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Abstract: This paper provides the mathematical foundation of analytic formulae for derivatives of

TM re
ection and transmission coeÆcients of di�raction gratings with respect to geometric parameters

of non{smooth grating pro�les and interfaces. This problem arises in optimal design problems for those

optical devices studied in Part I. The derivatives can be expressed by contour integrals involving the direct

and adjoint solutions of TM di�raction problems.

1. Introduction

Di�ractive optics is a modern technology in which optical devices are micromachined with com-

plicated structural features on the order of the length of light waves. Exploiting di�raction e�ects,

those devices can perform functions unattainable with conventional optics. It is widely acknowl-

edged that geometrical optics approximations to the underlying electromagnetic �eld equations

are not accurate for these di�ractive elements, hence, their mathematical modelling has to rely

on Maxwell's equations or related partial di�erential equations. The simplest case, the scattering

of time{harmonic waves from in�nite periodic structures, is a classical problem, dating back to

Rayleigh and Bloch. It can be transformed to two quasiperiodic transmission problems for the

Helmholtz equation in the whole plane corresponding to the TE and TM polarisation of the in-

coming wave, respectively. Although various numerical methods have been developed to compute

the solution for a given periodic grating (among them a highly accurate integral equation code by

A. Pomp, J. Creutziger and B. Kleemann, realized during their work in the group of S. Pr�o�dorf

at the Karl{Weierstrass{Institute), rigorous results on the existence and uniqueness of solutions

have been obtained only during the last decade; see the references given in part I of this paper [5].

Based on a variational approach to this problem, which goes back to Bonnet-Bendhia & Starling

([1]) and Bao & Dobson (see [2]), it was also possible to develop gradient type optimizationmethods

for �nding the optimal design of di�ractive gratings with desired far{�eld patterns. In [5] we derived

analytic formulae for derivatives of certain cost functionals involving the re
ection and transmission

coeÆcients of so called binary gratings. Roughly speaking, the surface of a binary grating can be

given by a periodic step{function separating di�erent optical materials, and the derivatives have

to be taken with respect to the width or height of those steps. It turned out that these derivatives

can be expressed as one{dimensional integrals over the part of the surface to be varied. In the TE

case one has to integrate the product of the solutions of the direct and certain adjoint problem,

whereas in the TM case the integrand is the product of their gradients. Unfortunately, due to the

singularities of the solutions of TM problems near corners of the grating surface, the product of

gradients might be non{integrable. So the formula for the derivatives has to be modi�ed. In [5]

we have given, without proof, one of these modi�cations.

The topic of the present paper is to study in more detail the dependence of the solution of TM

di�raction problems with respect to variations of the (non{smooth) grating pro�le and interfaces

between di�erent optical materials. We prove the unique solvability of these problems for quite

general small variations of grating pro�les and interfaces and obtain di�erent analytic formulae

for the derivatives of the re
ection and transmission coeÆcients with respect to these variations,

which can be expressed as path{independent contour integrals.

The outline of the paper is as follows. In Section 2, we brie
y describe the TE and TM

di�raction problems and present their variational formulations and some basic results. In Section



3, we study the perturbation of TM problems arising after suÆciently smooth (piecewise C1)

variations of interfaces. We prove the unique solvability of these perturbed problems and show

that the derivative of di�raction coeÆcients can be expressed as a certain domain integral. This

formula is simpli�ed in Section 4 in di�erent ways to get contour integrals or, in the case of strong

singularities of solutions, contour integrals plus point functionals. In Section 5 we apply these

results to the special case of binary gratings, leading in particular to a simple proof of the above

mentioned modi�ed formula.

The authors are grateful to Prof. S. A. Nazarov for many fruitful discussions, especially con-

cerning the topics of Section 3.

2. Variational formulation of TE and TM problems

Consider a di�ractive grating with period d consisting of nonmagnetic materials (of permeability

�0) with di�erent dielectric constants �. The coordinate system is chosen such that the grating

is invariant in the x3{direction and periodic in the x1{direction. Thus the di�raction problem is

determined by the function �(x1; x2) which is d{periodic in x1. This function is assumed to be

piecewise constant and complex valued with 0 � arg � < �. We assume that the material above

and below the grating is homogeneous with � = �+ > 0 and �� respectively.

Assume that an incoming plane wave with time dependence exp(�i!t) is incident in the (x1; x2){

plane upon the grating from the top with the angle of incidence � 2 (��=2; �=2). Then the

electromagnetic �eld does not depend on x3. In either case of polarization, one of the �elds E orH

remains parallel to the x3{axis and is therefore determined by a single scalar quantity v = v(x1; x2)

(equal to the transverse component of E in the TE case and to the transverse component of H

in the TM case). The function v satis�es two{dimensional Helmholtz equations in the regions

with constant permittivity, together with some radiation condition at in�nity. At the material

interfaces the solutions are subjected to well known transmission conditions. For TE polarisation

the solution and its normal derivative @nv have to cross the set of interfaces � between di�erent

materials continuously, whereas in TM polarisation the product ��1@nv has to be continuous (for

more details cf. the classical monograph [7]) .

For notational convenience we will change the length scale by a factor of 2�=d, such that the

grating becomes 2�{periodic, �(x1 + 2�; x2) = �(x1; x2). Let us introduce the piecewise constant

function

k =
!d

2�
(�0�)

1=2 =
d

�
� ;

where � is the length of the incoming plane wave and � is the optical index of the corresponding

material. The constant values of k above and below the grating are denoted by k+ and k�,

respectively.

Then the incoming plane wave is of the form (Ei;Hi) = (p;q) e�i!t ei(�x1��x2), where � =

k+ sin �, � = k+ cos �, and the total di�racted �eld can be obtained as superposition of solutions

of the TE and TM polarisation cases.

In TE polarization only the x3{component E3 of the electric �eld is di�erent from zero. It is

�{quasiperiodic, E3(x1 + 2�; x2) = e2�i�E3(x1; x2), and satis�es in view of the Maxwell equation

the Helmholtz equation

�E3 + k2E3 = 0 in R2 :(2.1)

The radiation condition, that must be imposed for jx2j ! 1, states that E3 remains bounded

and that it should be representable as superposition of outgoing waves, i.e.

E3 = p3e
�i�x2 +

X
n2Z

E+
n e

i(n+�)x1+i�
+
n
x2 for x2 !1 ;

E3 =
X
n2Z

E�
n
ei(n+�)x1�i�

�

n
x2 for x2 !�1 :

(2.2)
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where E�
n
are complex numbers and

��n = ��n (�) := j(k�)2 � (n+ �)2j1=2 ei

�

n
=2 ; n 2 Z ;(2.3)

with


�
n
= arg((k�)2 � (n + �)2) ; 0 � 
�

n
< 2� :

Note that �+0 = � and that, for real k�,

��
n
=

�
((k�)2 � (n+ �)2)1=2 ; k� > jn+ �j ;

i((n + �)2 � (k�)2)1=2 ; k� < jn+ �j :

In TM polarization only the x3{component H3 of the electric �eld is di�erent from zero. This

�{quasiperiodic function satis�es the Helmholtz equation

r �
� 1
k2
rH3

�
+ k2H3 = 0 in R2 :(2.4)

together with the radiation condition

H3 = q3e
�i�x2 +

X
n2Z

H+
n
ei(n+�)x1+i�

+
n
x2 for x2 !1 ;

H3 =
X
n2Z

H�

n
ei(n+�)x1�i�

�

n
x2 for x2 !�1 :

(2.5)

The di�raction problems admit variational formulations in a bounded periodic cell which were

introduced in [1], [2]. De�ne for example the 2�{periodic function u = e�i�x1 E3. It satis�es the

partial di�erential equation

��u+ k2u = 0

where we use the notation

r� = r+ i(�; 0) ; �� = r� � r� = �+ 2i�@x1 � �2

The outgoing wave conditions are equivalent to nonlocal boundary conditions on some arti�cial

boundaries �� := fx2 = �bg above and below the grating, respectively, of the form

@nuj�+ = �T+� u� 2p3i�e
�i�b ; @nuj�� = �T�� u ;(2.6)

where T�
�
u is the periodic pseudodi�erential operators of order 1

(T�
�
v)(x) := �

X
n2Z

i��
n
v̂ne

inx ; v̂n = (2�)�1
2�Z
0

v(x)e�inx dx ;(2.7)

acting on boundary values uj�� 2 H
s�1=2
p (��) of functions u 2 Hs

p(
), s � 0. Here Hs
p(
) denotes

restriction to the rectangular domain 
 = [0; 2�] � [�b; b] of all functions in the Sobolev space

Hs

loc
(R2) which are 2�{periodic in x1. Integration by parts leads to the variational formulation

for the TE di�raction problem

BTE(u; ') =

Z



r�u � r�' �

Z



k2 u �'+

Z
�+

(T+
�
u) �'+

Z
��

(T�
�
u) �'

= �2ip3�e
�i�b

Z
�+

�' ; 8' 2 H1
p (
) :

(2.8)

Analogously, the TM di�raction problem admits the variational formulation for the function

u = e�i�x1 H3:

BTM (u; ') =

Z



1

k2
r�u � r�'�

Z



u �'+
1

(k+)2

Z
�+

(T+� u) �'+
1

(k�)2

Z
��

(T�� u) �'

= �
2iq3� e

�i�b

(k+)2

Z
�+

�' ; 8' 2 H1
p(
) :

(2.9)
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In [5], the following properties have been proved under the assumption on the optical indices

of the materials, that

Re k(x1; x2) > 0 ; Im k(x1; x2) � 0 ; k+ > 0(2.10)

which is satis�ed for all practical relevant materials.

1. If Im k > 0 in some subdomain 
1 � 
 then for any ! > 0 there exists at most one solution

u 2 H1
p
(
).

2. For any �0 2 (0; �=2) there exists a frequency !0 > 0 such that the variational problem (2:8)

resp. (2:9) admits a unique solution u 2 H1
p
(
) for all incidence angles � with j�j � �0 and

all frequencies ! with 0 < ! � !0.

3. The sesquilinear forms BTE and BTM are strongly elliptic over H1
p
(
), i.e., after multiplica-

tion by some complex number they satisfy a G�arding inequality.

4. (i) The di�raction problems (2:8) and (2:9) are always solvable in H1
p
(
). For all but a

countable set of frequencies !j , !j !1, these solutions are unique.

(ii) Introduce the set of Rayleigh frequencies

R =
n
(!; �) : 9n 2 Z s. th. (k�)2 = (n+ �)2

o
:

If for (!0; �0) =2 R the TE or TM di�raction problem is uniquely solvable, then the solution

depends analytically on ! and � in a neighbourhood of this point.

3. Variation of interfaces

De�ne the �nite sets of indices P� = fn 2 Z : ��n > 0g, where ��n is given by (2.3). Then

the Rayleigh amplitudes E�n and H�

n , (n 2 P�), which are called the re
ection resp. transmission

coeÆcients for TE and TM polarization, correspond to the propagating modes in (2.2), (2.5) and

are used to compute the so called eÆciencies of the di�ractive grating. Note that P� = ; if

Im k� 6= 0.

We are interested in the solvability of the problems and the dependence of Rayleigh coeÆcients

if parts of the interfaces � between di�erent materials are varied. The variation of interfaces

leads to a new piecewise constant function kh, where we assume that meas 
h = O(h) with


h = fx 2 
 : k(x) 6= kh(x)g. Let Bh

TE
denote the variational form of the TE problem for the

perturbed geometry, then

��Bh

TE(u; ')� BTE(u; ')
�� =

����
Z

h

(k2 � k2h)u �'

����
� kk2 � k2hkLp(
h)kukLq(
h)k'kLr(
h)

for p�1 + q�1 + r�1 = 1. Hence, the variation of interfaces represents a compact and small

perturbation of the form BTE ensuring the unique solvability of Bh

TE
for all suÆciently small h.

In the TM case the situation is more involved. The relation

��Bh

TM (u; ')�BTM (u; ')
�� = ����

Z

h

� 1

k2
�

1

k2
h

�
r�ur�'

����
shows that the variation of interfaces is a strong perturbation of the TM di�raction problem.

Therefore we consider a more regularly perturbed di�raction problem

Bh

TM (u; ') = �
2iq3� e

�i�b

(k+)2

Z
�+

�' ; 8' 2 H1
p (
) ;(3.1)
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assuming that, for suÆciently small jhj, the perturbed interface �h is given by

�h = �h(�) ; �h(x) = x+ h�(x) :(3.2)

Here �h is a C1 di�eomorphism of 
 onto itself, and � = (�1; �2) is 2�{periodic in x1 and has

compact support in [0; 2�]� (�b; b).

Then we can de�ne the isomorphism 	h : H
1
p
(
)! H1

p
(
) which maps u to uÆ��1

h
. Moreover,

kh = 	hk and the change of variables y = �h(x) provides

dy = jJ(x)jdx

with

J(x) = 1 + h
�@�1
@x1

+
@�2

@x2

�
+ h2

�@�1
@x1

@�2

@x2
�

@�1

@x2

@�2

@x1

�
and

@

@y1
=

1 + h @�2=@x2

J(x)

@

@x1
�
h @�2=@x1

J(x)

@

@x2

@

@y2
= �

h @�1=@x2

J(x)

@

@x1
+

1 + h @�1=@x1

J(x)

@

@x2

Hence we obtainZ



�
�	hu	h'+

1

k2
h
(y)

r�	hu � r�	h'
�
dy = �

Z



u'J(x) dx

+

Z



�
(1 + h@2�2)@1 + i�J(x)� h@1�2@2

�
u
�
(1 + h@2�2)@1 � i�J(x) � h@1�2@2

�
'

J(x)k2(x)

+

Z



�
� h@2�1@1 + (1 + h@1�1)@2

�
u
�
� h@2�1@1 + (1 + h@1�1)@2

�
'

J(x)k2(x)

=

Z



�
� u'+

1

k2
r�ur�'

�
dx+ hB1(u; ') + h2B2;h(u; ') ;

where

B1(u; ') = �

Z



(@1�1 + @2�2)u'+

Z



@1�1

k2

�
@2u @2' � @1u @1'+ �2u'

�

+

Z



@2�2

k2

�
@1;�u @1;�'� @2u @2'

�

�

Z



�@1�2
k2

�
@1;�u @2' + @2u @1;�'

�
+

@2�1

k2

�
@1u @2'+ @2u @1'

��
(3.3)

and the remainder term satis�es

jB2;h(u; ')j � ckuk1k'k1 ; u; ' 2 H1
p (
 ; jhj � h0 :

Here we have used the notations @j = @=@xj , @1;� = @1 + i� and the relation

J(x)�1 = 1� h(@1�1 + @2�2) + O(h2) ; jhj � h0 ;

which holds uniformly in x 2 
. Since the boundary terms in the TM sesquilinear form remain

unchanged, we have for jhj � h0

Bh

TM
(	hu;	h') = BTM (u; ') + hB1(u; ') + h2B2;h(u; ') :(3.4)

Theorem 3.1. If the TM di�raction problem (2.9) has a unique solution and the perturbation

of the grating geometry is given by the regular mapping (3.2), then for all suÆciently small h the
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perturbed problem (3.1) is also uniquely solvable. Moreover, the solution of this problem takes the

form

	�1
h
uh = u0 + hu1 + h2u2;h ;(3.5)

where u0 is the solution of the original problem (2.9), u1 2 H1
p
(
) solves the equation

BTM (u1; ') = �B1(u; ') ; 8' 2 H1
p
(
) ;(3.6)

and the remainder satis�es ku2;hk1 � c for jhj � h0.

P r o o f : Replacing u; ' with 	�1
h
u;	�1

h
' in (3.4) and using the equivalence of norms kuk1 �

k	huk1 (uniformly in h), we obtain

Bh

TM
(u; ') = BTM (	�1

h
u;	�1

h
') + O(h)k	�1

h
uk1k	

�1
h
'k1

= BTM (u; ') +O(h)kuk1k'k1 :

Hence Bh

TM
is a small perturbation of BTM , which proves the unique solvability of (3.1).

Inserting the ansatz (3.5) for the solution uh of (3.1) into (3.4) yields the following equation for

u2;h:

BTM (u2;h; ') + hB1(u2;h; ') + h2B2;h(u2;h; ')

= �B1(u1; ')�B2;h(u0; ')� hB2;h(u1; ') ; 8' 2 H1
p
(
) :

(3.7)

Recall that Z
�+

	h' =

Z
�+

' ;

which implies Bh

TM
(uh;	h') = BTM (u0; '). Since the left{hand side of (3.7) takes the form

BTM (u2;h; ') + O(h)ku2;hk1k'k1 and the right{hand side de�nes a (uniformly) bounded linear

functional on H1
p (
), we obtain a uniformly bounded solution u2;h.

Remark 3.2. Assume that �h is a C1 isomorphism. Then it is not diÆcult to prove recursively

that for any N � 2 the solution of (3.1) admits the expansion

	�1
h
uh =

NX
j=0

hjuj + hN+1uN+1;h ; kuN+1;hk1 � cN ;

with u0; u1 as above and certain functions uj 2 H1
p
(
), j � 2.

Now we are in the position to obtain a formula for the derivative of the Rayleigh coeÆcients H�

n

with respect to the regular variations (3.2) of the interfaces �. These re
ection and transmission

coeÆcients are determined by the traces of the solution u of the problem (2.9) on the arti�cial

boundaries ��,

H+
n = �q3 Æ0ne

�2i�b +
e�i�

+
n
b

2�

Z
�+

u e�inx1 dx1 ; n 2 P+ ;

H�

n
=

e�i�
�

n
b

2�

Z
��

u e�inx1 dx1 ; n 2 P� :

(3.8)

Thus the derivative of H�

n is given by

DH�

n (�) = lim
h!0

e�i�
�

n
b

2�h

Z
��

(uh � u) e�inx1 dx1 ;(3.9)

where uh is the solution of the perturbed problem (3.1), (3.2). Let w denote the solution of the

adjoint problem

BTM (';w) =
e�i�

�

n
b

2�

Z
��

' e�inx1 dx1 ; 8' 2 H1
p (
) :(3.10)
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Then

e�i�
�

n
b

2�h

Z
��

(uh � u) e�inx1 dx1 =
1

h
BTM (uh � u;w) :

Since the right{hand side of equation (3.10) is a functional supported at the arti�cial boundary

�� one has BTM (uh; w) = BTM (	�1
h
uh; w), and (3.5) then gives

h�1BTM (uh � u;w) = h�1BTM (	�1
h
uh � u;w) = BTM (u1; w) + hBTM (u2;h; w)

= �B1(u;w) + hBTM (u2;h; w)

Thus we have proved the following

Theorem 3.3. The derivative of the re
ection and transmission coeÆcients H�

n
with respect to

the variations (3.2) of the interface � is given by the formula

DH�

n
(�) = �B1(u;w)(3.11)

where the sesquilinear form B1 is de�ned by (3.3), and u and w denote the solution of the direct

and adjoint di�raction problems (2.9), (3.10), respectively.

4. Derivative of di�raction coeÆcients as contour integral

Theorem 3.3 states that the derivative of the di�raction coeÆcients can be obtained from certain

integrals with suppr� as domain of integration. In the following formula (3.11) will be simpli�ed

by transforming these domain integrals to certain contour integrals. For the sake of simplicity

we will consider in the following only the variation of interfaces between two di�erent materials.

This means the support of the function � is divided by a certain part of the interface � into

two subdomains, which will be denoted by 
+ and 
�. In each subdomain the function k takes

constant values, denoted by k+ and k�, respectively.

Let � � 
 be a simple closed piecewise smooth curve enclosing the domain G such that

k = const in G. Let � = (�1; �2) be the exterior normal to �, � = (��2; �1) the tangential vector,

and introduce the weighted normal and tangential derivatives

@�;� = �1@1;� + �2@2 ; @�;� = ��2@1;� + �1@2 :

We denote by B1(u;w;G) the right{hand side of (3.3) where the integrals are taken over G instead

of 
.

Lemma 4.1. If supp� \ � does not contain a corner point of �, then

B1(u;w;G) =

Z
�

�
(�; �)J + (�; � )K+ �1L

�
;(4.1)

where

J = �uw +
1

k2
(@�;�u @�;�w � @�;�u @�;�w)

K = �
1

k2
(@�;�u @�;�w + @�;�u @�;�w)

L =
i�

k2
(u @�;�w � @�;�uw) :
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P r o o f : We have

B1(u;w;G)

=

Z
G

1

k2

�
@1�1

�
(�2 � k2)uw + @2u @2w � @1u @1w

�
� @2�1

�
@1u @2w + @2u @1w

��

+

Z
G

1

k2

�
@2�2(�k

2 uw + @1;�u @1;�w � @2u @2w) � @1�2
�
@1;�u @2w + @2u @1;�w

��
=: I1 + I2 :

Let us start with the integral I1. Green's formula yieldsZ
G

@2�1
�
@1u @2w + @2u @1w

�
= �

Z
G

�1

�
@1u @

2
2w + @22u @1w + @1(@2u @2w)

�

+

Z
�

�1
�
@1u @2w + @2u @1w

�
�2 = �

Z
G

�1
�
@1u @

2
2w + @22u @1w

�

+

Z
G

@1�1@2u @2w +

Z
�

�1

��
@1u @2w + @2u @1w

�
�2 � @2u @2w �1

�
;

Z
G

@1�1 @1u @1w = �

Z
G

�1
�
@21u @1w + @1u @

2
1w
�
+

Z
�

�1@1u @1w �1

�

Z
G

�1
�
(@21u+ 2i�@1u)@1w + @1u(@

2
1w + 2i�@1w)

�
+

Z
�

�1@1u @1w �1 ;

Z
G

@1�1 uw = �

Z
G

�1
�
@1uw+ u @1w

�
+

Z
�

�1 uw�1 ;

which implies

I1 =
1

k2

Z
G

�1@1u (@
2
1w + @22w � 2i�@1w + (k2 � �2)w)

+
1

k2

Z
G

�1(@
2
1u+ @22u+ 2i�@1u+ (k2 � �2)u) @1w

�
1

k2

Z
�

�1

��
@1u @2w + @2u @1w

�
�2 +

�
@1u @1w � @2u @2w

�
�1

�

�
k2 � �2

k2

Z
�

�1 uw �1 :

Note that u;w 2 H2(G \ supp�), and since

��u+ k2u = ��w + k
2
w = 0 in G ;

we obtain

I1 = �
1

k2

Z
�

�1

��
@1u @2w + @2u @1w

�
�2 +

�
@1u @1w � @2u @2w

�
�1

�

�
k2 � �2

k2

Z
�

�1 uw �1 :

Simple calculations show that�
@1u @2w + @2u @1w

�
�2 +

�
@1u @1w � @2u @2w

�
�1 � �2 uw �1

=
�
@�;�u @�;�w � @�;�u @�;�w

�
�1 �

�
@�;�u @�;�w + @�;�u @�;�w

�
�2

+ i �
�
@�;�uw � u @�;�w

�
:

8



Therefore we have

I1 = I1(�1) =

Z
�

�
�1�1J � �1�2K + �1L

�
:

Similarly one veri�es that

I2 = I2(�2) =

Z
�

�
�2�2J + �2�1K

�
;

which �nishes the proof of (4.1).

Remark 4.2. An inspection of the above proof shows that I1 = I1(�1) = 0 if �1 � 1 in G.

Moreover, since Z
�

(u @�;�w � @�;�uw) = 0

by the second Green formula, the third integral in (4.1) vanishes if �1 is constant. Thus, for �1 � 1

the integral I1(�1) takes the form Z
�

�
�1J � �2K

�

and is zero as long as � � 
+ (or � � 
� ) does not contain a corner of the interface �.

Analogously, I2 = I2(�2) with �2 � 1 always vanishes in that case.

Corollary 4.3. If � has no corner points, then

DH�

n
(�) = �B1(u;w) =

Z
�

(�; �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

:(4.2)

Here � denotes the normal to � pointing from 
+ into 
� and [v]� stands for the jump vj+� � vj��
across �, where vj�� represents the limit as the interface is approached from the region 
�.

P r o o f : Applying Lemma 4.1 with G = 
�, we obtain

B1(u;w) = B1(u;w; 

+) + B1(u;w; 


�)

=

Z
�

�
(�; �)Jj+� + (�; � )Kj+� + �1Lj

+
�

�
�

Z
�

�
(�; �)J j�� + (�; � )Kj�� + �1Lj

�

�

�
:

Recall that supp� \ � = ; and the integrands are 2�{periodic in x1. Using the transmission

conditions for u and w then gives

[uw]� = [K]� = [L]� = 0 ;

hence

B1(u;w) =

Z
�

(�; �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

:

We now extend formula (4.2) to the case of corner points. Assume �rst that � has exactly one

corner point at O, and denote by Æ the angle at O seen from 
+. Without loss of generality we

may assume that 
+ locally coincides with the sector f(r; ') : 0 < r <1; j'j< Æ=2g, where (r; ')

denote polar coordinates centered at O.

9



To describe the singularities of solutions to problem (2.9) near O, consider the transcendental

equation

sin (� � Æ)�

sin��
= �

k2
�
+ k2+

k2
�
� k2+

; � = �1 :(4.3)

Denote by �0 the unique zero of (4.3) in the strip 0 < Re � < 1 if it exists. It was proved in [6,

Lemma 4.2] that (4.3) has exactly one simple root in that strip if jk�j 6= k+ and no root there if

jk�j = k+. Moreover (see [6, Thm. 4.1]), the solution u 2 H1
p
(
) of the TM di�raction problem

(2.9) satis�es

�uj
� = C + C�r�0u�0 + u�1 ;(4.4)

where � is a smooth cut{o� function near O, C and C� are certain complex constants, the remain-

der terms u�1 satisfy

u�1 2 H2��(
�) for all � > 0 ;

and the functions u�0 take the form

u+0 (') = cos�0' ; u�0 (') = cos �0('� �)(4.5)

or

u+0 (') = sin�0' ; u�0 (') = sin�0(' � �)(4.6)

corresponding to the case � = +1 or � = �1 in (4.3). For �xed " > 0, let O�" be the two points

on � satisfying dist(O;O�") = " and set �" = � n (OO�" [OO").

Theorem 4.4. With G := (�; �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

we have

DH�

n (�) = lim
"!0

�Z
�"

G +
"

2�0 � 1

�
G(O�") + G(O")

��
:(4.7)

Remark 4.5. Since the function w also admits the representation (4.4){(4.6) (with other constants

C, C� and remainder terms), one obtains that G(x) = O(r2�0�2) as r ! 0. Thus (4.7) coincides

with formula (4.2) if Re �0 > 1=2. This is always true if k� is real; cf. [3]. Note that the case

�0 = 1=2 is excluded by our assumptions (2.10) if k� is complex.

P r o o f of Theorem 4.4: Let 
�" = 
� n fr � "g and denote by S�" the (clockwise oriented)

circular arcs 
�" \ fr = "g with endpoints O�", O". Applying Lemma 4.1 with G = 
�" gives

B1(u;w) = lim
"!0

�
B1(u;w; 


+
" ) +B1(u;w; 


�

" )
�
= lim

"!0

�
�

Z
�"

G +

Z
S
+
"

H +

Z
S
�

"

H
�
;

where H := (�; �)J + (�; � )K + �1L; cp. (4.1). It remains to show that, for Re �0 � 1=2 and

�0 6= 1=2 Z
S
�

"

H = �
"

2�0 � 1

�
(Hj�� )(O") + (Hj�� )(O�")

�
+ o(")(4.8)

as "! 0. To prove this, it is enough to replace H by

(�(O); �)

k2

�
@�u @�w � @�u @�w

�
�
(�(O); � )

k2

�
@�u @�w + @�u @�w

�
and to insert the principal asymptotic term

u0(r; ') =

(
r�0u+0 (') ; ' 2 (�Æ=2; Æ=2);

r�0u�0 (') ; ' 2 (Æ=2; 2� � Æ=2);
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for u and w, with u�0 de�ned in (4.5) or (4.6).

Thus (4.8) is proved provided we have shown thatZ
S
�

"

H0 = �
"

2�0 � 1

�
(H0j

�

� )(O") + (H0j
�

� )(O�")
�
;(4.9)

where

H0 = (�(O); �)
�
(@�u

0)2 � (@�u
0)2
�
� 2(�(O); � )@�u

0 @�u
0 :

Consider, for example, (4.9) with the plus sign and u+0 = cos�0'. Since � = �(cos'; sin'),

� = (sin';� cos'), @� = �@r, @� = r�1@' on S+
"
, we then haveZ

S
+
"

H0 =

Z
S
+
"

�20r
2�0�2

�
�1(O) cos'+ �2(O) sin'

��
cos2 �0' � sin2 �0'

�

+

Z
S
+
"

2�20r
2�0�2

�
�1(O) sin' � �2(O) cos'

�
sin�0' cos �0'

= �20 "
2�0�1

�
�1(O)

Æ=2Z
�Æ=2

(cos' cos 2�0' + sin' sin 2�0') d'

��2(O)

Æ=2Z
�Æ=2

(cos' sin 2�0'� sin' cos 2�0') d'
�

= �20 "
2�0�1

�
�1(O)

Æ=2Z
�Æ=2

cos(2�0 � 1)'d'� �2(O)

Æ=2Z
�Æ=2

sin(2�0 � 1)'d'
�

=
2�1(O)�

2
0 "

2�0�1

2�0 � 1
sin(2�0 � 1)Æ=2 :

On the other hand, since � = (sin Æ=2; cos Æ=2), � = (cos Æ=2;� sin Æ=2), @� = r�1@', @� = @r on

f' = �Æ=2g and � = (sin Æ=2;� cos Æ=2), � = (� cos Æ=2;� sin Æ=2), @� = �r�1@', @� = �@r on

f' = Æ=2g, we obtain

(H0j
+
�)(O") =

�
�1(O) sin Æ=2 + �2(O) cos Æ=2

�
�20 "

2�0�2 cos �0Æ

�
�
�1(O) cos Æ=2� �2(O) sin Æ=2

�
�20 "

2�0�2 sin�0Æ ;

(H0j
+
�)(O�") =

�
�1(O) sin Æ=2� �2(O) cos Æ=2

�
�20 "

2�0�2 cos �0Æ

�
�
�1(O) cos Æ=2 + �2(O) sin Æ=2

�
�20 "

2�0�2 sin�0Æ ;

which implies

"

2�0 � 1

�
(H0j

+
�)(O") + (H0j

+
�)(O�")

�
= �2�1(O)

�20 "
2�0�1

2�0 � 1
(cos Æ=2 sin�0Æ � sin Æ=2 cos�0Æ)

= �
2�1(O)�

2
0 "

2�0�1

2�0 � 1
sin(2�0 � 1)Æ=2 ;

hence (4.9) for the plus sign. In the other cases the proof of (4.9) is analogous.

Remark 4.6. The extension of (4.7) to the case of �nitely many corners O1; : : : ; Or of � with

angles Æ1; : : : ; Ær is straightforward. Let Oj;�" 2 � be the points with dist(Oj; Oj;�") = ". Then

formula (4.7) holds with �" = � n

r[
j=1

(OjOj;�" [OjOj;") and the correction terms replaced by the

11



sum
rX

j=1

"

2�j � 1

�
G(Oj;�") + G(Oj;")

��
;

where �j denotes the root of equation (4.3) (with Æ = Æj) in the strip 0 < Re � < 1.

Note that formula (4.7) requires the knowledge of the zero �0 of the transcendental equation

(4.3). An alternative expression for DH�

n (�) can be given by a path{independent contour integral.

Theorem 4.7. Assume that � has only one corner point at O, and let � = @G � 
 be an arbitrary

simple closed piecewise smooth curve around O. Then

DH�

n
(�) =

Z
�

�
(�(O); �)J + (�(O); � )K

�

+

Z
G\�

(�� �(O); �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

+

Z
�nG

(�; �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

(4.10)

To prove (4.10), we �rst extend Lemma 4.1 to the case where supp�\� contains a corner point

of the interface �.

Lemma 4.8. Let � = @G be a simple closed piecewise smooth curve such that k = const in G and

that supp� \ � contains exactly one corner point O of �. Then

B1(u;w;G) =

Z
�

�
(�� �(O); �)J + (�� �(O); � )K+ �1L

�
:(4.11)

P r o o f : Let G" = G n fr � "g, r = dist(x;O) and �" = @G". Replacing � by �� �(O), as in

the proof of Lemma 4.1 one obtains by partial integration that

B1(u;w;G) = lim
"!0

B1(u;w;G") = lim
"!0

Z
�"

�
(� � �(O); �)J + (�� �(O); � )K+ �1L

�
:

Recall that the integral of �1(O)L vanishes; see Remark 4.2. Using the asymptotics (4.4) of u and

w, one can pass to the limit in the last expression giving formula (4.11).

P r o o f of Theorem 4.7: Lemma 4.8 applied to G = 
� and the transmission conditions for u

and w yield

B1(u;w) =
�
B1(u;w; 


+) + B1(u;w; 

�)
�

=

Z
@


�
(�� �(O); �)J + (�� �(O); � )K+ �1L

�

�

Z
�

(�� �(O); �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

= �

Z
@


�
(�(O); �)J + (�(O); � )K

�

�

Z
�

(�� �(O); �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

;

which proves (4.10) for � = @
. On the other hand, if G1 � 
 is a simply connected domain such

that O =2 G1, then Remark 4.2 impliesZ
@G

�

1

�
(�(O); �)J + (�(O); � )K

�
= 0 ;
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where G�1 = G1 \
�. Hence, by the transmission conditions for u and wZ
@G1

�
(�(O); �)J + (�(O); � )K

�

= �

Z
G\�

(�(O); �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

(4.12)

so that the right{hand side of (4.10) is in fact independent of the contour �.

Remark 4.9. Formula (4.10) easily extends to the case of �nitely many corners O1; : : : ; Or of the

interface �. Let �j = @Gj be a simple piecewise smooth curve enclosing the corner point Oj only.

Then the right{hand side of (4.10) has to be replaced by the sum

X
j

�Z
�j

�
(�(Oj); �)J + (�(Oj); � )K

�

+

Z
Gj\�

(�� �(Oj); �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

�

+

Z
�n([Gj )

(�; �)

�
1

k2

�
@�;�u @�;�w � @�;�u @�;�w

��
�

:

(4.13)

Indeed, choosing cut{o� functions �j near Oj such that
P

j
�j � 1 in some neighbourhood of �,

one applies formula (4.10) with � replaced by �j� and summing over j then gives the result with

suÆciently small discs Gj with centres Oj . Again, by virtue of (4.12), the resulting expression

(4.13) is independent of the choice of the contours �j.

Remark 4.10. Repeating the arguments used in the proofs of Theorem 3.3 and Corollary 4.3 one

obtains the following formula for the derivative of the TE re
ection and transmission coeÆcients

E�n with respect to the variations (3.2) of the interface �:

DE�n (�) =

Z
�

(�; �)
�
k2uw

�
�
:(4.14)

Here u is the solution of the direct TE problem (2.8), w solves the corresponding adjoint problem

and � may be an arbitrary Lipschitz curve. A special case of (4.14) was �rst proved in [4].

5. Applications to binary gratings

For simplicity we restrict to a binary grating with two transition points t1, t2 = 2� and the

height t3. Let O1 = (t1; 0), O2 = (t1; t3), O3 = (2�; t3) and �1 = O1O2, �2 = O2O3.

6x2

-
x1

-

-

6 ?�1

�2 )
t3

0 t1 t2=2�

k+

k�

Figure 1: Cross section of a simple binary grating

We �rst compute the derivative D1H
�

n of the Rayleigh coeÆcients with respect to the variation

of t1. Then the mapping (3.2) takes the form

�h(x) = x+ h�(x) ; �(x) = (�1(x); 0) ;

13



where �1 � 1 in some neighbourhood of �1 and � 2 C1
o
(U ) for a somewhat larger neighbourhood

U (not containing other corners of the pro�le curve �). Since

�� �(O1) = �� �(O2) = 0 on �1 ; (�; �) = 0 on � n�1 ;

from Remark 4.9 we easily obtain

Corollary 5.1. Let � be an arbitrary simple closed piecewise smooth curve around �1, which does

not encircle corner points on � di�erent from O1, O2. Then

D1H
�

n =

Z
�

�
�1
�
� uw +

1

k2
(@2u @2w � @1;�u @1;�w)

�
+
�2

k2
(@2u @1;�w + @1;�u @2w)

�
;

(5.1)

where u and w denote the solutions of the direct and adjoint di�raction problems (2.9), (3.10),

respectively.

To prove (5.1), one may choose, for example rectangles Gj (j = 1; 2) around Oj with a common

side such that � = @(G1 [G2) encloses the segment �1. Then formula (5.1) follows immediately

from Remark 4.9. Note that (4.13) reduces to

X
j=1;2

Z
@Gj

�
(�(Oj); �)J + (�(Oj); � )K

�
=

Z
�

�
�1J � �2K

�

with J , K de�ned in (4.1). The fact that the integral in (5.1) is path{independent is an easy

consequence of Remark 4.2.

De�ne Oj;�" as in Sec. 3, and let �1;" = O1;"O2;�". Let further �0 be the root of equation

(4.3) with Æ = �=2, lying in the strip 0 < Re � < 1. Note that for all corner points of a binary

grating the same transcendental equation occurs. Since � = (1; 0); � = (0; 1) on �1 and (�; �) = 0

on � n�1, Remark 4.6 implies immediately

Corollary 5.2. With G :=

�
1

k2

�
@1;�u @1;�w � @2u @2w

��
�

we have

D1H
�

n = lim
"!0

� Z
�1;"

G +
"

2�0 � 1

�
G(O1;") + G(O2;�")

��
:

This result has been stated, without proof, in [5, Remark 4.3].

We now compute the derivative D1H
�

n with respect to the height of the binary grating. In this

case the mapping (3.2) is of the form

�h(x) = x+ h�(x) ; �(x) = (0; �2(x)) ;

where �2 � 1 near �2 and �2 2 C1o (U ) for a suÆciently small neighbourhood U of �2. Note that

� = (0;�1); � = (1; 0) on �2 and �� �(O2) = � � �(O3) = 0 on �2 and (�; �) = 0 on � n�2. As

above we then obtain

Corollary 5.3. Let � be an arbitrary simple closed piecewise smooth curve enclosing �2 but no

other corner points of �. Then

D2H
�

n =

Z
�

�
�2
�
� uw+

1

k2
(@1;�u @1;�w � @2u @2w)

�
�
�1

k2
(@2u @1;�w + @1;�u @2w)

�

= lim
"!0

� Z
�2;"

G +
"

2�0 � 1

�
G(O2;") + G(O3;�")

��
;
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where �2;" = O2;"O3;�" and G is de�ned as in Corollary 5.2.

Finally, we remark that for Re �0 > 1=2 we have

DiH
�

n
=

Z
�i

�
1

k2

�
@1;�u @1;�w � @2u @2w

��
�

;

which gives

D1H
�

n
=

1

k2+

Z
�1

�
@1;�uj

+
� @1;�wj

+
� � @2u @2w

�

�
1

k2
�

Z
�1

�
@1;�uj

�

� @1;�wj
�

� � @2u @2w
�

=
k2+ � k2

�

(k+k�)2

Z
�1

�
@1;�uj

+
� @1;�wj

�

� + @2u @2w
�
;

D2H
�

n
=

1

k2+

Z
�2

�
@1;�u @1;�w � @2uj

+
� @2wj

+
�

�

�
1

k2
�

Z
�2

�
@1;�u @1;�w � @2uj

�

� @2wj
�

�

�

=
k2
�
� k2+

(k+k�)2

Z
�2

�
@1;�u @1;�w + @2uj

+
� @2wj

�

�

�
:

These formulas have been proved in [5, Sec. 4.3] using another approach.
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