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Abstract

The two-phase flow of a flocculated suspension in a closed settling ves-
sel with inclined walls is investigated within the phenomenological theory of
sedimentation-consolidation processes. We formulate possible wall boundary
conditions and use these conditions to derive spatially one-dimensional field
equations for planar flows and flows which are symmetric with respect to the
vertical axis. For both kinds of flows we assume a general geometry of the
sedimentation vessel and include the study of a compressible sediment layer.
We analyze the special cases of a conical vessel, a roof-shaped vessel and a
vessel with parallel inclined walls. The case of a small initial time and a large
time for the final consolidation state leads to explicit expressions for the flow
fields. From a mathematical point of view, the resulting initial-boundary value
problems are well posed and can be solved numerically by a simple adapta-
tion of one of the newly developed numerical schemes for strongly degenerate
convection-diffusion problems. However, from a physical point of view, both
the analytical and numerical results rise doubts concerning the validity of the
general field equations. In particular, the strongly reduced form of the lin-
ear momentum balance seems to be an oversimplification. Included in our
discussion as a special case are the Kynch theory and well-known analyses of
sedimentation in vessels with inclined walls within the framework of kinematic
waves, which exhibit similar shortcomings.

1 Introduction

Mathematical models describing the settling of flocculated suspensions are of great
interest in numerous areas such as mineral processing, wastewater treatment and
medicine. Although settling tanks that can be treated as a simple one-dimensional
cylinder are rather the exception than the rule in these applications, most experi-
mental and theoretical treatments of sedimentation problems have been limited to
this simple case so far. Starting from the local mass and linear momentum bal-
ances for both the solid and liquid component, introducing appropriate constitutive
assumptions and performing a dimensional analysis, BURGER et al. [13] derived a
set of field equations for these processes in several space dimensions. However, they
did not yet specify suitable boundary conditions for these equations. The present
study is concerned with some problems related to the formulation of such boundary
conditions.

To put the present work in the proper perspective, we recall that settling rates of
suspensions of small particles in vessels with downward-facing walls can be several



times larger than in vessels with vertical walls. This well-known effect was first ob-
served by BOYCOTT [5] in 1920 and is exploited frequently in industrial applications
to enhance performance of solid-liquid separation equipment (see, e.g. [33, 34, 44])
and has been subject of a large number of experimental and theoretical studies.
This effect is related to the formation of a thin upwards-streaming liquid boundary
layer beneath downward-facing walls during sedimentation.

Overviews of early research work concerning the Boycott effect are given by ACRIVOS
and HERBOLZHEIMER [1] and DAvIs and ACRIVOS [17]. A well-known elementary
kinematic model describing this effect, the so-called PNK theory, was advanced
independently by PONDER [41] and NAKAMURA and KURODA [37|. This theory
states that the rate of production of clarified fluid is equal to the vertical settling
velocity of the particles multiplied by the horizontal projection of the channel area
available for settling (see [17]). In the sequel, numerous experiments with different
materials were performed to verify this theory [21, 22, 27, 29, 39, 40, 50]. Some of
these authors proposed corrections since the observed sedimentation enhancement
was in general less than predicted by the PNK theory.

The first analysis of the phenomenon starting from the basic balance equations of
continuum mechanics was presented by HILL et al. [24]. They studied the settling
of dilute dispersions in conical vessels and also obtained numerical solutions showing
details of the flow field. ACRIVOS and HERBOLZHEIMER [1]| considered arbitrary
concentrations and geometry of the settling vessel. They also found that the ob-
served deviations of the settling velocities from those predicted by the PNK theory
could be explained by a flow instability causing the particles to resuspend. We men-
tion that ACRIVOS and HERBOLZHEIMER assume that the suspensions behaves as
a Newtonian fluid with an effective viscosity depending on the local solids concen-
tration. This is in contrast to the kinematic wave treatment by SCHNEIDER [46]
which considers the inviscid case. On the other hand, while ACRIVOS and HER-
BOLZHEIMER [1| assume that the concentration in the bulk suspension is constant,
SCHNEIDER’s [46] analysis allows the formation of vertical concentration gradients.
We point out that SHAQFEH and ACRIVOS [47, 48, 49| solve very general field equa-
tions for settling in vessels having inclined walls that are valid over a wide range
of parameters, and that include both models presented in [1] and [46] as limiting
cases. Sedimentation in inclined vessels gives rise to two types of boundary layers,
namely the flow of clear fluid beneath upward-facing walls and the forming of a sed-
iment layer on downward-facing walls. Analyses of flow phenomena related to these
boundary layers include [4, 42| and [2, 28, 38|, respectively. Finally, we mention
analyses of sedimentation in narrow tilted channels [23] and in very narrow inclined
fracture channels [35].

To outline the scope of the present paper in detail, it is necessary that we briefly
recall some basic balance equations for the three-dimensional flow of a solid-liquid
suspension. Following the approach of the theory of mixtures, both components are
considered as superimposed continuous media [3]. The local mass balances for both



components read then

o¢p B
E""V(vas) —Oa

%9

2 -V (1= 9)vi) =0, o

where ¢ denotes the volumetric solids concentration and v and v¢ are the respective
solid and fluid phase velocities. Introducing the volume-average velocity

q=0¢vs+ (1 - ¢)Vfa (2)

defining the solid-fluid relative velocity or drift velocity v, = vy —v¢ and noting that
dvs = ¢q + ¢(1 — @)v,, we may rewrite equations (1) as

0 4 V- (da+o(1—9)v.) =

ot ’ (3)

(4)

The properties of the material considered are represented by a constitutive equation
for the solid-fluid relative velocity v,.. The well-known sedimentation theory due to
KYNCH [30] corresponds here to the constitutive assumption

— fbk(¢) k, (5)

Cog(l-9)

where f, (¢) is the KYNCH batch flux density function and k is the upwards-pointing
unit vector. A more general expression,

() (8)
o= g (e ™) o

has been developed in the phenomenological model of sedimentation-consolidation
processes [13], in which compression effects are modeled by an effective solid stress
function o,(¢). The constants Ap > 0 and g denote the solid-liquid mass density
difference and the acceleration of gravity, respectively. It should be pointed out
that the modeling performed in [13| also includes the solid and fluid component
linear momentum balances, and that equation (6) represents one of these linear
momentum balances after deleting advective acceleration terms, which in turn is
justified by a dimensional analysis. The second linear momentum balance yields the
linear momentum balance of the mixture. If all viscous and advective acceleration
terms are deleted from this balance, we obtain

Vpe - —VUE(Qb) - Agg¢ka (7)

where p, is the effective solid stress of the mixture. We emphasize that the field
equations (3), (4) and (7) together with the constitutive equation (6) are in general
not sufficient to calculate the unknown fields ¢, p. and q, since the volume average
velocity q no longer occurs in the linear momentum balance of the mixture. For
this reason, the viscous and advective acceleration terms have not been deleted in
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[13] from the momentum balance of the mixture, although the dimensional analysis
has at the same time shown that these terms can be expected to be small. In this
paper, we demonstrate that solutions to (3), (4) and (7) do exist for closed vessels.
Nevertheless, we also illustrate that the use of equation (7) has severe consequences
on the choice of boundary conditions, and that these boundary conditions affect the
entire flow field.

2 Derivation of the initial-boundary value problems

2.1 Properties of the constitutive functions

The model functions f, (¢) and o,(¢) involved are usually assumed to satisfy

fix(@) =0 for ¢ <0 or @ > Prmax, fix(P) <0 for 0 < ¢ < Puax (8)
and
) _dUe =0 for ¢ < ¢,
(9= 2 { >0 for ¢ > g, (9)

where @, is the critical concentration (or gel point) at which the solid flocs touch
each other and 0 < ¢ < 1 is the maximum solids concentration. Typical choices
of these constitutive functions include MICHAELS and BOLGER’s [36] modification

Fi(@) = tood(1 — (8/Pmax))”s oo <0, m>1 (10)

of the well-known RICHARDSON and ZAKI formula [43], and the power law

o,(¢) =0 for ¢ < @, 0,(¢) =00((¢/dc)* —1), 09 >0, k>1for > ¢, (11)

see e.g. LANDMAN and WHITE [31]. In the numerical examples presented in § 4 in
this paper, we utilize the the model functions

—1.9802137 x 10 4¢(1 — (¢/0.3))>*" [m/s] for 0 < ¢ < 0.18,
fix (@) = ¢ —5.517 x 10713447 [m /5] for 0.18 < ¢ < 0.3, (12)

0 otherwise
and o,(¢) given by (11) with the parameters
oo =5.7[Pa), ¢ =0.1, k=9.09 (13)

which have been determined for a calcium carbonate suspension, see [8, 15, 16].
These functions are plotted in Figure 1 together with the diffusion coefficient

a(¢) = —fu(@)o(¢)/ (Aeg).

For alternative choices of the functions f,(¢) and o,(¢) describing the settling be-
haviour of real materials we refer to BURGER et al. [8] and GARRIDO et al. [20].

Finally, we point out that the expression (6) includes, of course, equation (5) if we
set g, = 0, that is formally ¢. = Pmax-
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Figure 1: The model functions fx(¢) (left), o.(¢) (middle) and the resulting diffusion
coefficient a(¢) (right) determined for a calcium carbonate suspension.

2.2 Properties of the field equations

We recall some properties of the field equations (3), (4) and (7). First note that due
to the assumptions (8) and (9), equation (3) is of first-order hyperbolic type where
¢ < P, or ¢ = P and of second-order parabolic type where ¢. < ¢ < Pmax. In a
settling column, ¢ = ¢. denotes the sediment-suspension interface. In contrast to
what is known for KYNCH’s theory, the location of this interface can in general not
be determined a priori.

We assume that all fields depend on the Cartesian coordinates z, y, z and on time
t > 0, and that z is the coordinate in direction of k. As stated by SCHNEIDER [46],
who postulated a similarly simplified mixture momentum balance, equation (7) has
a remarkable consequence: Taking the curl, we get

¢ = ¢(Z,t),

i.e. concentration varies only with height. Now we use this fact in order to formulate
the field equations in their final form:

(14)

a) Condition (14) replaces the linear momentum balance (7).

b) We can rewrite ¢v, as

¢
dve = da+ fu(@)k — VA(G), A(d) = / o(s) ds, (15)

in order to simplify the continuity equation and to introduce the different types
of boundary conditions. Equation (15) replaces the constitutive equation (6).

However, since k is the upwards pointing unit vector and ¢ = ¢(z,t), we may
recast (15) into its final form

(16)

ove=oa+ (hu(0) - 252 )i



c) Equation (4) is rewritten in the form

9q. 94, | Ogy
= — ) 1
0z (83: * oy (17)

d) We replace the solid flux ¢v, in the continuity equation (3) by the expression
(16). Using (14) and (17), we obtain the following essential simplification of
the continuity equation:

% (ot £l 2 = T (ai9)). (18)

e) We may solve (18) with respect to ¢, wherever 0¢/0z # 0 and use (14) in
order to conclude that

q. = QZ(zat)' (19)

We must assume this equation also wherever d¢/0z = 0 in order to obtain so-
lutions that are stable with respect to small perturbations of the concentration
field, see SCHNEIDER [46].

Equations (14) to (19) provide all information about the three-dimensional field
equations introduced in § 1. The properties which we have established here were
studied by SCHNEIDER [46] for the special case a(¢) = 0 corresponding to KYNCH’s
theory.

2.3 Boundary conditions

We consider the boundary conditions for a closed vessel 2 C R® and a general
solution of the field equations derived before. A particular geometry of the vessel
will not yet be specified.

Let n = (ng, ny,,n,)T be a vector which points into the vessel and is orthogonal to
its boundary. Since the boundary is assumed to be impermeable for the solid and
the fluid, the boundary conditions

(¢vs) -n =0, (20)
(1=¢)vi) n=0 (21)

should be satisfied simultaneously at any boundary point of the vessel. Equation
(2) may be used in order to rewrite these conditions in terms of q and vy as

(pvs) - n=0, q-n=0. (22)

We restrict ourselves to sedimentation vessels for which n, # 0 for every normal
vector n of the boundary. This assumption includes for example conical tanks or



any other vessel with inclined walls which are not parallel to the z-axis. Then
equations (16) and (22) immediately imply

(fbk(qﬁ) = 612(;25)) (z,t) = 0 for every height z, ¢ > 0. (23)

First note that (23) only describes a stationary flow, since this equation may also
be obtained by setting vi = q = 0 in (16). This is a very strange implication,
because we started with a flow field that is not stationary in general. While for
a(¢p) # 0, (23) may possess non-trivial solutions (but reduces to ¢ = 0 wherever
¢ < ¢.), this equation implies for a(¢) = 0 (corresponding to KYNCH’s theory) in
view of the assumption (8) that ¢ = 0 or ¢ = ¢,ax for any z. Furthermore, it should
be emphasized that equation (23) follows only from very general assumptions on
the form of the vessel and the conditions for impermeable boundaries, but not from
assumptions on the dynamics of the flow fields.

We conclude that it is impossible to require both boundary conditions in (22) simul-
taneously for every non-vertical wall. To define appropriate boundary conditions, we
now distinguish between upward-facing and downward-facing walls. We assume that
the domain Q C R3 has a smooth boundary I' = 99, and define the upwards-facing
and downwards-facing parts of I, I';, and I'y, by

r,= {(a:,y,z) e€l:n(z,y,2)- k > 0}, [y = {(x,y,z) el:n(z,y,2)- k< 0}.
(24)

Since we wish to admit a thin boundary layer of clear liquid beneath downward-
facing walls, we assume that there only the normal component of ¢v, vanishes,
ie.

(¢vs) :m=0on Iy (25)

There are two alternative ways to formulate boundary conditions for upward-facing
walls. From a rigorous point of view, one should assume that the upward-facing
walls are impermeable to the solid phases, that is, we prescribe

(pvs) -m=0on Ty (26)

This formulation excludes the formation of any thin solid boundary layer on upward-
facing inclined walls, which are not consistent with the condition (14).

On the other hand, we may admit the formation of a small boundary layer of sedi-
ment on upward-facing walls. To motivate this assumption, consider a configuration
with two parallel inclined walls as a prototype of the inclined settling vessel pro-
ducing the Boycott effect. The existence of a boundary layer of upwards streaming
liquid beneath the downward-facing inclined must be compensated by an accelerated
sedimentation rate of the bulk suspension as compared to a vertical vessel. How-
ever, we shall see that imposing the boundary condition (26) will lead to exactly
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the same concentration profiles as in a vertical column. We therefore consider as an
alternative formulation the boundary condition

g-n=0onT,, (27)

i.e. allow that material may leave the boundary and form a boundary layer of
mixture. It should be pointed out that (27) is similar to SCHNEIDER’s formulation
[46]. However, he imposed this condition not exactly on the rigid boundary, but
on the sediment-suspension interface. In the case of KYNCH’s theory, i.e. in the
absence of effective solid stress, and if the initial concentration is sufficiently small,
all sediment layers will have the same solid concentration ¢,,.,. The location of the
sediment-suspension interface can then indeed be predicted a priori. This is not the
case with the constitutive equation (6). For this reason, we assume a priori that the
thickness of the boundary layer is small and impose the boundary condition (27) on
the rigid wall.

In the sequel and in the examples studied, both types of boundary conditions (26)
and (27) will be considered. We point out that the choice between (26) and (27),
motivated by the assumption of a sediment boundary layer, appears to affect the
flow only locally, i.e. near the vicinity of the upward-facing wall. We shall see that
this not the case. In fact, the assumption of boundary layers near both types of
walls will severely affect the global flow field in the entire vessel. A final discussion
of these consequences is presented in § 5.

In the sequel, we consider exclusively two-dimensional or axisymmetric flows in tanks
with flat top or bottom and emphasize that the case of vessels having downward-
facing walls enhancing the sedimentation rate is of particular interest to applications.
Therefore we shall not discuss all possible combinations of downward- and upward-
facing walls, and impose on the latter either boundary condition (26) or (27), but
limit ourselves to vessels having at least one downward-facing wall. Consequently,
there are essentially three different cases to distinguish.

2.4 Two-dimensional model equations

We are interested in two types of solutions, namely in two-dimensional planar flows
and flows which are symmetric with respect to the z-axis. In the sequel, we restrict
the general field equations derived before to these types of motion.

We first consider planar flows which are constant with respect to y. Then (17) yields

9q.
0z

 04a
ox

(2,t) = (z,2,1). (28)

Integrating (28) with respect to z, we obtain

0q.
T ;at:_
¢:(2,2,t) = —z -

(z,t) + C(z,1),



with an unknown function C(z,t). Consequently, the components of the volume-
average velocity q read

9.
Oz
For the flows considered here, the field g, may be chosen arbitrarily. This compo-
nent will not appear in the formulation of the boundary conditions since these are
formulated in terms of the normal components of q and vs.

=2 L) +C(50), 4 =aq@at), =g (29)

Next we consider flows which are symmetric with respect to the z-axis. The height
variable is z and the horizontal or radial variable is r. We replace the Cartesian
coordinates by cylindrical coordinates given by ¢ = rcosf and y = rsinf. The
assumption of axisymmetry implies that q depends on r, 8, z and ¢ in the following
form, where have inserted (19):

¢:(z,y,2,t) = §(r,z,t)cos 0, q,(z,y,2,t)=q(r,z,t)sinf, g¢.(z,y,z1t) =q.(z1).
(30)

Of the equations (14) to (19), only (17) takes a different form in cylindrical axisym-
metric case, namely it now reads

9q. _19(rq)
P (2,t) = —= 5 (r,2,t). (31)

Multiplying (31) with r and integrating with respect to 7, we obtain

r

r? dq,

rq(r, z,t) =

with a suitable function C' = C’(z, t). We set 7 = 0 and note that r is independent
of z and t in order to conclude that C' =0, i.e. we obtain

r 0q,

] t) = —=——(2,1). 32
i(r,2,t) = 22 (2,1) (32
The final result may be summarized as
~ z0q, Yy Oq, _
qz = 2 9z (Z,t), qy - 2 9z (Zat)) q: = QZ(z)t)' (33)

These equations for axisymmetric flows are the analogue of (29) for planar flows.
However, in the planar case the function C(z,t) does in general not vanish, since it
is necessary to describe settling processes in unsymmetric tanks (e.g. with parallel
inclined walls).

2.5 Final form of the governing equations for two-dimensional
flows

We now specify boundary conditions for the two-dimensional flows proposed in § 2.4.
The final result will be a coupled system of one ordinary and one partial differential
equation for the two scalar fields ¢(z,t) and q,(z,t).

9



Figure 2: Cross-section of a two-dimensional sedimentation vessel with curvilinear
boundaries.

First, we consider planar flows which are constant with respect to y and a vessel
with a flat top z = H and a flat bottom 2z = 0 having two curvilinear boundaries
z_(z) and z,(2), 0 < z < H, see Figure 2. The conditions corresponding to these
boundaries will now be employed in order to derive the abovementioned system,
which, of course, will depend on the particular geometry of the vessel.

We now determine a complete set of equations for the unknowns ¢(z,t), ¢.(z,t)
and C(z,t). To this end, we first consider the boundary condition (25). In view of
equation (16) and the representation (29) of the volume-average velocity field q for
planar flows, we may rewrite the components of vy as

1 A
o= B0+ Ct), v =a(oa o= alnn) + 5 (40) - 252,
(34)
Obviously, orthogonal vectors to the two curved boundaries are given by
n.(z) = +(-1,0,2'(2)) . (35)

Without loss of generality, we may assume that z_(z) is a downward-facing wall,
i.e. we have

(¢(2,t)vs(z_(2), 2,1)) - n_(2) = 0. (36)

Inserting the representation (34) of v, where we set z = z_(z), and (35) into the
boundary condition (36), we obtain

9q.
0z

(2,) + 2 (2) [qz(z, 0+ @ < h(6(,0)) — agff) (2, t))] |

C(z,t) =z (2)
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To proceed with the derivation of the model equations, we distinguish two cases.
First, we assume that z,(z) is another downward-facing wall, or that z,(z) is an
upward-facing wall on which the boundary condition (26) are prescribed (this in-
cludes the case of an axisymmetric vessel), and second, we assume that = (z) is an
upward-facing wall where boundary condition (27) is imposed.

1. In the first case, the condition (¢(z,t)vs(z4(z),2,t)) - ny(z) =0 is valid. In
an analogous way to the derivation of (37), we obtain

Clat) = 2 ()G (00) +242) [alart) + 5 (A(62.0) - 2520 |
(38

Adding equations (37) and (38), we see that C(z,t) = 0 wherever z_(2) =
—z,(2); in particular, C = 0 for a vessel which is symmetric with respect to
z = 0. Subtracting (37) from (38), we obtain the following ordinary differential
equation for g,(z,t):

s U (U D R

Taking into account the continuity equation (18), we thus obtain a system
of a first-order ordinary differential equation (with respect to z) coupled to
a hyperbolic-parabolic degenerate quasilinear partial differential equation for
the two unknown fields ¢(z,t) and g,(z,t).

For a flow which is axisymmetric with respect to the z-axis, we can only pre-
scribe a radius function r = r(z) with 0 < z < H and a single boundary
condition that does not depend on #. Using equation (16) and the represen-
tation (33) of q for axisymmetric flows, we obtain

r 0q,

Ve = 5 5 (2,t) cos, (40a)

Vsy = ; 36qz (2,t)sin 0, (40b)
0A

o= 0.0+ 5 ful0) - 252, (40c)

For §# = 0, the vector n(z) = (—1,0,r’(z))T is orthogonal to the inclined
boundaries of the symmetric vessel. As before we use the boundary condition

(25) and obtain
Oa. +2:;Z){ <fbk(¢) af;(j))]:u (41)

Of course, equation (41) is also coupled to equation (18). To rewrite the
coupled system for q,(z,t) and ¢(z,t) in a uniform manner for both the planar

11



and the axisymmetric case, we introduce the parameter ¢ and the function

d(z) by
d(z) =z,(2) —z_(2), o=1 for planar flows, (42)
d(z) =2r(z), o=2 for axisymmetric flows. (43)
Then we obtain
dg.  od(z) _  od(2) _ 0A(9)
e T80 =2 (- 252),
94 o _ PA(g)

— . ! — 45

(@ ) 5 = T (45)

2. If the boundary z, (z) is an upward-facing wall on which the boundary condi-
tion (27), which reads here q - n,(z) = 0, we obtain in view of (29)

0g: |

C(z,t) = x+(z)g + 2 (2)q.. (46)

The right-hand parts of (37) and (46) must be equal. This yields the following
ordinary differential equation for g,, where d(z) is defined as in (42):

b, d() T, . 0A()
o (fbk(qb) i ) (47)

This equation is again coupled with (18), i.e. we obtain the coupled system
(47), (45) instead of (44), (45).

Now we have to formulate initial conditions and boundary conditions corresponding
to the flat top and bottom for this system. The initial condition is

$(2,0) = ¢o(2), 0<¢o(2) < Pmax for 0 <z < H. (48)
Moreover we prescribe the boundary conditions

q.(0,1)
¢(H,1)

Finally, we require that neither fluid nor solid passes through the horizontal bound-
ary z = 0, and prescribe

0, (49)
0.

(40 - 252 ) 0.0 =0 (51)

In the case of presence of an upward-facing wall on which sediment may accumulate,
we assume that there is no downwards creeping flow of the solid material.

Of course, once we have calculated the fields ¢(z,t) and g,(z,t) from the system
(44), (45), we immediately obtain q and v, from (29), (34) and (37) in the planar
and from (33), (37) and (40) in the axisymmetric case.

12
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Figure 3: Batch settling in a vessel a) with inclined or conical walls, b) with parallel
inclined walls.

An immediate consequence of the coupling between the field ¢, and the concentration
distribution ¢ expressed in both systems (44), (45) and (47), (45) is that an initial
concentration distribution ¢y and the initial volume average velocity field q(z, z, 0)
cannot be prescribed independently. Rather, only ¢, can be prescribed, and the
instantaneous velocity field q(z, z,0) is determined by inserting ¢ into the right-
hand part of equation (44) or equation (47) and integrating the respective equation
with respect to z using the boundary condition (49).

3 Sedimentation in vessels with inclined plane or
conical walls

3.1 Sedimentation in roof-shaped or conical vessels

Here we evaluate two explicit examples, namely for a planar flow in a roof-shaped
vessel and a flow symmetric with respect to the z-axis in a conical vessel. In both
cases we provide a vessel with a flat bottom of width 2R, height H and side wall
inclination angle 0 < o < 7/2, see Figure 3a).

In the first case of a planar flow with o = 1 we set
z,(2) =R—zcota; z_(z) = —z,(2); d(z) =2(R — zcot ) (52)
and note that C' = 0. In the second case with ¢ = 2 we obtain
r(z) = R— zcota; d(z) = 2(R — z cot ). (53)

Then we can use (44) for both cases with the same function d(z) and obtain the
following equation for g,:

dq. o cot o _ ocota 0A(p)
8z R—zcota ' R—zcota ¢<fbk(¢) 0z )’ (54)
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In the sequel we will exclusively consider a constant initial concentration in order
to solve the initial-boundary value problem (44)—(51), i.e. (48) is replaced by

#(z,0) = ¢ = constant, 0 < @y < Amax- (55)

Equation (54) may be solved explicitly for a constant concentration ¢, < @. which
does not depend on z and ¢ for some region in space and time. In this case we obtain
the solution

() Jo(¢4)
d?(2) G

where x(t) is in general a time-dependent function. Now we discuss the implications
of formula (56) for two special cases, namely for a very small initial time ¢ — 0 and
for t — oo with a final consolidation state. In the case ¢ — 0 we use the initial
condition ¢(0,z) = ¢y, the boundary condition g,(0,¢) = 0 and obtain

2:(2,t) = (56)

x cot o 1
qm(x’zao) - _E fbk(¢0) z o+l qz(z, 0) - fbk(¢0) ( 2 T 1) .
¢ (1- Z cot ) o) (1 — 2 cot )
(57)
There results the following initial velocity field v,
'Usz(waza 0) = _E fi)k(gb()) cota o+l ’USZ(Z,O) = M (1 - i cot a) -’ :
R d  (1-Zcota) Po R
(58)

If we enlarge the diameter R of the vessel for fixed height H and set for example
z = R/2, we obtain for 0 < z < H

~ Jok(o)
269

However, we expect that for R — oo the influence of the boundaries should decay,
i.e. that

cota.

lim v, (R/2,2,0) =
R—o0

lim v, (R/2,2,0) =0. (59)
R—o0

This is a clear contradiction to equation (58), which indicates the initial velocity
fields are not physically correct in the entire vessel and not only in the vicinity of
boundary layers.

In order to describe the final consolidation state for ¢ — oo we restrict ourselves to
KYNCH’s theory, i.e. the case considered by SCHNEIDER [46], and set

A(p) = a(p) =0. (60)

Here we expect a sediment layer of height z. with 0 < z. < H and constant concen-
tration ¢ = @y for 0 < z < 2., and a clear liquid zone with ¢ = 0 for 2. < z < H.
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We consider a flux density function f, (¢) that satisfies (8) and use the boundary
condition (49) to conclude from (56) that g, = 0 in the sediment-layer. Formula (56)
predicts a strange behaviour in the stationary clear liquid region. In the stationary
case, we may replace k(t) by some constant ky. Taking into account that g, = 0 in
the sediment layer and that

Jim, f(9)/ 6 = oo, (61)
we obtain
q.(2) = uoo((d"(zc)/d"(z)) — 1) <0 for z > z.. (62)

Consequently, ¢,(z) cannot vanish in the clear liquid zone for the final consolidation
state since the vessel has the variable cross-section d(z) = 2(R — zcot ). In partic-
ular, (62) implies that ¢,(H) < 0, i.e. even in the stationary final state a positive
amount of clear liquid per unit time leaves the vessel through the inclined walls and
returns into the vessel through the upper boundary. Once again the initial velocity
fields are not physically correct in the whole vessel and not only in the vicinity of
boundary layers.

3.2 Sedimentation between inclined parallel walls

We consider a two-dimensional sedimentation vessel with two parallel inclined walls,
see Figure 3b). In this case, we have

o=1; z.(2) = R+ zcota; z_(z) = zcota; d(z) = R. (63)
As in § 2.5, we have to analyze each case of boundary condition either (26) or (27)

on z (z) separately.

1. If we prescribe boundary conditions (26), we immediately obtain from (44)
9g.
=0. 64
5y (64)
From the boundary condition (49) we conclude that g, vanishes identically. In
this case, only the scalar degenerate hyperbolic-parabolic equation

op 0 0A(9)
ot + 9 (fbk(¢) T T, > =0, (65)

which is independent of the inclination angle «, has to be solved. This means
that the concentration profiles are exactly the same as in a vertical settling
column of height H, which have for example been calculated in [6, 7].

Taking into account that g, vanishes everywhere and using (2), (34) and (37),
we obtain the following solid and liquid phase velocity fields for ¢ > 0:

e =7 (1) - 5 ot =3 (10 - 202), o
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— — — - - - — - — - — — — —P N

Figure 4: The flow field between two parallel inclined plates for ¢ = const. in the
case of imposing boundary condition (26) on the upward-facing wall. The solid and
dotted arrows denote the solid and fluid particle trajectories, respectively.

1 DA(p) 1 0A(¢)
e =5 (0 = 25 oty =~ (o) - 252 om)
Here, we have omitted the y-components, since they do not contribute to a
planar flow. It should be pointed out that these expressions are also well
defined for ¢ = 0 for virtually all practically relevant flux density and effective

solid stress functions f, (¢) and o,(¢), for example those given in (10) and (11).

We note that the entire solid phase velocity field is parallel to the inclined walls
and therefore satisfies the prescribed boundary condition (25). In contrast,
the fluid passes the inclined boundaries, which is illustrated in Figure 4, where
both velocity fields are depicted in a region where the concentration takes a
constant value ¢ > 0.

. If we assume that boundary condition (27) is valid on the upward-facing wall,
the coupled system (47), (45) takes the form

9.

i _ ot (fbk 22 (69)
9 9
8_¢ + (g + fin(9)) 8(5 ¢ (69)

In contrast to the previous case, we now obtain a coupling between the con-
centration distribution ¢ and the volume average flow field q. The solid con-
centration profiles will not be the same as in the one-dimensional case, and
the solid phase velocity field will not be parallel to the inclined walls. In
fact, we may repeat the analysis performed in § 3.1 for a sub-critical constant
concentration ¢y < ¢.. We then obtain from (68) that

Jo(#0) cot )
PR

16

z + R(t), (70)

q: =



4

From boundary condition (49) we immediately obtain that the integration
constant & vanishes. Moreover, we can employ (37) to obtain

C(2,0) = <1 " 223;ta> bulon)coia -
0
from which we get in view of (29) and (34)
Qz(l', Z, 0) — (1 + 22 COt‘:Ra _ w) fbk(¢;)0COt a, qz(z, 0) = W . Z,
(72)
Use (2, 2,0) = (1 + 2z COtRa — a:> fbk(@szs) cot a’ (73)
0
Usz(za 0) — (]. + ZC;; a) fbk;QSO) . (74)
0
Obviously, we get from (73)
olRf2,2,0) = (5 + ke ) bl ota, -
and hence
}%i_r)r;o Vse (R/2,2,0) = fi, (o) cot a/(2¢y). (76)

As in the case of a conical vessel, we expect that the influence of the inclined
boundaries vanishes for R — oo, i.e. that (59) is valid, which is a clear
contradiction to (76).

As in § 3.1, we also consider the final consolidated state for ¢ — oo, where for
simplicity we restrict ourselves again to the constitutive assumption (60). The
final state of the system will be a sediment layer of concentration ¢,., and
height z. with a clear liquid zone above. Using a flux density function f, (¢)
that satisfies (8), we may again conclude from (49) that ¢, =0 for z < z.. In
view of (61), we obtain

¢:(2) = usxcota/R <0 for z > z, (77)

hence, as in the case of a conical vessel, the model predicts that even in a
final, stationary state a positive amount of liquid leaves the vessel through the
inclined wall and returns into the tank through the upper boundary. Clearly,
this phenomenon is not restricted to the vicinity of the boundary.

Numerical examples

The following solution procedure has been implemented in order to obtain transient
solutions of the initial-boundary value problems consisting of the field equations (44)
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Figure 5: Simulated concentration profiles at ¢; = 20004 [s], ¢ = 1,...,6, in a cylin-

drical sedimentation vessel (left) and in conical vessels with wall inclination angles
a = 63.425° (middle) and a = 50° (right).

(or (47)) and (45) and the initial and boundary conditions (48)—(51): Assume that
a time step At > 0 is given, and that ¢, = nAt, n=0,1,2,..., N. We then use the
following steps alternately:

1. Assume that ¢(+,t,) is given (from the previous step or by the initial condition
for n = 0). Then calculate q,(-,¢,.1) by inserting ¢(+,¢,) into the right-hand
part of equation (44) (or equation (47)) and integrating this equation with
respect to z using the boundary condition g¢,(0,%,1) = 0.

2. Replace ¢, in equation (45) by ¢, (-, ¢,+1). Then calculate ¢(+, t,41) from ¢(-, t,)
by using the PDE (45), the boundary conditions ¢(H,t) = 0 and (51).

In our implementation, we use a polygonal method for the first step and a finite-
difference operator splitting method described in detail in [14, Ch. 10]. In fact,
there exists a variety of discretizations suitable for equation (45), see [10, 11| for
an overview. One can either use monotone finite difference schemes with numerical
fluxes that include both the convective and the diffusive part or, in an ‘operator
splitting’ methodology, select the optimal existing methods for the convective and
the diffusive part and solve both separately. We refer to [19, 25, 26] for an excellent
introduction to discretization techniques for degenerate convection-diffusion equa-
tions based on operator splitting. The diffusion term 9%A(¢)/8z? should, however,
always be discretized in a conservative manner to ensure convergence to the entropy
weak solution of equation (45) together with the corresponding initial and boundary
conditions.

18



a  1.00 ; ; 1.00 ; 1.00 =

z [m] 2z [m] z [m]

0.80 r 1 0.80 1 0.80
0.60 r 1 0.60 1 0.60 rt
0.40 r 1 0.40 r 1 0.40 r
0.20 1 0.20 1 0.20 r
0.00 i 0.00 bl 0.00 2 ‘
0.0 0.10 0.20 0.30 00 40 80 120 0.0 0.20 0.40 0.60 0.80 1.00
e e [10-4m/¢] o ]
b)  1.00 — . . 1.00 . 1.00 =
z [m] 2z [m] z [m]
0.80 1 0.80 1 0.80
0.60 < %0 0.60 F 3 %0 0.60
0.40 r 1 0.40 r 1 0.40 r
0.20 1 0.20 1 0.20 r
0.00 L 1 L 1 L 0.00 1 1 1 1 1 0.00 i /\ 3\ =X\
0.0 0.10 0.20 0.30 00 40 80 120 0.0 0.20 0.40 0.60 0.80 1.00
e e [10-4m?/¢] o ]
0 1.00 — — 1.00 — 1.00 ——
2z [m] z [m] z [m] )
0.80 1 0.80 - N 0.80 F:
0.60 1 0.60 q 0.60
0.40 1 0.40 q 0.40

20 X Ze 20 R 2

0.20 \ 1 020 F 1 0.20
0‘0 1 L L 1 1 L 1 1

0 0.00 — 0.00 ‘
0.0 0.10 0.20 0.30 00 40 80 120 0.0 0.20 0.40 0.60 0.80 1.00
[ thr [1074m? /] x [m]

Figure 6: Simulation of sedimentation in a conical vessel with o = 63.425°: concen-
tration profiles (left), boundary fluid flux density (middle) and solid (fat dots) and
fluid particle paths (right) at times (a) ¢t = 0, (b) ¢ = 2000 [s] and (c) ¢ = 12000 [s].
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To illustrate the predictions of the initial-boundary value problems, we consider the
suspension whose material behaviour is defined by the model functions (11) and
(12) with the parameters specified in (13), see Figure 1. Note that a(¢) not only
vanishes on the interval [0, ¢.| but is even discontinuous at ¢ = ¢.. However, in
view of recent existence and uniqueness results by BURGER et al. |9] for the simpler
case g, = ¢,(t) and the fact that discontinuous diffusion coefficients are explicitly
included in the numerical schemes discussed above, this unusual feature need not
cause particular difficulties.

4.1 Sedimentation in a conical vessel

We first consider an initially homogeneous suspension of concentration ¢y = 0.05 in
conical vessels of height H = 1[m]|, bottom radius R = 1|[m] and different inclina-
tion angles a = 90°, a = arctan 2 = 63.435° and a = 50°. Figure 5 shows simulated
concentration profiles for ¢ = ¢; = 2000: [s], i = 1,...,6 in each of the three vessels.
We observe that decreasing o considerably increases the settling rate, i.e. the prop-
agation velocity (in absolute value) of the supernate-suspension interface. These
concentration profiles have been calculated with a spatial accuracy of Az = L/500.

Next, to illustrate details of the flow field, we consider the case a = arctan2 =
63.435°. Figure 6 shows the numerical solution at three different times, viz. ¢ = 0 (a),
t =2000(s] (b) and ¢ = 13000 [s] (c). Here, Az = L/1000 was chosen.

The left column shows the corresponding concentration profiles. Wherever applica-
ble, we have also marked the computed heights of the supernate-suspension interface,
2o(t), and of the suspension-sediment interface, z.(¢). The last time has been chosen
so large that both coincide, i.e. the solid component is entirely contained in the
sediment.

The right column shows plots of instantaneous solid and fluid particle paths, which
are plotted by large and small dots, respectively. To construct these paths, we
consider the velocity field q and the concentration distribution ¢ (and thus the
velocity fields v, and v¢) to be stationary at the time ¢. We denote by 7 a time
parameter for the construction of the instantaneous particle paths. The solid particle
paths start from z (7 = 0) = 0.1k — 0.05[m], k = 1,...,5, z,(1r = 0) = 1[m], and
are continued by the polygonal method

Ts(T+ AT) = 25(T) + ATvsp (25, 25),  25(T + AT) = 25(7) + ATvs, (s, 25),

where vy, (zs, 25) and v, (zs, 2,) are calculated from the fields ¢, and ¢ by (40a) and
(40c) (where we set § = 0). Taking into account the kinematic relationship (2),
local values of vf, and v, can be computed in a similar fashion and be used for
the construction of fluid particle paths. Here, we construct two families of fluid
particle paths: particle paths starting from different points of the top of the vessel
(ze(r = 0) = 04-28%m], &k = 1,...,6; z(r = 0) = 1[m]) and from near its
bottom (z¢(r = 0) = 0.8 -2 8[m], k = 1,...,6; 2(r = 0) = 0.01[m]). In this
and the following example (Fig. 7), the distance between two plotted dots of each
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path corresponds to the distance traveled in A7 = 100[s] for z > 2.(¢) and in
50A7 = 5000 [s] for z < z.(t), respectively.

We observe that the solid particle trajectories have the same shape for all times, i.e.
are straight lines intersecting at the cone tip (z = 0, z = 2 [m]). However, velocities
vary substantially along these lines. In particular, velocities diminish drastically
when the solid particle paths enters the consolidation zone (z < z.(t)).

The fluid particle trajectories show very interesting behaviour. Both families in-
dicate that fluid flow directed towards the inclined boundary. The fluid particle
trajectories drawn for ¢ = 0 are very similar to those of SCHNEIDER’s Figure 5 [46].
Moreover, fluid velocities in the clear liquid region (z > zy(t)) tend to be very high.
Apparently, over the entire height 0 < z < H, fluid leaves the vessel through the
inclined boundary. To quantify this effect, we define the boundary fluid flux density

271 (2)
I (2)[I(1 +7'(2))

Obviously, the total amount of fluid leaving through the boundary between two
heights z; and 25 at time ¢ is given by

/:2 Ye(z,t) dz.

Ye(z,t) = — 73 (1 — ¢(z, t))vf(r(z), z, t) -n(z). (78)

In the middle column of Figure 5 we have plotted profiles of ¥¢. An obvious result
is that most fluid leaves through the boundary in the clear liquid zone, and that
this effect becomes absent at the boundary corresponding to the sediment zone as
consolidation proceeds. The only thinkable physical explanation of this phenomenon
is, of course, the existence of a boundary layer through which fluid streams upwards
and re-enters the vessel through its top. Although this mechanism seems quite
absurd, it provides a method to verify the conservativity of the numerical method:
requiring that all liquid leaving through the lateral boundary of the conical vessel
comes back through the flat top implies that the error

1 H_
=\~ et )y 0

should remain small (since the distinction is essential here, the tilde denotes nu-
merically computed values of a quantity). This is a consequence of the continuity
equation of the fluid. For the examples presented in Figure 6, we found ¢ = 0.072 for
t =0, ¢ = 0.00067 for ¢ = 2000 [s] and ¢ = 0.00045 for ¢ = 12000 [s], respectively.

4.2 Sedimentation between inclined walls

In the second example, we consider an initially homogeneous suspension, again of
initial concentration ¢y = 0.05, in a two-dimensional vessel of height H = 1 [m] with
inclined parallel walls and a = 63.435°. In the left column of Figure 7, we show the
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Figure 7: Simulation of sedimentation between parallel walls with inclination angle
a = 63.425°: concentration profiles (left) and solid (fat dots) and fluid particle paths
(right) at times (a) ¢ = 0, (b) ¢ = 2000 [s] and (c) ¢t = 12000 [s].
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Figure 8: Simulation of sedimentation between parallel walls: (a) cumulated volume
of solids V* having left the vessel through the upward-facing wall, (b) relative mass
error ¢ as a function of time for four different initial concentrations.
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concentration profiles of at (a) ¢ = 0, (b) ¢ = 2000 [s] and (c) ¢ = 12000 [s]. The right
column shows the plots of the instantaneous solid and fluid particle paths which have
been obtained in the same way as for the previous example. The plotted solid particle
paths start from zs(7 =0) =1.05+0.1(k — 1) m], k = 1,...,10, 2(7r = 0) = 1 [m],
while the fluid particle paths start from different points of the top of the vessel
(zg(1=0)=0.6+02(k—1)[m], k=1,...,5; 2(r =0) = 1[m]), from the upward-
facing inclined wall (z¢(7 = 0) = 1.054+0.1(k—1) [m], 2¢(7 = 0) = 0.1+0.2(k—1) [m],
k=1,...,5) and from near its bottom (z¢(7 = 0) = 0.140.2(k—1) [m|, k = 1,...,5;
z¢(7 = 0) = 0.01 [m]). The trajectories for ¢ = 0 can be compared with those plotted
in Figure 8 of SCHNEIDER [46]. However, since the initial concentration is not zero,
we obtain additional details of the instantaneous flow field. In particular, since
we the upward-facing wall is assumed to be impermeable to the mixture, any flow
of solids “through” that boundary (this effect is explained by the formation of a
boundary layer) has to be balanced by an inflow of the same volume of liquid. For
the transient flow fields plotted in Figure 7a) and b), we therefore obtain a family of
fluid particle trajectories directed away from the upward-facing inclined wall. The
plot for ¢ = 12000 [s] illustrates that there are no such trajectories in the clear liquid
zone, from which of course no solids can settle out through the boundary. Moreover,
by the density of plotted dots, we observe that velocities in the compression zone
are very small.

For this configuration, we measured the volume of solids (relative to the initial
volume of solids) that have left the vessel through the upward-facing wall at time ¢

by

Lot 6(,7)
Vi (t) = — 5 Vs zy(2), 2, 7)ny(2)dzdr.  (79)
¢0L/o / In(2)] (1 + 2 () ( )

This quantity has been determined for four runs with different initial concentrations
and is plotted in Figure 8a). We can observe that for initial concentrations varying
between 0.02 and 0.05, between 14% and 17.4% of the initial solids volume is caught
in the boundary layer after ¢ = 12000 [s|. For ¢, = 0.02, the settling process is
terminated most rapidly, and the corresponding curve is the first to take almost
horizontal shape.

Of course, the continuity equation for the solid implies that at any time ¢ > 0,
V*(t) plus the volume of solids contained in the tank at that time gives the initial
solids volume. However, due to numerical errors this not exactly true. To check the
conservativity of the numerical method, we also determined the relative mass error

H
Q) =1- 7o) - o7 [ 8tz (50)

¢l Jo
which is plotted in Figure 8b) for the four initial concentrations of Figure 8a).
(The use of the tilde is the same as in equation (79).) This quantity depends, of
course, on the discretization parameters, and numerical experiments have shown that
||€s]|ooc — O for Az — 0 when the mesh size ratio Az/At remains constant. However,
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for the fixed value Az = H/1000 considered here, it is interesting to note that this
error builds up rapidly during a very small initial time interval, and then remains
almost constant. This behaviour is possibly due to the splitting error present in the
solution algorithm when ¢ varies rapidly, as is the case for small times.

For ¢y = 0.05, the error ¢, remains roughly constant at 0.8% for Az = H/1000,
and numerical experiments have shown that ||¢||c — 0 for Az — 0. This error is
considerably higher for lower initial concentrations, but shows the same qualitative
behaviour.

5 Conclusions

We concluded from the general field equations that it is impossible to prescribe
both boundary conditions for the solid and the liquid phase at the boundary of a
closed vessel simultaneously. We have demonstrated that this deficiency can not
be explained by the presence of boundary layers of clear liquid beneath downward-
facing and of sediment on upward-facing inclined walls:

A detailed analytical study of the velocity fields of both phases leads to the conclu-
sion that these flow fields are immediately influenced by distant inclined boundaries
for a very small initial time ¢ — 0 , even in those regions in the interior of the vessel,
where we expect simple vertical flow fields. Consider for example a conical vessel
and an initially homogeneous solid concentration. In this case, in experiments such
as those of SCHAFLINGER [45] flow of clear liquid in a thin (compared to the diam-
eter of the vessel) boundary layer beneath the downward-facing walls is observed.
However, the presence of such boundary layers can not explain that the flow fields
are not correct far away from the boundaries.

Similar problems occur for the final consolidation state when ¢ — oo, where we
obtain a flow field of clear liquid which circulates for infinite time through the
inclined walls and the top of the vessel, despite the fact that we have assumed a
vessel which is impermeable for both phases. In this case the fluid should be at rest
and there is no boundary layer which could explain this absurd result. Exactly the
same problems for ¢ — 0 and ¢ — oo arise in the study of Schneider [46].

The reason for this difficulty is in fact a deficiency of the general field equations, in
particular of the simple form of the linear momentum balance (7), which led to the
conclusion that the concentration of the solid does only depend on z and ¢ and that
the boundary conditions for both phases can not be satisfied simultaneously for a
closed vessel. Consequently, an improved set of model equations should include a
more elaborate linear momentum balance (such as that presented in [13]|) in which
additional advective acceleration or viscosity terms are retained. Such a formulation
also implies that the interaction of the kinematic waves, i.e. of the evolution of the
concentration distribution, with the volume average velocity field of the mixture,
is modeled in the whole vessel, whereas this interaction is modeled here merely via
boundary conditions. The boundary conditions should supplement the general field
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equations, and not be part of these. Of course, such a modification of the present
model requires the solution of truly multidimensional equations, and rules out simple
one-dimensional numerical solution procedures such as that employed here.

Despite the fact that the present model produces incorrect flow fields, it is math-
ematically sound and can be solved numerically quite easily. Moreover, the corre-
sponding concentration profiles are in qualitative agreement with observations of
enhanced settling rates in vessels with inclined walls. (In this context, it is interest-
ing to note that the numerical experiments did not predict that inclined walls cause
an increase in the final bottom concentration.) It should therefore be interesting
to analyze whether the concentration profiles calculated here may at least be con-
sidered as useful approximations of concentration profiles of improved model equa-
tions. Unfortunately, most experimental evidence for such a hypothesis is related
to incompressible (unflocculated) mono- or polydisperse suspensions [18, 32, 45].
Experiments with flocculated slurries beneath inclined walls seem to be lacking,
although such materials are widely used in the mineral industries.
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