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Abstract 

This paper discusses the convergence of the collocation method using splines 
of any order k for first kind integral equations with logarithmic kernels on closed 
polygonal boundaries in JR 2• Before discretization the equation is transformed to an 
equivalent equation over [-7r, 7r] using a nonlinear parametrization of the polygon 
which varies more slowly than arc-length near each corner. This has the effect of 
producing a transformed equation with a solution which is smooth on [-7r,7r]. This 
latter integral equation is shown to be well-posed in appropriate Sobolev spaces. 
The structure of the integral operator is described in detail, and can be written in 
terms of certain non-standard Mellin convolution operators. Using this information 
we are able to show that the collocation method using splines of order k (degree 
k - 1) converges with optimal order O(h1c). (The collocation points are the mid-
points of subintervals when k is odd and the break-points when k is even, and 
stability is shown under the assumption that the method may be modified slightly.) 
Using the numerical solutions to the transformed equation we construct numerical 
solutions of the original equation which converge optimally in a certain weighted 
norm. Finally the metho9. is shown to produce superconvergent approximations to 
interior potentials such as those used to solve harmonic boundary value problems by 
the boundary integral method. The convergence results are illustrated with some 
numerical examples. 

1 Introduction 
In this paper we consider the collocation method using splines of any order k for the 
integral equation 

- ~ flog I~ - el t4(e)dr(e) = f(~ ), ~ E I' , 
7r Jr (1.1) 

where f : r ---* JR is given, u : r ---* JR is to be found and r is a closed polygon in 
JR. 2 enclosing a bounded region n. This is one of the simplest linear boundary integral 
equations arising in two dimensional potential theory. It has attracted the attention of 
many numerical analysts (see the extensive references in Sloan (1992) for example), but 
despite this a proper explanation of the convergence of the collocation method is still to 
be given. 

The chief difficulty in the analysis of the collocation method for ( 1.1) is to prove 
stability, i.e. to demonstrate that the discretization of the integral operator has a bounded 
inverse in some appropriate sense. This question is completely answered for the case 
when r is smooth (see Arnold & Wendland (1985), Saran.en & Wendland (1985), Saranen 
(1988), Prossdorf & Silbermann (1991) and many later papers cited in Sloan (1992)), but 
the methods of proof used there do not apply to polygonal r. For such r the operator 
on the left hand side of (1.1) can no longer be written as a compact perturbation of a 
certain well studied isometric isomorphism between H 0 and H 1 . Moreover the corners in 
r induce singularities in u and some form of mesh grading is then usually used to restore 
optimal convergence. A proof of stability of collocation methods for polygonal r when 
graded meshes are being used has so far eluded researchers. 
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There are some partial results in Costabel & Stephan (1987), Yan (1989), Yan (1990b) 
and Graham & Yan (1991). In Yan (1989), Yan (1990b) and Graham & Yan (1991) the 
piecewise constant mid-point collocation method was considered. In Yan (1990b) and in 
Yan (1989) it was shown that this method is stable and convergent in. H 0 , provided the 
angles subtended by r at each of its corners are not too close to 0 or 27r. In Graham & 
Yan ( 1991) a slightly modified collocation method was considered, allowing these angle 
restrictions to be removed. However in all of this work there is quite a strong assumption 
on the uniformity of the meshes which may be used. Hence only suboptimal convergence 
rates are obtained. 

In Costabel & Stephan (1987) the piecewise linear break-point collocation method is 
considered. Using graded meshes, optimal convergence rates are proved with respect to 
a weighted H 112 norm. So far these results have not been generalised to higher order 
splines. 

A completely different approach is taken in Chandler (1991) where piecewise constant 
mid-point collocation for (1.1) is shown to converge in the case of quite general meshes. 
These results are proved by looking directly at the matrix which arises from the numerical 
method and use coercivity arguments to show that it is nonsingular. This leads to energy 
estimates for the error and superconvergence arguments show convergence in Sobolev 
norms. However at present these results are proved only when r is smooth. 

In this paper we take a different approa_ch again in which we first reformulate (1.1) in 
terms of a new unknown with better regularity properties than u. We do this by introdu-
cing a nonlinear parametrization 1 : [-7r, 7r] -t r which varies more slowly than arc-length 
parametrization in the vicinity of each corner of r. The equation (1.1) transforms to 

1 /_11" 
- :; -ir log l1(s) -1(a)I w(a)da = g(s) , s·E [-7r, 7r] , (1.2) 

where 

w(a) = l1,(a)lu(1(a)), g(s) = f(1(s)). (1.3) 

By appropriate choice of 1, w can be made smooth local to each corner (provided f is 
smooth), and hence w can be optimally approximated using splines of any order k on a 
uniform grid. The transformed equation (1.2) is analysed in Section 3. There three main 
new results - Theorems 1, 2 and 6 - are proved. In particular, in Theorem 2 a careful 
analysis using Mellin transform techniques shows that the operator 

1 . 
Kv(s) = -; ;_:log h'(s) - -y(u)I v(u)du 

appearing on the left hand side of (1.2) is boundedly invertible from H 0 onto H 1 . The 
proof of Theorem 2 is obtained by first studying the operator A-1 K where 

Av( s) = _I_ /_11" log l2sin( s - a )/21 v( a )da + _!_ /_11" v( a )da. 
7r -11' 27r -11" . 

(1.4) 

In Theorem 1 it is shown that in fact 

(1.5) 
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where B is a (noncom pact) Mellin convolution operator local to each corner, and E is 
compact. (Thus Theorem 1 generalises earlier results of Yan & Sloan (1988) which are 
valid only when I is ·proportional to arc-length.) . 

An important consequence of Theorem 2 is Corollary 5 which shows that if I is pro-
perly chosen, then the solution w of (1.2) is smooth, and hence can be well approximated 
by smooth splines on a uniform grid on [-7r ,-nJ These theoretical results provide the 
basic prerequisites for a numerical attack on (1.2) using the collocation method. The 
basis functions used are periodic smooth splines of any order k (degree k - 1 ), with col-
location points taken to be mid-points of subintervals when k is odd and break-points 
when k is even. It is well known (see Arnold & Wendland (1985), Saranen & Wendland 
(1985), Prossdorf & Silbermann (1991 )) that this collocation method is stable for the 
equation Aw = g (which arises when r is a circle). In Theorem 9 of §4 we prove the 
stability and optimal convergence of this collocation method applied to (1.2). As is to 
be expected when Mellin convolution operators are discretized, the question of stability 
is rather delicate. Here we follow the spirit of the results in Chandler & Graham (1988), 
Elschner (1988), ·Graham & Chandler (1988) and Graham & Yan (1991) and only prove 
stability of a (possibly) slightly modified collocation method. This modification can be 
thought of as the discretization of a certain finite section approximation of K (see §4). 
The modification seems not to be needed in practice, but in any case its use does not 
affect the convergence of the method. In fact we are able to prove in Theorem 9 that, for 
h sufficiently small, there exists a unique (possibly modified) collocation solution wh to 
(1.2) satisfying the optimal error estimate 

(1.6) 

Here k i~ the order of the spline basis - e.g. k = 1 when piecewise constants are being 
used. 

An important further prerequisite for the stability theory in §4 is the proof that the 
finite section approximation referred to in the previous paragraph should itself be a stable 
approximation of K. This result - the third main result in §3 - is established in Theorem 
6. The proof proceeds by showing that in fact the operator A-1 K is strongly elliptic on 
no. 

Since w is defined by (1.3), the estimate (1.6) leads to approximations of u which 
converge in some weighted H0 norm. Superconvergence arguments can be used (see 
Corollary 10) to show that 

(1.7) 

where f3 = 1 if the collocation method is not modified and f3 = 1/2 otherwise. Hence. 
when (1.1) is used to solve Laplace's equation in the usual way, at least O(hk+~) accurate 
solutions of the PDE at interior points of the domain are obtained by solving an integral 
equation using splines of order k. 

In §5 experiments with the piecewise constant collocation method ( k = 1) are repor-
ted. These show convergence rates satisfying the estimate (1.6). As for (1. 7), when / is 
appropriately. chosen, we observe in fact that smooth linear functionals of w are approxi-
mated by the unmodified collocation method to within O(h3 ) (instead of O(h2

) predicted 
by (1. 7) ), for the moderate ranges of h which we have used. This. is the same rate as has 
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been proved in the case of smooth boundaries by Saranen ( 1988). It remains an open 
problem to prove it in the case of the present methods. Nevertheless the present paper 
presents the first theoretical results on stability and convergence of arbitrarily high order 
methods for (1.1). 

To end this introduction we remark that the idea of resolving singularities in solutions 
to integral equations by introducing an appropriate change of variable has been proposed 
at various points in the literature. It is very natural in the case of an integral equation 
on an open arc, where the use of the cosine transformation (see Yan (1990a)) reduces 
the unknown to an infinitely smooth function if the data is smooth. This is the starting 
point for the (global) Chebyshev collocation method for (1.1) on an open arc - se~ Levesley 
(1991 ), Levesley et al. (1993), Sloan & Stephan (1993). However as is observed in Levesley 
et al. ( 1993) the extension of the analysis of this method to the case of a polygon is far from 
trivial. Change of variable techniques for other sorts of integral equations are considered, 
for example, in Kress (1990) and Rathsfeld (1988). 

The overall plan of the present paper is as follows. The analysis of (1.2) is described 
in §3. The stability and convergence of the collocation method is given in §4. Numerical 
experiments are given in §5. The following section contains some necessary preparations. 

2 Preliminaries 
Let N denote the positive integers and let N0 = NU {O}. We assume that the transfinite 
diameter of r is not equal to 1. We assume that r has corners ~0 , ~ 1 , ... , ~r = ~o and 
that for each j, the exterior angle between the sides ~i - ~j-l and ~j+i - ~i is (1 + Xi)'lf. 
Let Yi denote the unit vector in the direction ~i - ~i-l· The side joining ~j-l to ~i is 
denoted rj and 1rj1 = 1~j - ~j-11 denotes its length. 1r1 is the length of r. 

Our parametrization will be a map I: [-1, 1] ~ r defined as follows. First introduce 
r + 1 points in [-7r,7r]: 

-7f = So < S1 < .... < Sr = 7f . 

These will be the preimages of the corner points ~ i under the parametrization. Choose a 
vector q = (qi, ... , qr )T of grading exponents with q ~ 1 = (1, 1, ... , 1 f. For notational 
convenience we extend ~ i, qi and Si to j E Z by requiring ~ i and qi to be r-periodic and 
by defining 

Srk+i = Si + 2k7r , k E Z , j = 0, ... , r . 

In addition choose any e in the range 

0 < e < ~ min{ S; - S;_1 : j = 1, ... , r} 

and let a> 0 be a parameter which will be chosen below. 
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Then, for j = 1, ... , r, set 

1 
( 

8
) = { x j - a( Si - s )q; iJ i , s E [Si - e, Si J , 

Xj + a(s - Sj)qiyi+1 , s E [Sj, Si+ c] . 
(2.1) 

This leaves')' undefined on each [Sj-l +c, Sj-e]. However we can fill these gaps with 
smooth connections. This is a standard technique in theory. But, since we are interested 
in practical algorithms we shall take a little time to give an explicit construction of such 
connections. Observe that (2.1) implies that for each j, 

{ 
Xj-1+e}(s)yi, sE[Si-1' Sj-1+e] 

1( s) = 
x i-1 + e; ( s) iJ i , s E [Si - e, Si] , 

with e}(s) = a(s - Sj_1)qi-1 , and eJ(s) = II'il - a(Si - s )q;. It is easy to see by drawing a 
graph that by choosing 0 <a~ mini{II'ij/(Sj - Sj_1 )q;, II'il/(Sj - Sj_1)qi-1 } we ensure 
that e1 > e} on ( Sj-i, Si) for each j. Hence we can introduce a "connecting function" 
.A( x ), x E JR. such that .A has k + 1 continuous derivatives and 

_.A(s) = 1, s ~ Sj-1 +c; 
.A(s)=O, s?_Sj-E:j 
.A monotonic decreasing on [Sj-l + c, Si - c] ; 
_x(l)(Si-l + c) = 0 = _x(l)(Si - c), k + 1 ?. l ?..1 . 

(Such a .A is constructed from a spline in Schumaker (1981 ), p. 141.) It is then easily 
verified that the function ei := .Xe} + (1 - .A)eJ agrees with e} on [Sj-i, Si-l + c] and 
with e1 on [S; - £, S;] and is increasing on [S;_1 , S;] with k + 1 continuous derivatives. 
Defining 

"'Y(s) = Xj-1 + ej(s)(Xj - Xj-1) 

(and analogously on each (Si_1, Si)) then provides a parametrization / of r with 

for each j. 
With this parametrization (1.1) transforms to (1.2). From now on we abbreviate (1.2) 

by 

Kw=g. (2.2) 

The points {Si} must also be chosen so that 
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( Sj - Sj-l) /27r is rational (2.3) 

for each j. This ensures that a sequence of uniform meshes on [-7r, 7r] can be chosen which 
include {Sj} as the mesh points. In addition it would be natural in practice to choose 
the {Sj} so that (Si - Sj_1 )/27r = II'il/II'I. This would mean that the relative lengths of 
each side of r correspond to their relative lengths in parameter space. However there is 
no such formal requirement in the present theory. Moreover such a choice of { Sj} will not 
be compatible with (2.3) if r has sides of irrational length. (In that case (Si - Sj_1 )/27r 
could typically be chosen as some rational approximation to II'il/II'I (with arbitrarily high 
accuracy). 

In view of (2.3) then, we can choose P E N, and mi E N such that 

(2.4) 

Then, for any NE N we can define n = P N, h = 27r /n and introduce the uniform mesh 
on [-7r,7r]: 

Si = -7r + ih, i = 0, ... , n . (2.5) 

Observe that when i = (m1 +m2 + .. . +mi)N, we have Si= Sj, so the image of (2.5) under 
(2.1) includes the corner points a!j and is graded towards them (increasingly sharply) as 
q increases. Introduce the mid points of subintervals 

ti= (si-1 +si)/2, i = 1, ... ,n . 

For k ~ 1 let Vhk denote the (smoothest) splines of order k subordinate to the mesh 
{Si}· That is v E vhk if and only if v is 27r-periodic, v reduces to a polynomial of degree 
k-1 on each [si-l, si] and v has k-2 continuous derivatives on [-7r, 7r]. (When k = 1 the 
splines are the piecewise constant functions on [-7r, 7r].) For any v : [-7r, 7r] ~ JR which is 
well defined at the interpolation points, define the interpolant Qhv E Vhk by requiring 

(a) when k is odd Qhv(ti) = v(ti), i = 1, ... , n ; 
(b) when k is even Qhv(si) = v(si), i = 0, ... ,n -1. 

Then the collocation method for (2.2) seeks wh E Vf such that 

(2.6) 
We examine the convergence of this solution in §4, after having first proved some 

analytic properties of K in the following Section. 
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3 Analytic properties of the transformed equation 
Our concern in this section is to prove some analytical results about the operator K and 
the related operator A-1 K which are needed in the stability and convergence analysis of 
the collocation method. 

Let Ht, t E JR, denote the periodic Sobolev space of order t on [-7r, 7r). Note that 
H0 == L2 [-7r, 7r]. Denote the usual norm on Ht by 11 · llt· For any subinterval JC [-7r, ?r], 
the notation Ht( J) refers to the usual (non-periodic) Sobolev space of order t on J with 
norm II · llt,J· Recall that the operator A defined in (1.4) is an isomorphism of H 0 onto 
H 1 , and its inverse is given by 

1 /_11' A-1v(s) = -HDv(s) + - v(a)da , 
27r -11' 

(3.1) 

where Dis the periodic differentiation operator and H denotes the Hilbert singular integral 
operator 

Hv(s) == _ _!__p.v. j_?I" cot (s - a) v(a)da 
27r -11' 2 

see Yan & Sloan (1988). In view o((3.l), we have 

A-1K =I +B+E, where B := -HD(K-A). (3.2) 

(Here and from now on E denotes a generic compact operator whose value may change 
from line to line.) It follows from Yan & Sloan (1988) and Graham & Yan (1991) that, 
for q == 1, the operator D(K -A) can be written as the sum of cert?-in Mellin convolution 
operators and a compact operator. The next theorem shows that a similar decomposition 
'result is true for the operator B in the general case q ;::: 1. 

Theorem 1 . B == Ej=1 Bi+ E, where 

Is' b-:- ( S; - s) v( a )da + /s;+e b-:+ ( S; - s) v( a )da 
l~s·-e 1 S·-a (S·-a) ls. 1 a-S· (a-S·)' .J J J J J 1 

s E [Si - e, Si] , 
Bjv(s) = 

fs; bf- (s - Si) v(a)da + fs;+e bf+ (s - Si) v(a)da , 
ls;~e 1 Sj-a (Si-a) ls3 

3 a-Si (a-Si) 
s E [Si, Si+e] 

and bT± are kernel functions satisfying the estimates 

sup1.+lxk+pDkbT±(x)I < oo, k E No, p E (0, 1). 

This result will be shown by applying a localization procedure to the operator B. The 
proof is then obtained by studying a (2-by-2 matrix-) Mellin convolution operator Bj on 
the half-axis which models the behaviour of B local to the corner ~ii cf. Elschner (1987) 
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and Prossdorf & Silbermann (1991 ), Chapter 11 for more general versions of this. The 
local operator Bi is constructed by localizing H and D(K - A) to the portion of r local 
to ~j and considering the composition of these two operators. Computing the symbol of 
Bi via the Mellin transform, we then obtain the desired estimates for the kernel functions 
by± occurring in the decomposition of B. 

From this decomposition we are able to prove a theorem on the invertibility of K. To 
do this we take a closer look at the symbols of the operators I +Bi· After some calculation 
we find that each of these operators is invertible on L 2(JR.+) x L 2(JR.+). By gluing the local 
inverses (I+ Bjt1 together in an appropriate way, we are able to prove that I+ B is a 
Fredholm operator on H 0 . Then a homotopy argument is used to show that the index of 
I+ B is zero. Together with the uniqueness of solutions to equation (1.2), this implies 

Theorem 2 . The operator K: H 0 ~ H 1 has a bounded inverse. 

The proofs of these theorems are given below. To prepare for these proofs, we start by 
introducing our localization procedure. Choose e as in §2 and let '1/;j, '1/;j be 27r-periodic 
non-negative C00 cut-off functions such that '1/;j = 1 in some neighbourhood of Sj, '1/;j _ 1 
in some neighbourhood of supp '1/;j and supp '1/;j C [Si - e, Sj + e]. Then we shall show 
below that 

r 

B = L '1/;jH'lj;jD(A - K)'lj;j + E . (3.3) 
j=l 

To verify (3.3), recall that (cf. Yan & Sloan (1988), Section 5) 

p(K - A)v(s) 1 /_'If a, 1 J 112 1( s) - 1( a) J · ( )d -- - og e v a a 
7r -'If as 2 sin( s - a )/2 

1-: L~ cot (5 ~ 17
) + c(s, a)} v(a )da , 

(3.4) 

where, for s =f:. S;, j = 0, ... , r , 

c( s a) . _ _ .!_ 1'f ( s) (r1 ( s) - 1'1 (a)) + 1'~ ( s) (r2 ( s) - 12 (a)) 
' .- 7r (r1 ( s) - /1 (a) )2 + (r2( s) - /2( a) )2 

Here /i, 12 are the components of the parametrization 1 defined in (2.1). Since 1 is a C2 

parametrization on each interval (Sj-i, Sj ), the kernel of D(K -A) is uniformly bounded 
in s and a as long as the distance of the point ( s, a) to the set {( -7r, 7r ), ( 7r, -7r)} W 
{(Sj, Si) : j = 0, ... , r} is bounded from below by some positive constant; cf. also Yan & 
Sloan (1989), Section 5, for the case of the arc-length parametrization. Therefore, 

r r 

D(K - A)= L D(K - A)'lj;j + E = L '1/;jD(K - A)'lj;j + E . 
j=l j=l 

So from (3.2) we have 
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r 

B = - ~ H'lj;iD(K - A)'l/Ji + E . 
j=l 

Now, using the identity 'l/Ji = 'l/Ji'l/Jj and the fact that 'l/;jH - H'lj;j is an integral operator 
with an infinitely smooth kernel, (3.3) follows. 

Now let us look more closely at the jth term in the sum (3.3). This represents the 
principal part of B local to the jth corner. Without loss of generality we can assume that 
this is situated at ~i = 0 and that Sj = 0. Then the parametrization (2.1) (possibly after 
rotation) takes the form 

8 
_ { a(-s)q(- cosx?r, sinx7r) , s E [-c:, OJ 

I( ) - a(sq,O) [O ] , s E ,e , 
(3.5) 

where for notat.ional convenience we write x for Xi and q for qi. By construction of the 
cut-off functions we have 

supp 'l/Ji C supp 'lf;j C [Si - c:, Si+ c:] = [-c:, c:] . 
We omit the lower index j whenever possible, so that 'l/Ji is denoted 'lj;, etc. Note that 

1 S-0" 1 1 
-cot---- --
27r 2 7r s - (}" 

is a smooth function on (-7r,7r) x (-7r,7r). Therefore, using (3.4) we have 

D( A - K)'lj; = (SJ - <t)'lj; + E , 

where E is compact, where 

1 /_00 v( a )da Sjv(s) = --p.v. 
7r -00 s - (}" 

is the Cauchy singular operator on JR and 

\l'.v(s) = ;_: c(s,a)v(a)da, 

with c( s-, a) defined on JR x JR using the obvious extension of (3.5) to all s E Ill. Thus 

'lj;H'lj;'D(A - K)'lj; = 'lj;f)'lj;'(SJ - Q:)'lj; + E . (3.6) 
In view of (3.4) and (3.5), we have (after some calculations) 
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. q lslq-1 
- sign( s) - I I I I , sa > 0 ; 7f sq- aq 

c(s, a) = q q-l sq + (-a )q cos X7r 
-- s ( ' s > o, O" < 0 j 

7f s 2q + a 2q + 2sq -a )q cos X7r 
(3.7) 

g_ (-. s)q-l ( -s )q + aq cos X7r 
( ) 

' s < 0, O" > 0 . 
7f s 2q + a 2q + 2 -s qaq cos X7r 

To study the operators SJ and <ton L2 (JR.), we identify them with 2-by-2-matrices of Mellin 
convolution operators 1-l and C acting on L2 (JR.+) x L2 (JR.+). We do this by introducing 
the isometry 11 : L2 (JR.) -t L2(JR.+) x L2 (JR.+) defined by 

ITv(s) = (v(s),v(-s)l, s E JR.+. 
Then, instead of considering SJ and <!:, we consider the equivalent operators 

(3.8) 

Lemma 3 . 1-l and C are Mellin convolution operators in the sense described in §(vi) 
of the Appendix with the symbols 

a(C)(z) = 

(1-l)( ). ( cot 1fZ -1/ sin 1fZ )· 
a z = 1 / sin 7f z - cot 7f z ' 

( 

cot 7fz-l 
q 

__:. cos X7r z-1 / sin 7f z-1 
q q 

cos X7r z-1 /sin 7f z-1 ) q q 

- cot 7fz-l 
q 

Proof To verify the first formula, we observe that the operator 1-l on L2 (1R. +) x L2 (1R. +) 
may be written as a matrix of Mellin convolution operators with kernel: 

1 ( (1 - x tl - (1 + x )-1 ) 

7f (l+xtl -(1-xtl . 

The function ;.(1-x t 1 is the kernel of the Cauchy singular operator on JR.+ and has Mellin 
transform cot 1fZ (see Appendix §(i), (iii)). From standard transform tables the Mellin 
transform of ~(1 + x t 1 is 1/ sin 1fz, and the first part of the lem~a follows. To obtain 
the second part, we similarly write C as a matrix-valued Mellin convolution operator with 
kernel 

c(x) = ( c++(x) c+-(x) ) 
c_+(x) c __ (x) 
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where, by virtue of (3. 7), we obtain 

c __ (x) 

c+-(x) = 

q xq-1 
-c++(x) = - , 

7r xq - 1 

q x 2q-l + xq-l cos X7r 

-c-+(x) = -; 1+x2q+2xq cos X7r · 

To find the Mellin transforms of these functions, first observe the identity 

with g( x) := qxq-l f( xq), or equivalently, 

-(z 1) g(z)=f q-+1-q. 
Using this, we now obtain 

l(T)(z 1) ( z-1) c++(z) = -c __ (z) = - -- - + 1 - __,_ =cot 7r -- . 
7r 1-x q q q 

Further, since ,........._, 
1 ( x + cos X7r ) 

7r 1 + x 2 + 2x cos X7r 

(z) = cos(x~(z - 1)) , 
sm 7r z 

we have 

c+-(z) - cos ( x~ z ~ 1) / sin ( ~ ( ~ + 1 - ~)) 

cos ( x~ z ~· 1) /sin ( ~ z ~ 1) = -C-+(z) . 

This completes the proof. D 

Proof of Theorem 1. It suffices to check the assertion in the neighbourhood [-£, c;] of the 
corner point S; = 0 (with parametrization given by (3.5) above). We obtain from (3.6) 
and (3.8) that 

'lj;H'lj;'D(A - K)'lj; - 'lj;Ir1HII'lj;'II-1(7-l - C)II'lj; + E 
- 'lj;II-11-l(H - C)II'lj; + E . 

(3.9) 

(In the last step we used the facts that 'lj;'II-1(7-l -C)II - rr-1(7-l -C)II'lj;' is compact - see 
Appendix §(iv) - and 'lj;''lj; = 'If;). Using Lemma 3 and equation ( A.6) of the Appendix, it 
is easy to check that the symbol of 1-l-C is of class 2:-00

; see Appendix (ii) for definition. 
Then since a(H)(z) is bounded on each strip 6 < Re z < 1 - 6, 6 E (0, ~); cf. (A.6) 
again, we have 
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cr('H('H - C)) = cr('H)cr('H - C) E L:-00
• 

Thus the convolution kernel of 'H('H - C) satisfies the estimates (A.4).. Thus evaluating 
(3.9) at s E [-c:,O] ands E [O,c:] we get the local expansion of Bjv(s) in the required 
form. For a general corner at Sj =f. 0 the procedure is the same except that instead of II, 
the more general isometry 

is used. 0 
To prepare for the proof of Theorem 2, we now consider the operator I+ B with 

B = 'H('H - C). (3.10) 
By (3.8), (3.9) B can be considered as the local representative of the noncompact part of 
the operator B near the corner point ~j = 0. 

Lemma 4 . There exists a constant c such that I det(J + cr(B)(z))I 2: c > 0, Re z = 1/2. 

Proof Note that 

det(J + cr(B)) det( 1 + cr('H('H - C))) 
det( I + cr('H)cr('H) - cr('H)cr( C)) 
det(-cr('H)cr(C)) = det(cr(C)), 

since a('H)cr(H) = -I and det cr(H) = 1. Thus it suffices to qheck that 

I det(cr(C)(z))I 2: c > 0 , Re z = 1/2 . 
To obtain this note that from Lemma 3, we have for z = 1/2 + ie , e E JR 

det(a(C)(l/2+ie)) = . ~ 
sm2

( 7r q ) 
{ 

2 ( ie - 1;2) 2 ( ie - 1;2)} cos X7r - cos 7r 
q q 

It is readily shown that, since lxl < 1, 

lim det(cr(C)(l/2 + ie)) = 1. 
e-+±oo 

Therefore it is sufficient to verify that 

~(e) := cos2 ( x:ir i< -//2
) - cos2 ( 71" i< -//2

) # O , < E JR . 

To prove (3.11), observe that 

(3.11) 

c( )2 ( t )2 X?re X?r . . X?re . X?r ?re 7r . . ?rf:. . 7r 
~( e) = cosh - cos - + i smh -· sin - - cosh - cos - + i smh - sin -

2 
, 

q 2q q 2q q 2q q q 
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which is the product of the factors 

I± := cosh -- cos - ± cosh - cos - + i smh -- sin-. ± smh - sin -{ x7r e x7r 7r e 7r } . { . x7r e . x7r . 7r e . 7r } 
q 2q q 2q q 2q q 2q 

Then note that since q 2:: 1 and !xi < 1 we have Re I+ > 0, e E JR.. Also, since 

I I . (t) { . h lxl7r1e1 . lxl7r . h 7r1e1 . 7r } m _ = sign <:. sm sm -- - sm - sm - , 
q 2q q 2q 

it follows that Im L f:. 0 unless e = 0. But Re L f:. 0 when e = 0, and (3.11) follows. 
D 

Proof of Theorem 2. Recall the expression (3.2) for A-1 K. 
Step 1. We shall first verify that I+ B is a Fredholm operator on H 0 • By virtue of 

(3.3), (3.9) and the construction of ,,Pi, this operator takes the form 

r 

I+ B = I +L: 'lj;iIIj1 BiIIi'lj;i + E , (3.12) 
i=l 

where the matrix operator Bi is defined by the procedure which led to (3.10) applied to 
the general corner point ~i· That is Bi is the local representative of B near Si, whose 
symbol is given by Lemma 3 with x and q replaced by Xi, and qi, respectively. 

By Lemmas 3 and 4, (I +a(Bi)(z))-1 =I +ai(z) with some matrix symbol ai E 2:-00
• 

Therefore, the Mellin operator I + Vi with symbol I + ai is t4e inverse of I + Bi in 
L2(JR.+) x L2(JR.+); see Appendix (vi). Consequently, the operator 

r 
F ·- I+ """,,/, .rr-:-1v. II.,,/, . . - ·L..J 'f'J J J J'f'J 

i=l 
is a left and right regularizer of I+ B, i.e. 

F(I + B) =I+ E , (I+ B)F =I+ E . 

Here we have used the compactness result of Appendix (iv) (in its matrix form) and the 
representation (3.12). Thus I +Bis a Fredholm operator; see Mikhlin & Prossdorf (1980), 
Chapter 1. 

Step 2. We now show by a homotopy argument that the index of I+ Bis zero. First 
observe that the symbol of C given in Lemma 3 is continuous in q 2:: 1. This continuity is 
uniform over Re z = 1/2. Hence the symbol of B defined in (3.10) is similarly continuous· 
in q, uniformly over Re z = 1/2 as indeed is the symbol of Bi, the generalisation of B to 
any corner. For any t E [O, 1], consider the operators Bi,t which are defined as Bi, but 
correspond to the exterior angles ( 1 +Xi )7r and grading exponents tqi + ( 1 + t), and define 
I+ Bt by replacing Bi with Bi,t in (3.12). For each j, Bi,t is a homotopy of operators as 
explained in the Appendix, §(v). Then Bt is also a homotopy of operators (i.e. t----)- Bt is 
continuous). Each Bt is Fredholm by Lemma 4 and Step 1. Furthermore, I+ Bo has index 0 
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(cf. Yan & Sloan ( 1988)). Since the index is a homotopy invariant (cf. Mikhlin & Prossdorf 
(1980), Chapter 1, Theorem 3.11), we obtain ind(!+ B) =ind(!+ B1 ) =ind(!+ Bo)= 0. 

Step 3. By (3.2), K = A(I + B) + E. Also, as is well known, A : n° -7 n1 is 
invertible. Hence, by Atkinson's theorem (Prossdorf & Silbermann (1991 ), Theorem 3.3) 
K : n° -7 n1 is Fredholm with index 0. We now complete the proof by verifying that 
K : n° -7 n 1 has a trivial kernel. To this end let v E n° satisfy 

Kv(s) = -1: log h'(s) - -y(a)lv(a)da = 0 . (3.13) 

Substituting u = 1-1 (e), s = 1-1 (~), we obtain 

fr log I~ - el j(1-1)'(e)lv(1-1(e))dr(e) = 0, ~Er. 
Now if we can show that 

u(e) := l(1-1 )'(e)lv(1-1 (e)) 

is in LP(r) for some p > 1 then Lemma 1.1 of Yan & Sloan (1988) will show that u = 0 and 
hence v = 0. To do this it is sufficient to consider u local to a corner of r. So following 
the local model (3.5) above, we consider 1(s) = (sq,O), s E [O,c]. (The constant a is 
unimportant.) Then, fore= (x, 0), 1-1(e) = x1 fq and 

Hence 

I ju(e)IPdr(e) = ]__ re xP(l/q-l)lv(xl/q")IPdx ' lrg qP lo 
where r~ = 1([0, c:]). Then using the transformation x 1 fq -7 x and setting £ = c1/q we 
have 

{ lu(e)IPdr(e) Ct x(v-1l(1-•liv(x)IPdx 

< c {lai! x6dx }'
2
-p)/

2 {lai! lv(x)l 2dx r'2 
, 

by Holder's inequality, with 6 := 2(p - 1)(1 - q)/(2 - p). Since 6 > -1 for some p > 1 
sufficiently close to 1, we obtain the result. D 

Now by assuming fin (1.1) is sufficiently smooth we can prove the regularity of the 
solution w of (1.2). This is a direct corollary of the uniqueness of the solution to (1.2) 
proved in Theorem 2. 

Corollary 5 . Let k E N and suppose f E nk+5/ 2(r) (where this denotes the usual 
Sobolev space on r). Then the unique solution of (2.2} satisfies w E nk, provided qi> 
(k + 1/2)(1 + lxil) for j = 1, ... , r. 
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Proof. Let u be the unique solution of (1.1). From Maz'ya (1991), Chapter 5 we have 

u(e) = ~ { au (e) - au (e)} , e E I' 
2 an+ an_ 

where U satisfies !:::..U = 0 in 1R2\I', U = f on rand U(x) = O(log lxl) as lxl ~ oo, and 
where a/ an± denote the normal derivatives on r from inside and outside r. 

Then by Kondratiev (1967) or Theorem 5.1.3.5 of Grisvard (1985), we have 
u E Hk+312 (I'j) with 

dm 
dtm {u(Xj + tyj+l)}:::; Cjta;-l-m, as t ~ 0+ , 

form= 0, ... , k, where aj = (1 + lxjlt1 . Hence using (2.1) and an induction argument, 
we have, for a E (Sj, Sj + c:], 

Thus by definition of/, 

(3.14) 

An analogous bound holds for a E [Sj-C:, Sj)· But we also know that w(a) E Ck(Sj-1 , Sj)· 
Hence the result follows. D · 

The analysis of the collocation method in the next section will depend heavily on the 
stability of a "finite section" approximation to the operator I+ A-1(K - A) = A-1 K. 
To define such an approximation, introduce, for T < ~ min{Sj - Sj-l : j = 1, ... r }, the 
truncation operator 

TTv(s) = { 0, s E [Sj.-T, Sj +T], 
v( s) , otherwise . 

j=l, ... ,r (3.15) 

The finite section approximation is then defined to be I+ A-1(K - A)TT. Its stability is 
obtained in the following theorem. 

Theorem 6 . There exist C > 0 and To > 0 such that, J or all q ~ 1, we have 

for all v E H 0 , 0 < T :::; To. 

Remark. Observe that, for a fixed T, the operator I+ A-1(K -A)TT 'is Fredholm of index 
zero, and so the above inequality shows this operator is invertible and has an inverse 
which is uniformly bounded for all T E (0, T 0 ]. 

Proof. For convenience write M = A-1(K - A). To prove the theorem, first observe 
that the result is true provided we show that 
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(3.16) 

To see why this is the case, observe that the space ker( I - Tr) x ker Tr, equipped with 
the norm 

ll(u,vfll = {ljujj~ + llvll~}~ 
is isometrically isomorphic to H0 under the map 

v ~ (Tr v , (I - Tr)v f . 
Correspondingly the map v ~ (I + MTr)v may be represented by the matrix operator 

( 
Trv ) ( Tr(I + M)Tr 0 ) ( Tr ) 
(I - Tr)v ~ (I - Tr)MTr I (I~ Tr)v · 

If (3.16) is true then for any r :::; r0 the operator 

TT(J + M)Trlker(J-Tr) 
is invertible on ker(J - Tr), with inverse bounded independently of r. Thus the map 
v ~ (I+ MTr)v is invertible with inverse represented.by the map 

This inverse is bounded on ker( I - Tr) x ker Tr independently of r and the theorem then 
follows. · 

To obtain (3.16) it is sufficient to verify the strong ellipticity estimate 

Re((J + M + Eo)v, v) ~ Cllvll~, v E H0 
, (3.17) 

for some particular compact E0 where < · , · > denotes the H 0 scalar product. This is 
because, by the Cea-Polskii Lemma (see e.g. Prossdorf & Silbermann (1991), page 33) 
(3.17) implies the stability of any Galerkin scheme for (I+ M)v = f in H 0 • (Recall 
that I + M is invertible on H0 by Theorem 2.) Since the Galer kin method in the space 
ker( I - Tr) consists of finding vr E ker( I - Tr) such that 

Tr(I + M)vr = Tr f 
it follows that for all vr E ker(J - Tr), 

and (3.16) follows. 
To prove (3.17) observe that by definition of M and (3.2), 

I+M=l+A- 1(K-A)=A- 1K=l+B+E, 
with E compact. Hence it suffices to prove the estimates 
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Re ((I+ Bi)w, w) ~ Ci(w , w) 2 
, w E L2 (R+) x L2 (JR.+) , (3.18) 

for each j = 1, ... , r, where Bj is the local representative of B near Xj as defined in (3.12). 
Here< · , · > now denotes the usual scalar product on L2 (JR.+) x L2 (JR.+), i.e. 

(w ,W) = f"'(w(x),W(x))dx 

with (. ' . ) denoting the inner product on C2 • 

As before, without loss of generality we prove (3.18) with Bi = B given by (3.10). 
This assumes Xj = 0 with local parametrization (3.5). To obtain (3.18), recall 7-i2 = -1, 
and so I+ B = -1-iC. Parseval's equality (see item (i) of Appendix) and Lemma 3 then 
show that 

Re((J + B)w, w) = 2~ k.., = 
112 

Re (a(1i)(z)a(-C)(z)W(z), W(z ))JdzJ 

= 
2
1 

( (Re [a(1-i)(z)a(-C)(z)]w(z),w(z))ldzl 
7r }Re z = 1/2 

where for any complex 2 x 2 matrix D, Re[D] := (D + D*)/2. The required result 
is then a consequence of the technical lemma below which examines the eigenvalues of 
Re[a(1-i)( z )a( -C)( z )] . D 

-
Lemma 7 . For any q ~ 1 , x E ( -1, 1), there exists a constant c such that the 
eigenvalues Ak(z) of the 2 x 2 matrix Re [a(1-i)(z)a(-C)(z)] satisfy 

Ak ( z) ~ c > 0 , k = 1, 2, Re z = 1/2 : 

Proof By Lemma 3, we have for z = 1/2 + ie, and e ER, 

_ ( -ia(e) b(e) ) _ ( -a(e) -!3(0 ) 
a(1-i)(z) - -b(e) ia(e) ' a(-C)(z)- f3(e) a(<) ' 

where 

a(e) = tanh 'Ire ' b(e) = -1/ cosh 'Ire ' 

(e) = cosh(7re/q) cos(7r/2q) + isinh(7re/q) sin(7r/2q) 
a isinh(7re/q) cos(7r/2q) - cosh(7re/q) sin(7r/2q) ' 

f3 ( O = cosh(x7r U q) cos (X7r / 2q) + i sinh(x7r el q) sin(x7r / 2q) 
i sinh( 7re/ q) cos( 7r /2q) - cosh( 7re/ q) sin( 7r /2q) · 

Then 

_ ( A(e) B(e)) Re [a(1l)(z)a(-C)(z)] - B(e) A(e) 

with 
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The eigenvalues .Xk( z) are 

A(e) = b(e)Re f3(0 - a(e)Im a(e) , 
B(e) = b(e)Re a(e) - a(e)Im f3(e) . 

To estimate these eigenvalues observe that (after some calculations) we have 

A(e) = C(e) cosh- cos -cosh-s1n- - smh-s1n-smh- cos -{ 
x7re x7r 7re. . 7r . x7re . x7r . 7re 7r } 

q 2q q 2q q 2q q 2q 

+ C ( e) smh 7r e cosh - COS - smh - COS - + cosh - Slll - smh - Sln - , . . . { 7re 7r . 7re 7r 7re . 7r . 7re . 7r } 
q 2q q 2q q 2q q 2q 

{ 
7re 7r 7re . 7r . 7re . 7r . 7re 7r } (3.19) B(e) = C(e) cosh - cos - cosh - sm - - smh - sin - smh - cos -
q 2q q 2q q 2q q 2q 

C( t) . h. t { h x7re x7r . h 7re 7r . h x7re . x7r h 7re . 7r } + <::. sm 7r<:. cos - cos - sm - cos - + sm - sm - cos - sin - , 
q 2q q 2q q 2q q 2q 

with 

c ( 0 = (co sh 7r o-l { cosh 2 7r e sin 2 ~ + sinh 2 7r e cos 2 ~ }-l 
q 2q q 2q 

·Then note that when z = 1/2 + ie, we have 

( =Fi 0 ) ( ±i 0 ) a(H)( z )a( -C)( z) --7 0 ±i 0 =Fi ( 0
1 01 ) ' as e --7 ±oo. 

Hence we must have .Xk(l/2 ± ioo) = 1 , k = 1, 2. Since the expressions (3.19) are even 
functions of e and x, and since C(e) > 0, the lemma follows provided we verify that for 
all q ~ 1, 

c(et1 (A(e) ± B(e)) > 0' e ~ 0 ' x E [O, 1) . (3.20) 

To prove (3.20) in case of the plus sign, we observe that since x E [O, 1) and q ~ 1, we 
have 

x7re x7r 7re . 7r . x7re . x7r . 7re ~ cosh - cos - cosh - sm - > smh - sin - smh - cos -
q 2q q 2q q 2q q 2q ' 

h 7re 7r h 7re . 7r . h 7re . 7r . h 7re 7r cos - cos - cos - sin - > sm - sm - sm - cos - . 
q 2q q 2q q 2q q 2q 

To prove (3.20) for the minus sign, we use the estimates 
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{ 
x'JT"e x'JT" ?re . 7r . x'JT"e . x7r . ?re 7r cash -- cos - cash -. sm - - smh - sm - smh - cos -q 2q q 2q q 2q q . 2q 

+ smh - sin - smh - cos - - cash - cos - cash - sin -. ?re . 7r . ?re 7r ?re 7r ?re . 7r } 

q 2q q 2q q 2q q 2q 

> { cos ~ sin ~ (cash X7r e cash 7r e - sinh X7r e sinh 7r e) 
2q 2q q q q q 

+ cos - sm - smh - - cash -7r . 7r ( . 2 ?re 2 ?re)} 
2q 2q q q 

~ sin ~ ( cosh ( 
1 ~ x) 11" e - 1) ~ 0 , 

and 

{ 
. h ?re 7r .. h ?re 7r h ?re . . 7r • h ?re . 7r cos - cos - sm - cos - + cos - sm - sin - sin -

q 2q q 2q q 2q q 2q 

- cash - cos - smh - cos - - smh - sin - cash - sin -x'JT"e x'JT" . ?re 7r . x'JT"e . x7r ?re . 7r } 

q 2q q 2q q 2q q 2q 

2 cash .- smh - - cash - smh - cos - cos - + sm - sin -{ 
7r e . 7r e 7r e . 7r e ( x7r 7r . x7r • 7r ) } 

q q q q 2q 2q 2q 2q 

?re . ?re ( (1 - x)7r) == cash - smh - 1 - cos 2 0 . 
q q 2q 

·D 

4 Convergence of the Collocation Method 
To analyse (2.6) we write it as a non-standard projection method for a certain second 
kind equation. To do this first define a projection operator Rh : H 0 ~Vt as follows. For 
v E H 0 , let Rhv E Vhk be the solution of the collocation equations 

( 4.1) 

It is known (see Arnold & Wendland (1985), Saranen & Wendland (1985), Prossdorf & 
Silbermann (1991), pp. 492-493) that this prescription defines Rhv uniquely, and there 
is a constant R such that for all N, 

( 4.2) 

Using the properties of A discussed at the beginning of §3, it is easily seen that w solves 
(1.2) if and only if A(I + M)w == g, or equivalently 

(I+ M)w = e, ( 4.3) 
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where M = A-1(K - A) and e = A-1g. Correspondingly, the collocation method (2.6) 
may be written QhA(I + M)wh = QhAe. Hence wh solves (2.6) if and only if QhAwh = 
QhA(e-Mwh), and by the above definition of Rh, this is equivalent to wh = Rh(e-Mwh)· 
Hence . 

( 4.4) 

When r is smooth, Mis compact and elementary arguments applied to ( 4.3), ( 4.4) prove 
the convergence of wh tow. In the present case Mis not compact. An analysis of Min 
the case when the parametrization of r is proportional to arc-length (q = 1 in (2.1)) led 
in Yan (1990b), Yan (1989), Graham & Yan (1991) to suboptional estimates for piecewise 
constant collocation methods on uniform grids. In §3 of the present paper we have given 
a detailed analysis of the decomposition of M into 

M=A-1(K-A)=B+E, ( 4.5) 

where Eis compact on H 0 and Bis discussed in Theorem 1. These will lead below to a 
stability theory for the collocation method and to optimal error estimates (obtained by 
judicious choice of q). However, as discussed in the introduction, the stability theory is 
proved by allowing the possibility that the method be modified slightly. Thus for any 
integer i* :::; (minj{mj} )N, let Ti*h be the truncation operator introduced in (3.15) with 
T = i* h. Define 

Ki*h =A+ (K - A)Ti*h, 

and, instea~ of considering (2.6), consider instead the slightly more general method 

( 4.6) 

If i* = 0 then ( 4.6) is equivalent to (2.6). Otherwise, ( 4.6) can be got from (2.6) by a 
slight change to the coefficient matrix of the linear system corresponding to (2.6) (see §4 
of Graham & Yan (1991)). By mimicking the derivation of ( 4.4) from (2.6), it is easily 
shown that ( 4.6) is equivalent to 

(4.7) 

where 
( 4.8) 

The stability of ( 4.6) is obtained with the aid of the following Lemma, which generalises 
the arguments in Graham & Yan (1991). 

Lemma 8 . For fixed q ~ 1 and for each€> 0, there exists i* ~ 1 independent of N 
such that 

for all N sufficiently large. 

Proof. From ( 4.8) and ( 4.5), we have 

Mi*h = (B + E)Ti*h. ( 4.9) 
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An expansion of B in terms of Mellin convolution operators local to each corner is given 
in Theorem 1. Using the periodic C00 cut-off functions 'lj;i with compact support m 
(Si - £, Si+ c) as in the proof of Theorem 1, we have 

r 

B = L'lj;iBi'lj;i + E 
i=l 

with E compact. The kernel of 'lj;iBi'lj;i is now smooth on [-7r,'7r] x [-7r, 7r]\{(Sj, Si)}. 
Substituting into ( 4.9) gives 

Since llTi*hllo = 1 and since Rh~ I pointwise on H0 , we have 11(1 - Rh)ETi*hllo ~ 0 as 
N ~ oo. Thus the proof will be complete if we can prove that, for any j, and for any 
€ > 0 there exists i* ~ 1 independent of N such that 

(4.10) 

for all N sufficiently large. . 
To obtain ( 4.10), we shall make use of local spline approximation results by quasiin-

terpolants as used for example in Schumaker (1981), p. 267. 
It follows from the (periodic version) of the results there that if f is any 27r-periodic 

function on [-7r, 7r] then there exists Q f E Vt such that 

( 4.11) 

Moreover a little further work shows the· approximation property 

( 4.12) 

This may be derived by the arguments in Elschner (1989) for instance. 
Then since Rhvh = vh for all vh E Vt, we have on using ( 4.2) 

(4.13) 

Now without loss of generality assume that Si = 0, assume that N is large enough to 
ensure that i* h ~ £, and introduce the notation 

A {i: Xi+k ~ -h or Xi+i-k ~ h} , 
n U{[xi, Xi+i] : i EA} . 

Then ( 4.12) implies 
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where C depends on k but not on h. Now choose any p E (0, 1/2). A short calculation 
shows that for s E [h, c], 

Hence on calculating the derivatives on the right hand side and using llvllo ~ 1, we have 
for s E [h, £], 

l(D'lj;iBi'l/JiTi*hv )( s )I 

~ C f$fti L {in1bj- (;)I lv(-a)I + !n1b].+ (;) i lv(a)I} a-1
-

1da 

=Cf$~ s-l-p L (; t {i(D1bj-) (;)I lv(-a)I + l(D1bj+) (;)I lv(a)I} ap-ldi;{4.15) 

(The second last step uses Theorem 1 and the last step uses the Cauchy-Schwarz in-
equality.) 
Hence using this and a similar bound for s E [-£, -h], we have 

1 

hllD ,.1. B ,,/, Ti*h II < Ch { {he s-2-2pds} 2 {(,;*h)2p-1} ~ 'f'j j'f'j V O,[-e,e]\[-h,h] . }h " 
1 

c { ( i*)2p-1 }2. 
( 4.16) 

Inserting ( 4.16) into ( 4.14) yields 

( 4.17) 

This estimates the norm on the right hand side of (4.13) over n C [-7r,7r]. For the 
remainder of the norm, use ( 4.11) to obtain 

with Ph= (2k - l)h. Now ifs E [O,ph] and N is sufficiently large we have 
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j(.P;Bp/l;T"hv)(s)j < c { f'h lbj- C") I lv(:~d" + [JW (~)I lv("Jld"} 
c L {lw (~)I rv(-<7)1 + lw (;)I rv(<7)f} d; 
cs-p [h (ff {lw (;)I lv(-<7)1+lw(;)I1v(<7)1} O"p-ldO" 

for p E (0, 1/2), where we have used Theorem 1. Hence, as in the derivation of ( 4.15), we 
have 

Thus 

{ 

(2k-l)h } 
1

/
2 

11
,,/, B ,,/, Ti*h 11 < G f

0 
s-2p ds (i* h)p-l/2 

'f'j j 'f'j v o,[o,ph] Jo 
( 4.19) 

< Gh1/2-p(i*h)P-1f2 = G(i*y-112 . 

A similar bound holds on [-ph,O]. Substituting (4.19) into (4.18). and combining with 
( 4.17) pr~ves ( 4.10). D 

Theorem 9 . Suppose the hypothesis of Corollary 5 holds and suppose for j = 1, ... , r, 
we have qj > (k+l/2) (l+lxjl). Then there exists i* such that (4.6) has a unique solution 
for all N sufficiently large and 

llw - whllo ::; G hk 
where G is a constant which depends on w and i* but is independent of N. 

Proof By the Remark following the statement of Theorem 6, if i* is fixed then the finite 
section operator I+ Mi*h =I+ A-1(K -A)Ti*h is invertible for N sufficiently large, and 
has an inverse which is bounded independently of N. Then since 

Lemma 8 shows ·that there exists fixed i* such that for N sufficiently large, (I +RhMi*htl 
exists and 11(1 + RhMi*ht1llo::; G, with G independent of N. Then comparing (4.3) and 
(4.7), we have 

(I+ RhMi*h)-1 (w + RhMi*hw - Rhe) 

(I+ RhMi*ht1 { (w - Rhw) + Rh(Mi*h .- M)w}. 
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Hence taking norms and using ( 4.2) and Theorem 2, 

llw - whllo < G {llw - Rhwllo + llA-1 (K - A)llo ll(Ti*h - J)wllo} 
< G {llw - Rhwllo + 11(1 - Ti*h)wllo} ( 4.20) 

< G {llw - vhllo + ll(J -Ti*h)wllo}, 
for any vh E Vf, where the final inequality uses Rhvh = vh and ( 4.2). Now by choosing 
vh to satisfy the usual approximation property for smooth splines (see, e.g., Prossdorf & 
Silbermann ·(1991), p. 44), we have 

( 4.21) 

Also from the last line of the proof of Corollary 5 we have 

fsi+i*h rsj+i*h 
ls·-i*h lw(a)l2da:::; G ls. (a - S;)2Pida, 

3 3 

where Pi = q;/(1 + lx;I) - 1. Now by choice of qi stated in the hypothesis we have 
P · > k - 1 and so J 2 

rs·+i*h 
ls;~i•h lw(a)l2da S G(i*h)2P;+1 S G(i*)2kh2k. 

This inequality is true for all j = 1, ... , r and so 

Combining this with ( 4.21) in ( 4.20) yields the result. D 

Since wh approximates w, with w defined by (1.3), and since u is the solution of the 
original boundary integral equation, it is of interest to construct approximations to u 
from wh and to examine their accuracy. Since the parametrization/ defines a bijection 
between [-7r, 7r] and r, we can define an approximation uh to u by setting 

Now let Aq be the bijective map on [-7r,7r] with the property that 

-y(>.q(a)) = :i:; + (s:+~ ~;sJ (:i:m - :i:;), s E [S;, S;+il . 

(That is (I o Aq) (a) is a constant multiple of arc length on each side of r.) Then 

L: lu((I o Aq)(a))- uh(( Io Aq)(a))l 2 1(1' o Aq)(a)l2 l'Aq(a)lda 

= L: lw(a) -wh(a)l2da = O(h2k) . 
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Thus (4.23) shows that uh-+ u with O(hk) in a certain weighted H 0 norm. It is easily 
seen that the weight vanishes with O(ls - Sill-l/qi) ass-+ Sj for each j = 1, ... ,r, which 
is natural since the solution has a singularity at each of those points. 

To conclude this section we state a Corollary of Theorem 9. Its proof is entirely 
analogous to the proof of Theorem 8 of Graham & Yan (1991). 

Corollary 10 . Under the hypothesis of Theorem 9, 

where /3 = 1 if i* = 0, and /3 = ~ if i* ~ 1. 

5 Numerical Experiments 
To illustrate the convergence results in Theorem 9 and Corollary 10 we solved equation 
(1.1) when r is the boundary given by 

1 1 (s) =sins (cos(l - x)s, sin(l - x)sf, s E [O, 7r] . 

This is the boundary of a "teardrop-shaped" region which has a single corner at s = 0 
(or s = 7r) and is smooth elsewhere. The exterior angle between the tangents at s = 0 is 
(1 + X)7r. (In Fig.l this boundary is depicted for the special case x = 3/4.). This contour 
is most easily described using this parametrization, but clearly a simple scaling would 
transfer it to s E [-7r, 7r] as assumed in the theoretical sections of this paper. 

The results of Sections 3 and 4 are given for polygonal boundaries only. (This is the 
simplest case which is relevant to engine.ering calculations.) However using perturbation 
arguments it should be possible to derive the same results for curvilinear polygons (as 
found in Atkinson & Graham (1992) for second kind equations, for example). So this 
example presents a simple model problem with one corner which is a reasonable test of 
the validity of Theorem 9 and Corollary 10. From Grisvard (1985) we expect that 

where 

a-+0+, 
.a-+ 7r- , 

a= (1 + lxlt1 
• (5.1) 

To reformulate (1.1) in terms of a solution which is smoother at a= 0, a= 7r, we choose 
a grading exponent q ~ 1, and set 
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s E [O, 7r /2] , 

s E [7r /2, 7r] . 
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Figure 1: The contour r for the case x = 3 I 4 

It is easily seen that 1( s) is 0( sq) as s ~ 0+, 0( 7r -=- s )q as s ~ 7r-, and that 1" is 
smooth on [O, 7r /2] and on [7r /2, 7r], but suffers a jump discontinuity at 7r /2. Thus we have 
w := li'lu o I E H 1 , provided 

q > 3/2a, (5.2) 
with a given by (5.1). So it is expected that the theoretical ;results proved in Theorem 9 
and Corollary 10 will hold when k = 1. (A parametrization which is smoother on (0, 7r) 
would be needed if we wanted to use higher order splines.) 

We solved the reformulated equatio'n (2.2) by the (unmodified) piecewise constant 
mid-point collocation method (i.e. (2.6) with k = 1 ). Then analogously to Theorem 9 
we expect 

when q = 1, but 

llw - whllo = O(h) 
when q > 3/2a. From Corollary 10 we expect 

when q = 1, arid 

when q > 3/2a. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The implementation of the collocation method (2.6) requires calculation of the inte-
grals 
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for i, j = 1, ... , n. These are done by the standard singularity subtraction technique, i.e. 
we write 

(5.7) 

where 

k2(t, u) = log{jt - ull27r - t + ull27r - u +ti} 

and 

ki(t, u) =log l1(t) -_1(u)I - k2(t, u) 
The second integral in ( 5. 7) is done analytically. The first is done by the two-point Gauss 
rule. If r were smooth this rule would be sufficient to guarantee 0( h) convergence in 
H0 for approximations of w and O(h3 ) convergence for approximations to smooth linear 
functionals of w (see Graham & Atkinson _(1993), for example). It is also sufficient to 
preserve the orders of convergence here, but as yet we have no proof of this fact. 

Results for x = 3/4, x = 9/10 and q = 1, q = 3 are given in Tables 1-4. In all cases 
we used 

f=l (5.8) 

in (1.1). The exact solution w of (2.2) is unknown in this case. So, to test (5.3), (5.4) we 
first computed w*, the approxim.ation to w using n = 1024. We used w* as an "exact" 
solution with which we compared wh. The norms llw* - whllo were computed using the 
mid point rule on the mesh with 1024 subintervals. To test (5.5), (5.6) we chose v = 1 
and again used w* instead of w, computing the integrals exactly. 

Interior potentials are important in boundary integral calculations. For example if ~ 
lies inside r the potential 

1 J_?I" 
U(~) =:; -?I" log I~ -1(u)lw(u)du 

solves t:::,.U = 0 inside r with U = f on r. In the case of data (5.8) U - 1 and so errors 
in computed values of U are easily found. With w approximated by wh and ~ a fixed 
randomly chosen point with distance no more than 0.01 x Vi from ( cos(l - X)7r /2, sin(l-
X)7r /2)/2, we computed 

1 J_?I" uh:=; -?I" log 1~ -1(u)lwh(u)du 

using the two point Gauss rule on each subinterval of [-7r, 7r]. This should converge to 
U( ~) = 1 as n ~ oo and will give a good idea of how the method of the present paper 
performs when used as a boundary integral solver for Laplace's equation. Again this is a 
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smooth functional of wh and its convergence should be governed by (5.5), (5.6). Results 
are given in Tables 1-4. Estimated rates of convergence are in the columns headed "Eoc". 

From Tables 2,4 it is clear that when q = 3 > 3/2a, (5.4) is satisfied. From Tables 
1,3 we see that when q = 1 (5.3) is satisfied but appears somewhat pessimistic. A bigger 
surprise is the rate of convergence of linear functionals J~7r wh and Uh. For q = 3 these 
both converge with O(h3 ) which is better than that predicted by Corollary 10 and is the 
same order which has been proved in the case of smooth r (see Saranen (1988)). When 
q = 1, r:.7f' Wh converges with only slightly better than the rate predicted by Corollary 10 
but again Uh converges with O(h3 ). Whether this is just an artifact of the special case 
solved here, or whether this good convergence of interior potentials is true in more general 
situations is a question which merits further investigation. 

n llw* - whll2 Eoc J7f' * J'lf' -1rW - -'lf'Wh Eoc IUh-11 Eoc 

8 2.33 (-1) 6.28 (-2) 4.11 (-3) 
0.14 1.09 5.41 

16 2.12 (-1) 2.94 (-2) 9.70 (-5) 
0.17 1.13 2.15 

32 1.89 (-1) 1.34 (-2) 2.18 (-5) 
0.19 1.16 3.00 

64 1.66 (-1) 5.99 (-3) 2.73 (-6) 
0.25 1.22 3.02 

128 1.40 (-1) 2.58 (-3) 3.36 (-7) 
0.31 1.32 3.01 

256 1.13 (-1) 1.03 (-3) 4.17(-8) 
3.01 

512 5.19 (-9) 

Table 1 
X = 3/4, (a= 0.571), q = 1 

28 



n llw* - whllo Eoc I J~?r w* - J~?r wl Eoc IUh - 11 Eoc 

8 7.57 (-2) 4.60 (-3) 8.73 (-3) 
0.99 2.39 3.55 

16 3.82 (-2) 8.81 (-4) 7.45 (-4) 
1.00 2.82 5.06 

32 1.91 (-2) 1.25 (-4) 2.23 (-5) 
1.00 2.96 3.11 

64 9.56 (-3) 1.61 (-5) 2.59 (-6) 
1.01 2.97 3.00 

128 4.76 (-3) 2.05 (-6) 3.23 (-7) 
1.04 3.00 3.00 

256 2.32 (-3) 2.56 (-7) 4.04 (-8) 
3.00 

512 5.04 (-9) 

Table 2 
X = 3/4, (a= 0.571), q = 3 

n llw* -whllo Eoc J?r * J?r -?r W - -?r Wh Eoc IUh - 11 Eoc 

8 2.81 (-1) 6.41 (-2) 9.93 (-4) 
0.12 0.94 0.78 

16 2.59 (-1) 3.35 (-2) 5. 78 (-4) 
0.13 1.01 1.76 

32 2.36 (-1) 1.66 (-2) 1.71 (-4) 
0.17 1.07 5.64 

64 2.10 (-1) 7.89 (-3) 3.44 (-6) 
0.22 1.13 3.70 

128 1.81 (-1) 3.60 (-3) 2.65 (-7) 
0.28 1.25 3.00 

256 1.49 (-1) 1.51 (-3) 3.30 (-8) 
3.01 

512 4.11 (-9) 

Table 3 
X = 9/10, (a= 0.526), q = 1 

29 



n llw* -whllo Eoc f7r * f7r 
-7r W - -7r Wh Eoc IUh-ll Eoc 

8 6.41 (-2) 2.34 (-2) 4.22 (-2) 
0.98 2.77 2.50 

16 3.24 (-2) 3.43 (-3) 7.47 (-3) 
0.99 4.09 3.55 

32 1.63 (-2) 2.02 (-4) 6.39 (-4) 
0.98 4.52 5.06 

64 8.24 (-3) 8.77 (-6) 1.91 (-5) 
0.99 3.62 6.19 

128 4.14 (-3) 7.15(-7) 2.62 (-7) 
1.02 3.66 2.92 

256 2.04 (-3) 5.67 (-8) 3.46 (-8) 
3.00 

512 4.33 (-9) -

Table 4 
X = 9/10, (a= 0.526), q = 3 
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Appendix: Mellin convolution operators 
Here we recall some basic facts about Mellin convolution operators on the half-axis which 
are needed in the analysis of §3; see e.g. Eskin (1981), Elschner (1988), Elschner (1987). 

(i) For a given function v: JR.+~ C, its Mellin transform is v(z) =fr!+ sz-1 v(s)ds. The 
operator v ~ v is an isometric isomorphism from L2(JR+) onto L 2 ( {Re z = 1/2}) 
(cf. Eskin (1981 )§2) and we have Parseval 's equality 

!. vwds = __!__ r vwldzl . 
}'!+ 271" lRez = 1/2 

For a given bounded function a(z) on the line Re z = 1/2, the Mellin (pseudodiffe-
rential) operator A with symbol a(A)(z) := a(z) is defined by 

Av(s) = ~ f s-za(z)v(z)dz, v E L2 (JR.+) . (A.l) 
2n lRez = 1/2 

Thus A is a continuous operator on L 2(JR.+) with norm bounded by 

llAll ~ SUPRez=l/2la(z)I · (A.2) 

If Bis another Mellin operators with symbol b, then BA is obviously again a Mellin 
operator having the symbol ba. In particular, if the symbol of A satisfies the estimate 
la(z)I ~ c > 0 , Re z = 1/2, then A is continuously invertible.on L2(JR+), where its 
inverse is the Mellin operator with symbol l/ a. 

(ii) The symbol a( z) is said to be of class z::-oo if it is analytic in the strip 0 < Re z < 1 
and if, the estimates 

a(z) = 0((1 + lzl)-k), lzl ~ oo , k E No 

hold uniformly in each substrip 8 < Re z < 1 - 8 , 5 E (0, 1/2) . If a E z::-oo, then 
the kernel function K( x) , x E R +, defined by 

. 1 A K(x) = -. x-za(z)dz, 0 < 8 < 1 , 
27l"i Re z=o 

(A.3) 

fulfils the estimates 

sup lxP+k DkK(x)I < oo, for all k E No, 0 < p < 1 . (A.4) 
xell+ 

This is a simple consequence of the analyticity and the decay at infinity of the 
symbol. The converse statement is also valid; cf. Eskin (1981)Lemma 2.3. Moreover, 
the operator A with symbol a E z::-oo can be writ'ten as the Mellin convolution 
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Av(s) = f K (;;) v(a)~ , 
and the symbol is the Mellin transform of the kernel function: 

(A.5) 

Note that (A.4) for k = o, implies IK(x)I :::; cx-P, x E JR+. Taking p < 1/2 for 
x E [O, 1] and p > 1 /2 for x E [1, oo) yields K E L2(1R +). It can also easily be shown 
that x-1/ 2 K( x) is integrable on JR+ if a E E-00 so that the right-hand side of ( A.5) 
may be interpreted as a convergent integral. · 

(iii) The Cauchy singular operator on JR+ 

1-lv( s) = _!. p.v. roo v( a )da 
7r Jo a: - s 

is a Mellin operator having the symbol a('J-l)(z) = cot7rz which is analytic for 
0 < Re z < 1 and satisfies the estimates 

a('J-l)(z) ==Fi+ 0((1 + lzltk), Im z ~ ±oo , k E No (A.6) 

uniformly in each substrip 5 < Re z < 1 - 5 , 5 > O; see Eskin (1981)§15. Then 
(A.3) with a(z) = cot7rz and K(x) = (1- xt1 holds in the sense of distributions, 
whereas (A.5) has then to be interpreted as a Cauchy principal value. For additional 
information on '}-{, see Jergens (1982) §13.5. 

(iv) Let 'lj; be a smooth function function with compact support on [O, oo ). If a E E-00 

or a(z) = cot7rz and A is the corresponding Mellin operator (A.l), then the com-
mutator 'l/;A - A'l/; is compact on L2(JR+), see Eskin (1981)§15. For a E E-00

, the 
operator 'lj;A is compact on L2(JR+) if in addition 0 ¢ supp 'lj;. 

( v) A family at( z) , 0 :::; t :::; 1, of bounded function on Re z = 1 /2 is called a homotopy 
of symbols if 

ljm sup lati(z) - at(z)I = 0 , 0:::; t:::; 1 . 
t -+t Re z= 1/2 

Then by (A.2), the corresponding family of Mellin operators At with symbols at is 
a homotopy of bounded operators on L2(JR+), i.e. the map t ~At is continuous on 
[O, 1] in the operator norm of L2(JR+). 

(vi) Assertions (i) - (v) extend in an obvious way to the case of matrix operators if we 
replace symbols and kernels by matrix functions. In particular, if A is a Mellin 
operator with a 2-by-2-matrix symbol a(z) satisfying ldet(a(z))I 2:: c > 0 , Re z = 
1/2, then A is invertible on L2(JR+) x L2(JR+), where its inverse has symbol a(z t 1 • 

34 



Veroffentlichungen des Instituts fiir Angewandte Analysis 
und Stochastik 

Preprints 1992 

1. D.A. Dawson, J. Gartner: Multilevel large deviations. 

2. H. Gajewski: On uniqueness of solutions to the drift-diffusion-model of 
semiconductor devices. 

3. J. Fuhrmann: On the convergence of algebraically defined multigrid meth-
ods. 

4. A. Bovier, J.-M. Ghez: Spectral properties of one-dimensional Schrodinger 
operators with potentials generated by substitutions. 

' -
5. D.A. Dawson, K. Fleischmann: A super-Brownian motion with a single 

point catalyst. 

6. A. Bovier, V. Gayrard: The thermodynamics of the Curie-Weiss model with 
random couplings. 

7. W. Dahmen, S. Profidor~ R. Schneider: Wavelet approximation methods for 
pseudodifferential equations I: stability and convergence_. 

8. A. Rathsfeld: Piecewise polynomial collocation for the double layer potential 
equation over polyhedral boundaries. Part I: The wedge, Part II: The cube. 

9. G. Schmidt: Boundary element discretization of Poincare-Steklov operators. 

10. K. Fleischmann, F.I. Kaj: Large deviation probability for some rescaled 
superprocesses. 

11. P. Mathe: Random approximation of finite sums. 

12. C.J. van Duijn, P. Knabner: Flow and reactive transport in porous media 
induced by well injection: similarity solution. 

13. G.B. Di Masi, E. Platen, W.J. Runggaldier: Hedging of options under dis-
crete observation on assets with stochastic volatility. 

14. J. Schmeling, R. Siegmund-Schultze: The singularity spe~trum of self-affine 
fractals with a Bernoulli measure. 

15. A. Koshelev: About some coercive inequalities for elementary elliptic and 
parabolic operators. 

16. P.E. Kloeden, E. Platen, H. Schurz: Higher order approximate Markov chain 
filters. 



17. H.M. Dietz, Y. Kutoyants: A minimum-distance estimator for diffusion pro-
cesses with ergodic properties. 

18. I. Schmelzer: Quantization and measurability in gauge theory and gravity. 

19. A. Bovier, V. Gayrard: Rigorous results on the thermodynamics of the dilute 
Hopfield model. 

20. K. Greger: Free energy estimates and asymptotic behaviour of reaction-
diffusion processes. 

21. E. Platen (ed.): Proceedings of the ist workshop on stochastic numerics. 

22. S. Pro:Bdorf (ed.): International Symposium "Operator Equations and Nu-
merical Analysis" September 28 - October 2, 1992 Gosen (nearby Berlin). 

23. K. Fleischmann, A. Greven: Diffusive clustering in an infinite system of 
hierarchically interacting diffusions. 

24. P. Knabner, I. Kogel-Knabner, K.U. Totsch~: The modeling of reactive so-
lute transport with sorption to mobile and immobile sorbents. 

25. S. Seifarth: The discrete spectrum of the Dirac operators on certain sym-
metric spaces. 

26. J. Schmeling: Holder continuity of the holonomy maps for hyperbolic basic 
sets II. 

27. P. Mathe: On optimal random nets. 

28. W. Wagner: Stochastic systems of particles with weights and approximation 
of the Boltzmann equation. The Markov process in the spatially homoge-
neous case. 

29. A. Glitzky, K. Greger, R. Hiinlich: Existence and uniqueness results for 
equations modelling transport of dopants in semiconductors. 

30. J, Elschner: The h-p-version of spline approximation methods for Mellin 
convolution equations. 

31. R. Schlundt: Iterative Verfahren fiir lineare Gleichungssysteme mit schwach 
besetzten Koeffizientenmatrizen. 

32. G. Hebermehl: Zur direkten Losung linearer Gleichungssysteme auf Shared 
und Distributed Memory Systemen. 

33. G.N. Milstein, E. Platen, H. Schurz: Balanced implicit methods for stiff 
stochastic systems: An introduction and numerical experiments. 

34. M.H. Neumann: Pointwise confidence intervals in nonparametric regression 
with heteroscedastic error structure. 



35. M. Nussbaum: Asymptotic equivalence of density estimation and white 
n01se. 

Preprints 1993 

36. B. Kleemann, A. Rathsfeld: Nystrom's method and iterative solvers for the 
solution of the double layer potential equation over polyhedral boundaries. 

37. W. Dahmen, S. Prossdorf, R. Schneider: Wavelet approximation methods 
for pseudodifferential equations II: matrix compression and fast solution. 

38. N. Hofmann, E. Platen, M. Schweizer: Option pricing under incompleteness 
and stochastic volatility. 

39. N. Hofmann: Stability of numerical schemes for stochastic differential equa-
tions with multiplicative noise. 

40. E. Platen, R. Rebolledo: On bond price dynamics. 

41. E. Platen: An approach to bond pricing. 

42. E. Platen, R. Rebolledo: Pricing via anticipative stochastic calculus. 

43. P.E. Kloeden, E. Platen: Numerical methods for stochastic differential equa-
tions. 

44. L. Brehmer, A. Liemant, I. Muller: Ladungstransport und Oberflachenpo-
tentialkinetik in ungeordneten diinnen Schichten. 

45. A. Bovier, C. Kiilske: A rigorous renormalization group method for interfaces 
in random media. 

46. G. Bruckner: On the regularization of the ill-posed logarithmic kernel inte-
gral equation of the first kind. 

4 7. H. Schurz: Asymptotical mean stability of numerical solutions with multi-
plicative noise. 

48. J.W. Barrett, P. Knabner: Finite element approximation of transport of 
reactive solutes in porous media. Part I: Error estimates for non-equilibrium 
adsorption processes. 

49. M. Pulvirenti, W. Wagner, M.B. Zavelani Rossi: Convergence of particle 
schemes for the Boltzmann equation. 

50. J. Schmeling: Most {3 shifts have bad ergodic properties. 

51. J. Schmeling: Self normal numbers. 



52. D.A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimen-
sions with absolutely continuous measure states. 

53. A. Koshelev: Regularity of solutions for some problems of mathematical 
physics. 


