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Donald A. Dawson and Klaus Fleischmann

Abstract. Catalytic branching processes describe the evolution of two types
of material (populations) called catalyst and reactant. The catalyst evolves
autonomously, but catalyzes the reactant. The individuals of both populations
share the features of motion, growth and death. In mutually catalytic models
however there is an additional feedback from the reactant to the catalyst
destroying completely the basic independence assumption of branching theory.
Recent results for continuum models of this type are surveyed.
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1. Introduction: Discrete models

We are dealing with large stochastic systems, we call populations, which are placed
in some space, have features of motion, growth, and death. Traditionally in branch-
ing theory, the basic assumption is that disjoint parts develop independently. This
independence assumption allows the use of a lot of mathematical tools, which has
made possible the development of a huge mathematical theory. Probabilists have
been busy with this for a long time, nevertheless research is still ongoing in this
field, and there remain many interesting problems.
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1.1. Critical binary branching simple random walk

Let us mention first one of the simplest models of this kind, the critical binary
branching simple random walk in Z2. Initially, start with a chaotic population of
particles, placed in Z2, we imagine as (possibly multiple) green points, say. We
impose two kinds of dynamics on this population, namely motion and branching.
So first of all, the particles (points) move chaotically. This means, each particle,
independently of the others, may jump with a fixed rate to one of its neighboring
sites, chosen at random (that is, with equal probability). But additionally, also
with a certain constant rate, called the branching rate, say o, each particle may
split in a critical binary fashion. This means, with an exponential clock of rate g,
it doubles, or dies, both with the same chance. As mentioned, the particles evolve
independently, in particular, this holds for newly born particles (created by the
splitting). The only dependence assumption is, that the (two) offspring start from
the same position where they had been created.

As time goes on, at some places the particles completely disappear, by the
killing aspect of the branching, and in other regions of space, the population grows
by the doubling of particles. This way clusters are formed (see Figure 1), which
move, grow, but may also disappear.

Models of this type have been studied in great detail in one or another setting,
in particular in terms of the related diffusion approximation, the continuous super-
Brownian motion, and a lot is known about them.
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FIGURE 1. Simulation picture of the critical binary branching
simple random walk (produced by Achim Klenke, Erlangen)

1.2. Imposing a random medium

The basic independence assumption, of course, is not so exciting, and one would
like to get rid of it. How to do this? A first step in this direction is to additionally
impose a random medium, thus dependencies occur by the randomness of the
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medium. In the previous model, the evolution mechanisms had been the same
everywhere in time and space. We now imagine that they might change in time and
space, even in a random way. But for simplification, we keep the rule, that given the
medium, the population evolves according to the basic independence assumptions
of branching theory, more precisely, we retain the conditional independence.

For instance, in the previous model of critical binary branching simple random
walk, we proceed as follows. We allow the branching rate o to fluctuate in time
and space. So we imagine, branching is controlled by some catalyst. In some part of
space, there might be a catalyst, which allows branching of the population, we now
call the reactant, and in other parts there might be no catalyst, and the reactant
will only move chaotically there. More precisely, the branching rate of the reactant
is assumed to be given by the amount o;(b) of catalyst at time t at site b € Z2,
and, in particular, g¢(b) might also be zero, suppressing in this case the branching
of the reactant.

So first we need a model for the catalyst 0. Why not take the previous model
in the constant medium as the catalyst?

1.3. Critical binary branching simple random walk reactant with a critical binary
branching simple random walk catalyst

In this scenario the imagined green points are now our catalyst, to which we add
an initially independent chaotic population of reactant particles thought of as red
points situated in Z2. Then both, catalyst and reactant, are assumed to perform
critical binary branching simple random walks on Z2. More precisely, the catalyst
is assumed to evolve autonomously, with branching rate which is constant in time
and space, say a constant v > 0, whereas the reactant is assumed to be controlled
by the catalyst, that is, its branching rate is given by the varying number o;(b) of
catalytic particles at the present time ¢ at the site b € Z2. The resulting model is
a simple example of a catalytic branching random walk, denoted by X?¢, say.

What long-term effect will the catalyst have on the reactant population?
Recall that at some places the catalyst o will be absent, then the reactant X¢
will only move chaotically. So outside the green clumps, we have only dispersion
of the red reactant, similarly as in the heat flow. In other regions we have a large
concentration of catalyst, giving a large branching rate for the reactant, hence
speeding up the critical branching of reactant. Thus, inside the catalytic clumps,
the huge branching rate mainly causes killing of the reactant, so holes of the
reactant are created. But at the boundary layer of the green clumps, where the
catalyst highly fluctuates, there also the reactant highly fluctuates, creating a kind
of hot spots of reactant.

1.4. Mutually catalytic critical binary branching simple random walk

The real challenge is to handle branching models with still more interaction. For
instance, concerning the previous model the natural desire would be, that both
substances catalyze each other. Let us recall that the green particles had been
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identified with the local branching rate of the red ones. But why should not con-
versely the red particles serve as the local branching rate of the green ones, instead
of the constant in time and space branching rate v so far? Then we would have
two types of matter with a true interaction. In this case, we speak of a mutually
catalytic branching random walk.

Consequently, initially we start with two chaotic substances, imagined as blue
and red points, say. They move chaotically, but, in addition, catalyze each other.
So the blues are the local branching rate for the reds, and vice versa.

What behavior do we expect in the long run? Again some clumps of materials
should occur, which could lead to a local extinction of the other substance. So we
could have some effect of separation of matter. But if a substance disappears lo-
cally, the interaction is gone locally, and the remaining population is only smeared
out in such an area. On the other hand, at the interface of both materials a lot
of activities are expected, presumably leading again to hot spots of both types,
which are expected to play a more important role than in the former one-sided
catalytic branching model.

1.5. Outline

In the remainder of this paper, models of the types described above will be made
precise. With this aim, continuum models will be used as much as possible. This,
in particular, requires replacement of the lattice space by Euclidean space, replace-
ment of the simple symmetric random walk by a Brownian motion of particles,
and passing to a high density/small particle mass limit, simultaneously speeding
up the branching rates, etc. (diffusion approzimation).

After modelling, some of the features already indicated will be expressed in
terms of theorems, and some comments concerning the methods involved are in
order.

For basic facts on superprocesses we refer to [Daw93]. Recent surveys on
catalytic processes are given in [FM99], [Kle99a], and [DF99]. A few simulation
pictures on the catalytic branching model of Subsection 1.3 are given in [FK99],
and on both, the catalytic and mutually catalytic branching model, can be found
via the home page of Achim Klenke:

http://www.mi.uni-erlangen.de/ klenke.

2. Catalytic branching

In this section we will start with the modelling of the super-Brownian catalyst,
followed by the super-Brownian reactant with a super-Brownian catalyst. For the
latter model, results on the long-term behavior and on the local structure are sur-
veyed and compared with those concerning the ordinary super-Brownian motion.

2.1. Super-Brownian catalyst o

Consider a continuous super-Brownian motion (SBM) {o;: t > 0} in R? starting
with the Lebesgue measure ¢, that is, with a uniformly smeared out mass. This
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0 is a certain continuous measure-valued diffusion process. Let us first recall the
intuitive description: Each infinitesimally small part of the population, we still
call a “particle”, moves chaotically, that is Brownian, but additionally, with an
everywhere constant rate, say v > 0, we have a critical binary splitting, also in a
diffusion limit sense.

The latter effect alone can be made precise by the following diffusion ¢ in

R+Z
d¢; = Vv G dWe, (=1, (1)

with W a one-dimensional standard Wiener process, and v > 0 a constant, the so-
called branching rate. This is the famous Feller’s branching diffusion without drift,
arising as a high density small mass speeded up limit of critical binary Galton-
Watson processes. Loosely speaking, this ( can be seen as a “zero-dimensional
super-Brownian motion”.

Adding to (1) a chaotic motion component in space, leads to the formal
stochastic equation

do(b) = 3Aa(b)dt + o@D AW0), e =1 beR  (2)

with dW;(b) a d-dimensional standard white noise. Roughly speaking, we keep
Feller’s branching diffusions, “independently” at each site b € R?, but allow the
particles additionally to move chaotically. Actually this equation makes sense rig-
orously only in dimension d = 1. Nevertheless, interpreting o.(b) as generalized
densities of measures g;(db), and applying formally It6’s formula, from (2) one can
derive the following representation of log-Laplace transition functionals:

Qr} = <Q7’77)(71’ )>7 0<r<it. (3)

Here given the populations state o, at time , a suitable test function ¢ : R? — R,
is integrated with the desired measure g;(db) at time ¢. On the right hand side of
(3), the so-called log-Laplace function v(r,a), as a function of the time variable
r > 0 and space variable a € R?, is the unique solution to the following relatively
simple diffusion-reaction equation:

—log E {exp (01, —¢)

1 1
—%U(T, a) = 5 Av(r,a) — 5 yv3(r,a), 0<r<t, a€cR% @

with terminal condition v(t—, ) =¢ > 0.

Here the Laplacian A acts on the space variable a, and reflects the chaotic motion
of particles, whereas the square term is related to the critical binary splitting, in-
dependently at each space point. Recall, the constant v > 0 is called the branching
rate.

This procedure actually indicates one possibility of a rigorous approach to
continuous SBM as the (unique in law) continuous measure-valued Markov process
o with log-Laplace transition functional (3) where the log-Laplace function v solves
uniquely the diffusion-reaction equation (4). This continuous SBM p is nowadays
counted as one of the basic models in probability theory.
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2.2. Super-Brownian reactant X?¢

Recall that this continuous SBM ¢ will serve as our rigorous description of the
catalyst. What about a related reactant which we will denote by X¢7? We want
it to also be a super-Brownian motion, but with the constant rate v replaced by
o-(dd). So first of all, in the diffusion-reaction equation (4) we replace formally the
constant y by the randomly fluctuating rate o,(da) :

f%v(n a) = %Av(r, a) — % or(da) v*(r, a), 0<r<t, acR% )

with terminal condition v(t—, ) =¢ > 0.

Consequently, we have a diffusion-reaction equation with a random coefficient in
the reaction term. The point is, that these reaction term coefficients are now even
measures o,(da). Actually, we should write more carefully %%l(a) instead of
or(da). Of course, such derivatives would be relatively harmless, if these measures
were absolutely continuous. But the super-Brownian motion g has in fact singular
states, except in dimension d = 1. Indeed, by the critical binary splitting compo-
nent within o, a lot of extinction is going on, which creates measures which are
“thin” in a sense (if d > 2). On the other hand, these measures g, (da) are well-
known to have carrying Hausdorff dimension 2 A d in any dimension d of space.
Note that these singularities of SBM fit very well to mimic situations where cat-
alysts are distributed heterogeneously in space as, for instance, enzyme catalysts
in glycolysis, see [PT88].

In any case, by this irregularity of the catalyst p, the diffusion-reaction equa-
tion (5) with random coefficients is not a standard equation. Nevertheless, it can
be handled, namely as an integral equation. In fact, if one formally integrates this
equation, in terms of the semigroup {S;: t > 0} of the heat flow, and writes the
heat flow S probabilistically as the expectation of functionals of a Brownian path
W (independent of p), then the following formal quantity will be involved:

dr / o) B(W;) = L (dr). (6)

Intuitively, one measures the time points r where a typical Brownian reactant
particle’s path W is at the position b of a catalytic particle. Such a quantity (if
meaningful) is called the collision local time Ly, of W and o. Since the o,(db)
are rather singular in higher dimensions, it is not immediately clear that this
quantity makes sense rigorously. At the first sight, one might think, Ly, exists
non-trivially only in dimension one, since two independent Brownian particles,
one from the catalyst and one from the reactant, will meet only in dimension 1.
But we have to take into account, that ¢ describes a whole cloud of particles,
which results after taking a diffusion limit. So g is a more involved object than a
countable number of moving and branching Brownian particles. Recall that each
o¢ has carrying Hausdorff dimension d A 2.

Actually, the random measures Ly, 4 (dr) make sense (via a regularization
procedure) and are non-trivial if and only if d < 3 ([BEP91], [EP94]). In higher
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dimensions, they degenerate to 0; then a typical Brownian reactant particle W
does not meet the thin catalyst o, that is, it goes through it without hitting. More
precisely, the occupation density of W at o is 0, if d > 3.

So from now on we want to restrict to dimensions d < 3. And in these dimen-
sions, a super-Brownian reactant X¢ with catalyst o really exists as a continuous
measure-valued Markov process whose log-Laplace transition functional can be ex-
pressed in terms of a log-Laplace function which is the unique solution (in a mild
sense) of the diffusion-reaction equation (5) with random coefficients. For simpli-
fication, let’s start with a uniform initial state: X§ = ¢, the Lebesgue measure
on R%. Detailed statements follow in the next theorem taken from ([DF97a]). Let
(W, 1,4, 7 > 0, a € RY) denote a standard Brownian motion in R* (independent
of p), and p the related heat kernel:

lal?

ps(a) = (2ms)~Y? exp [f o5 }, s>0, acRY (7

corresponding to the heat flow semigroup S.

Theorem 2.1 (non-degenerate existence of X?). Assume d < 3. Given the super-
Brownian catalyst o with oy = {, the super-Brownian reactant X© with X§ =
exists non-trivially as a (time-inhomogeneous) continuous measure-valued Markov
process {Xf : ¢t > 0}, with log-Laplace transition functional

flogE{exp(Xf,f@ ’X;‘:’} = <X;f—’,v(r, )>, 0<r<t, (8)

where, for each suitable test function ¢ > 0, the log-Laplace function v is the
unique solution of the integral equation

1 t
v(rya) = I, 4 {@(Wt) - 5/ Liw,g)(ds) v2(s, Wi)l, 0<r<t aecR. 9)

X2 has the heat flow as its expectation:
E{X?|XE} = S, X¢, 0<r<t, (10)

and, for test functions 1 and s, as well as 0 < r < t1,ty, the covariance is
given by

Cov {(X{ 1) (XL p2) | X2}

L1 AL2 (]_]_)
= / dS/ Qs(da)/ db psfr(b - CL) Stlfscpl (b) St2*5(102 (b) .
r R4 R4

On the other hand, if d > 4, the solution v to (9) degenerates to the heat
solution (since Ly,e = 0), hence X ¢ from (8) degenerates to the heat flow. Recall
that by a formal differentiation (9) reduces to (5). Let us skip further details on
the construction of X¢.

This reactant process X¢ has interesting features, and it is now relatively
well understood.



8 Donald A. Dawson and Klaus Fleischmann

2.3. Long-term behavior of X?

After construction of X2, first the long-term behavior was studied. The following
theorem is a combination of results taken from [DF97a, DF97b, EF98, FK99,
FKO00]. Recall that we assumed for simplicity uniform initial states oo = ¢ = X§.

Theorem 2.2 (persistent convergence). In all dimensions (d < 3), we have persis-
tent convergence in law:

X8 T% some X2 with EX% = /. (12)
Additionally,
¢, if d=1,
Xe = { ¢l with Var¢ >0, if d=2, (13)

has countably infinite local biodiversity, if d = 3.

Here countably infinite local biodiversity means, that given p, the random
measure X2 does not have a deterministic component, and, in the cluster repre-
sentation of the infinitely divisible random measure X£ , infinitely many clusters
contribute to each finite region ([FK00]).

Consequently, in all dimensions, a limit population X2 exists, and has full
expectation ¢. Moreover, in dimension one the limit population is uniform and
deterministic, since the catalytic clumps disappear locally; in d = 2 the limit X2
is still uniform but with a random intensity ¢, since the large but rare catalytic
clumps come back from time to time, creating some randomness even in the limit;
whereas in d = 3 (where, more precisely, the catalyst is assumed to be in equi-
librium from the beginning), X2 exhibits countably infinite local biodiversity
(genetic abundance). We mention that in the annealed model (if one mixes the
laws of the reactant with respect to the catalyst’s law), the variance Var ¢ of the
random intensity ¢ is even infinite.

Let us stress that in all three dimensions the reactant X¢ behaves quite
differently from the ordinary SBM o (catalyst). In fact, as well-known,

or % some o, for all d > 1, (14)
however
B 0, if d<2, (15)
G0 = steady state with finite local biodiversity, if d > 3.

Let us mention that it was a matter of dispute for a while whether in dimen-
sion two the mean will be preserved for the reactant X¢ at T = oo (persistence),
since here huge catalytic clumps come back again and again to a finite window of
observation causing an extreme killing of reactant there.
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2.4. Local structure of the reactant X? off the catalyst

In contrast to the usual SBM p, the reactant X¢ always has absolutely continuous
states, and moreover in dimension two and three the density functions are almost
everywhere extremely smooth and actually satisfy the heat equation ([FK99]):

Theorem 2.3 (smooth density field). For d = 2,3, given o,
X{(db) = &(b)db,  t>0, (16)
where, with probability one, &2 is Lebesgue almost everywhere a C™—function (in

both variables t and b) and satisfies the heat equation (both off the catalyst o,
which lives on a Lebesgue zero set in Ry x R%).

Of course, these heat solutions £¢ might be rather irregular at the boundaries
where the catalyst o acts. Note that this theorem does not tell anything about the
boundary layer behavior. In particular, it does not explain the occurrence of hot
spots at the interface of reactant and catalyst seen in the mentioned simulations.

2.5. On the hot spots

One possible way to gain information about the hot spots is to study the collision
local time L, xe) between catalyst and reactant, which measures the times r
where o, and X¢ are at the same sites a € R? (in the sense of occupation densi-
ties). Lo xe] exists as a limiting measure on Ry x R? in a non-trivial way in all
dimensions. The approximating measures are formed by means of the heat kernels
p from (7). This is part of the following theorem, taken from [DF98].

Theorem 2.4 (collision local time L, xo))-

(a) (non-trivial existence): In d < 3, for almost all (o, X?), the collision
local time

Lioxe (dfral) = lgg dr g (d) [ XE@) (=) (a7
between o and X exists non-trivially.
(b) (spatial marginal collision densities): In d =2 and for T > 0,
Lo, xe] ([O,T}, db) is absolutely continuous a.s. (18)
(c¢) (random ergodic limit): In d = 2,

T Lo (0.7)% () 2 ne0), (19

where with respect to the annealed law, n has expectation one and a vari-
ance in (0,00).

Consequently, besides existence in all dimensions, for d = 2 the spatial mar-
ginal measures are even absolutely continuous. Finally, in the long run one has a
kind of ergodic limit, but with some additional noise: The averaging (in d = 2)
does not lead to a deterministic quantity, the expectation ¢. Roughly speaking,
in the time average, the hot spots are everywhere present, and they grow in all
scales. Often this is called a diffusive behavior, see, for instance, [CG86).
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Remark 2.5 (open problem). The L?~methods used in [DF98] to derive the d = 2
results of (b) and (c), do not apply in three dimensions, and the behavior for d = 3
remains open. &

We mention that the collision local time L, x¢ is also important for the
formulation of the martingale problem for the reactant X¢ (see [DF98]).

2.6. Long-term behavior for finite reactant populations

So far we assumed that X¢ starts from the Lebesgue measure. But also in the
case of finite reactant populations the reactant process X¢ exists for almost all
o0, and has interesting features different from the ordinary super-Brownian motion
0. Recall that for finite initial measures gg, the total mass process t — | o :=
0:(R?) is Feller’s branching diffusion (1) without drift. Hence, with probability
one,

or = 0 for some T < co. (20)

In contrast to this finite time extinction of the ordinary super-Brownian motion
0, from [DF97a] and [FK00] we have the following results.

Theorem 2.6 (finite reactant populations). Assume that 0 < || X§|| < co. Then
for almost all o (with g9 ={), the following statements are true.

(a) (persistent convergence): If d =1, then
IXEI| = some || XE]I (21)

where | X& || has full expectation E|X§|| and a variance in (0, 00).
(b) (long-term extinction): If d =2,3, then

X8 - 0 s (22)

(c) (finite time survival): If d =3 and X§ #0, then
X7 #0 forall T < oo, a.s. (23)

In fact, in dimension 1, an intrinsic reactant particle has only a finite time
of interference with the catalyst ([DF97al), which explains at least heuristically
the persistent convergence in (a). In d = 2,3, however, the total collision local
time Lyy,q(R4) of an intrinsic reactant particle with path W and the catalyst
o0 is infinite almost surely ([FK00]), which intuitively makes plausible the long-
term extinction as in (b). This can actually be turned into a rigorous proof by
exploiting the fact that, via an individual time change, Feller’s branching diffusion
is “embedded” in the reactant’s total mass process ([DFMO00]). Finally, in d = 3,
the finite time survival of (c) is caused by some instantaneous propagation of
reactant matter property ([FK00]), which is based on the fact that lines are polar
for the support of three-dimensional ordinary super-Brownian motion.
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Remark 2.7 (open problem). The latter fact raises the interesting question whe-
ther or not the complement of two-dimensional ordinary super-Brownian motion
is connected: A positive answer would extend the finite time survival of (¢) also to
d=2. &

3. Mutually catalytic branching

Before we will turn to a mutually catalytic model, let us have an alternative look
at the model we just dealt with.

3.1. Heuristic writing of (o, X?)
Symbolically, the previous model can be described by the following system of
stochastic evolution equations:

catalyst: doy = = Ao dt + /yor AW},

1
2 (24)

1
reactant:  dX? = 3 AXEdt + /oy X2 AWE,

where the dWW* are independent space-time white noises. In fact, the first of these
equations is a repetition of (2). Recall, the Laplacian A stands for the chaotic
motion, so the catalytic measures are smeared out, whereas the root term reflects
the critical binary branching of catalyst, in fact in the diffusion limit sense. The
second equation in (24) is the symbolic counterpart concerning the reactant: the
constant branching rate « is simply replaced by the measure-valued path p.

Clearly, these symbolic equations (24) can be turned into martingale prob-
lems, which indeed can successfully be handled. In fact, for the reactant case, the
collision local time L, x o) of Theorem 2.4 occurs ([DF98]) instead of the suspicious
product g, X7 of generalized densities in (24).

Altogether, one has 2 substances, the first one, the catalyst, is autonomous,
whereas the second one, the reactant, is catalyzed by the first one. Sometimes
such situation is also called a “one-way interaction”. However we now want the
two substances to catalyze each other. A formal symmetrization of the previous
model (o, X2) would be a pair X = (X!, X?) of processes satisfying

) 1 . i
dXj = S AXjdt +\/X}XPawi, =12, (25)

(which was proposed by Carl Mueller years ago, as remarked in [DP98§]).

At the first sight, there is a serious mathematical problem: How to make sense
of such a model (25)7 The main obstacle is, that the basic assumption of branching
theory is lost, namely the branching property: In the earlier model (o, X?) we
had an independent evolution of disjoint reactant parts, given the catalyst. And
this basic conditional independence assumption was the source for the log-Laplace
calculus, say. All this is gone in such type of a model X = (X LX 2) . In particular,
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one loses the very useful connection to diffusion-reaction equations. In other words,
a completely new mathematical approach is needed.

3.2. Mutually catalytic simple super-random walk X on Z¢

After some years of struggle, [DP98] succeeded in constructing such a mutually
catalytic model, in fact, first of all in a discrete space setting. To make this precise,
we call a function f defined on Z¢ tempered, if

1£lx = D [f(®)] e M < oo forall A>0. (26)

bezd

Topologize the set Miem = ./\/ltem(Zd) of all non-negative tempered functions
(considered also as measures) by

dg\e/lm(fvg) = ZQ_n (Hf _gul/n A ]-)a fag S Mtem~ (27)

n=1

Theorem 3.1 (existence of X on Z%). On the lattice space Z¢ of each dimension
(d > 1), the mutually catalytic simple super-random walk X = (XI,XQ) exists:
To each x = (xl,xQ) € M2 there is a weakly unique continuous M2, ~valued

tem

solution X = (Xl, X2) to the following system of stochastic equations

) 1 ) )
dXi(b) = 5 AX;(b)dt + \/ Y XE(b) X2(b) dWi(D), beZ? i=1,2, (28)

satisfying Xo = x, where {W'(b): be 74, 0= 1,2} are independent Wiener
processes, and v > 0 s a constant, the so-called collision rate.

In other words, in this model the motion of “particles” is the simple random
walk on Z%, in (28) expressed by the discrete Laplacian A. On the other hand, the
noise is modelled by independent Wiener processes. Thus, first of all, independently
at cach space site b one has Feller’s branching diffusions without drift [as in (1)],
but “additionally” with a rate controlled by the local concentration of mass of the
opposite substance.

A solution to (28) can be constructed by standard methods as in [SS80], for
instance. For uniqueness of solutions however, as stressed in [DP98], a self-duality
property was essentially used, recently established in [Myt98].

So first of all, such mutually catalytic process X in Z? makes sense non-
trivially. Moreover, it has interesting features, which can be found in [DP98]. Some
of them are related in a sense to the previous (o, X¢) model, others are significantly
different. But we want to skip all these things at this stage, since our main interest
here concerns related continuum models that we now want to discuss.

3.3. Existence of a one-dimensional continuum version

The existence of a one-dimensional continuum version was established in [DP98],
with uniqueness also based on [Myt98]. In order to make this precise, let Ciom =
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Ctem(R) denote the set of all tempered continuous functions f defined on R, that
is continuous functions such that

[f]a := sup |f(b)’e*>‘|b‘ < oo forall A>0. (29)
beR

Topologize Ciem, by
A(fr9) == > 27" (If —glin A1), f,9 € Ciem- (30)
n=1

Theorem 3.2 (existence of X on R). The mutually catalytic super-Brownian mo-
tion X = (XI,XQ) i R ewxists: To each x = (xl,xQ) € (C+

tem)Q, there is a
weakly unique continuous (C{Zm)vaalued solution X = (Xl, X2) to the following

system of stochastic partial differential equations:

4 1 4 .
dXi(h) = FAX{(®B)dt + \/y X} () XZ(b) AW/(b), beR, i=172  (31)

satisfying Xo = x. Here dW?', dW? are independent white noises, and the con-
stant v > 0 is the collision rate.

The construction of a solution X to (31) can be provided starting from
approximations {"X: n > 1}, where "X = ("X!,"X?) has the property that
on small time periods [% , %), J = 0, given "X;/,, the two subpopulations
nx1 nX2 behave as independent one-dimensional catalytic super-Brownian mo-
tions with frozen, smoothed and truncated branching rate functions (catalyst)
vy (Sl/n"XiQ/n /\n) and (Sl/n”Xil/n /\n), respectively. (This partly relies on ideas
of [Shi%4].)

Uniqueness however is based on Mytnik’s self-duality property we next want
to deal with. We first mention that analogously to Theorem 3.2 the mutually cat-
alytic super-Brownian motion in R can also be defined as a (Cjap)vaalued process
([DPI8]). Here Crap = Crap(R) is the set of all rapidly decreasing continuous func-
tions f defined on R, that is continuous functions such that |f|_x < oo for all
A >0 [recall (29)], topologized by

dfap(fag) = 22771 (‘f_g|—1/n/\1)7 fvgecrap' (32)
n=1

Introduce the pairing

) = /R W () f(b),  feCh,. Fech,. (33)

1 1

Moreover, write A for the orthonormal matrix 2~1/2 < 1 1

> , and introduce

the duality function
U(x,%) = exp [— <(xA)1 , (SEA)1> +i<(xA)2 , (iA)Qﬂ , (34)
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X € (Cttm)Q, X € (C;;p)z. From [Myt98] we now quote the following result,
implying uniqueness in the martingale problem related to (31) by a standard pro-
cedure.

Theorem 3.3 (self-duality). Let X and X be independent mutually catalytic super-
)2 and Xg € (ct )2. Then the following

Brownian motions in R with Xg € (CJr rap

tem
self-duality formula holds
EV(X,,Xo) = EVU(Xo,X;), t>0. (35)
This identity is actually simply to verify by using It6’s formula.

3.4. Long-term behavior of the mutually catalytic SBM in R
Recall that in d = 1, starting from finite initial measures,
c
(oIl IXZ1) g (0, IX<.1) » (36)

where || X2 | has full expectation and is non-trivial if X§ # 0 [Theorem 2.6 (a)
and formula (20)], whereas in the case of Lebesgue initial measures,

(or.X$) = (0.0) (37)

Too
[Theorem 2.2 and formulas (14)/(15)]. For the mutually catalytic model we have
instead the following persistent convergence statements ([DP98]).
Theorem 3.4 (global segregation of types). Recall that d = 1.
(a) (finite Xo): If Xo € (C))?, then

rap

L
Xl = (IXzl, IX71) oz Xl = B- (38)

where t — B; s a Brownian motion in Ri starting from ||Xol|, and T
18 its first hitting time of the boundary of Rﬁ_. In particular,

E| Xl = E|Xo|| (persistence), (39)
and
IXL-11X2] =0 as. (global segregation). (40)

(b) (uniform initial measures): If Xo = cl, c € R%, instead, then
C

Xr — Xo = B /L (41)
TToo

where B now starts from c.
Note that this global segregation (non-coexistence) of types can be seen as a
“symmetrization” of (36).

The statement (b) follows from (a) via the self-duality Theorem 3.3. The
verification of (a) however requires some efforts. First of all, since T +— || XX| +
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| X% is a uniformly integrable non-negative martingale, it converges as T T oo.
This implies that its square function

T
T — Ap := 7/ dt (X}, X7?) (42)
0

converges to a finite value as T T oo. Then the strategy of proof is that the
assumption that || X1 - || X2| is bounded away from zero as T T oo implies
that Ar converges to infinity, giving a contradiction. For the involved details, see
[DP98], or [FX99], where one can find a generalization of the model to more then
two types.

3.5. Finite time survival

After describing the behavior in the long run, let us turn to the more delicate
question about finite time survival of both types. The answer is actually dependent
on the initial state. A Z%version of the following theorem is given in [MP99],
whereas the present R—version follows as a special case of [FX99].

Theorem 3.5 (finite time behavior). Let d =1 and 0 < ||Xo|| < o0.

(a) (finite time survival): Under certain additional conditions on X,
| XA IX2]| >0 forall T>0, as. (43)

(b) (finite time extinction of a type with high probability): Similarly, under
a certain additional condition on X{, for each ¢ € (0,1] and T >0, one
can choose X (#0) so small, that

P(X7=0forall t>T) > 1—e.

A sufficient condition for the situation is (a) is given if X§ and X2 are
separated in different half lines of R and have there sufficiently large tails at infin-
ity. The proof of (a) is essentially based on a variance estimate and Chebychev’s
inequality.

The verification of (b) is more involved and relies on the following philosophy.
First of all, because 0 is an absorbing state for the subprocess ¢ — X@, it suffices
to consider X on a possibly smaller time interval [0,77]. Since initially X2 is not
too large by assumption and serves as the catalyst for X!, then X! should not
be very small on [0,7]. But since X' serves as the catalyst for X2, then X2
should have the chance to die by time T. Actually, under the present conditions
and on a suitable time scale, some norm of X% can be bounded from above
by a supercritical Feller’s branching diffusion which certainly dies by a given time
T > 0 with positive probability. Finally, by making the initial state of this diffusion
sufficiently small, the latter extinction probability can be forced to be at least 1—e.

We mention that for the case of uniform initial states, where by Theorem
3.4 (b) global segregation occurs in the long run, one can nevertheless expect that
the predominant type near the origin oscillates as time goes on, just as proved in
[CK99] for the Z%-model, d < 2.



16 Donald A. Dawson and Klaus Fleischmann

So far we discussed only a one-dimensional continuum mutually catalytic
branching model. Why this restriction to dimension one? Could one perhaps hope
for the non-trivial existence of some mutually catalytic measure-valued processes
in higher dimensional continua?

3.6. First arguments against a non-trivial existence in R?

Actually, there are a couple of arguments against non-trivial existence in the
higher-dimensional case. First of all, variances blow up in some variance calcu-
lations working with approximations. But perhaps more important, non-trivial
existence seems to imply some paradoxes that we will now explain.

Recall that in the constant medium case, the SBM p in dimensions d > 2
has singular states. The same is true in the case of a regular medium, that is, if
we have a catalyst, described by absolutely continuous measures. Consequently,
a regular catalyst leads to a singular reactant (in d > 2). On the other hand, if
the catalyst is singular enough, the reactant may become absolutely continuous
states ([DF95, Kle99b]). Summarizing, in catalytic models of dimension d > 2,
roughly speaking, catalyst and reactant exhibit an “alternation property”, say. In
particular, locally only one of the substances can be absolutely continuous.

What should follow from this for the symmetric, mutually catalytic model
in R? we want to have? Might such alternation property be reasonable in the
symmetric case?

In dimension two, starting with uniform initial states, the continuum model
should be self-similar, as one can easily check by formal calculations. But it should
also have the same long-term behavior as the Z2-model ([DP98]). That is, Theorem
3.4 (b) should be true also in d = 2. But by the self-similarity, this global statement
about X should be turned into a local property of X, say:

(i) The limiting uniform states should be turned into absolutely continuous
measure states X7, say, which then do not have the alternation property
discussed above.

(ii) More important, the global segregation should lead to a local segregation
of types: Locally only one type should be present. In other words, if two
types were locally present, then one of the types should immediately kill
the other one. On the other hand, the sought-after non-trivial stochastic
model, if it existed, would live from the interaction!

How to resolve such paradoxes, other than to conclude, that the higher-
dimensional continuum model would degenerate to the heat flow? At least, if the
model existed, it should be rather delicate!

These kind of questions attracted several persons, and now there is consensus
about the non-trivial existence of the 2-dimensional continuum model, provided
that the collision rate  is sufficiently small.

3.7. Mutually catalytic super-Brownian motion in R>
The following theorem will be proved in [DEF*00].
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Theorem 3.6 (non-degenerate existence). Suppose that d = 2, that v > 0 is suf-
ficiently small, and that Xg = ¢, ¢ € Rﬁ_. Then X = (Xl,XQ) erists as a
pair of non-trivial continuous measure-valued processes, described by a martingale
problem, involving the collision local time Lx . That is, for smooth test functions
e >0,

t
t o Mi(p') = <Xt,g0>—c<€,<p>—/0ds<XS,§Ag0>, (44)
i =1,2, are orthogonal, square integrable martingales, with square functions
o U, =y [ I (i) () )
[0,t] xR2

where Lx is the collision local time of X' and X2, which is the limit in law as
€ 1 0 of the measures

ar X} (da) /R X2(db) pe(b— a) (46)

on Ry x R2.

Note that the existence of the collision local time Lx is an essential part of
the martingale problem.

The key tool for the construction of X are expensive 4" moment estimates.
In fact, there is a closed system of equations for the 4" moments of approximating
processes, which can successfully be handled.

The restriction to small vy comes from the fact that moments of order higher
than 2 exhibit a phase transition: They are infinite for sufficiently large v > 0.
(Imagine that too much reaction leads to very large fluctuations in the sense that
moments of order three and more explode.)

Since the model exists non-trivially according to this theorem, how can the
“paradoxes” mentioned earlier be resolved? In other words, what features the
model does have, and how can these be understood?

3.8. Resolving the paradoxes

The following theorem is also part of the program in [DEF*00].

Theorem 3.7 (local properties). Consider the process X from Theorem 3.6, and
fix a time point t > 0.

(a) (density functions): Both states X} are absolutely continuous:
Xi(db) = Xj(b)db, i=1,2. (47)

(b) (law of X, (x)): For almost all b € R?, the law of X;(b) coincides with
the state B, of a Brownian motion in RZ , starting from c, at its hitting
time T of the boundary of Ri. In particular:

Var X} (b) = oo. (48)



18 Donald A. Dawson and Klaus Fleischmann

(c) (local segregation of types): For almost all b,
X} ) X2(b) = 0 as. (49)

Consequently, the states of X are absolutely continuous, as we heuristically
concluded in the previous subsection. Moreover, the law of the random density in a
point can explicitly be described. The infinite variance of the hitting state can also
be obtained by calculations starting from the Z?-model. Finally, the intuitively
predicted local segregation property is confirmed.

Note that the law of the random densities X;(b) is independent of ¢ and b.
This follows from the spatial shift invariance (in law) and the self-similarity

Xgn(K-) £ Xu(4), K >0. (50)

But if the types are separated as described in (49), how can it be explained
that there is still a non-trivial interaction going on? For this purpose, it might be
helpful to first consider the following simplified example (see also Figure 2). For
measures p and v on R, define the collision measure Cj,,) on R by

[ Gt ota) =ty [ aa (a) poriuta) poroa 1)

provided that the limit exists in Ry for all continuous functions ¢ > 0 with
compact support.

2
1
4 -2 0 2, 4
FIGURE 2. Segregated measure densities with o = % and 0 = é

Example 3.8 (segregated measures with a non-trivial collision). For «, 3 € (0,1),
consider the segregated locally finite measures p and v having the density func-
tions

f(0) = 1o b7 and g(b) := 1oe)b™’,  bER, (52)
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respectively. Then, for £ > 0, as well as ¢ continuous and with compact support,

/db ©(b) pexpu(b) pe*v(b)
i (53)
- /R da f(a) /R dd’ g(a') /R db (b) pe(a — b) pe(a — b),

and by Brownian scaling we may continue with

= ehlimah) /Rda f(a) /d 9(@)p(VEd) pra—b)pi(a’ —b).  (54)

But as ¢ | 0, the latter integral expression converges to ¢(0) ¢ with

0 <c:= /Rda f(a)/l;da’ g(a)p2(a—d) < oo. (55)

Consequently, for a4 > 1 the approximated collision measures explode, whereas
for a+ B < 1 they will finally disappear, as suggested by the formal expression
f(b)g(b)db = 0 for the collision measure. But in the critical case a+ § = 1
(as in Figure 2), the collision measure Cf, ] = c8y exists non-trivially, with the
constant ¢ [from (55)] depending on the approximation procedure.

Note that lifting up p, v to measure-valued paths ¢ +— p; and t — 1 which
are constant in time, analogous statements hold for the collision local time Lj, .
In particular, for critical exponents «, 3, the collision local time Ly, ,; exists and
is mon-trivial, namely

Lipw (dfs, b)) = ds cbp(db) with 0 < ¢ < oo from (55), (56)
despite the paths p,v are separated. &

The last example illuminates that the local segregation property (49) is not
in contradiction with the existence of a non-trivial collision local time Lx as in
Theorem 3.6, thus resolving an apparent paradox. Consequently, due to the large
fluctuations at the interface of the two types (remember the hot spots mentioned in
Subsection 1.4), the locally segregated types actually interact non-trivially, keeping
the mutually catalytic process X in R? stochastically alive.
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