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Abstract. We explain a simple inductive method for the analysis of the conver-

gence of cluster expansions (Taylor expansions, Mayer expansions) for the partition

functions of \polymer models". We give a very simple proof of the \Dobrushin{

Koteck�y{Preiss criterion" and formulate its generalization usable for situations where

a successive expansion of the partition function has to be used.

In this short note we explain a new and simple inductive method for the analysis

of the convergence of cluster expansions of so called polymer models. The notion of a

polymer model goes back to [GK] (see also [BCF,Br,M,S] and it was Dobrushin [D1]

who �rst fully exploited the fact (already pointed out by Gruber and Kunz) that

cluster expansions of these models are actually Taylor expansions of the logarithm

of the partition function, taken w.r. to the fugacities of the considered polymers.

Our new approach was already used in a recent paper [NOZ] but here we further

simplify the argument and extend it in order to be applicable also to partially

expanded polymer models and thus multi-scale expansions. This is important e.g.

in the study of models with random impurities (see e.g. [BK,BoKu]) and in other

situations where the \expandability" of a given \large" polymer (contour) � may be

clari�ed only after expanding all the contours \smaller than �". In these situations,

sequential expansions are indispensable and it is thus important to know that even

in the case of an ordinary polymer models, the sequential approach gives an equally

good control of the situation as the expansion \at once".

Polymer models. The Dobrushin{Koteck�y{Preiss criterion

Let P be a set whose elements P1; : : : ; PjPj are called polymers (we should em-

phasize that the name polymer is used solely for historical reasons and may be

misleading. For our present purposes, the Pi are just labels for the elements of

the �nite set and we might as well label them in the standard way by integers).
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We suppose given a binary symmetric relation c of \compatibility" between the

polymers. This means that in the product P � P we give a symmetric subset of

\compatible" pairs (note that this compatibility relation encodes all what remain-

s of the structural properties of the physical models). Two polymers which are

not compatible are said to be incompatible and We write P1 c P2, P1 � P2 when

fP1; P2g is a compatible resp. an incompatible pair. We will assume that P �P for

all P 2 P.

Following Dobrushin [D1], we will associate to each polymer P a complex variable

wP and introduce the polymer partition function

(1) Z � ZP � ZP;w =
X

fP1;::: ;Pngc: Pi2P

nY
i=1

wPi

where the sum is over all families fP1; : : : ; Pngc of pairwise compatible polymers

from P. The n = 0 term in (1) (no polymers at all) is set equal to 1. Note that ZP
is a function of the jPj complex variables w1; : : : ; wjPj.

Remark. In many applications, there is a spatial structure such that it is possible

to associate a \support" suppP , namely a �nite subset of Zd, to a polymer P . In

those cases the compatibility P c ~P is usually just some geometrical property of the

supports, typically polymers are compatible if their supports do not interact. Also

the polymer activities arise as some simple functions depending on the \shape"

of the polymer of the of the temperature and interaction potentials. To avoid

confusion, let us stress, however, that in the abstract polymer models we study

now, we do not consider these \physical" activities, but all polymers activities

wP are now treated as independent complex variables. The relation to the physical

activities is made only later when thermodynamic functions of the abstract polymer

model are evaluated at the physical values of the activities.

As usual we are interested in the computation of the logarithm of the partition

function. We can write its Taylor series around zero1

(2) logZ = logZP; w =
X

I2I(P)

wI with wI = CI

Y
P2supp I

wIP
P

where the sum is over the collection I(P) of all \multi-indices" I (integer valued

functions on P). The Taylor coeÆcients CI , I = (IP )P2P are

(3) CI = (IP1
! : : : IPN !)

�1 @IP1+:::+IPN logZP

@IP1wP1
: : : @IPNwPN

jwPi � 0

where the derivative of logZP is taken at fwPi � 0; Pi 2 Pg, P = fP1; : : : ; PNgg.

A multi-index I on P can be regarded as a collection of polymers where mul-

tiple copies of a single polymer P are allowed. Then the non-negative integer IP
represents the multiplicity of P in I. Write I � (S; IS) where S = supp I is the

\support of I", S = fP 2 P : IP � 1g of the multi-index I. Given any subset

S = fP1; : : : Png � P and activities wP , we denote by wS modi�ed activities such

that wS
P = wP ; P 2 S and wP

P = 0; P 62 S.

1Its convergence is clear for suÆciently small activities wP ; see Theorem 1 for more details.
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Notice that we have for any function F given by a power series in variables

fwP ; P 2 Pg the relation @SFfwP ; P 2 Pg = @SFfwP ; P 2 Sg where the symbol

@S denotes a derivative (of any order) taken w.r. to the variables fwP ; P 2 Sg at

fwP � 0; P 2 Pg. Hence the coeÆcients CI are functions of the multi-index I (on

the system of polymers fP 2 supp Ig, with the compatibility relation P cP 0 ) only.

In fact, nonzero values of CI appear only for indecomposable multi-indices I;

decomposability means that there exists a partition of S = supp I into two sets

S = S1[S2 such that fP1; P2g is a compatible pair 8P1 2 S1; P2 2 S2. We will also

use a name cluster for such an indecomposable multi-index (collection of polymers)

I. The collection of all clusters on P will be denoted by C = C(P).

Indeed, analyze the coeÆcient CI for a decomposable index I = (S; IS). If

S = S1 [S2 with S1 6= ;; S2 6= ;; S1 \S2 = ; and every pair (P1; P2) with P1 2 S1,

P2 2 S2 is compatible, then logZS;w = logZS1;w+ logZS2;w and so CI = 0, by (3).

Our main aim is to give a simple proof of a result below which is a slightly

weaker version of the general result of [KP] (see also Chapter 5 of [U] for a good

presentation). However, compared to existing proofs our arguments will be real-

ly elementary and straightforward. No complicated combinatorics, estimates by

Cauchy formulas etc. will be used, only a simple induction argument. As our em-

phasis is on the simplicity of estimates, we do not try to replace the constant L

(and E) below by L = 1 as in [KP]. Put

(4) L = L(Æ) = sup
x2(0;Æ)

�
� log(1� x)

x

�
=
� log(1� Æ)

Æ
:

In usual applications, Æ will be small and so L = 1 + O(Æ).

Theorem 1. Assume that there is a function faP � 0g on P such that

(5) jwP je
a(P ) � Æ

holds for any polymer P 2 P. Moreover, assume that for any polymer Q 2 P

(6)
X
P�Q

jwP je
a(P ) �

a(Q)

L

where L is from (4). Then, for any polymer Q 2 P, the following bound holds for

the sum over all clusters (connected multi-indices) I 2 C(P) containing Q:

(7)
X

I2C(P): I3Q

jwI j � LjwQje
a(Q)

with wI = CI

Y
P2supp I

wIP
P :

As a consequence one also has a bound, for the sum over all clusters I that are

incompatible with a selected polymer Q 2 P

(8)
X

I2C(P): I�Q

jwI j � a(Q):

Remarks.

a) If polymers P are just points of the lattice Z� and #fj : j � ig � k for each i

then the condition jwij � e�aa=k i.e.
P

j�i jwjj � ae�a implies
P

I�i jwI j � a.
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b) If polymers P are \bonds" b = fi; jg and compatibility of bonds means just

their non-intersection, then the condition (6) (valid e.g. if
P

b3i jwbj � e�aa=2)

implies
P

I3b jwI j � a .

c) For the low temperature Peierls contours [P,D2,Gr,MS] of the two dimensional

Ising model, a natural choice of the function a is a(P ) = ajP j with a = 2�J �C

and a suitable C. Then the condition (6)X
P�0

e�2�JjP jeajP j � 4
X
n�4

3ne�(2�J�a)n � a

is obviously veri�ed for 2J� suÆciently larger than log 3 (with suitable C).

d) An important application of the convergence result occurs when the abstrac-

t polymer model results from a contour representation in the context of the

Pirogov-Sinai theory [PS,Z1,Z2]. In that case the polymers represent local de-

viations from some ground state con�guration g. To each polymer P one then

associates a subset of the lattice, P � Z
d. The incompatibility relation usually

refers then to a suÆcient distance between the corresponding \supports". The

function a(P ) should then be chosen proportional to the volume of the support

of P chosen as a(P ) = cjP j. In such a situation the convergence of the polymer

expansion guarantees the existence of a Gibbs states �g corresponding to the

ground state g in the following sense: Let Sg(R) be the set of spin con�gurations

such that there exists a point x at a distance less then R from the origin such

that one can reach in�nity from x on a path along which the con�guration g

is realized. Let Sg = [R<1Sg(R). Then �g(Sg) = 1. To see this, note that

Sg(R) is not realized only if there is a contour P those interior contains the ball

of radius R. We call PR the collection of all such polymers. Then by standard

arguments we have that

1� �g(Sg(R) �
X

P2P(R)

wP e
P

I��P
wI� �

X
P2P(R)

wP e
a(P )

which will go to zero if R goes to in�nity. In cases one has several such polymer

models (namely in the Pirogov Sinai theory) this means that a rigorous control

of the phase coexistence is established.

e) A stronger variant of (6) gives an exponential decay of the correlations in the

given polymer model. Namely, the statement (8) gives also an information on

the decay of the terms wI = CI

Q
P2supp I w

IP
P . Take ~wP = wP e

d(P ) with

d(P ) = C diamP and require (6) to hold even for ~wP . Then (8) reads

a(Q) �
X
I�Q

j ~wI j �
X
I�Q

jwI je

P
P2supp I

d(P )
�
X
I�Q

jwI je
C diam supp I :

This tells us that the sum
PN

I jwI j taken over clusters of diameter at least N is of

order at most e�dN , and only those terms wI appear in the formulas expressing

the correlation between two cylindrical events having a distance � N . In the

case of two dimensional low temperature Ising contours a convenient choice of

a; d is such that a+ d is suitably smaller than 2�J � log 3. Then the correlation

length is proven to be of the order 1=d (or less).
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Proof of Theorem 1. Our proof uses, following [NOZ], an induction over the car-

dinality jPj of the system P of all available polymers. Suppose that we already

have (by induction assumption) the bound (8), with wI = CI

Q
P2supp I w

IP
P , for

the sum of Taylor coeÆcients of any polymer model employing a smaller number

of polymers than jPj. (It trivially holds for a model employing no polymers at all.)

Then we want to prove the same bound for a model constructed over P.

Select a polymer Q, denote by P n nQ = fP 2 P : P c Qg and consider the

partition functions ZPnQ and ZPnnQ of the model \without Q" resp. \employing

only polymers compatible with Q"

ZPnQ =
X

fP1;::: ;Pmgc Pi2P; Q 62fPig

Y
i

wPi ; ZPnnQ =
X

fQ;P1;::: ;Pmgc Pi2P

Y
i

wPi :

We can obviously decompose the partition function for the set P in the form

ZP = ZPnQ + wQZPnnQ

by writing �rst the sum over all terms that do not contain Q and then placing Q and

summing over all remaining collections compatible with Q. Taking the logarithm

we get

(9) logZP = logZPnQ + log

�
1 + wQ

ZPnnQ

ZPnQ

�
:

Since the �rst summand here counts the sum over all clusters that do not make use

of Q, the second term is necessarily equal to the sum of all clusters containing Q,

i.e. the sum we want to control in (8).

On the other hand, the term ZPnnQ=ZPnQ appearing in the second logarithm is

already \under control" because it uses partition functions of polymer models with

less than jPj polymers. That is to say we have on the one hand that

(10) log

�
1 + wQ

ZPnnQ

ZPnQ

�
=

X
I2C(P): I3Q

wI

and on the other hand

(11) log

�
1 + wQ

ZPnnQ

ZPnQ

�
= log

 
1 + wQ exp

 
�
X
I�

wI�

!!

where the sum
P

I� wI� is precisely over all the clusters I�, from the P nQ model,

which are incompatible with Q i.e. which contain some polymer ~Q incompatible

with Q. The sum
P

I� wI� can be estimated, using the induction assumption (6),

for any ~Q (notice that the clusters I� are taken from a \smaller", P nQ model) as

(12)
X
I�

jwI� j � L
X
~Q�Q

jw ~Qje
a( ~Q) � a(Q):

Now we will use the following important fact: Consider the Taylor expansion in

the variables wQ; wI� of the function log (1 + wQ exp (�
P

I� wI�)) and replace all

the coeÆcients in the resulting sum (of products of wQ and wI�) by their absolute

values. Use the following simple observation.
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Lemma. Denote by f � g the relation, between functions of variables x1; x2; : : : ; xn,

de�ned by the requirement that absolute values of all Taylor coeÆcients of f at

xi � 0 are bounded from above by the corresponding positive Taylor coeÆcients of

g. For any monomial yj = aj
Q
x
N
j

i

i denote by eyj = jaj j
Q
x
N
j

i

i . Then, for any

choice fyjg of monomials we have the relation, interpreting both sides as functions

of fxig,

log

0@1 + x1 exp

0@X
j

yj

1A1A � � log

0@1� x1 exp

0@X
j

eyj
1A1A :

Proof. Just notice that the Taylor coeÆcients of ex and � log(1�x) are all positive.

Therefore2,

X
I2C(P):I3Q

wI � � log

 
1� wQ exp

 X
I�

ewI�

!!

and �nally, using (12), monotonicity of � log(1� x) and the notation (4)

(13)
X

I2C(P):I3Q

jwI j � � log

 
1� jwQj exp

 X
I�

jwI� j

!!
� L jwQje

a(Q)

which proofs the inductive step for the desired bound (7). We recall that (8)

then follows from (7) by summing the bound (7) over all ~Q 2 P incompatible

with Q, because any index I incompatible with Q contains at least one polymer ~Q

incompatible with Q.

Partially expanded polymer models. Generalized D{K{P criterion

Consider now a more general model where in addition to polymers P 2 P (the

\big ones", satisfying some compatibility relation) having weights wP one also has

a \cluster �eld" i.e. a collection of complex fugacities fwG; G 2 Gg indexed by

objects G which we will call \chains". Assume that a relation G �P resp. GcP

of (in)compatibility between the chains and polymers is given. Note that on the

contrary, that all chains are compatible with each other.

Given complex fugacities fwP g and fwGg we de�ne the \mixed" (in the termi-

nology of [Z2] and [HZ] ) partition function

Z = ZP;G;w =
X

fP1;::: ;Pngc:Pi2P

nY
i=1

wPi exp

 X
G:GcPi 8i

wG

!

where the �rst sum is again over all families fP1; : : : ; Pngc of pairwise compatible

polymers in P and the second sum
P

GwG is over all chains G compatible with

any polymer Pi.

2Recall that the expression log
�
1 + wQ exp

�
�
P
I� wI

�

��
which is a function of variables wQ

and fwI�g is identi�ed then also as a function of variables wQ and fwP ; P �Qg .
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Remark. Mixed partition functions arise from partially expanded polymer mod-

els. Assume that we have a polymer ensemble of the form P = Pl [ Ps (in most

applications, these are the \large" and \small" polymers separated according to

some criterion). Then

(14) ZP =
X

P1;::: ;Pn:Pi2Pl;Q1;::: ;Qm:Q
i
2Ps

fP1;:::;Pn;Q1;:::;Qmgc

nY
i=1

wPi

mY
j=1

wQi

Here the entire collection fP1; : : : ; Pn; Q1; : : : ; Qmgmust be compatible. For a given

collection P1; : : : ; Pn, we can now take the logarithm of the sum

log

0B@ X
Q1;::: ;Qm:Q

i
2Ps

fP1;:::;Pn;Q1;:::;Qmgc

nY
i=1

wPi

mY
j=1

wQi

1CA =
X

G:GcPi;8i

wG

according to the procedure outlined in the previous section, the notion of compat-

ibility of the cluster G with a polymer Pi meaning that each component of the

cluster is compatible with Oi. The result of this procedure is precisely a mixed

partition function as de�ned above. In most applications one now wants to further

expand another subclass of the \large polymers" that remain. To do this, one must

be able to compute the logarithm of the mixed polymer partition function.

We now investigate the Taylor series of the logarithm of partition function (14)

(15) logZ =
X

I2I(P[G)

wI with wI = CI

Y
P2supp I

wIP
P

Y
G2supp I

wIG
G

where the sum is over the collection I = I(P [ G) of all multi-indices I (integer

valued functions on P [ G) and CI are given like in (3).

It can be shown, similarly as in the previous section that nonzero CI appear

only for \connected", indecomposable multi-indices I called clusters. Here, the

decomposability of a multi-index with a support (P1 [ G1) [ (P2 [ G2) means that

any polymer resp. chain from the �rst system is compatible with any one from the

second one. Since all the chains G are mutually compatible, incompatibility can

only occur between two polymers or between a polymer and a chain.3

In the sequel, the support of a multi-index (in particular of a cluster) I will be

de�ned as supp I = P [ G where P = fP : IP > 0g and G = fG : IG > 0g. Denote

by C(P [ G) the collection of all clusters on P [ G.

We de�ne the functions

L � L(Æ) =
� log(1� Æ)

Æ
; E � E(Æ) =

eÆ � 1

Æ
; ~L � ~L(Æ) = L2E:

Note that with these de�nitions we have, for all x � 0,

(16) 1 + LE(e
Lx

~L � 1) � ex:

3A collection P[G is a cluster if the graph whose bonds are pairs P �P 0 and P �G is connected .
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Theorem 2.. Assume that there is a function fa(G) > 0; G 2 P [ Gg such that,

(17) jwP je
a(P ) � Æ and (ejwGj � 1) (eb(G) � 1) � Æ

holds for any polymer P 2 P resp. chain G 2 G. Moreover assume, for a suitable

function b(Q) � a(Q) on P [ G, the validity of the following two bounds:

1) Polymer fugacities satisfy a bound, for any chain or polymer G 2 G [ P

(18)
X

P2P:P �G

jwP je
a(P ) �

b(G)

~L
:

2) Chain fugacities wG satisfy a bound

(19)
X

G2G:G �Q

jwGje
b(G) � a(Q)� b(Q)

for any polymer Q 2 P.4

Then the following bounds are valid:

a) For the sum of all clusters I 2 C(P [ G) containing a polymer Q 2 P

(20)
X

I2C(P[G): I3Q

jwI j � LjwQje
a(Q)

where wI = CI

Y
P2supp I

wIP
P :

b) For the sum of all clusters I 2 C(P [ G) containing a chain G

(21)
X

I2C(P[G): I3G

jwI j � jwGje
b(Q):

c) For the sum of all clusters I 2 C(P [ G) incompatible with a chain G 2 C

(22)
X

I2C(P[G): I �G

jwI j �
L

~L
b(Q) � b(Q):

d) For the sum of all clusters I 2 C(P [ G) incompatible with a polymer Q 2 P

(23)
X

I2C(P[G): I �Q

jwI j � a(Q):

Proof. As before, we will use the induction over the total number N = jPj+ jGj of

polymers and chains used in the model. The case N = 0 is trivial.

a) Proof of (20): This is an analogy of (7). Denote by Z the partition function

of the \full model", by ZPnQ;G the partition function of the model with polymer

Q removed (i.e. with wQ = 0). We have the relation (here and below, Z � ZP ;G)

(24)
X

I2C(P[G): I3Q

wI = logZP;G � logZPnQ;G = log

 
1 + wQ exp

 
�
X
I�

wI�

!!

4Notice that while in (19) the sum is over chains incompatible with a polymer Q, the sum in

(18) is over polymers incompatible with a polymer or chain Q.
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where the sum
P

I� wI� is precisely over clusters I
� from the PnQ model incompat-

ible with Q. We proceed analogously as in the proof (9){(11) of (7), but using the

bound (18) instead of (6). By the induction assumption (23) for the P n P model,

we already have
P

I� jwI� j � a(Q). Then, by (16) we get the required induction

step

(25)
X

I2C(P):I3Q

jwI j � � log

 
1� jwQj exp

 X
I�

jwI� j

!!
� LjwQj exp(a(Q)):

b) Denote by ZP;GnG resp. ZPnnG;GnG the partition function of the model with

G removed resp. partition function of the model where only polymers compatible

with the chain G are allowed. For both models we may assume the validity of (20) {

(23) by the induction assumption, and moreover we have ZPnnG = ewGZPnnG;GnG.

Notice that the term
P

I2P[G: I3G wI equalsX
I: I3G

wI = logZ � logZP;GnG

= log
�
ZP;GnG + (ewG � 1)ZPnnG;GnG

�
� logZP;GnG

= log

�
1 + (ewG � 1)

ZPnnG;GnG

ZP;GnG

�

= log

0@1 + (ewG � 1) exp

0@� X
I�:I�3P;P �G

wI�

1A1A
i.e.

(26)
X

I: I3G

wI = wG + log

0@1 + (1� e�wG)

0@exp
0@� X

I�:I�3P;P �G

wI�

1A� 1

1A1A
where the sum

P
I� wI� is over clusters I� containing a polymerP incompatible

with G. Thus (and this is in fact the argument, used below in c), proving (22) from

(20) and (18)) we have ~L
P

I� jwI� j � Lb(G) and we can continue in the estimate

(of the sum of absolute values in the expansion of the r.h.s of (26))

(27) X
I2C(P[G): I3G

jwI j � jwGj � log

0@1� (ejwGj � 1)

0@exp
0@ X
I�:I�3P;P �G

jwI� j

1A� 1

1A1A
� jwGj � log

�
1� (ejwGj � 1)(e

L

~L
b(G) � 1)

�
� jwGj

�
1 + LE(e

L

~L
b(G) � 1)

�
� jwGje

b(G)

by (17). This proves (21).

c) If a cluster I touches a chain G then there is some polymer Q 2 P incompatible

with G such that I 3 Q. Summing the r.h.s of (20) in (18), over all such Q�G we

arrive to (22) analogously as from (6) to (8).

d) If a cluster I touches a polymer Q then i) either I contains a polymer ~Q

incompatible with Q ii) or I contains a chain G incompatible with Q. The sum
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P i)

I jwI j corresponding to the �rst case is bounded as � L=~L b(Q) just by inserting

(20) into (18). Analogously, the sum
P ii)

I jwI j corresponding to the second case is

bounded as � a(Q)� b(Q), by inserting (21) into (19).

So we get the desired bound (23).
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