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Abstract

We develop a new test of a parametric model of a conditional mean function against a
nonparametric alternative. The test adapts to the unknown smoothness of the alternative
model and is uniformly consistent against aternatives whose distance from the parametric
model converges to zero at the fastest possible rate. This rate is slower than n’2  Some
existing tests have non-trivial power against restricted classes of alternatives whose distance
from the parametric model decreases at the rate n2. There are, however, sequences of
aternatives against which these tests are inconsistent and ours is consistent. As a
consequence, there are aternative models for which the finite-sample power of our test
greatly exceeds that of existing tests. This conclusion is illustrated by the results of some
Monte Carlo experiments.
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1. INTRODUCTION

This paper is concerned with testing a parametric model of a conditional mean
function againgt a nonparametric aternative. We develop a test that is consistent against
aternative models whose distance from the parametric model converges to zero as rapidly as
possible as the sample size, n, increases. The test does not require a priori knowledge of the
smoothness of the alternative model, and it has desirable power properties that are not shared
by existing tests.

We consider the model
(11) Y =f(X)+¢g; 1=123...,
where Y; is a scdar random variable;, {X} € R is a sequence of distinct, non-stochastic,
design points; f is an unknown function; and { &} is a sequence of unobserved, independent,
random variables with means of zero. We test the null hypothesis, Ho, that f belongs to the

parametric family S ={F(-,0),0 € ©}, where F is a known function and © is a subset of a

finite-dimensiona space. More precisely, the null hypothesisisthat thereisa 8 € © such that
f(X) = F(X, 6) for dl i. The aternative hypothes's, H, is that there isno 6 € © such that
f(X) = F(X;, 0) for al i.t

There is a large literature on testing a parametric model of a conditiona mean
function against a nonparametric alternative. Many tests compare a nonparametric estimator
of f(-) with a parametric estimator, F(-, 8,), where 6, is an estimator of 6 that is consistent
under Hy (e.g., a least-squares estimator). See, for example, Ait-Sahalia, et al. (1994),
Eubank and Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Hardle and Mammen
(1993), Hart (1997), Hong and White (1995), Li and Wang (1998), Whang and Andrews
(1993), Wooldridge (1992), Yatchew (1992), and Zheng (1996). Other tests do not require
nonparametric estimation of f. Bierens (1982, 1990), Bierens and Ploberger (1997), and De
Jong (1996) test orthogonality conditions that are implied by (1.1). Andrews (1997) develops
aconditional Kolmogorov test.”

The asymptotic power of atest of Hy is often investigated by deriving the asymptotic
probability that the test rejects Ho against a sequence of local alternative models. This
approach iswell known but, asis explained in the next paragraph, restricts attention to a class

of aternative modelsthat istoo small. The form of the local aternative modelsis

(12) (%) =F(x.601) + pr9(x)

for some function g, where 6, € © and { p,} is asequence of real numbers that convergesto 0
as n — oo. See, for example, Andrews (1997), Bierens and Ploberger (1997), Eubank and
Spiegelman (1990), Hong and White (1995), and Zheng (1996). Many tests that compare a

nonparametric estimator of f with a parametric estimator have non-trivia power (that is,



power exceeding the probability that a correct Hy is rejected) only against sequences of local
aternatives for which p, — O at arate that is slower than n2, Thetests of Ait-Sahalia, et al.
(1994), Eubank and Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Hardle and
Mammen (1993), Hong and White (1995), Whang and Andrews (1993), Wooldridge (1992),
Zheng (1996), and Y atchew (1992) have non-trivial power only if p, converges more slowly
than n2,

Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997)
describe tests that have non-trivial power against local aternatives for which py, < n2 Thus,
at least in terms of asymptotic local power, these tests appear to dominate tests that require
slower convergence of p,. It turns out, however, that if p, =< ™, then no test can have non-
trivial power uniformly over reasonable classes of functions g in (1.2) (e.g., functions that
have derivatives of order s for some integer s). See Burnashev (1979), Ibragimov and
Khasminskii (1977), and Ingster (1982). In other words, the power of any test of Ho against
the sequence of local aternatives f,(x)=F(x,04)+ n‘”zgn(x) equals the probability that
the test rejects a correct Hy for some sequence {g,} of (say) twice differentiable functions.
The practical conseguence of this result is that any test of Ho for which p, o< n”? has low
finite-sample power againgt certain classes of smooth aternatives. Section 4.2 presents
numerical examples of this phenomenon. Hong and White (1995) and Fan and Li (1999) also
present examples. Because the class (1.2) excludes models of the form
f,(X) = F(X,01) + pn9n(X), it cannot be used to develop tests that have good power against
all smooth alternatives. Thisisthe sense in which the class (1.2) istoo small.

Another way to investigate the asymptotic power properties of tests of Hp is the
minimax approach of Ingster (1982, 1993a, 1993b, 1993c). This approach, which is not
widely known in econometrics, permits the set of aternatives to consist of an entire
smoothness class. The minimax approach forms the basis of the test that is developed here.
In this approach, it is assumed that f belongs to a class of one-or-more-times-differentiable
functions of R, such as a Holder, Sobolev, or Besov ball, B B is separated from the null-
hypothesis set 3 by some distance r, that converges to zero as n — . The am of the
minimax approach is to find the fastest rate a which r, can approach zero while permitting
consistent testing uniformly over B. Thisrate is called the optimal rate of testing. A test is
consistent uniformly over B if

(2.3) lim ]jnf P(Hq isrgected againstf ) = 1.
B

N—co TE
Thus, the optimal rate of testing is the fastest rate at which r, can approach zero while
maintaining (1.3). The optimal rate of testing for Holder, Sobolev, or Besov classes of
functions that have bounded derivatives of order s> d/4 is n"=“ * 9 (Ingster 1982, 19933,



1993b, 1993c; Guerre and Lavergne 1999). Thisrate assumesthat sisknown a priori. If sis

2s/(4s+d
unknown, then the optimal rate of testing is(n‘lqlloglogn) (e ), which differs from the

rate that is achievable with known s by the very slowly increasing factor (loglogn)¥“st®)

(Spokoiny 1996). If s < d/4, then the optimal rate of testing is n* (see, e.g., Guerre and
Lavergne 1999).

A test that achieves the optimal rate of testing has the advantage of being sensitive to
aternatives uniformly over a Holder, Sobolev, or Besov class whose distance from the null
hypothesis 3 converges to zero at the fastest possible rate. These classes contain sequences
of aternative models against which the tests of Andrews (1997), Bierens (1982), Bierens and
Ploberger (1997), and Hart (1997) are inconsistent. In practice, this means that there are
smooth alternatives against which these tests have much lower finite-sample power than does
atest that achieves the optimal rate of testing. Section 4.2 presents numerical illustrations.

In this paper, we construct a test of Hy that has the optimal rate of testing uniformly

over Holder classes and does not require a priori knowledge of s, the order of differentiability
2s/(4s+d
of f. The test satisfies (1.3) with , o (n"%logiogn) ™ when's= d/4. Thetestiscalled

adaptive and rate-optimal because it adapts to the unknown s and has the optimal rate of
testing for the case of an unknown s.

A test that achieves the optimal rate of testing uniformly over a smoothness classB is
necessarily oriented toward the alternatives in B that are most extreme and hardest to detect.
These functions have narrow peaks or valleys whose widths decrease with increasing n. See
Section 4.1 for an example. A test that is oriented toward such alternatives may have low
power against functions that are less extreme. To provide some protection against this
possibility, we investigate the consistency of our test against alternatives of the form (1.2).
These aternatives cannot have the extreme behavior just described because g in (1.2) is a

fixed function. We show that our test is consistent against alternatives of the form (1.2)
whenever p, = cn~Y2 floglogn for somefinite C > 0. Thetests of Andrews (1997), Bierens
(1982), Bierens and Ploberger (1997), and Hart (1997) are consistent against alternatives of

the form (1.2) whenever p, — 0 more slowly than 2. Thus, our adaptive, rate-optimal test
and the other tests (which are not rate-optimal) are consistent against virtually the same
aternatives of the form (1.2). In terms of consistency against alternatives of the form (1.2),
there is essentially no penalty paid for the adaptiveness and rate optimality of our test.’
Throughout this paper, our concern is with the rate at which the distance between the
null and alternative hypotheses can decrease to zero while permitting consistent testing by

some procedure. We do not investigate other properties of the power functions of tests, and



we do not derive the asymptotic local power function of our test. Nor do we attempt analytic
comparisons of the powers of our test and others apart from noting conditions under which
our test is consistent and others are not. More extensive power comparisons are left for future
research. The contribution of this paper is to provide a test that (1) adapts to the unknown
smoothness of the alternative model, (2) is consistent at the optimal rate uniformly over
Holder classes of alternatives, and (3) is consistent against alternatives of the form (1.2) when
pn has nearly a n™? rate of convergence. The first two properties of our test guarantee that
there are aternatives against which our test has high power and tests such as those of
Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997) have low
power. The third property provides some protection against the occurrence of the opposite
situation.

The test statistic is described in Section 2 of this paper. Theorems giving properties
of the test under Hy and various forms of H; are presented in Section 3. Section 4 presents the
results of some Monte Carlo experiments that illustrate the numerical performance of the test.
Concluding comments are presented in Section 5. The proofs of theorems are in the

Appendix.

2. THETEST STATISTIC

This section describes our test statistic and presents a bootstrap method for obtaining
critical values of the test. The test is closely related to that of Hardle and Mammen (1993).
Like Hardle and Mammen, we base the test on the distance between a kernel nonparametric
estimator of f and a kernel-smoothed parametric estimator. The main difference between our
test and that of Hardle and Mammen is that we compute the distance with many different
values of the bandwidth parameter of the kernel smoother. We regject Ho if the distance
obtained with any of the bandwidthsistoo large. The rate-optimal and adaptive properties of
our test arise from its use of many different bandwidths.

The remainder of this section is divided into five parts. Section 2.1 describes the
parametric estimator of f. Section 2.2 describes the kernel smoothing procedure and the
metric that is used to measure the distance between the nonparametric and smoothed
parametric estimators of f. Section 2.3 explains how the distance between the nonparametric
and smoothed parametric estimators is centered and Studentized. The test procedure is
presented in Section 2.4. Section 2.5 explains how to estimate unknown population
parameters that enter the test statistic.



2.1 The Parametric Estimator
We consider the model (1.1). The hypothesis to be tested is Hy: f e S

={F(,0),0 ©}, where F is a known function and © is an open subset of a finite-

dimensiona Euclidean space. We assume that there is an estimator of 6, denoted by 6,, that
isnY2-consistent under Ho. Let 8, € © denotethetrue value of @if Hyistrue. Thatis, E(Y) =
F(X,60) for al i if Hyistrue. Then, n“4(6, - 6) is bounded in probability under Ho.

We assume that 6, isstableif Hyisfalse. By thiswe mean that thereisa 6* € © such
that n"46, - 6*) is bounded in probability if Ho is false. Under assumptions stated in
Amemiya (1985), for example, the |least-squares estimator of 6 has the required properties, as
do many other M estimators (Millar 1982).

2.2 The Kernel Smoother
We now explain the kernel smoothing procedure that is used in our test. Let K denote
the kernel and h denote abandwidth. For x e R, let Kx(x) = K(x/h). For eachi,j=1,2, ...,n
define

(X, X)) =2 XD
D Kn(Xi = Xy)
k=1

The kernel nonparametric estimator of f(X) is
n
fr (X)) Zth(Xi XPY]
j=1
The kernel-smoothed parametric estimator is
n
Fo(Xi.60) = D Wh(Xi, X[)F(X;,60,) .
j=1
The distance between the nonparametric and smoothed parametric estimators of f is defined to
be the sum of the squared differences f,(X)) - Fn(X,6,).% Accordingly, for any 6 € ©, define
n
$H(0) = D [ Fn(Xi) = Fn(X;.0)]% .
i=1
The test statistic is based on a centered, Studentized version of S(6,) whose asymptotic
distribution has a mean of zero and variance of one.
Some vector notation will be useful in the discussion that follows. Define the nx1
vectors Y = (Yy, ..., Yy) and F(6) = [F(X4,0), ..., F(X,0)]. Let W, be the nxn matrix whose
(i,]) dementiswn(X;, X). Let ||| denotethe ¢, norm. Thatis, for any ze R",



n
2
14°=>.7"
i=1
Then

$(6) = WY - F(0)]°
forany 6 e ©.

2.3 Centering and Studentization

This section explains the method that is used to center and Studentize S,(6,). We
begin by defining further notation. Suppose that Hp istrue. Then (X)) = F(X;, 6) for al i.
Define the nx1 vector € = (g, ..., &)’. For 6 € O, define the nx1 vector by(6) = WL[F(60) -
F(6)]. Then

Y-F(6)=F(0,)-F(6)+¢,
and
21 S(60)=|Mhe+b, O = |Mhe| +[jon (0)]]7 + 201 (6) Wie .
Let a;, denote the (i, j) element of the nxn matrix A, = W/'Wh. Let 54(X;) = E(ei“) and
0%(X;)=E(e?). Assume that these quantities exist.

To develop the method for centering and Studentizing S,(6,), it is first necessary to
evaluate the mean and variance of S,(6o) under Hy. Observe that
> n n
Si(00) =Mhe” =3 D ayneie; -
i=1 j=1

Then

22)  EWel’ =N, = i%i,hcz(xi) .
i

In addition, Var|[\/\4¢:||2 =V{? +v},, where

23) V=2 ia?,hoz(xooz(xj)

n
i=1 j=1
and
- 2 4
v =Y afnls(Xi) - 30 (X;)].
i=1
It is not difficult to show that vi, = o(Vi?) @ n — oo, SO vy is asymptotically negligible.
Therefore, an asymptoticaly centered, normalized form of S,(6o) is



102 Sh(60) = Ny _ [Whel” =Ny
Vh Vh

That is, the asymptotic distribution of T, has amean of zero and a variance of one.
To obtain the centered, Studentized form of S,(6,), define

7 _ S0 -N,
h

:Th0+T]h,

where

ba(0)] +20,(8,) Whe
NMh = .
Vh

It follows from Lemmas 4.3 and 4.5 of the Appendix that n, = 0y(1) asn — . Therefore, the

asymptotic distribution of T, has mean zero and variance one. However, T, cannot be
computed in an application because it depends on the unknown quantities cz(Xi) i=1,..,
n). This problem can be solved by replacing each GZ(Xi) in (2.2) and (2.3) with an
estimator. Methods for estimating az(Xi) are described in Section 2.5. For now, we
assume that such methods exist and denote the estimator of GZ(Xi) by oﬁ(xi). The

centered, Studentized form of S,(6,) is obtained from T, by replacing o2(X;) with o2(X;)
in N, and V,,. Specificaly, define

(24)  Np=> & y0a(X)
i=1

n
(25) VZ=2) Y afnoa(X)oa(X;),

n
i=1 j=1
and
(26) T,= w
h
Then T, is a feasible statistic whose asymptotic distribution has mean zero and variance one.

It isthe centered, Studentized form of S,(6,) that is used to construct our test statistic.

2.4 The Test Procedure
The idea of the test is to consider ssimultaneously a family of test statistics { Ty, h
Hn}, where H, is a set of bandwidth values. We assume that H, is finite and denote the

number of elements of H,, by J.. A specific example is ageometric grid of the form

(27) H,={h=ha“: h>h, ,k=012.},



where 0 < hpn < hpew, and 0 < a < 1. In this case, J, <109 1a (hmax/hmin).  The proposed test
procedure rejects Hy if at least one of the statistics Ty, for h € H, is sufficiently large. Thus,
we define

(28) T*=maxT,= max (0n) =N
heH, heH, Vi,

Weuse T* asatest statistic.

We now discuss how to obtain critical values for T*. The exact a-level critical value,
t*, (0< a<1)isthel- o quantile of the exact finite-sample distribution of T*. This critical
value cannot be evaluated in applications because 6, and the distributions of the g are

unknown. However, it is shown in Lemmas 8-10 of the Appendix that asymptotically (as n
— ), t,* is determined by the variances of the g's, 02(Xi) . The vaue of 6, and other

features of the distributions of the &'s do not affect the asymptotic critical value. Therefore,
an asymptotic o-level critical value, t,, can be obtained as the 1 - o quantile of the
digtribution of T* that is induced by the model Yi* = F(X;, 6, + &*, where g* is sampled
randomly from the normal distribution N[O,aﬁ(xi )]. Thetest proposed here regjects Hy with
asymptotic level o if T* > t,. The asymptotic critical value t, can be estimated with any
desired accuracy by using the following simulation procedure:

1. Foreachi=1, ..., n, generate Y;* = F(X, 6, + &*, where &* is sampled randomly
from the normal distribution N[0,52(X;)].

2. Usethedataset {Y*, X;: i =1, ..., n} to estimate 6 and az(Xi). Denote the
resulting estimates by 6,, and 62(X;), respectively. Compute the statistic T* that is
obtained by replacing Vi, 6, and ¢2(X;) with Y*, 6,,, and 62(X;) on the right-hand side of
(2.5).

3. Edstimate t, by the 1 - o quantile of the empirical distribution of T* that is
obtained by repesating steps 1-2 many times.

2.5 Estimating 6% (X;)
This section explains how cz(Xi) can be estimated. We need an estimator that is

consistent regardless of whether Hy is true. Thus, we cannot base the estimator on the
residuals of the parametric model Y; - F(X;, 6,).”
Recall that the g's are assumed to be independently distributed. Assume for the

moment that they are also identically distributed so that 6(X;) = o2 for some constant

02>0. If d=1 (the X’sare scalars), then we can estimate 2 by using the method of Rice



(1984), Gasser, et al. (1986), and Buckley, et al. (1988). Let X3y < X < ... < X be the
ordered sequence of design points, and let Y;;) and g;), respectively, be the similarly ordered
values of the Yi's and g's. Then Y(i +1) - Y(i) =&+ - &y T f(X(. + 1)) - f(X(i)). Now,

E(gis2) — £6y)° =207. Moreover, under the assumptions of Section 3.1, [f(X; « 1) - f(Xg)| =

0asn— . Therefore, we can estimate 62 by
1 ”i »
> 22y —Y0) -
2(n-1) =
This estimator is n“?-consistent under the assumptions of Section 3.1, regardless of whether
Ho istrue (Rice 1984).

We now explain how this method can be extended to multivariate settings. We

(29) oi=

restrict the discussion to the case of d < 4. Let j(i) (i =1, ..., n) be a set of indices that is
defined through the following recursion:

i =arg min [X; - X,|
and

0= argi¢i,j(rI)],i--r-1i(i—l)||xj %[ i=2..n

The number j(i) is the index of the design point that is nearest to X; among those whose

indicesarenot j(1), ..., j(i - 1). Then o2 can be estimated by
2 13 2
(2.10) GnZZ_Z(Yi_Yj(i)) :
nia

Under the assumptions of Section 3.1, (2.10) is a n“*-consistent estimator of o2, regardiess

of whether Hy istrue.

The estimator oﬁ can be extended to g's that have heteroskedasticity of unknown
form by replacing the global sumsin (2.9) and (2.10) by sums over shrinking neighborhoods
of the design points X.° Let o2() satisfy the Lipschitz condition
lo?(X;)—o?(X;)l < LIIX; = X;|| for some finite L > 0. Let b, be a bandwidth that
convergesto 0 as n — oo, and let I(-) be the indicator function. Define j(i) as before. Then

under the assumptions of Section 3.1, oz(Xi ) can be estimated by

D e =Yi) 11Xk = Xil < )

on(X) =+

Y (X = Xi| < by)
k=1

If by — 0 and Nhiigby’ — e 8N — oo, then 63(X;) -0 (X;) =0, (Myg) asn — co.

10



It is shown Lemma 8 of the Appendix that if o2(X;)—02(X;)=0,(h42), then
T =maXp ey Tho +0p (1), where T =[$,(6*) — Np]/Vy, and ¢ = 6 if Ho is true. Thus,

the asymptotic distribution of T* is the same as it would be if 6 and GZ(Xi) were known,

regardless of whether Hp istrue.

3. THE MAIN RESULTS
This section presents theorems that give the asymptotic behavior of the proposed test.
Section 3.1 states our assumptions. The behavior of the test under Hy is given in Section 3.2.
Sections 3.3-3.5, respectively, give the test’s behavior under a fixed aternative hypothesis,
under the sequence of local alternative hypotheses (1.2), and under smooth alternatives that
are contained in a Holder ball whose distance from the null hypothesis converges to zero at

2s/(4s+d
the optimal rate of testing (n‘l,/loglogn) (st ). The adaptive, rate-optimal property of the

test is established in Section 3.5.

3.1 Assumptions
Our results are obtained under the assumptions stated in this section. Define

VoF(x,0)=0F(x,0)/96, V5F(x,0)=0°F(x,0)/0000", V,F(x,0)=0dF(x,0)/dx, and
V2F(x,0) =9°F(x,0) / 0x0x’ whenever these derivatives exist. For any oxq matrix D,

define

[ov]
|D].. = sup %=,
vese [V
where ||| is the ¢, norm. Let V4F(6) be the nxq matrix whose (i,j) element is
OF (X;,6)/96 .

Assumption 1 (Parametric family): The parameter set © is an open subset of R for
some > 1. The parametric family 3 ={F(:, 0), 6 € O} satisfies:

(i) Differentiability in 6: For each x € [-1,1] %, F(x, 6) is twice differentiable with
respect to 6. For finite constants C;; and Cyp, €ach i = 1, ..., n, and each 6 € O,

[VoF (X;.0)] < Cu,and [VEF(X;,0)| < Cp.

(i1) Differentiability inx: For each 6 € O, F(x, 6) is twice differentiable with respect

tox e [-1,1]%. Moreover, |

V)Z(F(x,e)” < Cy3 for somefinite constant Cys.

(iii) Identifiability: Thereisa finite C, > 0 such that

11



sup| [NV oF (0)' VoF (o) < ¢t
0O

and for every 6>0

inf FQ—FQ/ZZCZ_
9,9’e(EI)I:’]|9—9”|25” ( ) ( )” |6 n

Assumption 2 (Parametric estimator): (i) Let Ho betrue. Then 6, © and

lim P(n”2||9n B z) <$
for any 6 > 0 and all sufficiently large z. (ii) Let Ho be false. Then thereisa 6* € © such
that

lim P(n”2||9n -6%|> z) <8
for any 6 > 0 and all sufficiently large z. (iii) Let {60 n=1, 2, ...} bea sequencein ©
whose limit points, if any, areall in©®. Let{o,: i=1,...,n;n=12, ...} beatriangular
array of real numbers that is bounded away from 0 and «. Define Y* = F(X;,0,9) + 0,®;,
where {w;:i =1,...,n} areindependently distributed as N(0,1). Let én be the estimator of 6,9
that is obtained fromthe data set { Y;*, X;: i =1, ..., n}. Then

lim P(n”2
N— oo

On _9n0

>z)<6

for any 6 > 0 and all sufficiently large z
Assumption 2(iii) establishes a stability property of the parametric estimator that is used to
justify the simulation procedure for obtaining the critical value of the test statistic.

For every x e R“ and every h > 0, define M(x) as the number of elements in the set
{Xi:]|X; = | < ht.

Assumption 3 (Design): (i) The design points X, € R® (i = 1, ..., n) are non-
stochastic and scaled so that | X;| < 1 for all i. (ii) There are positive constants C; and C,

suchthat for all he Hyandall i = 1, ..., n, Cinh® < My(X) < Cnh™.

Assumption 3(i) restricts the X; to a bounded subset of R®. Given boundedness of the
Xi, there is no loss of generdlity in the scaling assumption. Assumption 3(ii) is satisfied with
probability approaching 1 as nh — o if H, satisfies Assumption 6 below and {X;} is sampled
randomly from a distribution that is absolutely continuous with respect to Lebesgue measure,
has bounded support, and whose density is bounded away from zero on its support.
Therefore, our results hold conditional on { X;} that are generated this way. However, we do
not require { X;} to be sampled from a distribution.

Assumption 4 (Kernel): K is non-negative, supported on [-1,1]%, and symmetrical

about the origin. Moreover, K(u) < 1 for all u, and K(u) > « for ||u|<1/2 and some x> 0.

12



Assumption 5 (Moments of g): (i) The random variables g are independent with

means of zero and uniformly bounded moments of order 4 + 6 for some 6 > O: E|a|4+ < Ce

for some constant Ce < o and all i = 1, ..., n. (i) 6%(X;)=E(e?) and s,(X;)=E(e})
satisfy [o2(X;)—o? (X))l < U|X = X;| and |s;(X;)-s(Xj) < L|X; - X;| for some

constantL < andalli,j, =1, ..., n. (iii) O'Z(Xi) >m, for some constant m, >0 and all i.

Assumption 6: (Bandwidths): The set H, of bandwidths has the structure (2.7) with
hmax > hmin = n7 for some constant ¥ such that 0 < y < min(1/3, 1/d), and hmsx =
Cy (loglogn) ™! for some finite constant Cy > 0.

Under Assumption 6, J, <O(logn) asn — oo,

3.2 Behavior of the Test Statistic under the Null Hypothesis

Recall from Section 2.4 that t, is the 1 - o quantile of the distribution of T* that is
induced by the model Y* = F(X, 6,) + &*, where g* is sampled randomly from the normal
distribution N[O,cﬁ(xi )] . The main result on the behavior of the test statistic T* under Ho is
that t, isan asymptotically correct a-level critical value under any model in Ho. Thisresult is
established by the following theorem.

Theorem 1: Let Assumptions 1-6 hold. Let Ho betrue. Then

lim P(T*>t,)=c.

Nn— oo
3.3 Consistency Againgt a Fixed Alternative
We now show that our test is consistent against a fixed alternative model. Let (1.1)

hold. Define the nx1 vector f =[f(Xy), ..., f(X,)]’. Measure the distance between f and the

parametric family 3 by the normalized ¢, distance

B 9 1/2
(3.1) p(f,s)zLiQf6 (n‘lnf—F(e)” ﬂ |

If Ho isfalse, then p(f, 3) = ¢, for dl sufficiently large n and some c, > 0. A consistent test
will regject afalse Hy with probability approaching one as n — «. Theorem 2 establishes the
consistency of our test.

Theorem 2: Let Assumptions 1-6 hold. If thereisan ng such that p(f, 3) > ¢, for al n
> ng and some ¢, > 0, then

lim P(T* >t,)=1.

N— oo

3.4 Consistency Against a Sequence of Local Alternatives
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This section establishes the consistency of our test under local alternatives of the form
(1.2) with p, = cn"Y2 floglogn for some constant C > 0.

Define the nx1 vectors g =[g(Xy),...,g(X,)]” and f,=[f(Xy),..., T,(X,)]. We

assume that g is a continuous function that is normalized so that
1,2 1

32 [l ==X la(x)F=1.
n n<

We also assume that g is not an element of the space spanned by the columns of V,F(6,) .
That is,
33) [g-mg| > d]g]
for some 6 > 0, where
My = VF (81)[VF (61)' Vo F (61)] V4F (61
is the projection operator into the column space of V,F(6,). Conditions (3.2) and (3.3)

exclude functions g for which || f, - F(On,o)”:o(pn) for some non-stochastic sequence

{60} € ©. Thus, (3.2) and (3.3) insure that the rate of convergence of f, to the parametric
model F(-, 6,) isthe same as the rate of convergence of p, to zero. In particular, under (3.2)

and (3.3),
1/2

[ int (n—1|| - F(e)||2ﬂ > 8p,[1-0(1)]
asn — oo,

Finally, we assume that 6, is the least squares estimator of 6. This assumption is
made for technical convenience only and is not essential to the consistency result, which is
stated in the following theorem.

Theorem 3: Let Assumptions 1 and 3-6 hold with h,, =Cy (loglogn)™ for some
finite constant Cy. Let 6, be the least-squares estimator of 6. Let f, satisfy (1.2) with
pn = CnY2 Jloglogn for some constant C > 0. Let g satisfy (3.2) and (3.3). Then

lim P(T*>t,)=1.

N— oo

This result shows that the power of the adaptive, rate-optimal test approaches 1 as n
— oo for any function g and sequence {p,} that satisfy the assumptions of the theorem.
However, the result is not uniform over all possible g's. Uniformity is addressed in the next

section.
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3.5 Consistency Against a Sequence of Smooth Alternatives
This section gives conditions under which our test is consistent uniformly over
aternatives in a Holder smoothness class whose distance from the parametric model
approaches zero at the fastest possible rate. The results can be extended to Sobolev and Besov
classes under some additional technical conditions on the design { X} .

To specify the smoothness classes that we consider, let | = (jy, ..., ja), Wherejy, ..., g

> 0 areintegers, be amulti-index. Define
d
lil=Y ik
k=1

and

whenever the derivative exists. Define the Holder norm

If],s= sup d 2|Dif(x)|.

xe[-1]] lil<s
The smoothness classes that we consider consist of functions f € SH,9) =

{f:[f], s <Cg} for some (unknown) s> max(2, d/4) and C < o~.

Theorem 4 states that our test is consistent uniformly over the sets
2s/(4s+d
(3.4) BH,ns{f e S(H,9): p(f ,S)zCa(n‘lwllogIogn) (der )}

for some s> max(2, d/4) and all sufficiently large C, < o.

Theorem 4: Let Assumptions 1-6 hold. Then for 0 < o < 1 and By, as defined in
(3.9),

lim inf P(T*>t,)=1

n—e feBy,

for all sufficiently large C, < .

4. MONTE CARLO EXPERIMENTS
This section presents the results of Monte Carlo experiments that illustrate the
numerical performance of the adaptive, rate-optimal test. The section has two parts. Section
4.1 presents a sequence of alternatives against which our test is consistent but the tests of
Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hérdle and Mammen
(1993) are not. This sequence motivates the design of the Monte Carlo experiments. The
experiments and their results are described in Section 4.2.

15



4.1 An Example

This section presents a parametric model and a sequence of aternatives against which
our test is consistent but the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger
(1997), and Hardle and Mammen (1993) are not. All of these tests are consistent against each
aternative in the sequence, however. The fact that the tests are not consistent against the
sequence itself, as opposed to its individua elements, illustrates their lack of uniform
consistency.

The null hypothesis model (parametric family) in the exampleis
(A1) Y =Po+pBX +¢&,
where 3, and B; are constants, the X;'s are scaars that are sampled from a distribution that is
symmetrical about O, and & ~ N (0,02) for every i. The distribution of g is specified
parametrically because Andrews (1997) test requires a fully parametric model. The other
tests do not require specification of the distribution of g. The sequence of alternative models
is
(42) Y =X +1,00(X 11, +¢,
where & ~ N(0,1), ¢ is the standard normal density function, and 7,, = C(n‘l\/W)_ﬂ9

for some finite ¢ > 0. The function fy(X) = X + 7, ¢(x/7,) has a peak that is centered at x = 0
and that becomes narrower as n increases. The sequence of alternative models {f} is
contained in By, with s = 2. The distance between f, and the parametric model (4.1)

-4/9
satisfiesp(fj,,3) o< (n‘l,lloglogn) , S0 the distance converges to zero more slowly than n’

172

It is not difficult to show under that the sequence (4.2), the noncentral parameters of
the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hardle and
Mammen converge to zero as n — . Therefore, these tests are inconsistent against (4.2). It
follows from Theorem 4, however, that the adaptive, rate optimal test is consistent against this
sequenceif Cissufficiently large.

4.2 Monte Carlo Experiments
This section presents the results of Monte Carlo experiments that illustrate the
numerical performance of the adaptive, rate-optimal test. In each experiment, a parametric
null-hypothesis model and two alternatives are specified. Monte Carlo simulation is used to
estimate the probability that the adaptive, rate-optimal test regjects the parametric model when
it is correct and the test’'s power against the alternatives. To provide a basis for judging

whether the test’ s power is high or low, the powers of the tests of Andrews (1997) and Hardle
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and Mammen (1993) are also estimated by Monte Carlo smulation. In all experiments, the
nominal probability of rejecting a correct null hypothesis is 0.05. The computing time
required for the experiments is lengthy because al of the tests use of Monte Carlo or
bootstrap methods to obtain critical values. Accordingly, the designs of the experiments are
simple so as to minimize the time required to compute the test statistics.

The null-hypothesis model in the experimentsis
(43) Y =Bg+B1Xi+¢g; 1=12,..,250
where each X is a scalar that is sampled from the N(0,25) distribution truncated at its 5th and
95th percentiles. In experiments where (4.3) is correct (Hp istrue), fo = f1=1. The ' swere
sampled independently from three distributions, depending on the experiment. These are
N(0,4), a variance mixture of normals in which g is sampled from N(0,1.56) with probability
0.9 and from N(0,25) with probability 0.1, and the Type | extreme value distribution scaled to
have a variance of 4. The mixture distribution is leptokurtic with a variance of 3.9, and the
Type | extreme value distribution is asymmetrical.

The alternative models have the form
(44) Y =1+ X, +0B/1)¢(X;/1)+¢;,
where the g’ s are sampled from one of the three distributions just described and 7= 1 or 0.25,

depending on the experiment. Figure 1 plots the function f (x) =1+ x+(5/7)¢(x/7) for

each value of 7. The example of Section 4.1 suggests that the power of the adaptive, rate-
optimal test should be high compared to the powers of the tests of Andrews (1997) and
Hérdle and Mammen (1993) in the case 7 = 0.25, where the difference between the null and
aternative models consists of a narrow peak. The power advantage of the adaptive, rate-
optimal test is likely to be less or even non-existent under the more moderate case 7 = 1.
However, Theorem 3 suggests that the power of the adaptive, rate optimal test should be
satisfactory in comparison to the powers of the other testswhen 7= 1.

The X’ s were sampled once from the specified distribution and held fixed in repeated
realizations of the Y;'s. The values of 3, and 5, were estimated by ordinary least squares.
Equation (2.9) was used to estimate ¢ in experiments with the adaptive, rate-optimal test.
The HardleMammen test does not require an estimator of ¢2. In experiments with
Andrews' test and &'s with the normal or extreme value distribution, the distribution of the
&'s was assumed to be known up to o2, which was estimated from (2.9). In experiments
with Andrews' test and &’ s with the mixture-of-normals distribution, the mixing probabilities,
0.9 and 0.1, were assumed to be known a priori. The variances of the normal components of
the mixture were estimated from estimates of the variance and fourth central moment of the

&'s. The variance was estimated from (2.9). The fourth central moment was estimated by
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1 n-1

= Y.y —Yiy)* —602.
2(n—1)§1‘( i+ — Yi)) n

The kernel used for the adaptive, rate-optimal test and the test of Hardle and Mammen (1993)

San

is K(u) = (15/16)(1-u?)? I (Ju|< ).

Implementing the test of Hardle and Mammen (1993) requires selecting a bandwidth
parameter, h. Existing theory provides no guidance on how this should be done in
applications. We found through preliminary ssimulations that in al of our experiments, the
power of the test is maximized near h = 3.5 and varies little over the range 3 < h < 4.
Accordingly, we used h = 3.5 for all experiments with the test of Hardle and Mammen (1993).
The set of bandwidths for the adaptive, rate optimal test was{2.5, 3, 3.5, 4, 4.5} in al of the
experiments.

The experiments were carried out in GAUSS using GAUSS pseudo-random number
generators. There were 1000 Monte Carlo replications in the experiments in which Hy is true
and 250 in the experiments in which Hy is false. The larger number of replications for the
experiments with a true Ho insures that the probabilities of Type | errors are estimated
reasonably precisely. The lower number of replications with a false Hy conserves computing
time while providing sufficient precision to be informative about the relative powers of the
tests. Bootstrap critical values for the tests of Andrews (1997) and Hérdle and Mammen
(1993) were computed from 99 bootstrap resamples. There were 99 replications in the Monte
Carlo procedure that was used to estimate the critical value of the adaptive, rate-optimal test.

The results of the experiments are presented in Table 1. When Hy is true, al tests
have empirical rgjection probabilities that are close to the nominal probability of 0.05. None
of the empirica regection probabilities differs from the nominal rejection probability at the
0.01 level. The power of the adaptive, rate-optimal test is much higher than the powers of the
other tests when Ho is false and 7= 0.25. All of the differences between the powers of the
adaptive, rate-optimal test and the other tests are significant at the 0.01 level when 7 = 0.25.
The power of the adaptive, rate-optimal test is similar to that of the Hardle-Mammen test but
greater than that of Andrews' test (p < 0.01) when Hpisfalseand 7= 1. Thus, the simulation
results are consistent with the expectation based on theory that the adaptive, rate-optimal test
has higher power than the other tests in the presence of a relatively extreme alternative and
has satisfactory power in comparison to the others in the presence of a more moderate

alternative.

5. CONCLUSIONS
This paper has developed a new test of a parametric model of a conditional mean

function against a nonparametric alternative. The test adapts to the unknown smoothness of
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the alternative model and is uniformly consistent against alternative models whose distance
from the parametric model converges to zero at the fastest possible rate. This rate is dower
than n™2. Some existing tests have non-trivial power against local aternative models whose
distance from the null hypothesis decreases at the rate 2. However, this rate is not
achievable uniformly over reasonable classes of aternatives. As a consegquence, there are
situations in which the new test has much higher finite-sample power than do tests that have
non-trivial power against ™ local aternatives. The new test is consistent (though not
uniformly) against local alternatives whose distance from the null hypothesis decreases at a
rate that is only slightly slower than n 2. This property provides some protection against the
occurrence of situations in which the power of the new test is much lower than that of existing
tests. The predictions of theory have been illustrated numerically by the results of a small set
of Monte Carlo experiments.

APPENDI X

Sections A.1-A .4 present technical lemmas that are used in the proofs of Theorems 1-
4. The proofs of the theorems are in Section A.5. It is assumed throughout that Assumptions
1-6 hold. To minimize the complexity of the notation, it is assumed that d = 1. The
generaization to the case d > 1 is straightforward but requires more complicated vector
notation. The structure of the proofs is as follows. In Lemma 10, we use a central limit
theorem for sums of random quadratic forms to show that under Ho, T* has the same limiting
digtribution as the verson of T* that is obtained by sampling from the model
Y, = F(X;,00)+0(X;)w;, where the ;’s are independently distributed as N(0,1). This
result forms the basis of the proof of Theorem 1. Lemma 13 shows that P(T* >t,) — 1asn
— o whenever the distance between the parametric family 3 and f(-) exceeds a specified

value. This result forms the basis of the proofs of Theorems 2-4.

A.1 Moments of §,(6)
Lemmal: Let Abeanxnsymmetrical matrix whose (i,j) elementisa;. Let{g: i=
1, ..., n} beindependent random variableswith Ee® =0, Eg? = 67, and E* = 5. Then
n n n 2
EY Y ajee; =) aio]
i=1 j=1 i=1
and
$ % C % 2.2 2 C 2 4
Varl Y Y ajeiej |= Y Y 2800t + Y at(s —307).
i=1 j=1 i=1 j=1 i=1

Proof: Obvious. Q.E.D.

19



Lemma 2: There are positive constants Cy;, Cne, Cn, Cu1, and Cy, that depend only

on C; and C, in Assumption 3, on Cg in Assumption 5, and on K such that for all h € H,: (i)
Cnih ™ < Ny <Cpoh™, (i) Gyih™ <2 < Cyoh ™, and (i) WW,|_ <Cy -

Proof: Assumptions 3 and 4 imply that for al i

(A1) zn“K X=X, < M, (X;) <C,nh
< )< Conh,
j:1 h h | g
2
n X — X,
A2 K| —L | <M, (X;)<Conh,
(A2) le - h(X) <G
D (X=X
(A3) YK |2 &My (X)) 2KCynh / 2,
j=1
and

noX =X )
(A4) ZK( 'h ’j >k2My0 (X)) 2K2Cinh/ 2.
j=1

Therefore,
Kh(X; — X; Kh (X — X
(A5) h( i J)SWh(Xi,Xj)S h( i J),
kCnh/2
2 n
k“Cinh/2 C,nh
Cl—zS W (X, X))? S o2 =
(C,nh) =t k“Ci(nh/2)

and the first assertion follows.

Next, since al elements of the matrix A, = W,"W, are non-negative,

n

| Al < max Y &y

15|snj:1

Using (A1) and 2?=1Wh(xk,xj)=1,Weobtainfor every i, k<n,

n n n C nh
zai',h=z ZWh(Xk,X')Wh(xk,x')=th(Xk1X')Sz—,
1 J j=1 k=1 | : k=l T xCnh/ 2

and the third assertion follows.
Now, the Cauchy-Schwarz inequality and (A2)-(A4) yield

n
j=

2
2 N 2% )2 Conh h)2
(A6) a,,hskzﬂwh(xk,xo kzﬂwﬂxk,xo S[(KClnhIZ)Z} <(C/nh)

for asuitable constant C. These inequalities give the bound
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i1 1 1<i,j<n

n n 0
thzzz Zaijz,hoz(xi)cz(xj)SZHLQ}QXnG‘l(Xi)K max aj,h)lrj}a}nzaj,h
<i< =1=in

< Zn{ max o*(X; )}&
1<i<n nh

A similar argument bounds th from below, thereby yielding (ii). Q.E.D.

A.2 Bounding bn(6)

Lemma3: Let Cy; beasin Assumption 1 and Cy beasin Lemma 2. For every 6>0

max  sup  |b,(6)|° < CACyné2.
heH,gco:|0-0,) <5

Proof: By Assumption 1(i) and the mean value theorem,

|F(8) - F(8,)| < CZ|6 - 6|, Therefore,

Iby @) = MLLF (8) - F (8]
=[F(6) — F(60) W, [F(6) - F(60)]

<[Wew . |F (8) - F(80)*

n
<Cy Y. CA[6 - 6| < CAC\NS?.
i=1

Q.ED.

Lemmad4: Asn — co:
Iz max Vi IV o F () Wi, = O, (1)
and
I M2 max Vi |Mhe| = 0, (2) .
heH,
Proof: To obtain thefirst result, it sufficesto show that for some constant C < oo

Ro1=dn" 2 Vi “E[VF (80) Whe]“ < C .

heH,

Using Assumption 1(i), we obtain
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E|[VoF (80) WMhe|* = Etr[VoF (60) WMLee WMLV 6 F (6,)]
s[ max Gz(xi)}tr[veF(90),(\/\41\/\41)2V9F(90)]

1<i<n
< 20y |2t 2
<[ max o (X;) (Citr (W)
Therefore,

Ru<Jyt th‘z[ max oz(xo}Cﬁtrwmz

<i<
heH, lsi<n

LT@X o (X )}0121” (WW,)?

i 2[15n_i<n o“(xi)}tr(V\M)z |

Thefirst result now follows from Assumption 5.

To prove the second result, it suffices to show that

Ri2=Jit Y Vi2E|Wel*<cC

heH,

for some C < . Using Lemma 2, we get

Riz=Jnt D Va?Np <t Y CnaGri < ChoGits

heH, heH,

which proves the second result. Q.E.D.
Thefollowing result isa corollary of Lemmad4.

Lemmab: Let Hp hold. Then for eachu >0

max sup Vi b (8) Whel| = O, (37 2n7Y2) .
heH, g co:]o-6,) <n2u

The following result holds when Hy isfalse.

Lemma6: Givenhe H, let B, :||\/\4][ f - F(OO)]” . 1f By >V, then for every u >0

and 6> 0,

P[ sup [ - FOWW.e] > 55&] =0(1)
0 € ©:0-0,] <n?u

asn — oo,
Proof: Assumption 1(i) and a Taylor series approximation to F(6) — F(6,)

give
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sup [ (O] <[ [F ~ F(80)] WiWhe]

6 € ©:]6—-6,<n

+nY2U]V o F (80) W] + Y2 Ci22u? W]
By this result and Lemma 4, it suffices to prove that B*E[| [ f - F(GO)]WWSHZ =0(1) asn

— 0. UseLemma 2 to obtain
B, *E| [T - F(0o) W[

<| max o*(X;) By f — F(0o)]' (W) f — F(6o)]

<| max o%(X;) By MR L T = F(80)) WL T - F(6,)]

=| max o2(X;) By MW WL T~ F(8)|

1<i<n

=| max cz(Xi)_BgZCN.

1<i<n

Since B2 >V/?, the result follows from Lemma 2 and hy, = 0(1) asn — . Q.E.D.

A.3 Sequences of Local Alternative Models
Write the local alternative model (1.2) in the form f, = F(8,) +p,0, 6. € ©, where

f, and g are asdefined in Section 3.4. Define
6on=arg inf |[f, —F(9)].

This quantity exists for all sufficiently large n. Let |,, denote the nxn identity matrix.
Lemma?: Define g* = (I,—1I1,)g, whereIl; isas defined in Section 3.4. Then

f = F(80n) —Pn8 | =0()
ash — . Moreover, the least-squares estimator 6, satisfies
2
[F(6n)~F(60,)| =0,

asn— oo,
Proof: See Millar (1982, Theorem 3.6). Q.E.D.

A.4 Gaussian Approximation of Quadratic Forms
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This section presents properties of the centered, normalized quadratic forms
To =Vi 1Sh(61) — Nyl and Tyo=[S,(6*) — Nyl /Vi,. Lemma 8 shows that T, = T + 0, (1)
fordl h. Let & =0(X|)o; (i =1, ..., n), where the @’s are independently distributed as
N(0,1). Define Tro = [[W4Z]|” — Np]/V;,. Lemmas 9-10 show that under Ho, maxy,c 4 Ty, and

MaXp e y_ fho have identical asymptotic distributions. This result is used in the proof of

Theorem 1 to justify the simulation method for estimating the critical value of T*. Lemmas
11-14 provide results that are used in the proofs of Theorems 2-3.

Define Y* = F(X;,0,)+& (i=1,...,n). Let 6, and 62(X;) be the estimators of
6, and o(X;) that are obtained from the data set {Y*,X;}. Let T, be the version of T,
that is obtained by replacing 6, with én, and ¢2(X;) with 62(X;), and g with 62(X;)o;
in (2.4)-(2.6).

Lemma 8: Let o4(X;)—0(X;)=0p(hun) uniformly over i = 1, .., n. Then
Ty =Tho +0,(1) and T, =Ty +0,(1) uniformly over he H,.

Proof: This result follows from Lemmas 1 and 2 and an application of the delta
method. Q.E.D.

Lemma9: Asn.— oo,

n
max Vi, MY & (el —67) =0, (1) .
heH, i

Proof: It suffices to show that

) 2
R, = Z Vh_2E|:zaii,h(€i2 —02)} =0(D
i—1

heH,

asn — oo. Taking the expected value gives

n 2
R= Y vh-{za%,h@roﬁ} |

heH, i=1

By Assumption 5, s, <6*C¢ . By Lemma2, V;;? <Gyth and a; , < Cy (nh) ™. Therefore,

Ri< Y c;%h[icﬁ (nh)—zc“ce‘}

heH, i=1

<nigyicietct Th
he H,

<n'CUiCR o CEh (1-a) 7!
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The lemma now follows. Q.E.D.

Lemma 10: Let Ho be true. Then maxy,.p Tho and max,cp Tno have identical
asymptotic distributions.

Proof: By Lemmas 8 and 9, it suffices to show that the joint distributions of

Vit &y peie; (heH,) and Vit a; 158 (heH,) are asymptotically the same. For h

i#] i#]
e Hyand & =¢; or g (i=1,...,n), define

B ) =V D66

i#]
Let B,(&4,...,&,) bethe vector that is obtained by stacking By, (&4,...,&,) (he H,). Letg,

be a 3-times continuously differentiable function on %> . Define

9°gn (V)
aV; VoV

O3 = SUp  max
7 oot i k=Ld,

The proof takes place in two steps. The first step isto show that

_ _ J3/2
(A7) |Eg[ Bn(gll'"’gn)] - Eg[ Bn(gll“"gn)] |S Ch g3n[ﬁ]
n hmin

for any 3-times differentiable g, some finite constant cy, and al sufficiently large n. The

second step uses (A7) to prove that Vi 'Y peie; (he Hy) and Vit a; 188 (heH,)

i) i)
have the same asymptotic distribution.

Step 1: Define by =&, /Vi,. Assume without loss of generality that o(X;) =1 for
ali=1,..,n [If 6(X;)=1, replace g with & /6(X;), & with & /o(X;), and by, with
b ho (X))o (X;).] Itiseasily shown that

(A8) ”Eg[ Bn(glv"'gn)] - Eg[ Bn(Elv""En)]”

<Y |[EdlBy(eq,..., 81 Eisge Bl — EQLBy (€1, 1,8 vonns B
i=1

where B,(€1,---,&n,Ens1) = Bo(€1,--,€,) and B, (gq,€1,€,) = Br(€1,---,€,) - We now derive
an upper bound on the last term of the sum on the right-hand side of (A8). Similar bounds
can be derived for the other terms. Let u,_q,A,,, and Zn, respectively, denote the vectors

that are obtained by stacking

(=N
>

-1

Upp = B hEi€j
i1 =1
|

>

I
=

bl
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n-1
Apn = 2‘C:nz‘,hn,hgi 1
i=1

and
_ n-1
Apn = 2EnE,hn,hgi .
i=1
Then a Taylor-series expansion of the last term of the sum on the right-hand side of (A8)
about €, =€, =0 yields

|EQIBn (1,-+1€n)]— EQIBy (€1,---1€n-1, ENI| S [EG (Un_1)(A = Ap)]

+ (1 2)EIARG” Uy 1) An — Ay 0" Uy ) Bl 1+ (G / OYE]A|* + E[, ),
where g’ and g”, respectively, denote the gradient and matrix of second derivatives of g.
Since €, and g, are independent of ¢,...,e,,, Ee,=E&,=0, and Ee2=E£g?=1, we
have
E(An—Apler,€n) = E[(AnAL = ApAL)leq, . €041 = 0.
Therefore,

(A9)  [EQIBy(ey,.m. £0)] ~ EQIBy (B EIIS (G0 / O)(E A + E[Z, ).

To find bounds on E|A,|> and EHKr,Hs, let by, be the vector that is obtained by stacking

Bnn(h=1,. ,Jn). Then Holder'sinequdlity gives
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3
EA,|° = Ele,fE

n-1
22hngi
i=1

3/4

n-1 2 2
<8E|e P E| D [Zhn,hgi]

heH, \i=1

34
n-1
=8E|£n|3[EZ D Zhn,hbjn,hbkn,sben,sgiSjgkf?f]

heH, seH, i.j.k,(=1

3/4

n-1 n-1
= 8E|£n|3 E z Z Z (Q%,hbjzn,s + 2t%,hhn,sbjn,hbjn,s) + ZhﬁhhﬁsE(Eﬁ)
i=1

heH, seH, |i,j=1

1]
3/2
in

for some finite ¢ > 0, where the last line follows from Lemma 2 and (A6). A similar result

holdsfor E[,|”. Therefore

, s 3 32
ool effof* <2 o]

and (A9) gives

3/2
IEQLBy (€1, €0)] ~ EGLB (€1, €1, En)]]| < (G ,3)(n;n. ] |

Similar bounds hold for the other terms of the sum on the right-hand side of (A8). Summing
the bounds yields (A7).
Step 2: It sufficesto show that for any real z

Iim{P{max Bin(€1,-,€) < z}— P[max Bin (€11, €n) < z}} =0
heH heH

N—co n

or, equivalently, that

m =0.

li
N—o0

EJ]!(Bunes.en) <d-EJ][BunEr.-.80) <7

heH, heH,

Let g be a non-decreasing function that is 3 times continuously differentiable on the rea line

and satisfiesg(v) =0if v<-landg(v) =1if v>0. Let 6, = J;z. Some algebra shows that
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(A10) |[EJ]'Bum(ernen) <A-E 1B (L. 80) <2

hGHn heHn

<

eTT g[ Bhn(elg.,en)—z} €] g{ Bhn(zl,(.s..,zn)—z}

he Hn he Hn

[B..(e ooy € —7]
+ > E|g n 16 n) —1[Bry(E1ren80) £ 7
heH, L n _

+ > E|g B““(gl’('s'"g")_z N[Biy (Byyens E) 7|
heH, L n i

Each term of the summands of the second two sums on the right-hand side of (A10) is
bounded from above by J,0,=J, 1. Therefore, using (A7) to bound the first term on the
right-hand side of (A10) yields

15/2
A11) |P| maxB..(g1,....e.)<z|-P| maxB..(,....)<z[|<—n__+2J371
( ) ‘ [heHn Bhn( 1 n) :| [heHn Bhn( 1 n) :| nﬂzh,?q/i% n

The lemma follows by taking limits as n — < on both sides of (A11). Q.E.D.

Lemmall: For anyz>1, he H, and all sufficiently largen

P(Too>2) <exp(-Z*14).

Proof: Write e WW. € = 0’ ZWW X, where X is the diagonal matrix whose (i, i)
element is o(X;) and o is a nx1 vector of independent N(0,1) variates. Let A be the
diagonal matrix of eigenvalues of SZWW X, {A: i = 1, ..., n} be the eigenvalues, and IT be
the orthogonal matrix such that ZWW X =TT’AIl. Define Z=Tlw. Then the elementsof Z
are independent N(0,1) variates,

FWWE=Y 2.2,
i=1

E(EWW,Z) =zz ,
and
V? =Var (e WW,g) = zi 2.
=)
Therefore,

ﬁ]o :V_lz ;Li (Zi2 -1.

i=1
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It now follows from the Chebyshev exponential inequality (see, e.g., Loéve 1977, p. 160) that

for every u >0,

Q,=P(T,>2) <e™E exp{/,N‘lZn‘ A (Z? —1)} .

i=1

Since the Z are independent N(0,1) variates,
E exp[uvlz A(Z7 - 1)} =11 exp[—uV 2, =1/ 2)log(1—2uV A, )]
i=1 i=1

whenever uV‘lﬂ,i <1. It follows from Lemma 2 and Assumption 5 that V*A; < & for any & >

0 and dl sufficiently large n. Therefore, using the inequality Hog(1 — u) < u + u? for all

sufficiently small u> 0, we have

E eXp|:.UV_lzn‘, A (Z? _1):| < ﬁ@(p(z.uzv_l)ﬁ) = exp(-u%),

i=1 i=1

and

Qn < eXp(—uZ-l— ‘u2)
for al sufficiently large n. Thelemmafollows by setting u = /2. Q.E.D.

For 0 < a < 1, define t, to bethe 1 - o quantile of MaXp e y_ Tho -

Lemmal12: For all sufficiently largen, f; <2,logJ, —logo .
Proof: Letz>1. By Lemmall,

PlmaxTa>zl< YP(T>2
(heHn ho ) h; (Tho>2)

2

heH

2
Z
=J,exp ——— |
: p[ j
Therefore,

2
o< J,exp 4“ .

The Lemma follows by taking logarithms on both sides of thisinequality. Q.E.D.

Lemma 13 Let 't;*:max(fx,\/Zloan+1/2loan). Suppose  that

ML T~ F (@] 2 4v,T,* for somehe H,. Then
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lim P(T*>t,)=1.

n— oo

Proof: By Lemma8, T* can bereplaced by maX.y Thg. By Lemmas 8 and 10, t,

can bereplaced by t, . Thus, it suffices to prove that

lim P(max Tyo > t,) =1,
n—e heH,

which holds if

lim P(Tho>t,) =1
N— oo

forsomehe H,. Foranyhe H,,

Ion (0)] + 20" e

To=T +|
ho = 'ho Vi

Therefore, by Lemma 6,

~ o*)|1?
Tho = Tho +w+0p(1) :

and

<112
lim P(Tyo>1,) = lim P(fho+—”b“(9 ) >T).
N— oo n— oo Vh
But |, (6%)]* =[Wh( f — F(6*)] \2. Therefore, W[ f — lf(e*)]u2 >4V T,

[XCll§
V,

h

limP (T, + >T)2 limP(T, > —4T*) >1

asn — oo because Ty, is bounded in probability and t, — 4t * — —oo asn — . Q.E.D.

Lemma 14: Let he H, Let mbe thelargest integer that islessthans. Let | be a
subinterval of [0,1] with length h, = (m+ 1)h. Let x denote the center of I. Let }, , bethe (m

+ )x(m+ 1) matrix with elements

k+¢
Xi — X
Vi = Z( Ih ] .

i: X€el

There exists a number R depending only on the constants C; and C, from Assumption 3 such
that

Mol <R
pid]. <.

and
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Proof: Thisresult isproved for the case of aregular design in Ingster (1993c) and for
the case of adesign satisfying Assumption 3in Hardle, et al. (1997, Lemma 6.6). Theideais

as follows. To obtain a non-degenerate, non-singular , ,, it suffices to have m + 1 distinct

design points inside the interval 1. Under Assumption 3, | contains O(nh) points, which is
more than sufficient. Q.E.D.

A.5 Proofs of Theorems

Proof of Theorem 1: By Lemma8, maXpcy T = MaXpey T +0p(D . By Lemma
10, maxpepy Tho - MaXp ey 'Fho as n — o. A further application of Lemma 8 gives

MaXp ey Tho =% Maxpey Th+0p(D).  Therefore, maxpcy Th = Maxye py Ty +0,(2) .

Q.E.D.
Proof of Theorem 2: By Lemma 13, it suffices to show that

AL - F(6)]

|2 > 4Vhi;* for some h € H, and all sufficiently large n, where

6% =arginf | - F (o).
XSO
Because hp — 0 @sn — oo and W[ f — F(8)] is the result of smoothing the continuous
function () — F(., 6) by the kernel method, [W[ T - F(6)]|" = - F(8)] asn— «. But

under Hy, einfe”f_ — F(9)||2 >c,n for some c, >0 and al sufficiently large n. The resuit that

AL - ?(9*)]”2 > AVt * now followsfrom Lemmas 2 and 11. Q.E.D.

Proof of Theorem 3: By Lemma 13, it suffices to show that

BY = Wil f - ﬁ(eoyn)]”2 > AVt * for someh e H,andall sufficiently large n, where
Oon = arg(jgf@” f,— F(9)||2.

To show this, use the inequality a® > 0.5b* — (b — a)* to write

Wogt [ WL f — F (800 - g

By Lemmas 2 and 7,
ML~ F(600) ~ pag | < M.

asn — . Moreover, because hyx — 0 asn — « and \/\4]gL is the result of smoothing the

B2 > 05p2

f_n - lf(eo,n) - pngj_n2 =0(2)

continuous function g* by the kernel method, "\/\ggL”2 —>||gl||2 asn — . Therefore, for

sufficiently large n,
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BZ 202507 g*|" 2 025p%6%| g 2 0.25np%8°.

Set h=h_, =C, (loglogn)™. Then theorem follows from the definition of p, and Lemma
2. QED.

Proof of Theorem 4: Let g=f —-F(6*). Then by Lemma 12, (3.4) and the
definition of S(H,s),
(A12) n_y2||g||2 Ca(n_li:x* )2s/(4s+)

and ||g[,, ;< C,4 for some Cy <. By Lemma 13, it suffices to show that Mgl > AVt

for some h € H,. Thisis done by approximating g by a piecewise polynomial function and

proving that each segment of the polynomial satisfies the required condition.

Set hy=(h™tr)?@D . Then nh?®=hY?*. Select h € H, such that
h <h<2h,. It will now be shown that |[\/\41g||2 >4V, t,* for the selected h. First, observe
that by Lemma 2(ii), Vi, < G,,h™Y2. Moreover, sinceh > hy,

AV Tx <AChY2Er <4Ch Y2 = 4C,nhZS < 4C,nhS.
Therefore, it suffices to show that
(A13) |W,g|” > 4G, ,nh%.

Let m be the smallest integer lessthans. Set h, = (m+ 1)h. Let | be a subinterval of [0,1]

with length h,. Let x denote the center of |. The smoothness assumption ||g|,, < C4 implies
that there exists a polynomial

u—X

P(u)= o+ B, n

+...+[3m(u;hxjm

such that |g(u) — P(u)|< Ch® for al u with [u-x|<h, /2+h;, where C depends only on C,

and m. Define

ng(xi)zzwh(xivxj)g(xj)-

j=1
Define W,P(X;) similarly. Then, since w,(X;,X;)=0 for al X; with |X; - X;|>h,
ML a(X;) =W, P(X;)|< Ch®. Moreover,

Ylg(X)F <2 D IP(X)F +2 D 1g(X;) - P(X)F
i X el i X el irXel
<2 Y |P(X;)F +2N,C*h*,

i Xel
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where N, denotes the number of design pointsin|. Similarly

S MG = S MLPOG)F - N CPhe.

i X€el i:Xel

Let V,, , bethe (m+ 1)x(m+ 1) matrix with elements

k+¢
Xi =X

i X el

Let B=(Bg..... ) . Then

D IP(Xi)F = BV ,B,

i X€el
and, by Lemma 14, BV, ,B<R|B|. Equivalently, |B]° > R™BV, 8.

Now define the numbers Zy (i = 1, ..., n; k=1, ..., m) asthe solutions to the
equations

Zik—Xk_n . - Xj—Xk
(2] = Smoe x5

Define V, , to bethe (m+ 1)x(m + 1) matrix with elements

k 4
G= Y (Zikh‘xj (th—X) k,(=04,..,m

i:X;€el

Itiseasy toseethat |X - Zy| < hforal k=0, 1, ..., mandfor al i with Xie |I. Therefore,, for

every k, the sequence {Z: X € 1} satisfies Assumption 3, and Lemma 14 applies to \7hC

Thisyields |V, | <R and /| <R. Next, by definition of Z,

WPOX) = Bo B 23X e BT

S0 that
D MLP(X)E = BV B-

i X el

Similarly, By, 8> R7Y|BJF . Therefore,
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ZIqu(Xi)IZZ% D MLP(X)F = N, C?h?®

i X el i X el
= (1/2) BN B~ N, C?h*
>(1/2R7YB|f - N,C?h*

> (1/2)R BV, B— N, C?h*®

Y IP(X)F - N, C*h*®
2R2 i:X el

Z| (X)P ——N c2h?s,

| Xiel
Now split [0,1] into N intervals, |4, ..., Iy of length no greater than h,. Applying the foregoing
inequality to each interval yields

n N
(A14) Y MLO(X)DF=Y D MLg(X)F
i=1

j=1 i:Xel,

> LY Sloxor- ZN ches

j=1 i:Xel;

4R2 ZIg(X )l —(3/ 2)nC2h25

Inequality (A14) combined with (A12) implies (A13) for sufficiently large C, in (3.4).
Q.E.D.
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FOOTNOTES
! The fixed design formulation used here includes as specia cases random designs in which

the distribution of X is absolutely continuous with respect to Lebesgue measure. If (Y, X) isa
random variable, then the null hypothesisis that f(X) = F(X, 8) amost surely for some 6 € ©.
The alternative hypothesisisthat P[f(X) = F(X, 6)] < mfor every 6 € © and somem< 1.

2 Andrews (1997) assumes that the distribution of & in (1.1) is known up to a finite-

dimensional parameter. Thus, Andrews tests a parametric model of the conditiona
distribution of Y not just the conditional mean function. It is not difficult, however, to modify
Andrews' test so that it becomes atest of a hypothesis about f dlone. See Whang (1998).

® Triebe (1992) provides definitions of Holder, Sobolev, and Besov spaces.

*  The condition s > d/4 is unlikely to be restrictive in applications because the curse of

dimensionality makes nonparametric estimation and testing unattractive when d islarge. Hart
(1997) discusses tests that have the optimal rate of testing when s < d/4.

® Guerre and Lavergne (1999) describe a method for achieving the optimal rate of testing
against an aternative of known smoothness. Their test is not adaptive and its behavior
against aternatives of the form (1.2) is unknown.

¢ Hardle and Mammen (1993) use the integrated squared difference between f, and Fy,. As
they note, the properties of their test are the same with summed or integrated squared
differences except, possibly for the values of constants in the expressions for the mean and
variance of the test statistic’s asymptotic distribution.

" The variance estimators described in this section are not the only possible ones. For

example, Hart (1997, Section 5.3) describes an aternative estimator that is unbiased if X; isa

scalar, F(x,0) is a linear function of x, and the &'s are homoskedastic. The choice of

variance estimator does not affect the asymptotic properties, adaptiveness, or rate optimality
of our test. The choice may affect the small-sample performance of the test, but investigation

of the small-sample performances of aternative variance estimators is beyond the scope of
this paper.
8 If the form of the heteroskedasticity of the &’s is known, then this knowledge can be used to

form a variance estimator. For example, if Y; is binary, then az(Xi) can be estimated by

f.(X)[1- f,(X)], where f,(x) isanonparametric estimator of f (x).
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TABLE 1: RESULTSOF MONTE CARLO EXPERIMENTS

Probability of Rejecting Null

Hypothesis
Distribution Andrews’ Hardle-Mammen Rate-
Optimal
£ T Test Test
Test
Hull Hypothesis Is True
Normal 0.057 0.060 0.066
Mixture 0.053 0.053 0.054
Extreme
Value 0.063 0.057 0.055
Hull Hypothesis Is False
Normal 1.0 0.680 0.752 0.792
Mixture 1.0 0.692 0.736 0.796
Extreme
Value 1.0 0.600 0.760 0.820
Normal 0.25 0.536 0.770 0.924
Mixture 0.25 0.592 0.704 0.932
Extreme
Value 0.25 0.604 0.696 0.968

! The differences between empirical and nominal rejection probabilities under H, are not
significant at the 0.01 level. Under H,, the differences between the rejection probabilities of
the rate-optimal and Andrews' test are significant at the 0.01 level. Under Hy, the differences
between the rejection probabilities of the rate-optimal and Hérdle-Mammen tests are
significant at the 0.01 level when 7=0.25.
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Figure1: Null and Alternative Models

40



