Diffraction in Periodic Structures and Optimal Design of Binary Grat-
ings. Part II: Gradient Formulas for TM Polarization
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Abstract: This paper provides the mathematical foundation of analytic formulae for derivatives of
TM reflection and transmission coefficients of diffraction gratings with respect to geometric parameters
of non-smooth grating profiles and interfaces. This problem arises in optimal design problems for those
optical devices studied in Part I. The derivatives can be expressed by contour integrals involving the direct
and adjoint solutions of TM diffraction problems.

1. Introduction

Diffractive optics is a modern technology in which optical devices are micromachined with com-
plicated structural features on the order of the length of light waves. Exploiting diffraction effects,
those devices can perform functions unattainable with conventional optics. It is widely acknowl-
edged that geometrical optics approximations to the underlying electromagnetic field equations
are not accurate for these diffractive elements, hence, their mathematical modelling has to rely
on Maxwell’s equations or related partial differential equations. The simplest case, the scattering
of time-harmonic waves from infinite periodic structures, is a classical problem, dating back to
Rayleigh and Bloch. It can be transformed to two quasiperiodic transmission problems for the
Helmholtz equation in the whole plane corresponding to the TE and TM polarisation of the in-
coming wave, respectively. Although various numerical methods have been developed to compute
the solution for a given periodic grating (among them a highly accurate integral equation code by
A. Pomp, J. Creutziger and B. Kleemann, realized during their work in the group of S. Prof3dorf
at the Karl-Weierstrass—Institute), rigorous results on the existence and uniqueness of solutions
have been obtained only during the last decade; see the references given in part I of this paper [5].

Based on a variational approach to this problem, which goes back to Bonnet-Bendhia & Starling
([1]) and Bao & Dobson (see [2]), it was also possible to develop gradient type optimization methods
for finding the optimal design of diffractive gratings with desired far—field patterns. In [5] we derived
analytic formulae for derivatives of certain cost functionals involving the reflection and transmission
coeflicients of so called binary gratings. Roughly speaking, the surface of a binary grating can be
given by a periodic step—function separating different optical materials, and the derivatives have
to be taken with respect to the width or height of those steps. It turned out that these derivatives
can be expressed as one—dimensional integrals over the part of the surface to be varied. In the TE
case one has to integrate the product of the solutions of the direct and certain adjoint problem,
whereas in the TM case the integrand is the product of their gradients. Unfortunately, due to the
singularities of the solutions of TM problems near corners of the grating surface, the product of
gradients might be non—integrable. So the formula for the derivatives has to be modified. In [5]
we have given, without proof, one of these modifications.

The topic of the present paper is to study in more detail the dependence of the solution of TM
diffraction problems with respect to variations of the (non-smooth) grating profile and interfaces
between different optical materials. We prove the unique solvability of these problems for quite
general small variations of grating profiles and interfaces and obtain different analytic formulae
for the derivatives of the reflection and transmission coefficients with respect to these variations,
which can be expressed as path—independent contour integrals.

The outline of the paper is as follows. In Section 2, we briefly describe the TE and TM
diffraction problems and present their variational formulations and some basic results. In Section



3, we study the perturbation of TM problems arising after sufficiently smooth (piecewise C?)
variations of interfaces. We prove the unique solvability of these perturbed problems and show
that the derivative of diffraction coeflicients can be expressed as a certain domain integral. This
formula is simplified in Section 4 in different ways to get contour integrals or, in the case of strong
singularities of solutions, contour integrals plus point functionals. In Section 5 we apply these
results to the special case of binary gratings, leading in particular to a simple proof of the above
mentioned modified formula.

The authors are grateful to Prof. S. A. Nazarov for many fruitful discussions, especially con-
cerning the topics of Section 3.

2. Variational formulation of TE and TM problems

Consider a diffractive grating with period d consisting of nonmagnetic materials (of permeability
to) with different dielectric constants e. The coordinate system is chosen such that the grating
is invariant in the zz—direction and periodic in the xzi—direction. Thus the diffraction problem is
determined by the function e(x1,z3) which is d-periodic in #;. This function is assumed to be
piecewise constant and complex valued with 0 < arg e < m. We assume that the material above
and below the grating is homogeneous with € = ¢T > 0 and ¢~ respectively.

Assume that an incoming plane wave with time dependence exp(—iwt) is incident in the (z1, 22)-
plane upon the grating from the top with the angle of incidence § € (—w/2,7/2). Then the
electromagnetic field does not depend on z3. In either case of polarization, one of the fields E or H
remains parallel to the zz—axis and is therefore determined by a single scalar quantity v = v(#1, z2)
(equal to the transverse component of E in the TE case and to the transverse component of H
in the TM case). The function v satisfies two—dimensional Helmholtz equations in the regions
with constant permittivity, together with some radiation condition at infinity. At the material
interfaces the solutions are subjected to well known transmission conditions. For TE polarisation
the solution and its normal derivative d,v have to cross the set of interfaces A between different
materials continuously, whereas in TM polarisation the product ¢~'8,v has to be continuous (for
more details cf. the classical monograph [7]) .

For notational convenience we will change the length scale by a factor of 27 /d, such that the
grating becomes 2m—periodic, e(z1 + 27, 22) = €(x1,22). Let us introduce the piecewise constant
function 4 4
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where X is the length of the incoming plane wave and v is the optical index of the corresponding
material. The constant values of k above and below the grating are denoted by kT and k—,
respectively.

Then the incoming plane wave is of the form (E*, H*) = (p, q) =™ (*®1-022) wwhere a =
ktsinf, B = kT cos, and the total diffracted field can be obtained as superposition of solutions
of the TE and TM polarisation cases.

In TE polarization only the zz—component E3 of the electric field is different from zero. It is
a—quasiperiodic, E3(z1 + 27, z3) = e2™*E3(z1, z2), and satisfies in view of the Maxwell equation
the Helmholtz equation

(2.1) AE3+k*E3 =0 inR?.

The radiation condition, that must be imposed for |z3| — oo, states that Es remains bounded
and that it should be representable as superposition of outgoing waves, i.e.

FEs = pge P2 @ E;'[«e’i(’””""")“:1"’iﬁ:f“:2 for 23 — o0,
(2.2) o mezZ
FE3 = @ E;«le(’"”'i"")“”_lﬁn“:2 for 3 = —o0.
nez



where EX are complex numbers and
2.3 t _ g (o) = |(k2)2 = (n+ )?|Y2eR /2, neiZ
( ) ﬁ'ﬂ n ? ?
with

vE =arg(B5)? — (n+0)?), 0<+F <2n.
Note that 8+ = 8 and that, for real kT,

o[ () = (nta)?)
o= { {0 ot

V2 k> |n+al,
)2, kE < |n+al.

In TM polarization only the zz—component Hgz of the electric field is different from zero. This
a—quasiperiodic function satisfies the Helmholtz equation

1
(2.4) V- (k—2VH3) +k*Hz3 =0 inR?.

together with the radiation condition

H3 = gze™ P72 ¢ @ H,:':ei(n‘i"")m1"'”:[“:2 for 5 — o0,
(2.5)  n€Z
Hy = @ H,:el(”‘i"")““_lﬁn“:2 for £y — —00.
nez

The diffraction problems admit variational formulations in a bounded periodic cell which were
introduced in [1], [2]. Define for example the 27r—periodic function u = ™% EF3. It satisfies the
partial differential equation

Agu+ku=0

where we use the notation
Va=V+i(a,0), Ag=Vys-Vau=A+2iad;, —a®

The outgoing wave conditions are equivalent to nonlocal boundary conditions on some artificial
boundaries I't := {2, = +b} above and below the grating, respectively, of the form

(2.6) Onulps = —TFu— 2p3ifBe”tPY Onulp- = Ty u,
where T is the periodic pseudodifferential operators of order 1
27

2.7) (T3v)(2) = = @ I8y 0ne’™® O = (2m)70 w(z)e M da,
neZ o

acting on boundary values u|p+ € H;_l/z(Fi) of functions u € H, (), s > 0. Here H,(Q2) denotes
restriction to the rectangular domain Q = [0, 2x] x [—b, b] of all functions in the Sobolev space

H; . (R?) which are 2mperiodic in z;. Integration by parts leads to the variational formulation
for the TE diffraction problem

Brg(u,9) = Vaou-Vep— kup+ (Tfuye+ (Tyu)e
(2.8) Q ' Q T+ |
= —2ipsfe™*® @, Ve e H (Q).
T+

Analogously, the TM diffraction problem admits the variational formulation for the function
u = e 1% [

1 S _ 1 N 1 -
Bry(u, p) = k—zvau-vago— up+ )2 (Tfu) @+ )2 (Tyu) e
(2‘9) Q 2l _i'@b Q T+ -
o g3fe _ 1
_7(]94')2 o, YpeE Hp (Q)

T+



In [5], the following properties have been proved under the assumption on the optical indices
of the materials, that

2.10 Re k(z1,22) >0, Im k(z1,22) >0, kT >0
(2.10) ; ; ,%2) >0,

which is satisfied for all practical relevant materials.

1. If Im k£ > 0 in some subdomain ©; C  then for any w > 0 there exists at most one solution
u € H}}(Q).

2. For any 6 € (0, 7/2) there exists a frequency wo > 0 such that the variational problem (2.8)
resp. (2.9) admits a unique solution v € H}}(Q) for all incidence angles 8 with |8] < 6y and
all frequencies w with 0 < w < wq.

3. The sesquilinear forms Brg and Brjys are strongly elliptic over H}}(Q), i.e., after multiplica-
tion by some complex number they satisfy a Garding inequality.

4. (i) The diffraction problems (2.8) and (2.9) are always solvable in H;(Q). For all but a
countable set of frequencies w;, w; — oo, these solutions are unique.

(ii) Introduce the set of Rayleigh frequencies
R = {(w,@) :dn € Z s. th. (ki)2 = (n+a)2} .

If for (w°,0°) ¢ R the TE or TM diffraction problem is uniquely solvable, then the solution
depends analytically on w and 8 in a neighbourhood of this point.

3. Variation of interfaces

Define the finite sets of indices P* = {n € Z : & > 0}, where 8% is given by (2.3). Then
the Rayleigh amplitudes EX and HZ, (n € Pi), which are called the reflection resp. transmission
coefficients for TE and TM polarization, correspond to the propagating modes in (2.2), (2.5) and

are used to compute the so called efliciencies of the diffractive grating. Note that P~ = 0 if
Im k= #0.

We are interested in the solvability of the problems and the dependence of Rayleigh coefficients
if parts of the interfaces A between different materials are varied. The variation of interfaces
leads to a new piecewise constant function kp, where we assume that meas Q5 = O(h) with
Qn = {z € Q: k(z) # kn(z)}. Let BE; denote the variational form of the TE problem for the
perturbed geometry, then

|Beg(u, ©) — Bre(u,9)| = ‘ (k* — k) ugo‘
Qp

< |1K* = kil ppamlullzo@n o). (an)

for p ' + ¢! + #~! = 1. Hence, the variation of interfaces represents a compact and small
perturbation of the form Brg ensuring the unique solvability of B{,L,E for all sufficiently small A.

In the TM case the situation is more involved. The relation
1 1
| By (u, ) — Brar(u, 9)| = (—2 -z
k H
Qp

)Vau Vago‘

shows that the variation of interfaces is a strong perturbation of the TM diffraction problem.
Therefore we consider a more regularly perturbed diffraction problem

2igzBe=Fb
(3.1) B:}ﬁM(U’SO):—W ¢, VoeH (),

T+



assuming that, for sufficiently small |h|, the perturbed interface Ay is given by
(3.2) Ap = @p(A), Op(x) =2+ hx(z).

Here @, is a C! diffeomorphism of Q onto itself, and x = (X1, x2) is 27r—periodic in z; and has
compact support in [0,27] X (—b, b).

Then we can define the isomorphism Wy, : H]}(Q) — H]}(Q) which maps u to uo <I>;1. Moreover,
kr = Wpk and the change of variables y = ®,(z) provides

dy = |J(z)|dz
with
Ix1 | 9x2 2(0x10x2  Ox10x2
Jx)=1+h{ =—=— + == he| -~~~ — =22
(x) + (3271 + 3272) (3271 3272 3272 33;1)
and

d _1—|—h(?X2/3$2 d h3X2/3$1 d

I J(z) 0z, J(z) Oduxa
d o haxl/axz d 1—|—h3x1/3x1 d
dyy J(z) Oz J(z) Ozq
Hence we obtain
- 1 .
( —VpuWpo + 5~ VaWpru- Va\Ilhgo) dy=— ugJ(z)dx
o kh(y) q
((1 —|— haz)(z)al —|— laJ(x) — h31X232)U ((1 —|— haz)(z)al — laJ(x) — hal)(zaz)a
J(w)k?(w)
Q
n ( — hdax101 + (1 + hale)az)U ( — hdx101 + (1 + hale)az)E
J(w)k?(x)
@ 1
= ( —up+ k—zvauvago) dz + hBi(u, ) + h?* By n(u, @),
Q
where
B _ _ d1x1 = 2
1{u,0) = —  (B1x1+ Bax2)u P+ 52 (82u Oa¢p — B1u O19 + @ u )
Q 5 Q
X [
(3.3) + 222 (01,0 01,00 — O2u z)
“ 0 0
- ( ]1;2 (31,aU@+ daud1,0) + Z—fl(alU@-i' 32“@))
Q

and the remainder term satisfies
| Ba,n(u, 9)| < cllullallells , u, o € Hy (2, |k < ho.
Here we have used the notations 8; = 8/9z;, 61, = 81 + i and the relation
J(z)™t =1 — h(O1x1 + dax2) + O(R?), |h| < ho,

which holds uniformly in z € Q. Since the boundary terms in the TM sesquilinear form remain
unchanged, we have for |h| < hg

(3.4) B pr (Wnu, Uro) = B (u, ) + hBi(u, 9) + h* By n(u, 9) .

Theorem 3.1. If the TM diffraction problem (2.9) has a unique solution and the perturbation
of the grating geometry is given by the regular mapping (3.2), then for all sufficiently small h the



perturbed problem (3.1) is also uniquely solvable. Moreover, the solution of this problem takes the
form
(3.5) \Ilgluh = ug + hus + hzuz,h ,

where ug s the solution of the original problem (2.9), u1 € H}}(Q) solves the equation

(3.6) Bru(u1,¢) = —Bi(u,¢) , Ve € Hy(Q),
and the remainder satisfies ||ug,nl|1 < ¢ for |h| < ho.
Proof: Replacing u, ¢ with \Ilglu, \Il;1g0 in (3.4) and using the equivalence of norms ||u||1; ~
[|[¥ru||1 (uniformly in k), we obtain
By (u,9) = Brar (¥ u, W5 o) + O(h)|[ W5 ul 1|95 o2
= Bray (u, ) + O(h)|[ul[1]|¢]]1 -
Hence BL,, is a small perturbation of Brys, which proves the unique solvability of (3.1).

Inserting the ansatz (3.5) for the solution uy of (3.1) into (3.4) yields the following equation for
U2, h:

By (uzn, @) + hBi(ug,n, ¢) + h?Ba g (ug,h, @)

(3.7)
= —Bl(ul, QO) — Bz,h(“o, QO) — th,h(ul, QO) , Yp€ H}}(Q) .

Recall that

r+ r+

which implies B2y, (un, ¥np) = Brar(uo, ). Since the left-hand side of (3.7) takes the form
By (ua,n, ©) + O(h)||uz,nl|1]l¢]]1 and the right-hand side defines a (uniformly) bounded linear
functional on H}}(Q), we obtain a uniformly bounded solution us j. |

Remark 3.2. Assume that ®; is a C° isomorphism. Then it is not difficult to prove recursively
that for any N > 2 the solution of (3.1) admits the expansion

N
Uty = @hiuj + AN uniin,  luvsisli <ew s
j=0
with uo, u1 as above and certain functions u; € Hy (), j > 2.

Now we are in the position to obtain a formula for the derivative of the Rayleigh coeflicients H*
with respect to the regular variations (3.2) of the interfaces A. These reflection and transmission
coefficients are determined by the traces of the solution u of the problem (2.9) on the artificial
boundaries I'F,

. e_iﬁ:,—b .
HY = —¢3 Sone 2P 4+ 5 ue "Fidyy, n e Pt
T
+
(3.8) -ifzb . r
H; = o ye e dml, nec P,
-
Thus the derivative of HF is given by
+ : e_iﬁi:b —ine
(3.9) DH; (x) = }lll_lg 5 (up, —u)e tdey,
r+

where uy, is the solution of the perturbed problem (3.1), (3.2). Let w denote the solution of the
adjoint problem
e_iﬁ'r:f,:b .
(3.10) Bruy(p,w) = 5 pe "Mdry, Ypc€ H;(Q) .
T+




Then

st
e—zﬁnb

27h

. 1
(up, —u)e """ dpy = EBTM(Uh —u,w) .
r+
Since the right—hand side of equation (3.10) is a functional supported at the artificial boundary
' one has Brp(up, w) = BTM(\II,Zluh, w), and (3.5) then gives
h_lBTM(Uh — U, w) = h_lBTM(\Ilgluh — U, w) = BTM(“l, w) =+ hBTM(Uz,h, w)

= —B1(u, w) + hBra(ug,n, w)

Thus we have proved the following

Theorem 3.3. The derivative of the reflection and transmission coefficients HE with respect to
the variations (3.2) of the interface A is given by the formula

(3.11) DHiE (x) = —=B1(u,w)

where the sesquilinear form By is defined by (3.3), and u and w denote the solution of the direct
and adjoint diffraction problems (2.9), (3.10), respectively.

4. Derivative of diffraction coefficients as contour integral

Theorem 3.3 states that the derivative of the diffraction coefficients can be obtained from certain
integrals with suppVy as domain of integration. In the following formula (3.11) will be simplified
by transforming these domain integrals to certain contour integrals. For the sake of simplicity
we will consider in the following only the variation of interfaces between two different materials.
This means the support of the function x is divided by a certain part of the interface A into
two subdomains, which will be denoted by Q1 and Q~. In each subdomain the function k takes
constant values, denoted by k4 and k_, respectively.

Let ' C Q be a simple closed piecewise smooth curve enclosing the domain G such that
k = const in G. Let v = (v1, v2) be the exterior normal to T', 7 = (—v2,v1) the tangential vector,
and introduce the weighted normal and tangential derivatives

Opa = V101, + 1202, Or o = —1201,4 + 1102 .

We denote by B (u, w; G) the right-hand side of (3.3) where the integrals are taken over G instead
of Q.

Lemma 4.1. If supp x N I" does not contain a corner point of A, then

(4.1) Bi(w,w; @)= ((6¥)T + (61K +xL)

where

1 S -
J = —uw+ —2(3‘,—’&114 a‘r,aw - 31/,0(“ 3u,aw)

k

1 S _
K= —k—z(&,’au Or aW + 07 ot Oy o)
L= %(u Or oW — 0, qu) .



Proof: We have
Bi(u, w; G)

(31)(1((0(2 — kz)um—l— 32U32—w— 31U 31w) — 32X1 (31U32—w—|— 32U 31w))

2
G

_|_

G
::11—1—12.

= -

2 (32)(2(—]62 uw+ Bl,au 317aw — 3211432—10) — 31X2 (31,au32—w—|— 32U Bl,aw))

E

Let us start with the integral I;. Green’s formula yields

92x1(01u dow + pud1w) = — X1 (31u3§—w—|— d3udyw + 31(32u32—w))
G G
+ Xl(aluaz—w+azual—w)l/2:_ xl(aluag’—er(’)%uf)l—w)

r G
+  O1x102u drw + Xl((aluaz—w+ 32u31—w)y2—32u32—wy1) )

G r

F1x101udiw=— x1(03udiw + 01udw) + x101udwry
G G r
— Xl((afu + 2ia31u)31—w + O1u(9%w + 2ia31w)) + x101udiwus,

G r

dixiuw=— x1(uw+udiw)+ x1uWry,
Il Il r

which implies

L=— x100u (0% + 03w — 2ia0,T + (k? — o?)w)

+ = Xl(afu—l—agu—l—?iaalu—l—(kz —az)u) 0w

X1uwvy .

r

Note that u, w € H?(G Nsuppy), and since

Aau—i—kzu:Aaw—l—Ezw:O in G,

we obtain
1
11 _k_2 Xl(((?lu 32m—|— 32U alm)l/z + (Blu Blm— 32U 32@) 1/1)
r
k? — o?
—T X1 Uml/]_ .

r

Simple calculations show that
(31U 32@ + 32U 31@) vy + (Blu 31@ — 32U 32@) V1 — 052 U,ml/l
= (au,au 3u,aw - 37',0(“ a'l',otw)l/l - (au,au 37’,0(w + a‘l’,au au,aw)y2

—|—ia(3u,aum —ud,w).



Therefore we have
L=~L(x1)= (Xll/lj—XWzK-l-Xl»C) .
T
Similarly one verifies that
L =Lix2) = (le/z(] + X2V1K) )
T

which finishes the proof of (4.1). |

Remark 4.2. An inspection of the above proof shows that Iy = Ii(x1) = 0if x1 = 1 in G.
Moreover, since

(uOy,aw — dy quw) =0
r

by the second Green formula, the third integral in (4.1) vanishes if x; is constant. Thus, for 3 =1
the integral I1(x1) takes the form

(I/lj — I/2K)

r

and is zero as long as ' C QF (for T C Q- ) does not contain a corner of the interface A.
Analogously, I; = I2(x2) with x2 = 1 always vanishes in that case.

Corollary 4.3. If A has no corner points, then

1 _
(4.2) DHiE (x) = =-Bi(v,w) = (x,v) k—z(&,’au Oy,qW — Or, o 07 o W)
A

A

Here v denotes the normal to A pointing from Q% into Q™ and [v]s stands for the jump v|} — v|}
across A, where v|/ﬂtx represents the limit as the interface is approached from the region QF.

Proof: Applying Lemma 4.1 with G = QF, we obtain
Bi(u, w) = By (u, w; Q) + By (u, w; Q7)
= (eIl + 00Kl +xallt) = (0615 + 061Kl +xally)-
A A

Recall that suppx NT' = @ and the integrands are 27—periodic in z;. Using the transmission
conditions for # and w then gives

[uwls = [Kla=[£]la=0,

hence

1 -
Bi(u,w)= (x,v) k_2(a7—7°‘u OrqW — Oy a0y qw)| . |
A
A

We now extend formula (4.2) to the case of corner points. Assume first that A has exactly one
corner point at O, and denote by § the angle at O seen from QT. Without loss of generality we
may assume that Q7 locally coincides with the sector {(r,¢): 0 < r < oo, || < §/2}, where (r, ¢)
denote polar coordinates centered at O.



To describe the singularities of solutions to problem (2.9) near O, consider the transcendental
equation
sin (m — §)A k2 + k3

4.3 = =41.
(4:3) sneA Ok g 0%

Denote by Ag the unique zero of (4.3) in the strip 0 < Re A < 1 if it exists. It was proved in [6,
Lemma 4.2] that (4.3) has exactly one simple root in that strip if |k_| # k4 and no root there if
|k_| = k4. Moreover (see [6, Thm. 4.1]), the solution u € H, () of the TM diffraction problem
(2.9) satisfies

(4.4) Culger = C + Cdtr>‘°u(ﬂ)E + uf ,

where £ is a smooth cut—off function near O, C and C* are certain complex constants, the remain-
der terms uf satisfy
uf € Hz_E(Qi) forall ¢>0,

and the functions ugt take the form

(4.5) ud (p) = cos Aoy , ug (p) = cos Ao(p — )
or
(4.6) ud (p) =sin Ao, ug (@) = sin Ao(p — 7)

corresponding to the case ¢ = +1 or o = —1 in (4.3). For fixed € > 0, let Oy, be the two points
on A satisfying dist(O, O4.) = ¢ and set A, = A\ (OO0_. U OO,).

1 _
Theorem 4.4. With G := (x,v) [k_z (a,,au Oy, aW — Or o &naw)] we have
A

2
20— 1

(4.7) pHE() = lim ( G+

ge—0

(6(0-c) +6(0.))) -

A

Remark 4.5. Since the function W also admits the representation (4.4)—-(4.6) (with other constants
C, C* and remainder terms), one obtains that G(z) = O(r?*°=2) as r — 0. Thus (4.7) coincides
with formula (4.2) if Re Ao > 1/2. This is always true if k_ is real; cf. [3]. Note that the case
Ao = 1/2 is excluded by our assumptions (2.10) if k_ is complex.

Proof of Theorem 4.4: Let QFf = Q% \ {r < €} and denote by SF the (clockwise oriented)
circular arcs QF N {r = ¢} with endpoints O_,, O,. Applying Lemma 4.1 with G = QF gives

Bi(u,w) = lim (Bl(u,w;Qj') —|—Bl(u,w;QE_)) = lim (— G+ H+ 7'[) ,

e—0 e—0
Ao st ST

e e

where H = (x, )T + (x, 7)K + x1£; cp. (4.1). Tt remains to show that, for Re Ag < 1/2 and
Ao £ 1/2

(4.8) H=7F

s

v ((5)(0e) + (1) (0-0)) +ole)

as € = 0. To prove this, it is enough to replace H by

x(0),v)
k2

and to insert the principal asymptotic term
0 reug (), @€ (=0/2,6/2),
u’(r, ) = -
*ug (), @€ (6/2,2m—4/2),

(BTU o, w— dyu 3,@) — (X(i# (Buu 0, w+ d;u 3,@)

r

10



for 4 and w, with ugt defined in (4.5) or (4.6).

Thus (4.8) is proved provided we have shown that
- & + +
(4.9) Ho = F 55— (HolD)(0) + (Ho[$)(0-2)).
s

where

Ho = (x(0),v)((9-u%)? = (B,u°)?) — 2(x(0), 7) D u’ Oru® .

Consider, for example, (4.9) with the plus sign and uf = cosAop. Since v = —(cos ¢, sin p),
T = (sing, — cos ¢), 8, = —8,, 8 = r~1d, on ST, we then have
Ho = Aip?ho—? (Xl(O) cos p + x2(0) sin go) (cos2 Aoy — sin? /\ogo)
st st

+  222p2Po—2 (Xl(O) sin ¢ — x2(O0) cos go) sin Ag cos Agp

sk
52
= A2 2ol (Xl(O) (cos ¢ cos 2Agp + sin @ sin 2Xgp) de
—5/2
52
—x2(0) (cos ¢ sin 2Agp — sin ¢ cos 2A0¢) dgo)
—5/2
5/2 §/2
= A2 2ol (Xl(O) cos(2Xg — D de — x2(0) sin(2Xo — 1) dgo)
—5/2 —5/2

2 O A2 2X0—-1
- % sin(2Xo — 1)5/2 .
.

On the other hand, since v = (sind/2,cosd/2), 7 = (cosd/2,—sind/2), 8, = r~1d,, d; = 8, on
{¢ = —4/2} and v = (sind/2, —cosd/2), 7 = (—cosd/2,—sind/2), 8, = —r~1d,, 8, = —8, on
{p = §/2}, we obtain
(7{0|X)(OE) = (Xl(O) sin /2 + x2(O) cos 6/2)/\% £220=2 cog Aol
—(Xl(O) cosd/2 — x2(0) sin 6/2)/\3 g220=25in \od ,

(7{0|X)(0_5) = (Xl(O) sind/2 — x2(O) cos 6/2)/\3 £220=2 cog Aol
—(Xl(O) cosd/2 4 x2(0) sin 6/2)/\3 g220=25in \od ,

which implies

L + +

51— ((ol)(0) + (ol)(0-2)
/\% 62>\0—1
o1
2 (0))3ePe!
B 2o — 1

= —2x1(0) (cosd/2 sin Agd — sind/2 cos Agd)
sin(2Xo — 1)6/2,
hence (4.9) for the plus sign. In the other cases the proof of (4.9) is analogous. |

Remark 4.6. The extension of (4.7) to the case of finitely many corners Oq,...,0, of A with
angles 61,...,0, is straightforward. Let Oj 4+, € A be the points with dist(O;, Oj,+.) = e. Then

formula (4.7) holds with A, = A\ (0;0;,_. UO,0;,.) and the correction terms replaced by the
7j=1
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sum
2

7 - (9(05,-¢) + 6(046)) ) »

where A; denotes the root of equation (4.3) (with § = d;) in the strip 0 < Re A < 1.

Note that formula (4.7) requires the knowledge of the zero Ag of the transcendental equation
(4.3). An alternative expression for DHZ (x) can be given by a path-independent contour integral.

Theorem 4.7. Assume that A has only one corner point at O, and let I' = G C Q be an arbitrary
simple closed piecewise smooth curve around O. Then

DHE(X) = (((0),1)T + (x(0),7)K)

1 -
(410) + (X - X(O)a V) |:k_2 (au,auau,aw - a‘l’,au 3T,aw):|
GNA

s 000 [ O = 00T 0)|

A\G

A

A

To prove (4.10), we first extend Lemma 4.1 to the case where suppyx NT' contains a corner point
of the interface A.

Lemma 4.8. Let I' = 0G be a simple closed piecewise smooth curve such that k = const in G and
that suppx NI' contains exactly one corner point O of A. Then

(1.11) Bi(w,w;G) = ((x=x(0),¥)T + (x = x(0), K + x:£).

Proof: Let G, = G\ {r < e}, r = dist(z,0) and T'; = dG,. Replacing x by x — x(O0), as in
the proof of Lemma 4.1 one obtains by partial integration that

Bi(u,w; G) = Eli_l)%Bl(u, w; Ge) = 31_1)1% ((X —x(0), V)T + (x — x(0), ")k + Xlﬁ).
Te

Recall that the integral of x1(O)L vanishes; see Remark 4.2. Using the asymptotics (4.4) of u and
w, one can pass to the limit in the last expression giving formula (4.11). |

Proof of Theorem 4.7: Lemma 4.8 applied to G = Q% and the transmission conditions for u
and w yield

Bi(u,w) = (Bl(u, w; Q) + By (u, w; Q_))

(6 = x(0),)7 + (x = x(0), T)K + xa£)

= x(O0) |5 (T~ 0ol )|
=— (o), T + (x(0),7)K)
- (= x(0)) | PPl = 2B

which proves (4.10) for T' = 9Q. On the other hand, if G; C Q is a simply connected domain such
that O ¢ G1, then Remark 4.2 implies

((x(0),1)7 + (x(0),7)K) =0,

=+
861
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where Gf = G1 N Q*. Hence, by the transmission conditions for u and w

((x(0).)7 + (x(0), 7)K)

(4.12) G )
=-— (x(0),v) [k—z(a,,au Oy,qW — Or,qU Or o)
GNA A
so that the right-hand side of (4.10) is in fact independent of the contour T'. |

Remark 4.9. Formula (4.10) easily extends to the case of finitely many corners Oy, ..., O, of the
interface A. Let I'; = 0G; be a simple piecewise smooth curve enclosing the corner point O; only.
Then the right—hand side of (4.10) has to be replaced by the sum

7 ( ((X(Oj)’V)JJr (X(Oj)aT)K)

ir,
1 I
w00 [ )] )
GjﬂA
1 I
+ (X7 V) |:k_2 (au,au 3u,aw - a‘l’,au 3T,aw):|
A\(UG5) *

Indeed, choosing cut-off functions £; near O; such that Zj &; = 1 in some neighbourhood of A,
one applies formula (4.10) with y replaced by &;x and summing over j then gives the result with
sufficiently small discs G; with centres O;. Again, by virtue of (4.12), the resulting expression
(4.13) is independent of the choice of the contours T';.

Remark 4.10. Repeating the arguments used in the proofs of Theorem 3.3 and Corollary 4.3 one
obtains the following formula for the derivative of the TE reflection and transmission coefficients
EZ with respect to the variations (3.2) of the interface A:

(4.14) DE;E x)= (v) [kzuE]A.

Here u is the solution of the direct TE problem (2.8), w solves the corresponding adjoint problem
and A may be an arbitrary Lipschitz curve. A special case of (4.14) was first proved in [4].

5. Applications to binary gratings

For simplicity we restrict to a binary grating with two transition points ¢1, {2 = 27 and the
helght t3. Let Ol = (tl, 0), 02 = (tl,tg), 03 = (27T,t3) and 21 = 0102, 22 = 0203.

L2
k. >2

Y1 f E V} t3

0 tl t2:2ﬂ' Z1

A

Figure 1: Cross section of a simple binary grating

We first compute the derivative Dy HF of the Rayleigh coefficients with respect to the variation
of t1. Then the mapping (3.2) takes the form

Pu(z) =z +hx(z), x(2)=(x(2),0),

13



where x1 = 1 in some neighbourhood of £; and x € C¢°(U) for a somewhat larger neighbourhood
U (not containing other corners of the profile curve A). Since

X—x(01)=x—x(02) =0 on X1, (x,v) =0 on A\ Xy,

from Remark 4.9 we easily obtain

Corollary 5.1. Let I' be an arbitrary simple closed piecewise smooth curve around X1, which does
not encircle corner points on A different from O1, Oy. Then

DlHi = (1/1( —uw+ —(32U 32@ — Bl,au 31’aw))
(5.1) r ,
+k—§(32“ 01,0w + 01,4u 32m))7

where u and w denote the solutions of the direct and adjoint diffraction problems (2.9), (3.10),
respectively.

To prove (5.1), one may choose, for example rectangles G; (j = 1, 2) around O; with a common
side such that T' = 8(G1 U G3) encloses the segment X;. Then formula (5.1) follows immediately
from Remark 4.9. Note that (4.13) reduces to

B (x0T + x(0:),1)K) = (mT — k)

j:l,zan T

with J, K defined in (4.1). The fact that the integral in (5.1) is path-independent is an easy
consequence of Remark 4.2.

Define O; 4. as in Sec. 3, and let X1 . = 01,03 .. Let further Ao be the root of equation
(4.3) with § = n/2, lying in the strip 0 < Re A < 1. Note that for all corner points of a binary
grating the same transcendental equation occurs. Since v = (1,0), 7= (0,1) on ¥; and (x,») =0
on A\ ¥;, Remark 4.6 implies immediately

1
Corollary 5.2. With G := [k—z(al,au O1,0w — dau Bzw) we have
A

3

:I:_ .
D.H, _Ehf%( 9t o1

Bi1,e

(6(01,) +6(0s,-2))) -

This result has been stated, without proof, in [5, Remark 4.3].

We now compute the derivative D HF with respect to the height of the binary grating. In this
case the mapping (3.2) is of the form
Dp(z) =2+ hx(z), x(z)=(0,x2(z)),

where x2 = 1 near X3 and x2 € C°(U) for a sufficiently small neighbourhood U of 3;. Note that
v=1(0,-1),7=1(1,0) on X3 and x — x(02) = x — x(O3) =0 on ¥z and (x,v) =0 on A\ Xz. As
above we then obtain

Corollary 5.3. Let I' be an arbitrary simple closed piecewise smooth curve enclosing o but no
other corner points of A. Then

DzH;lL: = (1/2( —uw+ %(al,au 31’aw — 32U32—IU))
r —Z—;(Bzu 317aw + Bl,au 32@))
. €
= 21_1)% ( g+ 2/\07_1(9(02,5) + g(Os,—s))) s

PIFRS

14



where Yp . = O3,.03,_. and G is defined as in Corollary 5.2.
Finally, we remark that for Re Ag > 1/2 we have

1
DZH;!: = F(Bl,au 317aw — 32U 32w)

?

A
2;

which gives

1 _
Dle’: = —5 (317au|}|{ 31’aw|X — 32U 32@)

+'21
1 T —
_k_z (3170‘“|A 31,aw|A - 3211, 32’(1))
— 5,
k2 — k2 L
= (I:—T)z (al,aUU; 31,aw|x + dau azm) ,
+ -

1 _
DHE = 7z (81,04 01,aw — d2u|} 020(])

+22
_k_2 (Bl,au 317aw — 32U|X 32E|X)
— s,
k2 — k2 -
= m (Bl,au 317aw —|— 32U|X 32E|X) .

2

These formulas have been proved in [5, Sec. 4.3] using another approach.
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