of Section 1 hold. Then the semigroup St,

de�ned by (2.14), possesses the attractor A in the space V0 = W
2(1�1=p);p(
) \

fT
��
@


= T0g.

Proof. According to Proposition 2.1 it is su�cient to verify the graph's close-

ness and the existence of compact attracting set . The closeness of the graph for St
follows immediately from the fact that St is continuous for every �xed t (according

to Corollary 2.1). Hence we should check only the existence of compact attracting

set.

Note for the �rst, that according to (1.25) the set

B0 = fu 2 V0 : kukV0 � Q(kT0kW 0

0
+ kP0kW0

)g(2.18)

is an absorbing (and consequently attracting) set for the semigroup St. But this

set is not compact hence we consider a new set B1 = S1B0.

Lemma 2.1. The set B1 is precompact in V0.

Proof. Let u0(x) be the solution of the Laplace equation

�xu0 = 0; u0

��
@


= T0 � W
2�1=p;p(@
)(2.19)

Then, according to elliptic regularity theorem (see [Tem80]), u0 2W
2;p(
). Let us

introduce also the function u(t) = t(T (t) � u0). Then(
@tu(t) ��xu(t) = h(t) � StT (0)� trxStT (0) � LStT (0)� u0

u
��
t=0

= 0; u
��
@


= 0
(2.20)

Let T (0) 2 B0. Then due to (1.5) and (1.3)

kh(t)k0;1 � Q1(kT0kW 0

0
+ kP0kW0

)(2.21)

Applying now the parabolic Lq-regularity theorem to the problem (2.20) with q > p

we obtain that u 2 W
(1;2)
q ([0; 1]�
) and

kuk
W

(1;2)
q ([0;1]�
)

� Q2(kT0kW 0

0
+ kP0kW0

)(2.22)

and consequently, the set S1B0 � u0 is bounded in W
2(1�1=q);q(
). Since u0 2

W
2;p(
) and q > p then B1 = S1B0 is precompact in V0. Lemma 2.1 is proved.

Thus, we have constructed the absorbing set B1 for the semigroup St which is pre-

compact in V0. Taking the closure of this set in V0 we obtain the compact absorbing

(and consequently attracting) set for St. Theorem 2.3 is proved.
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3. The dimension of the attractor: upper bounds.

In this ection we prove that the attractor A constructed in previous Section

has �nite Hausdor� dimension. For the reader's convenience we recall shortly the

de�nition of the Hausdor� dimension and some simple properties of it.

De�nition 3.1. Let X be a compact set in metric space H. Then for any " > 0,

d � 0 Hausdor� (d; ")�measure is de�ned to be the following number:

�H (X; d; ") = inff

1X
i=1

r
d

i
: X � [1i=1B

r
i

x
i

; jrij < "g(3.1)

B
ri
xi

means a ball of radius ri centered in xi 2 H and the in�num is taken over all

coverings of the set X.

The Hausdor� d-measure �H (X; d) of X and the Hausdor� dimension dimH(X)

is de�ned to be the following numbers:(
�H (X; d) = sup

">0 �H (d; ") 2 [0;1]

dimH (X) = inffd : �H(X; d) = 0g 2 [0;1]
(3.2)

A detailed study of the concept of Hausdor� dimension is given for instance in

[Tem80].

Proposition 3.1. The following properties of Hausdor� dimension can be easily

reduced from De�nition 3.1:

1. Let X1; X2 � H and let X1 � X2. Then

dimH(X1) � dimH (X2)(3.3)

2. Let X be a Lipschitz manifold in H with dimension N . Then

dimH (X) = N(3.4)

3. Let L : H !H1 be a Lipschitz mapping ( H;H1 are metric spaces). Then

dimH(L(X)) � dimH (X)(3.5)

It is not di�cult to prove (using (3.3)) that the dimension A in V0 coincide with

it's dimension in L2(
)

dimH (A; V0) = dimH(A; L
2(
)(3.6)

So, we estimate below the dimension of the attractor in a more simple space L2(
).

To this end we need the following de�nition

De�nition 3.2. A map S : A ! A where A is a subset of certain Banach space X

is called uniformly quasidi�erentiable on A if for any x 2 X there exists a linear

operator S0(x) : X ! X (quasidi�erential) such that

kS(x + v) � S(x) � S
0(x)vkX = o(kvkX )(3.7)

holds uniformly with respect to x 2 X, x+ v 2 X.

The estimation of the dimension of the attractor A is based on the following propo-

sition.

Proposition 3.1 [Tem80]. Let St be a semigroup in a certain Hilbert space H and

let A � H be a compact strictly invariant set of this semigroup (StA = A). Let us

suppose also that St is uniformly quasidi�erentiable on A for any �xed t and the

following inequality holds for some T > 0

!d(A) = sup
x2A

!d (S
0
T (x)) < 1(3.8)
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where !d(L) � k�dLk�dH is the norm of d-th exterior power of the operator L in

Hilbert space �dH (see [Tem80]). Then the Hausdor� dimension of the set A is

�nite in H. Moreover,

dimH(A;H) � d(3.9)

Lemma 3.1. Let the assumptions of Section 1 hold. Then the semigroup St,

de�ned by (2.11) is uniformly quasidi�erentiable on the attractor A and it's qua-

sidi�erential �(t) = (S0(t)T (0))� is a solution of the equation of variations for the

problem (2.4)(
@t�(t) = �x�(t) �rxT (t) � L�(t) �rx�(t) � LT (t) � LT (t)�(t)

�
��
t=0

= �; �
��
@


= 0
(3.10)

The proof of Lemma 3.1 can be obtained by standard reasonings (see for instance

[EZ99] for this proof in much more complicated situation).

Thus, to estimate the dimension of the attractor it remains to estimate d-th

exterior powers of the solving operator for the problem (3.10).

Proposition 3.2. Let the assumptions of Section 1 hold. Then

!d(S
0
t(T (0))) � e

R
t

0
Tr

d
fL

T(s)gds(3.11)

where T (t) is a solution of (1.1) with T (0)A, LT is de�ned in (3.10) and Trd means

a d-dimensional trace of the upper semibounded linear operator L, i.e.

Trd(L)� supf

dX
i=1

(Lvi; vi) : kvik0;2 = 1 ; i = 1:::d; (vi; vj) = 0 for i 6= jg(3.12)

The proof of this Proposition can be found for instance in [Tem80].

Thus, Proposition 3.2 reduces the problem of estimating the dimension of A to

the estimating the traces Trd(L ) for all  2 A. To this end we need the following

Lemma.

Lemma 3.2.Let  (x) 2 A. Then

k k0;1 � kT0k0;1(3.13)

Indeed, according to (2.17), there exists a solution T (t) de�ned for all t 2 R of

the equation (2.4) such that T (0) =  Applying the maximum principle to this

equation now we obtain the estimate (3.13).

Remark 3.1. Note that the upper bounds of the C-norm of the attractor A�,

given by (3.13) depends only on kT0k0;1 and independent of P0 and �.

Assume that  2 A and u 2W
1;2
0 (
) then

(3.14) (L u; u) = �krxuk
2
0;2 � (rx � Lu; u)�

� (rxu � L ; u) = �krxuk
2
0;2+ ( ;Lu � rxu) =

= �krxuk
2
0;2 + ( ;rxPu:rxu) � ( ; �
u;rxu) �

� �krxuk
2
0;2 + kT0k0;1krxuk0;2 (krxPuk0;2 + �kuk0;2)

Here we have used the fact that rxL � 0 and the estimate (3.13). Recall that the

function Pu satis�es the equation

�xPu = �
 � rxu; Pu

��
@


= 0(3.15)



LONG-TIME BEHAVIOUR OF THERMOCONVECTIVE FLOW 11

Multiplying (3.15) by Pu and integrating over x 2 
 we obtain that

krxPuk
2
0;2 = �(u; 
 � rxPu)(3.16)

Since j
j = 1 then (3.16) implies that krxPuk0;2 � �kuk0;2. Inserting this estimate

into (3.14) we obtain �nally

(3.17) (L u; u) � �krxuk
2
0;2 + 2�kT0k0;1kuk1;2kuk0;2 �

� �
1

2
krxuk

2
0;2 + 2 (�kT0k0;1)

2
kuk20;2

Now we are in position to formulate and prove the main Theorem of this Section.

Theorem 3.1. Let the assumptions of Section 1 hold and let d 2 N such that

1

2

dX
i=1

�i > 2d (�kT0k0;1)
2

(3.18)

where �i -eigenvalues of the Laplace operator with Dirichlet boundary conditions.

Then

dimH (A; L
2(
)) < d(3.19)

Proof. Indeed, let fuig
d

i=1 be the orthonormal system in L
2,  2 A. Then, ac-

cording to (3.17) and min-max principle

(3.20)

dX
i=1

(L ui; ui) � �
1

2

dX
i=1

krxuik
2
0;2 + 2d (�kT0k0;1)

2
�

� �
1

2

dX
i=1

�i + 2d (�kT0k0;1)
2
< 0

Thus, due to Propositions 3.1 and 3.2

dimH (A; L
2(
)) < d(3.21)

Theorem 3.1 is proved.

Corollary 3.1. As known (see [RS82])

C1k
2=n � �k � C2k

2=n(3.22)

and consequently

dimH(A; L
2(
)) � C (�kT0k0;1)

n
(3.23)

Remark 3.2. Making the varibale changing T ! T � ÆT0=2, where ÆT0 =

maxT0�minT0 and arguing as before that the estimates (3.18) and (3.23) remains

valid with ÆT0 instead of T0. Note also that our upper bound for the dimension of

the attractor is independent on P0.
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4. The dimension of the attractor: lower bounds.

In this Section we present the lower bound for the dimension of the attractor,

constructed in Section 2. For simplicity we restrict ourselves to the case n = 2. The

general case n > 2 can be considered analogously. As usual, the lower esiamates

for this dimension are based on considering the appropriate equilibria, estimating

it's instability index, and using the following abstract theorem (see e.g. [BV89],

[Tem80], [Hal87])

Theorem 4.1. Let St : V0 ! V0 be an abstract C1-semigroup in a Banach space V0
(i.e. St 2 C

1(V0; V0) for every 2 R+) which posesses an attractor A in V0. Assume

also that there exists an equilibria z0 of St such that the spectrum of the derivative

Dv0S1(z0) is discrete (at least outside of the unitary cirle) and the instability index

N (z0) is �nite. Then

dimH(A) � N (z0)(4.1)

We are going to apply this theorem for our semigroup St, which corresponds to the

problem (0.1). Note that the di�erentiability of St can be proved in a standard way

(see e.g. [BV89] or [EZ99]), hence it remains to �nd the appropriate equilibria and

compute it's instability index.

We realize this program only for a particular choice of the domain 
 = [0; 1]�

[0; L] with periodic boundary conditions with respect to x2 (i.e. we will consider

the problem (0.1) on surface of a cylinder with Dirichlet boundary conditions on

the origins of the cylinder).

It is not di�cult to verify that

~P0(x) =
�

2
x
2
1;

~T0(x) = x1(4.2)

is a homogeneous with respect to x2 equilibria point of the problem (0.1) with


 = (1; 0); T
��
x1=0

= 0; T
��
x1=1

= 1; P
��
x1=0

= 0; P
��
x1=1

= �=2(4.3)

Note also that the equilibria point (4.2) satisies

~v0(x) = rx
~P0 � �
rx

~T0 � 0(4.4)

Let us consider now the linearization of the problem near this equilibria point and

let 	, w and � be the pertrubations of ~T0, ~P0 and ~v0 correspondingly. Then the

linearized system has the form8><
>:
@t	 �rx(rx	) + ~T 00(x1)�1 = 0;

�xw = �@x1	; �1 = @x1w � �	

	
��
x1=0

= 	
��
x1=1

= T

��
x1=0

= T

��
x1=1

= 0

(4.5)

Solving the second equation of (4.5) we obtain that

w = ��(��x)
�1
@x1	(4.6)

where (��x)
�1 means the inverse to the Laplacian with homogeneous Dirichlet

conditions on the origins of the cylinder 
. Consequently

�1 = ��
�
1 + @x1(��x)

�1
@x1

�
	(4.7)

and the problem (4.5) can be rewritten in the following form

@t	 = L�	(4.8)

where

L� = �x + �
�
1 + @x1(��x)

�1
@x1

�
(4.9)
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Thus, our main task now is to estimate the instability index for the operator (4.9)

(i.e. to estimate the number of eigenvalues of it which belong to the right halfplane).

The following simple lemma is of fundamental signi�cance in this connection.

Lemma 4.1. The operator (4.9) with the domain D(L�) := W
2
2 (
) \ f	

��
x1=0;1

=

0g is selfadjoint in L2(
).

The assertion of Lemma 4.1 can be veri�ed in a standard way.

Since L� is selfadjoint then it's spectrum is real and we can apply the min-max

principle in order to estimate it's instabiltity index.

Lemma 4.2. Assume that we found functions f�ig
N

i=1 in such a way that

(L��i; �j) = 0; if i 6= j and (L��i; �i) > 0(4.10)

Then the instable index N (�) � N (L�) � N .

The assertion of this Lemma is a straightforward corollary of the min-max principle.

Indeed if we consider the space VN spanned by functions �i then (4.10) implies that

(L��; �) > 0 for every � 2 VN , � 6= 0(4.11)

and consequently N (�) � N .

Theorem 4.2. The unstable index of L� possesses the following estimate:

N (�) � C1��C2; Ci > 0(4.12)

Proof. According to Lemma 4.2 it is su�cient to �nd the system which satis�es

(4.10) (with a su�ciently large number of functions).

We will seek them in the following form:

�(x) = �n(x1)e
i
2�n
L
x2(4.13)

Lemma 4.3. Let � be de�ned by (4.13) and let n 6= 0 n 2Z. Then

L�� =
�
L
(n)
�
�n

�
e
ipnx2(4.14)

where pn = 2�n
L

and

L
(n)
�

=
d
2

dx
2
1

� p
2
n
+ �

�
1 +

d

dx1
(p2
n
�

d
2

dx
2
1

)�1
d

dx1

�
(4.15)

The assertion of this Lemma is a result of direct computations.

Since the functions eipnx2 are orthogonal for a di�erent n, then it is su�cient

to �nd systems of functions whcih satis�es (4.10) only for the one dimensional

operators (4.15).

Lemma 4.4. Let �n;k(x1) = �k(x1) = sin(4�kx1) and n 6= 0, k 2ZThen,

L
(n)
� �k = �n;k�k �

4�k

(4�k)2 + p2n

R
0
n(x1)(4.16)

where

�n;k = �
�
(4�k)2 + p

2
n

�
+ �

p
2
n

(4�k)2 + p2
n

(4.17)

and the function Rn(x1) is a solution of the following boundary problem:(
(p2
n
� d

2

dx21
)Rn = 0

Rn(0) = Rn(1) = 1
(4.18)

The assertion of this lemma is also a result of direct computations.
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Note now that the function Rn(x1) is a symmetric with respect to x1 = 1=2,

consequently R0
n
is antisymmetric with respect to x1 = 1=2. Moreover the functions

�k(x1) are also symmetric with respect to x = 1=2. Consequently,

(Rn; �k) = 0(4.19)

for every n; k 2Z, n; k 6= 0.

Corollary 4.1. For every k; k0 2 N , n 2Znf0g

(L(n)
�
�k; �k0) = �n;kÆk;k0(4.20)

where Æk;k = 1 and Æk;k0 = 0 if k 6= k
0.

Indeed the formula (4.20) follows from the expression (4.16) and from the fact

(4.19).

Lemma 4.5. The unstable index N (�) possesses the following estimate

N (�) �M (�) � #f(n; k); n 2Znf0g; k 2 N : �n;k > 0g(4.21)

Indeed, it follows from Lemma 4.3 and from Corollary 4.1 that the functions

sin(4�kx1)e
ipnx2

; (n; k) 2M (�)(4.22)

satisfy all assumptions of Lemma 4.2.

To complete the proof of the theorem we need the following combinatorical result.

Lemma 4.6. The number M (�) possesses the following estimate:

M (�) � C1�� C2(4.23)

for the appropriate positive constants Ci.

The assertion of the lemma is more or less evident and so we omit it's proof.

The assertion of Theorem 4.2 follows now from Lemmata 4.5 and 4.6. Theorem

4.2 is proved.

Combining the estimate (3.23) with Theorems 4.1 and 4.2 we obtain the following

result.

Theorem 4.3. Let the assumptions of Theorem 4.2 hold. Then the dimension of

the attractor A = A� of the problem (0.1) possesses the following estimates:

C1� �C2 � dimH A� � C3�
2(4.24)

5. The numerical method

The numerical examples are carried out by the pdelib/sysconlaw code [FKL98,

Fuh00] for the solution of nonlinear systems of viscous conservation laws.

5.1. The �nite volume discretization ansatz. We will describe the �nite vol-

ume scheme for the following class of problems: We look for a vector valued function

u(x; t) : 
� [0; T ]! R
� such that

@tb(u) +r � q(u) = 0

q(u) = �k(u)ru+ v(u):
(5.1)

Here, b(�); k(�) : R� ! R
� are vector valued functions depending on vectors, and

q(�);v(�) : R�! R
�d are � � �-tensor valued functions. Using a Voronoi box based

�nite volume ansatz, we can base our discretization on a simplicial tesselation of

the domain 
 admitting a conforming Delaunay property [BE92]. By joining the

circumcenters of the simplices, we de�ne the so-called Voronoi boxes as the balance

volumina which are now aligned to the nodes of the tesselation. For the two-

dimensional case, the data involved are well illustrated in 5.1 and explained in

table 1. Please see [Mac53] for the appearantly oldest reference to the method, and
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ij = !i \ !j ; i 6= j interior Voronoi box faces

ni outward unit normal to the Voronoi box boundary

nij; i 6= j outward unit normal to the interior Voronoi box

face

hij = jxi � xj j; i 6= j edge lengths

Table 1. Geometrical data used .

[FL98] for a more thorough explanation of the scalar case of the approach used here.

Please just note that the whole description can be made dimension independent.

Introducing the vector valued �ux functions

g(h; u; v) = (g1(h;u1 : : :u� ; v1 : : : v�) : : : g�(h;u1 : : : u�; v1 : : : v�))

which should be approximations to the cell-to-cell �uxes generated by the projection

of the main part of our system onto the mesh edges, we can approximate the balance

of the l-th equation of (5.1) over the space-time cell !i � (tn; tn+1) by:

0 =

t
n+1Z
tn

Z
!i

�
@bl(u)

@t
+r � ql � fl

�
d!d�

=

Z
!i

�
bl(u

n+1)� bl(u
n)� fl

�
d! +

Z
@!i

ql � n ds

�j!ij
�
bl(u

n+1
i

)� bl(u
n

i ) � fl

�
+ �

n
X

j2nbN (i)

j
ij j

hij
g
l(hij; u

n+1
i

; u
n+1
j

)

(5.2)

The problem now is characterized by the mass terms b and �ux function g cor-

i
j

k

!i


ik

nij


ij

nfij

Figure 5.1. Geometrical coe�cients of the �nite volume scheme

responding to each material. The approximation chosen corresponds to an implicit

Euler scheme. An existence and stability analysis of this scheme for the scalar case

has been carried out in [FL98]. To approximate system 0.1, we �rst show that it

�ts into the problem class described here. Let u = (P; T ). Then we have

b1(P; T ) = 0

b2(P; T ) = T
(5.3)
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Figure 5.2. Ra=25: Stable equilibrium solution. Temperature

at (150; 75) and isothermes at three stages of the solution process.

and

q1(P; T ) = rP � �
T

q2(P; T ) = rT � Tq1(P; T )
(5.4)

Correspondingly, we chose the following �ux functions

g1 = g1(h; (p1; T1); (p2; T2)) = = p1 � p2 �

(
�T1
 �h; 
 � h > 0

�T2
 �h; 
 � h < 0

g2(h; (p1; T1); (p2; T2)) = T1 � T2 +

(
T1g1; g1 > 0

T2g1; g1 < 0

and the mass functions from (5.3). This �rst oder upwinding ansatz characterized

by the sign dependent terms in the de�nition of the �ux functions is aimed at a

temperature maximumprinciple which we believe is an essential physical property.

5.2. The solution method. The solution method is described only shortly. In

each time step, we have to solve a system of nonlinear equations. This is done using

Newton's method [KA59] using an a�ne invariant monotonicity test [DH79]. In

the presented numerical examples, we use the direct sparse matrix solver PARDISO

[SGF00], and we solved the nonlinear equations up to machine precision. In general

we use �xed space grids and an adaptive time step control scheme which is aimed

at holding the L1 norm of the change of the solution constant over all timesteps.

There are two exceptions from this scheme. First, this scheme appears to be to

insensitive to catch the periodic behaviour described below, so we had to introduce

a maximal timestep. Second, timesteps are lowered if Newton's method fails for a

given timestep.

5.3. The numerical examples. To be consistent to the theoretical investigations

in the present paper, we modify the classical Horton-Rogers-Lapwoood problem

[HR45, Lap48] in such a way that we use only Dirichlet boundary conditions. The

computational domain is 
 = (0; 300) � (0; 150). On (0; 300) � 0 � @
 we pose

the Dirichlet boundary conditions p = 0; T = Tc for a given temperature Tc. On

(0; 300) � 150 � @
 we set p = T = 0. The boundary parts 0 � (0; 150) and
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Figure 5.3. Ra=50: Time periodic solution. Temperature at

(150; 75) and isothermes for two metastable patterns, and the tran-

sition period.

300� (0; 150) are glued together to yield periodic boundary conditions instead of

the no �ow boundary condition in the original problem. As an initial condition,

we take T = p = 0, perturbed by T (150; 75) = Tc. The domain is discretized by a

rectangular grid. To get a simplicial tesselation as described above, each rectangle

is subdivided into two triangles by the lower-left-upper-right diagonal. With all

other parameters �xed, we de�ne Tc directly from Ra by Tc = Ra=400:38. Here,

some more physical data are involved whose introduction would take to much space

in this paper. During our numerical experiments, we detected the following types

of regimes:

Stable equilibrium: For low Rayleigh numbers, solutions converge to the equi-

librium solution which is also reached if we perturb the initial value. See �g.

5.2.

Time periodic: A main characteristic of the time periodic regime appears to

be the existence of relatively long, stably looking states between which the

solution switches in rapid transition periods. See �g. 5.3.

Chaotic: Here, we see a time and space dependent behaviour, which with in-

creasing Rayleigh number looks more and more chaotic. See �g. 5.4.

Stable non-equilibrium: This is a non-constant in space solution which is

reached after some time. See 5.6

The behaviour of the method in dependence on the space and time grid suggests

the following hypothesis:

Hypothesis 5.1. In reality, there are only two regimes for this problem. We have

a only the stable equilibrium and the time periodic behaviour. Both other regimes

are numerical artefacts. The stable nonequilibrium solution may be due to coarse

time discretization or due to accumulation of roundo� errors on �ne time grids,

respectively. The chaotic solution may be due to a too coarse space discretization.

However, there still is another possibility:

Hypothesis 5.2. In reality, there are only two regimes for this problem. We

have only the stable equilibrium and the stable nonequilibrium behaviour. Both

other regimes are numerical artefacts. The time periodic solution is an artefact

due to accumulation of roundo� errors caused by too coarse meshes. The �ow



18 M.A. EFENDIEV, J.FUHRMANN, AND S.V.ZELIK

switches between two energetically close stationary patterns which cannot. The

chaotic solution may be due to a too coarse space discretization.

This second possibility appears to be less probable, as in the case of a box with

Neumann boundary conditions, time periodic solutions of this problem have been

found [RW91]. This poses the following general questions for further research.

The answer to these questions is essential for the understanding of applications

mentioned in the introduction.

� Is analysis able to tell which regimes really take place ?

� Hoe the meta-stable behaviour can be characterized ?

� How this behaviour will change for more realistic equations (non-Boussinesq,

temperature dependent viscosity), and for more realistic geometries and bound-

ary conditions ?

� Is an analysis of the discrete dynamics possible, can it help to detect well- or

misbehaviour of the method ?

� How the numerical method can be enabled to to re�ect the right dynamics

in a guaranteed way or at least to detect that the dynamical behaviour of

a problem cannot be resolved with the given discretization parameters. Are

classical adaptive methods with their inaccurate mass conservation between

time levels able to catch these phenomena ?

� Can attractors be calculated numerically?
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Figure 5.4. From periodicity to chaos with increasing Rayleigh

number. Typical �ow patterns and temperature logs.
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Figure 5.5. From chaos to periodicity with �ner space grids ?

Temperature at (150,75) on di�erent grids at Ra=100.
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Figure 5.6. From stationary nonequilibrium solution to period-

icity to stationary nonequilibrium ? Temperature at (150,75) for

Ra=50 on a �xed space grid with time step sizes 10,100,1000,10000

years.
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