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Abstract

We consider one-dimensional quantum many-body systems with pair interactions in

external �elds and (re)investigate the conditions under which exact ground state wave

functions of product type can be found. Contrary to a claim in the literature that

an exhaustive list of such systems is already known, we show that this list can still

be enlarged considerably. In particular, we are able to calculate exact ground state

wave functions for a class of quantum many-body systems with Ax�2+Bx2 interaction

potentials and external potentials given by sixth-order polynomials.

KEY WORDS: Ground state; wave functions of product type; Calogero-Sutherland

systems

1 INTRODUCTION

A large amount of attention has been devoted to the properties of several types of exactly

solvable interacting one-dimensional quantum many-body systems. This is mostly due to the
fact that such systems and their classical counterparts show up in a large number of physical

problems which seem to be rather disparate at �rst glance. To point out only a few of them,

we mention the connection to random matrix theory,(1) the description of one-dimensional

Wigner crystals,(2;3) and the theory of Heisenberg spin chains.(4;5) For a more extensive list

of such problems { covering topics of �eld theory as well { see, e. g., the introduction of ref. 6

and the literature given there.

In this paper we are concerned with the particular problem of �nding and classifying interac-
ting one-dimensional quantum many-body systems with exact ground state wave functions

of product type. Sutherland(7) was the �rst to point out that a ground state wave function

of the form

	(x1; : : : ; xN) =
Y

1�i<j�N

�(x
i
� x

j
) ; �(�x) = ��(x) (1.1)
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is an eigenfunction of a many-particle Hamiltonian with pair interactions only, i. e.,

H = �

�h2

2m

NX
i=1

@
2

@x
2
i

+
1

2

NX
i;j=1
i 6=j

W (x
i
� x

j
) ; (1.2)

whenever the (necessarily odd) logarithmic derivative

'(x) = �
0(x)=�(x) (1.3)

satis�es the functional equation

'(x)'(y) + '(y)'(z) + '(z)'(x) = f(x) + f(y) + f(z) for x + y + z = 0 : (1.4)

The interaction potential W is then given by

W (x) =
�h2

m

�
'
0(x) + '

2(x)� (N � 2)f(x)
�
+ const. (1.5)

The general meromorphic solution of the above functional equation has been found by

Calogero(8) and reads

'(x) = ��(x; g2; g3) + �x ; (1.6)

f(x) = �

1

2

(
�
2 d�

dx
(x; g2; g3) + �

2
�
2(x; g2; g3) + �

2
x
2 + 2��x�(x; g2; g3)

)
: (1.7)

Here, �(x; g2; g3) denotes the Weierstra� zeta function(9) with power series expansion

�(x; g2; g3) =
1

x
�

g2

22 � 3 � 5
x
3
�

g3

22 � 5 � 7
x
5 +O(x7): (1.8)

On a more general level one can then deal with the question whether there are systems with
ground state wave functions of the type

	(x1; : : : ; xN) =
NY
i=1

�(x
i
)

Y
1�i<j�N

�(x
i
� x

j
) ; �(�x) = ��(x) (1.9)

that are exact eigenfunctions of Hamiltonians of the form

H = �

�h2

2m

NX
i=1

@
2

@x2
i

+
NX
i=1

V (x
i
) +

1

2

NX
i;j=1
i6=j

W (x
i
� x

j
) : (1.10)

Generalizing Calogero's considerations, Inozemtsev and Meshcheryakov(10) were able to make
up a list of such systems and even claimed it to be exhaustive. However, as Forrester recently

pointed out,(3) this last statement cannot be correct. The Hamiltonian and the corresponding

exact ground state wave function employed in ref. 3 for the description of a one-dimensional

Wigner solid have the form given in equations (1.10) and (1.9) but nevertheless do not show
up in the above-mentioned list!



3

This observation most obviously shows the necessity of a reexamination of the arguments
given by Inozemtsev and Meshcheryakov. This will be one of the topics of the present paper.

In section 2 it is pointed out where the reasoning in ref. 10 turns out to be too restrictive and

how it can be generalized. In the following sections we then show how to construct a whole

class of new Hamiltonians of the form (1.10) with exact eigenfunctions of type (1.9). In
particular, we demonstrate that it is possible to calculate exact ground state wave functions

for several quantum many-body systems with interaction potentials W (x) = Ax
�2 + Bx

2

and external potentials V (x) that are given by sixth-order polynomials. Furthermore, it will

turn out that Forrester's example of ref. 3 is also covered by our new class of Hamiltonians.

2 THE INOZEMTSEV-MESHCHERYAKOV

FUNCTIONAL EQUATION AND ITS

GENERALIZATION

We do not intend to repeat the considerations of ref. 10 in every detail here, but restrict

ourselves to the necessary minimum of steps. Inserting H from (1.10), 	 from (1.9), and
using the obvious identity

1
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; (2.1)

we get

H	 =
X
i

h
V (x

i
)�

�h2

2m
�
0(x

i
)�

�h2

2m
�
2(x

i
)
i
	

+
1

2

X
i6=j

h
W (x

i
� x

j
)�

�h2

m
'
0(x

i
� x

j
)
i
	

�

�h2

2m

X
i

�X
j

j 6=i

'(x
i
� x

j
)
�2
	

�

�h2

2m

X
i6=j

1

2
'(x

i
� x

j
) (�(x

i
)� �(x

j
))	 ; (2.2)

where we introduced the logarithmic derivatives

'(x) = �
0(x)=�(x) ; �(x) = �

0(x)=�(x) : (2.3)

We are interested in wave functions 	 for which (2.2) is reducible to the eigenvalue equation
H	 = E	 by a proper choice of V and W . This can be achieved, if the third and the fourth

term on the r. h. s. of (2.2) can be rewritten as sums of one- and/or two-particle potentials.
The third term is well-known from the case of vanishing external potential V . It reduces to

a sum of two-particle potentials, if we assume the functional equation (1.4) to hold:X
i

�X
j

j 6=i

'(x
i
� x

j
)
�2

=
X
i6=j

('2(x
i
� x

j
)� (N � 2)f(x

i
� x

j
)): (2.4)
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Inozemtsev and Meshcheryakov(10) then in addition required the validity of the functional
equation

'(x� y) (�(x)� �(y)) = �(x) + �(y) (2.5)

and managed to determine its solutions.

The introduction of (2.5) indeed leads to solutions of the original problem, as the fourth
term on the r. h. s. of (2.2) then reduces to a sum of one-particle potentials. However, at this

point we can already demonstrate why the class of solutions in ref. 10 turns out to be too

restrictive. The requirement of (2.5) is by no means necessary! A reduction to a sum of two

particle potentials via

'(x� y) (�(x)� �(y)) = F (x� y) ; F (x) = F (�x) (2.6)

would also do the job. Even more general is the case where the last term on the r. h. s. of

(2.2) can be written as a sum of one-particle plus a sum of two-particle potentials. This can
be achieved by employing the functional equation

'(x� y) (�(x)� �(y)) = �(x) + �(y) + F (x� y) ; F (x) = F (�x) (2.7)

instead of (2.5) or (2.6), since

X
i 6=j

1

2
'(x

i
� x

j
) (�(x

i
)� �(x

j
)) = (N � 1)

X
i

�(x
i
) +

1

2

X
i6=j

F (x
i
� x

j
) (2.8)

in this case. Thus, given the validity of (1.4) and (2.7), equation (2.2) can be cast into the
form

H	 =
X
i

"
V (x

i
)�

�h2

2m

�
�
0(x

i
) + �

2(x
i
) + (N � 1)�(x

i
)
�#

	

+
1

2

X
i6=j

"
W (x

i
� x

j
)�

�h2

m
'
0(x

i
� x

j
)�

�h2

m
'
2(x

i
� x

j
)

+
�h2

m
(N � 2)f(x

i
� x

j
)�

�h2

2m
F (x

i
� x

j
)

#
	 : (2.9)

Here one can immediately read o� the choices that have to be made for V and W in order

to achieve the desired equation H	 = E	.

The results obtained so far can thus be summed up as follows:

Proposition 1:

Given a Hamiltonian H of the form (1.10) and a wave function 	 of type (1.9), the following

requirements are suÆcient for the eigenvalue equation H	 = E	 to hold:

(a) The logarithmic derivatives ' = �
0
=� and � = �

0
=� are solutions of the functional

equations

'(x)'(y) + '(y)'(z) + '(z)'(x) = f(x) + f(y) + f(z) for x+ y + z = 0 ; (2.10)

'(x� y) (�(x)� �(y)) = �(x) + �(y) + F (x� y) ; F (x) = F (�x) : (2.11)
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(b) The one- and two-particle potentials V and W are given by

V (x) =
�h2

2m

�
�
0(x) + �

2(x) + (N � 1)�(x)
�
+
E1

N
; (2.12)

W (x) =
�h2

m

�
'
0(x) + '

2(x)� (N � 2)f(x) +
1

2
F (x)

�
+
2(E � E1)

N(N � 1)
: (2.13)

3 SOLUTION OF THE GENERALIZED

FUNCTIONAL EQUATION

In this section we deal with the question how the solutions of the functional equation system

(2.10)/(2.11) can be found. As was already mentioned in the introduction, the general

meromorphic solution of (2.10) is given by(8)

'(x) = ��(x; g2; g3) + �x : (3.1)

To solve (2.11) we now apply the methods used in refs. 8, 10 for the solutions of the functional

equations (1.4) and (2.5). In particular, we shall derive ordinary di�erential equations for
� or � alone which are among a couple of necessary conditions for the functional equation
(2.11) to hold. In a next step, a class of possible solutions '(x) is determined. In some cases

it will turn out to be only a subclass of the functions given by (3.1) due to restrictions which
have to be imposed upon the parameters g2, g3. Subsequently, the general solution of the

di�erential equation for � is given. Finally it is pointed out that the functions '(x) and �(x)

traced out by the above strategy are already solutions of (2.11).

To arrive at physically meaningful expressions, we require � and � both to be nonsingular
and suÆciently smooth. Furthermore, it turns out to be advantageous to investigate the
cases � = const. and � 6= const. separately.

3.1 The case � = �0 = const:

For constant � = �0, (2.11) reduces to

'(x� y) (�(x)� �(y)) = 2�0 + F (x� y): (3.2)

Making the special choice y = x + ", we get

'(") (�(x + ")� �(x)) = 2�0 + F ("): (3.3)

Di�erentiation with respect to x then leads to � 0(x + ")� �
0(x) = 0, or

�
0(x) = const. (3.4)

Inserting the general solution �(x) = �1 + �2x into the original functional equation (2.11),

we see that it is satis�ed with � = �0 and F (x) = �2x'(x)� 2�0. Thus we have shown:
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Proposition 2:

The functional equation system (2.10)/(2.11) is solved by

'(x) = ��(x; g2; g3) + �x ; �(x) = �1 + �2x (3.5)

with

� = �0 = const. ; F (x) = �2x

�
��(x; g2; g3) + �x

�
� 2�0 : (3.6)

3.2 The case � = �(x) 6= const:

For �(x) 6= const. we again start with writing down (2.11) for the special choice y = x + "

and with ' given by (3.1):

'(") (�(x + ")� �(x)) = �(x + ") + �(x) + F ("): (3.7)

Both sides of this expression are now expanded into a power series in " up to order "6 and

subsequently a comparison of coeÆcients is carried through.

Since F is even, we can write

F (") = F0 + F2"
2 + F4"

4 + F6"
6 +O ("8): (3.8)

Furthermore, from (3.1) and (1.8), one has

'(") = �

�
1

"
�

g2

22 � 3 � 5
"
3
�

g3

22 � 5 � 7
"
5

�
+ �"+O ("7): (3.9)

In addition we have of course to employ the Taylor expansions of � up to seventh and of �
up to sixth order.

In zeroth order the comparison of coeÆcients leads to

��
0(x) = 2�(x) + F0 : (3.10)

Since �(x) 6= const., this implies � 6= 0. (3.10) can therefore be used in the following as a

tool for replacing derivatives � (n)(x) with derivatives �(n�1)(x) and vice versa.

Comparison of the �rst order coeÆcients yields

�

2
�
00(x) = �

0(x) : (3.11)

This is automatically satis�ed whenever (3.10) is valid.

In second order we are led to

�

6
�
000(x) + ��

0(x) =
1

2
�
00(x) + F2 : (3.12)

Using (3.10), we thus get

�
00(x)� 12

�

�
�(x) = 6

 
�

�
F0 � F2

!
(3.13)
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and

�
000(x)� 12

�

�
�
0(x) = �

12

�
F2 : (3.14)

These are the already proclaimed di�erential equations for � and � alone.

The third order again leads to nothing new, as insertion of (3.10) implies

�
000(x)� 12

�

�
�
0(x) = 0 (3.15)

which is satis�ed due to (3.13).

After some manipulations, the fourth order gives rise to the equation

h
12
��
�

�2
� g2

i
�(x) =

1

2
F0

�
g2 � 12

��
�

�2�
+ 30F4 + 6

�

�
F2 : (3.16)

Since � is nonconstant, this equation can only be satis�ed, if

g2 = 12
��
�

�2
(3.17)

and subsequently leads to a relation between F4 and F2 :

F4 = �

�

5�
F2 : (3.18)

By employing the above results, it can be shown that the equation corresponding to the �fth

order is again automatically satis�ed.
The sixth order yields

h�
12
�
2

�2
�

7

6
g2

�
12
�

�
� 3g3

i
�(x) =

3

2
g3F0 + 210F6 � 6

�
F0

�

�
� F2

��
12
�
2

�2
�

7

6
g2

�
: (3.19)

With � 6= const. and after elimination of g2 with the aid of (3.17), this leads to

g3 = �8
��
�

�3
(3.20)

and

F6 = �

1

105

��
�

�2
F2 : (3.21)

As the parameters g2, g3 are already �xed by (3.17) and (3.20), the class of functions '(x)

is now reduced to

'(x) = ��

 
x; 12

��
�

�2
;�8

��
�

�3!
+ �x : (3.22)

A degenerate case of the Weierstra� zeta function shows up here,(9) and we can rewrite (3.22)

as follows:

'(x) =

8>>>><
>>>>:

�
 cot(
x) for �

�

< 0

�

x
for �

�

= 0

�
 coth(
x) for �

�

> 0

; 
 =

vuut3

�������
����� : (3.23)
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The class of functions �(x) is limited by (3.14). The general solution of this di�erential
equation is given by

�(x) =

8>>><
>>>:

�1 cos(2
x) + �2 sin(2
x) + �3 + �4x for �

�

< 0

�1 + �2x + �3x
2 + �4x

3 for �

�

= 0

�1 cosh(2
x) + �2 sinh(2
x) + �3 + �4x for �

�

> 0

; 
 =

vuut3

�������
����� : (3.24)

Note that there is the following connection between F2 and �4:

F2 = ��4 for
�

�
6= 0 ; F2 = �

�

2
�4 for

�

�
= 0 : (3.25)

If one now inserts the expressions (3.23) and (3.24) for ' and � into the functional equation

(2.11), one sees that it is already ful�lled, that is, we have

Proposition 3:

The functional equation system (2.10)/(2.11) is solved by '(x) given by (3.23) and �(x)

given by (3.24).

As we do not want to overburden the paper, we refrain from giving the corresponding
expressions for �(x) and F (x) explicitly.

Remark: The solutions of the functional equation (2.5) can be recovered from the results of
this subsection by putting �4 = 0.

4 DISCUSSION

The results of the previous section lead to a couple of new Hamiltonians H of the form (1.10)

and wave functions 	 of product type (1.9) which obey the eigenvalue equation H	 = E	.
However, not all of these results are physically meaningful, as it sometimes may happen that
we are led to functions 	 that are not square-integrable and thus cannot be interpreted as

eigenfunctions. This problem has always to be discussed for the concrete particular case
under study.

To carry through such a discussion at least for one of the most interesting special cases, let

us consider the functions

'(x) =
�

x
; (4.1)

�(x) = �1 + �2x + �3x
2 + �4x

3
: (4.2)

This corresponds to the choice �=� = 0 in (3.23) and (3.24).

Inserting (4.1) and (4.2) into the l. h. s. of the functional equation (2.11), we get

(�(x)� �(y))'(x� y) = �
�2(x� y) + �3(x

2
� y

2) + �4(x
3
� y

3)

x� y

= �

�
�2 + �3(x+ y) + �4(

3

2
x
2 +

3

2
y
2
�

1

2
(x� y)2)

�
: (4.3)
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It is immediately read o� that � and F can be chosen as

�(x) = �

�
1

2
�2 + �3x +

3

2
�4x

2

�
; (4.4)

F (x) = �

�

2
�4x

2
: (4.5)

Inserting (4.2) and (4.4) into (2.12), one immediately recognizes that the external potential

V (x) is given by a certain sixth order polynomial. Proper choice of the parameters leads to

a whole bunch of interesting { symmetric as well as nonsymmetric { double and triple well

potentials here.

Furthermore, from (2.10) one can �nd out that f(x) = 0 for '(x) = �=x. Together with

(4.1), (4.5) this leads via (2.13) to the following interaction potential:

W (x) =
�h2

m

(
�(�� 1)

x2
�

��4

4
x
2

)
+ const. (4.6)

Integrating the logarithmic derivatives � = �
0
=� and ' = �

0
=� , we �nally arrive at the

following expressions for the factors from which the wave function 	 is built up:

�(x) = C1jxj
� ; �(x) = C2 exp

�
�1x +

�2

2
x
2 +

�3

3
x
3 +

�4

4
x
4

�
; C1; C2 = const. (4.7)

Square integrability of 	 at in�nity can be ensured by putting �4 < 0. Moreover, as 	
turns out to be nodeless outside the hyperplanes x

i
� x

j
= 0, it can be regarded as ground

state.(11;12)

Remark: For �4 = 0 we are not furnished with anything new, as square integrability of 	

can only be achieved in this case, if we require �3 = 0, �2 < 0. The external potential V is
then reduced to a harmonic well, and the corresponding system is already well-known.(12)

We now conclude this paper by pointing out in which of the above new classes of solutions

one can �nd Forrester's (counter-)example from ref. 3. To this end we start with the solutions
' and � from proposition 2 in subsection 3.1 above, i. e.,

'(x) = ��(x; g2; g3) + �x ; �(x) = �1 + �2x : (4.8)

Putting �1 = 0 and making the transition to the degenerate case where

g2 = 12
��
�

�2
; g3 = �8

��
�

�3
;

�

�
> 0 ; (4.9)

we are led to (cf. (3.22), (3.23))

'(x) = �

s
3
�

�
coth

0
@
s
3
�

�
x

1
A ; �(x) = �2x : (4.10)

Choosing �2 < 0 for integrability reasons, we exactly end up with the type of solutions

discussed by Forrester.
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