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Abstract | A one-particle 3D stochastic Lagrangian model in for transport of particles in

horizontally-homogeneous atmospheric surface laeyr with arbitrary one-point probability density

function of Eulerian velocity 
uctuations is suggested. A uniquely de�ned Lagrangian stochastic

model in the class of well-mixed models is constructed from physically plausible assumptions: (i)

in the neutrally strati�ed horizontally homogeneous surface layer, the vertical motion is mainly

controlled by eddies whose size is of order of the current height; and (ii), the streamwise drift

term is independent of the crosswind velocity. Numerical simulations for neutral strati�cation

have shown a good agreement of our model with the well known Thomson's model, with Flesch

& Wilson's model, and with experimental measurements as well. However there is a discrepancy

of these results with the results obtained by Reynolds' model.

Keywords: Horizontally homogeneous turbulence, Lagrangian stochastic models, well-mixed

condition, consistency principle, uniqueness problem, neutrally strati�ed surface layer.

1 Introduction

This paper deals with one-particle stochastic Lagrangian models (LS) for 2D and 3D

turbulent transport. Here we treat the 
ow in the Atmospheric Boundary Layer (ABL)

as a fully developed turbulence (i.e., a 
ow with very high Reynolds number) and consider

it as a random velocity �eld (u; v; w) which is assumed to be incompressible. Therefore,

the trajectories of particles in such 
ows are stochastic processes. To simulate these

stochastic processes, two di�erent approaches are known in the literature. The �rst one

is based on the numerical solution of the system of random equations

@X

@t
= u(X; Y; Z; t);

@Y

@t
= v(X; Y; Z; t);

@Z

@t
= w(X; Y; Z; t): (1:1)

Here X(t); Y (t); Z(t) are the coordinates of the Lagrangian trajectory at the time t.

The random �elds u; v; w are simulated by Monte Carlo methods (e.g., see Drummond

et.al., 1984; Fung et.al., 1992; Kraichnan, 1970; Sabelfeld, 1991; Sabelfeld and Kurban-

muradov, 1990; Turfus and Hunt, 1987), and the random trajectories are then obtained

by numerical solution of (1.1 ) with the relevant initial data.

In the second approach the true trajectory X(t); Y (t); Z(t) is assumed to be approxi-

mated by a model trajectory X̂(t); Ŷ (t); Ẑ(t), a solution to a stochastic di�erential equa-

tion of Ito type (e.g., see Sawford, 1985; Thomson, 1987; Wilson and Sawford, 1996, and

the list of references in these papers):

dX̂ = Ûdt; dŶ = V̂ dt; dẐ = Ŵdt;

dÛ = au dt+ bu dBu(t); dV̂ = av dt+ bv dBv(t);

dŴ = aw dt+ bw dBw(t): (1:2)

Here we denote by Û ; V̂ ; Ŵ the components of the model Lagrangian velocity, Bu(t); Bv(t)

and Bw(t) are three standard independent Wiener processes; au; av; aw and bu; bv; bw are

generally functions of (t; X̂; Ŷ ; Ẑ; Û ; V̂ ; Ŵ ).

Ideally, one would have an approximation such that the true and the model Lagrangian

velocities coincide:

Û(t) = u(X̂(t); Ŷ (t); Ẑ(t); t);

V̂ (t) = v(X̂(t); Ŷ (t); Ẑ(t); t); Ŵ (t) = w(X̂(t); Ŷ (t); Ẑ(t); t) (1:3)
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which would assure that the true and model trajectories are the same. However it is

unrealistic to satisfy (1.3 ), therefore one uses di�erent consistency principles. Namely, the

general consistency principle says that the statistics of the model process X̂(t); Ŷ (t); Ẑ(t),

Û(t); V̂ (t); Ŵ (t) satis�es the same relations satis�ed by the true process X(t), Y (t); Z(t);

U(t); V (t);W (t), where

U(t) = u(X(t); Y (t); Z(t); t); V (t) = v(X(t); Y (t); Z(t); t);

W (t) = w(X(t); Y (t); Z(t); t)

are the components of the true Lagrangian velocity.

Two consistency principles used in the literature are:

(A) Consistency with the Kolmogorov similarity theory,

(B) Consistency with Thomson's well-mixed condition.

Here (A) reads

h(dU)2i = h(dV )2i = h(dW )2i = C0"dt;

and

hdU dV i = hdU dW i = hdW dV i = 0;

where dU; dV; dW are the components of the increments of the Lagrangian velocity, " is

the mean rate of the dissipation of turbulence energy, C0 is the universal constant (e.g.,

Monin and Yaglom, 1975; Sawford, 1985; Thomson, 1987); here and in what follows, the

angle brackets stand for the ensemble average.

Note that (A) implies (e.g., see Thomson, 1987) that in (1.2 ), all the terms bu; bv; bw
are equal to

p
C0":

bu = bv = bw =
q
C0": (1:4)

Thomson's well-mixed condition can be rigorously derived from Novikov's integral

relation (Novikov, 1969)

pE(u; v; w; x; y; z; t) =

Z
R3

pL(x; y; z; u; v; w; x0; y0; z0; t)dx0dy0dz0: (1:5)

Here pE is the probability density function (pdf) of the Eulerian velocity u; v; w, in the

�xed point x; y; z, at the time t, and pL is the joint pdf of the true Lagrangian phase point

X; Y; Z; U; V;W de�ned by the trajectory started at x0; y0; z0.

It is natural to require that the pdf of the model phase point governed by (1.2 ), say

p̂L, satis�es

pE(u; v; w; x; y; z; t) =

Z
R3

p̂L(x; y; z; u; v; w; x0; y0; z0; t)dx0dy0dz0: (1:6)

Note that (1.6 ), the Focker-Planck-Kolmogorov equation for p̂L and (1.4 ) lead to the

well-mixed condition due to Thomson (1987):

@pE

@t
+ u

@pE

@x
+ v

@pE

@y
+ w

@pE

@z
+

@

@u
(aupE) +

@

@v
(avpE) +

@

@w
(awpE)

=
C0"

2

(
@
2
pE

@u2
+
@
2
pE

@v2
+
@
2
pE

@w2

)
: (1:7)
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It is convenient to rewrite this equation in the form given by Thomson (1987):

@pE

@t
+ u

@pE

@x
+ v

@pE

@y
+ w

@pE

@z
+

@

@u
(�u) +

@

@v
(�v) +

@

@w
(�w) = 0; (1:8)

where

�u = aupE � C0"

2

@pE

@u
; �v = avpE � C0"

2

@pE

@v
; �w = awpE � C0"

2

@pE

@w
:

The vector function � = (�u; �v; �w) is not uniquely de�ned from (1.8 ). Indeed, a series

of solutions can be obtained by adding to � an arbitrary vector-function whose divergence

in velocity space is zero.

It should be noted that in one-dimensional case, the well-mixed condition uniquely

de�nes the LS model even for non-Gaussian pE (Thomson, 1987). In multi-dimensional

case, the uniqueness problem can be formulated as follows: give physically plausible as-

sumptions which de�ne uniquely the function � in (1.8 ).

The �rst 3D LS model satisfying (1.8 ) was suggested by Thomson (1987). The pdf pE
in his model has a Gaussian form, and the drift terms au; av; aw have a quadratic depen-

dence on the velocity. Another example of a model (suggested by Borgas; see, e.g., Wilson

and Flesch, 1997) with quadratic drift term and Gaussian pE was studied in Sawford and

Guest (1988). They have found that the Borgas model gives slightly di�erent results

compared to Thomson's model. Reynolds (1997) has constructed a two-parametric class

of well-mixed models, also quadratic and with Gaussian pE, which includes Thomson's

and Borgas' models. He demonstrated that two di�erent models from his class produce

essentially di�erent predictions of the turbulent dispersion.

Non-Gaussian form of pE in 2D case was treated by Flesch and Wilson (1992). To

extract a unique model in the class of well-mixed models, they suggested the following

assumption: the term (�u=pE; �w=pE) accelerates particles directly towards (or away from)

the origin of (u; w) space. A 3D generalization of this model is given by Monti and Leuzzi

(1996). Further generalization of the approach of Flesch and Wilson (1992) was given in

Wilson and Flesch (1997): the vector (�u=pE; �w=pE) is chosen so that there is no preferred

direction of rotation of the velocity 
uctuation vector (\zero-spin" models). However as

shown by Reynolds (1998), this approach does not solve the uniqueness problem.

It should be emphasized that all the above mentioned LS models deal with quite

general inhomogeneous turbulents 
ows. It is therefore diÆcult to formulate physically

motivated assumptions which, together with the well-mixed condition uniquely de�ne the

LS model. Therefere it is reasonable to consider special classes of turbulent 
ows (e.g.,

horizontally homogeneous) whose speci�c features can be used to construct uniquely the

LS models under assumptions with credible physical basis.

In the present paper we treat a 3D horizontally homogeneous surface layer with a

general form of pE, and formulate a physically plausible assumption about the structure

of the drift terms au; av; aw. This assumption uniquelly de�nes our model in the class

of well-mixed models. The model proposed is essentially di�erent from all the models

cited above, in particular, for Gaussian pE, our model, being in this case also quadratic

in velocities, is generally not in the class of models given by Reynolds (1997); we mention

only the case of ideally neutral strati�cation (i.e., the Obukhov-Monin length scale is

in�nite: L = 1): in this case our model belongs to Reynolds' class if the parameter C1

is chosen as C1 = C0u
4
�
=2�4

w
, and C2 = 0 (see Appendix B).
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In Section 2 we formulate the Assumption which ensures the unique de�nition of our

model for the horizontally homogeneous neutrally strati�ed surface layer. Comparison

with other stochastic Lagrangian models and experimental measurements is given in Sec-

tion 3. Convective case is treated in Section 4. The behaviour of trajectories of our model

near the boundary is analysed in Section 5. In Appendix A the drift terms are derived

in the Gaussian case. In Appendix B we analyse how our model relates to Reynolds' and

\zero-spin" classes of models.

2 Neutrally strati�ed boundary layer

2.1 General case of Eulerian pdf

We consider a horizontally homogeneous incompressible ABL in the half-space R
3
+ =

f(x; y; z) : z � 0g, where x; y are the horizontal coordinates, and z is the vertical coordi-

nate. Thus it is assumed that the mean velocity has no vertical component. It is supposed

in this section that the mean velocity vector is not changing his direction with height, it

is directed along the X-axis, and the crosswind velocity 
uctuations are symmetric with

respect to the plane XZ. Thus the mean velocity vector is (�u(z; t); 0; 0), while pE does

not depend on x; y.

We will write the pdf pE in the form

pE(u; v; w; z; t) = p
0

E
(u0; v0; w0; z; t)

where u0 = u� �u(z; t), v0 = v and w
0 = w.

By (1.4 ), the equation (1.2 ) in these variables has the form:

dX = (U 0 + �u(Z; t))dt; dY = V
0
dt; dZ =W

0
dt;

dU
0 = a

0

u
(t; Z; U 0

; V
0
;W

0)dt+
q
C0" dBu(t);

dV
0 = a

0

v
(t; Z; U 0

; V
0
;W

0)dt+
q
C0" dBv(t); (2:1)

dW
0 = a

0

w
(t; Z; U 0

; V
0
;W

0)dt+
q
C0" dBw(t):

To simplify the notation, here and in what follows we omit the hat sign introduced in

Section 1 to denote the model trajectory.

The well-mixed condition in new variables is

@p
0

E

@t
+ w

0
@p

0

E

@z
+

@

@u0
(a0

u
p
0

E
) +

@

@v0
(a0

v
p
0

E
) +

@

@w0
(a0

w
p
0

E
)

=
C0"

2

(
@
2
p
0

E

@(u0)2
+

@
2
p
0

E

@(v0)2
+

@
2
p
0

E

@(w0)2

)
: (2:2)

Now we give our main assumption about the structure of the Lagrangian model (2.1 ).

Assumption. We assume in addition to the well-mixed condition that:

(i) the vertical drift term does not depend on the horizontal velocity components: a
0

w
=

a
0

w
(t; z; w0);

(ii) the streamwise term a
0
u
does not depend on the crosswind velocity v

0
: a

0
u
= a

0
u
(t; z; u0; w0).
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This assumption meets the conditions of a surface layer with neutral (or close to)

strati�cation. Indeed, all the contributions to the vertical motions can be divided into

two parts: the �rst comes from the vortices whose sizes are smaller or close to the current

height z, and the second is due to the large horizonatally streched vortices. The second

part of the contribution is much smaller than the �rst one since the vertical velocities in

such horizontal streched vortices are much smaller than that of the small vortices whose

sizes are of the order of the current height. The �rst part comes mainly from isotropic

vortices of the inertial subrange. But in the isotropic case, the well-mixed condition leads

to the dependence a0
w
= a

0

w
(t; z; w0) (e.g., see Wilson and Sawford, 1996) which gives us

the motivation of the point (i) in our assumption. As to the point (ii), we note that the

coordinate system is chosen so that hu0v0i = 0, hv0w0i = 0, but hu0w0i 6= 0, which suggests

the approximation a
0

u
= a

0

u
(t; z; u0; w0).

The approximation formulated in the point (ii) is reasonable if the mean velocity is

dominating over the 
uctuated part. Otherwise, for instance in convective case, this

approximation fails, and the velocity components u0 and v
0 must enter the drift terms

symmetrically. In Section 3 we will treat this case separately.

Note that the dependence a
0

u
= a

0

u
(t; z; u0; w0) holds also both for Thomson's and

Reynolds' model, see Appendix B.

Thus the model (2.1 ), in view of the Assumption reads

dX = (U 0 + �u(Z; t))dt; dY = V
0
dt; dZ =W

0
dt;

dU
0 = a

0

u
(t; Z; U 0

;W
0)dt+

q
C0" dBu(t);

dV
0 = a

0

v
(t; Z; U 0

; V
0
;W

0)dt+
q
C0" dBv(t); (2:3)

dW
0 = a

0

w
(t; Z;W 0)dt+

q
C0" dBw(t):

Integrating (2.2 ) over u0 and v
0 yields

@p
0

1E

@t
+ w

0
@p

0

1E

@z
+

@

@w0
(a0

w
(t; z; w0)p01E) =

C0"

2

@
2
p
0

1E

@(w0)2
; (2:4)

where

p
0

1E = p
0

1E(w
0; z; t) =

1Z
�1

1Z
�1

p
0

E
(u0; v0; w0; z; t) du0dv0: (2:5)

Here we have assumed that

a
0

u
p
0

E
; a

0

v
p
0

E
;
@p

0

E

@u0
;
@p

0

E

@v0
all tend to zero as (u0)2 + (v0)2 !1:

Similarly, the integration of (2.2 ) over v0 leads to

@p
0
2E

@t
+ w

0
@p

0

2E

@z
+

@

@u0
(a0

u
(t; z; u0; w0)p02E) +

@

@w0
(a0

w
(t; z; w0)p02E)

=
C0"

2

 
@
2
p
0

2E

@(u0)2
+

@
2
p
0

2E

@(w0)2

!
; (2:6)
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where

p
0

2E = p
0

2E(u
0
; w

0; z; t) =

1Z
�1

p
0

E
(u0; v0; w0; z; t) dv0: (2:7)

Now, under the assumption about the behaviour in the in�nity, it is possible to de�ne

uniquely the coeÆcients a0
u
; a

0

v
and a

0

w
. Indeed, from (2.4 ) one gets a0

w
, then from (2.6 )

one �nds a0
u
, and from (2.2 ) one obtains a0

v
. This yields

a
0

w
(t; z; w) =

1

p01E(w; z; t)

(
C0"

2

@p
0

1E

@w
�
 
@f1E

@t
+
@F1E

@z

!)
; (2:8)

where

f1E(w; z; t) =

wZ
�1

p
0

1E(w
0; z; t) dw0

;

F1E(w; z; t) =

wZ
�1

w
0
p
0

1E(w
0; z; t) dw0

;

and

a
0

u
(t; z; u; w)

=
1

p02E

(
C0"

2

 
@p

0

2E

@u
+
@
2
f2E

@w2

!
�
 
@f2E

@t
+ w

@f2E

@z

!
� @

@w

�
a
0

w
f2E

�)
; (2:9)

where

f2E(u; w; z; t) =

uZ
�1

p
0

2E(u
0
; w; z; t) du0:

Finally,

a
0

v
(t; z; u; w) =

1

p0
E

(
C0"

2

 
@
2
fE

@u2
+
@p

0

E

@v
+
@
2
fE

@w2

!
�
 
@fE

@t
+ w

@fE

@z

!

� @

@u
(a0

u
fE)� @

@w

�
a
0

w
fE

�)
; (2:10)

where

fE(u; v; w; z; t) =

vZ
�1

p
0

E
(u; v0; w; z; t) dv0:

Thus the coeÆcients (2.8 )-(2.10 ) de�ne a unique stochastic model (2.3 ) through p
0

E
.

In the case when the crosswind velocity 
uctuations are independent of the streamwise

and vertical 
uctuations, i.e., if

p
0

E
(u; v; w; z; t) = p

0

2E(u; w; z; t)pvE(v; z; t) (2:11)

then the expression (2.10 ) for the crosswind drift term can be simpli�ed:

a
0

v
(t; z; u; v; w) =

C0"

2pvE

@pvE

@v
� 1

pvE

@fvE

@t
� w

pvE

@fvE

@z
; (2:12)

where

fvE(v) =

vZ
�1

pvE(v
0) dv0:
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2.2 Gaussian pdf

We present here expressions for the coeÆcients to (2.3 ) for Gaussian pdf pE. Recall that

we deal here with horizontally homogeneous turbulence, and use a coordinate system

where the direction of the mean velocity coincides with the X-axes, and the crosswind

velocity 
uctuations are symmetric relative to the plane XZ. Therefore, the Gaussian

pdf pE has the form

p
0

E
(u; v; w; z; t) =

1

2��u=w�w
exp

8<
:� 1

2�2
u=w

(u� �w)2 � w
2

2�2
w

9=
;

� 1p
2��v

exp

(
� v

2

2�2
v

)
; (2:13)

where

�u=w =
�1=2

�w
; � =

uw

�2
w

; � = �
2
u
�
2
w
� (uw)2;

and �
2
u
, �2

v
, �2

w
are the variances of the x-, y- and z- velocity components, respectively.

Using the result given in Section 2.1 we obtain (see Appendix A) the following expres-

sions:

a
0

w
(t; z; w) = �

 
C0"

2�2
w

� 1

�w

@�w

@t

!
w +

1

2

@�
2
w

@z

 
w
2

�2
w

+ 1

!
; (2:14)

a
0

u
(t; z; u; w) = �C0"(1 + �

2)

2�2
u=w

(u� �w) +
�

2�2
w

 
C0"+

@�
2
w

@t

!
w

+
�

2

@�
2
w

@z

 
w
2

�2
w

+1

!
�
�@�
@t

+w
@�

@z

�
w � 1

�u=w

�@�u=w
@t

+ w
@�u=w

@z

�
(u��w) ; (2:15)

and

a
0

v
(t; z; u; v; w) = �

 
C0"

2�2
v

� 1

�v

@�v

@t

!
v +

1

2

@�
2
v

@z

vw

�2
v

: (2:16)

Note that in the stationary case these expressions can be simpli�ed to

a
0

u
(t; z; u; w) = �C0"(1 + �

2)

2�2
u=w

(u� �w) +
�C0"

2�2
w

w +
�

2

@�
2
w

@z

 
w
2

�2
w

+ 1

!

(2:17)

�@�

@z
w
2 � 1

�u=w

@�u=w

@z
(u� �w)w ;

a
0

v
(t; z; u; v; w) = �C0"

2�2
v

v +
1

2

@�
2
v

@z

vw

�2
v

; (2:18)

(2:19)

a
0

w
(t; z; w) = �C0"

2�2
w

w +
1

2

@�
2
w

@z

 
w
2

�2
w

+ 1

!
:
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3 Comparison with other models and measurements

3.1 Comparison with measurements in ideally-neutral surface

layer (INSL)

In this section we analyse some quantities in the case of turbulent dispersion in a sta-

tionary, horizontally homogeneous, ideally-neutral surface layer (i.e., the Obukhov-Monin

length L equals to in�nity).

We have calculated the following dimensionless Lagrangian characteristics:

A(t) =

q
hZ2(t)i
u�t

; B(t) =
hZ(t)i
u�t

; C(t) =
z0

u�t
exp

(
�hX(t)i
u�t

+ 1

)
; (3:1)

and the ratio pr(z) = k�(z)=kz(z), where � is the von Karman constant, k� = �u�z is the

molecular di�usivity, and kz is the vertical eddy di�usivity coeÆcient de�ned through the

Boussinesque hypothesis:

c0w0(z) = �kz(z)@�c(z)
@z

: (3:2)

Importance of the characteristics A(t); B(t) and C(t) is that these functions tend, as

t!1, to some universal constant values a; b and c, respectively, provided hs and z0 are

much less than u�t (e.g., see Bysova et al., 1991, p.77). Here hs is the height at which

the Lagrangian trajectory starts. As to the ratio pr(z), for values z much larger than the

source height, it tends to the Prandtl constant Pr; its universal character is well known

and is in the literature often approximately taken equal to unity (e.g., see Monin and

Yaglom, 1971, Section 8.2).

Since all the four quantities A(t); B(t); C(t), and pr(z) do not depend on the crosswind

dispersion, we use the 2D stochastic models to simulate the dispersion:

dX = (U 0 + �u(Z; t))dt; dZ = W
0
dt;

dU
0 = a

0

u
(Z; U 0

;W
0)dt+

q
C0" dBu(t); (3:3)

dW
0 = a

0

w
(Z; U 0

;W
0)dt+

q
C0" dBw(t);

where for the ISNL, the vertical pro�les of " and �u can be taken as follows (e.g., see

Monin and Yaglom, 1971)

"(z) =
u
3
�

�z
; �u(z) =

u�

�
ln
�
z=z0

�
;

and z0 is the roughness height. The calculations were carried out by Thomson's, Reynolds',

Flesch and Wilson's, and ours models. Thomson's 2D model in this case is speci�ed by

a
0

u
(z; u; w) = �C0"(z)

2�

�
�
2
w
u+ u

2
�
w

�
; a

0

w
(z; u; w) = �C0"(z)

2�

�
�
2
u
w + u

2
�
u

�
;

where �u and �w are given by �u = buu�; �w = bwu� with u
2
�
= �uw = const; � =

�
2
u
�
2
w
� uw

2, bu and bw are universal constants. Following Panofsky and Dutton (1984),

and Stull (1988) we have taken bu = 2:5, bw = 1:25. These parameters enter all the models

speci�ed below.
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The drift terms of the model due to Flesch and Wilson (1992) can be written in the

case of INSL as follows

a
0

u
(z; u; w) = �C0"(z)

2

@ ln p0
E

@u
= �C0"(z)

2�2
u=w

(u� �w);

a
0

w
(z; u; w) = �C0"(z)

2

@ ln p0
E

@w
=

C0"(z)�

2�2
u=w

(u� �w)� C0"(z)

2�2
w

w;

where �u=w =
p
�=�w, � = uw=�

2
w
.

The model of Reynolds (1998) in our case of ideally-neutral surface layer is speci�ed

by

a
0

u
(z; u; w) = �

 
C0"

2
+ C1u

2
�

d�u

dz

!
�
2
w
u+ u

2
�
w

�
;

a
0

w
(z; u; w) = �C0"(z)

2�

�
�
2
u
w + u

2
�
u

�
+ C1�

2
w

d�u

dz

�
2
w
u+ u

2
�
w

�
; (3:4)

with C1 = 3 chosen by Reynolds (1998) to �t the experimental results of Legg (1983).

Our model (2.14 )-(2.15 ) (in what follows we call it a KS model) in the case of INSL

is speci�ed by

a
0

u
(z; u; w) = �C0"(z)(1 + �

2)

2�2
u=w

(u� �w) +
�C0"(z)

2�2
w

w;

a
0

w
(z; w) = �C0"(z)

2�2
w

w: (3:5)

Note that if we choose the parameter C1 in (3.4 ) as C1 = C0=2b
4
w
, then it reduces to

our model (3.5 ) (see Appendix B). Reynolds however suggests in his model C1 = 3, and

in all comparisons below, when referring to Reynolds' model, we take C1 = 3.

In all models, the calculations were carried out for z0 = 0:01m, the trajectories started

at hs = 0:02 m, u� = 0:4 m s
�1, the number of trajectories was N = 105 in the case of

a; b and c calculations, and N = 106 for the constant Pr. The vertical eddy di�usivity

kz was calculated from the relation (3.2 ) where a �nite-di�erence approximation of the

calculated mean concentartion was used to �nd the mean concentration derivative. A

stationary source was uniformly distributed on the plane z = zs = 0:02 m.

The stochastic di�erential equations were solved by the explicit Euler scheme, with

the varying time step �t = ��L(z), where �L(z) = 2�w=C0"(z) is the Lagrangian time

scale; to reach stable numerical results, we found that � = 0:02 was suÆcient. At the

boundary, a perfect re
ection is made after the trajectory hits the layer fz < z0g, z0 being
the roughness height.

The results of calculations and experimental data are presented in Table 1. The

calculations were carried out for di�erent values of C0 since the constant C0 is known

to be scattered in the interval (2; 8), (e.g., see Pope, 1994). The results for all four

constants a; b; c and Pr show that our model is in a good agreement with Thomson's,

Flesch and Wilson's models and experimental results, but in a poor agreement with the

results obtained by Reynolds' model. As to the best �t to the experimental data, our

model reaches it at C0 = 4 while Thomson's and Flesch and Wilson's models �t best at

9



C0 = 5. Concerning the Reynolds model, it should be mentioned that as C0 becomes

larger, the discrepancy between the results obtained by his model and measurements

slightly decreases, but even for C0 = 7 it remains too large. Calculations for C0 = 10 (in

the Table not shown) gave almost the same results as for C0 = 7.

Table 3.1. Universal constants a; b; c and Pr calculated by di�erent Lagrangian models,

compared against experimental results.

Model C0 a b c Pr

Thomson (1987) 3. 0.85 0.65 0.25 0.47

4. 0.71 0.54 0.22 0.6

5. 0.61 0.46 0.2 0.74

7. 0.48 0.35 0.16 1.

Flesch & Wilson (1992) 3. 0.85 0.65 0.26 0.45

5. 0.61 0.46 0.2 0.8

7. 0.48 0.35 0.16 0.9

KS (see (3.5 ), Section 3.1) 3. 0.73 0.55 0.17 0.64

4. 0.59 0.44 0.15 0.82

5. 0.5 0.36 0.14 1.

7. 0.37 0.27 0.11 1.43

Reynolds (1997) 3. 0.13 0.09 0.04 5.26

5. 0.18 0.13 0.06 3.3

7. 0.21 0.15 0.07 2.86

MEASUREMENTS

Garger & Zhukov (1986) 0.58 0.44 0.19

Chandhry & Meroney (1973) 0.4

Rider (1954) 0.83

Gurvich (1965) 1.25

3.2 Comparison with wind-tunnel experiment by Raupach and

Legg (1983)

In this section we present a comparison of the same models analysed in the previous

section against the data of the wind-tunnel experiment by Raupach and Legg (1983).

The vertical pro�les of the mean concentration �c, the streamwise and vertical 
uxes of

concentraion c0u0, c0w0 were analysed.

A stationary line source at the height hs = 0:06 m directed along the y-axis was

considered, and all the pro�les were calculated at the downwind distance x = 7:5 hs.

The problem is governed by 2D equations used in the previous subsection.

In Figure 1 the scaled mean concenrtaion �c(x; z)=c� and temperature ��(x; z)=�� pro�les

are shown for C0 = 3, where

c� = Q=(hs�u(hs)); �� = Q=(�cphs�u(hs)) :

Here Q is the line source strength per unit length, � the air density and cp the speci�c

heat of air at constant pressure. The temperature pro�les were taken from the paper by

Raupach and Legg (1983).
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Figure 1. A comparison of three model predictions of vertical pro�le of mean concentrtaion

with Raupach and Legg's measurement, for C0 = 3:
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Figure 2. The same as in Figure 1, but for C0 = 7:
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Figure 3. A comparison of three model predictions of the vertical pro�le of mean vertical


ux with Raupach and Legg's measurement, for C0 = 3:
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Figure 4. The same as in Figure 3, but for C0 = 7:
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Figure 5. A comparison of three model predictions of the vertical pro�le of mean streamwise


ux with Raupach and Legg's measurement, for C0 = 3:
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Figure 6. The same as in Figure 5, but for C0 = 7:
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All the models predict the experimental results qualitatively well. We mention that

the results obtained by Flesch and Wilson's model are very close to the results obtained

by Thomson's model, therefore, we do not plot them in our Figures. Above the height

z = 1:75hs all three models agree well with the experimental results.

Below the height 1:5hs Thomson's and KS models give results close to the measure-

ments, while Reynolds's model overestimates the maximum concentration and underes-

timates the concentration near the ground. As to the sensitivity to the constant C0, we

have made calculations also for C0 = 2:; 4:; 5:; and 7: The best �t of Thomson's and KS

models was found at C0 = 3:

For larger values of C0 (see Figure 2 for C0 = 7:) all the models overestimate the

values at the maximum, and underestimate at small and large heights. In Figure 3 the

vertical pro�le of the vertical 
ux of concentration is shown for C0 = 3: From this curves,

it is clearly seen that at the height z < zs Thomson's and KS models underestimates, and

Reynolds' model overestimates the experimental results. Above the height z = 1:5zs all

three models are in a good agreement with the measurements.

Note that for C0 = 7: the picture is di�erent (see Figure 4): the models give slightly

better predictions for heights z < 1:5zs In Figures 5 and 6 the vertical pro�les of the

streamwise 
ux of concentrtaion are presented for C0 = 3: and C0 = 7:, respectively. Here

the Reynolds' model signi�cantly overpredicts the maximum and underpredicts the min-

imum values. Thomson's and KS models show better agreement with the measurements.

Note however, that the agreement between Thomson's and KS models in this case is not

so perfect as in the Figures 1-4. Calculations of the vertical and horizontal 
uxes by

our model with di�erent values of C0 have shown that the best �t with the experimental

results was around C0 = 3:5� 0:5 (e.g., see Figures 3-6).

4 Convective case

In this section we consider a horizontally homogeneous boundary layer under strong con-

vective conditions, at suÆciently large heights compared to jLj. In this case, the velocity


uctuations can be considered as horizontally isotropic (e.g., see Monin and Yaglom,

1971). Therefore, the mean velocity is zero, and the correlation between the vertical and

horizontal velocities is zero.

In this section we show that the horizontal isotropy and the dependence supposed in

(i) of the Assumption ensure the unique choice of the Lagrangian stochastic model for the

convective layer.

To construct the Lagrangian one-particle model in the convective case, we have to

specify the Eulerian velocity pdf. For simplicity, we will treat the case when the Eulerian

pdf has the form

pE(u; v; w; z; t) = p
k

E
(w; z; t)p?

E
(u?; z; t); (4:1)

where u? =
p
u2 + v2, p

k

E
is the pdf of the vertical velocity component, and p

?

E
is the pdf

of the horizontal velocity components satisfying the relation:

1Z
�1

du

1Z
�1

dvp
?

E
(
p
u2 + v2; z; t) = 2�

1Z
0

du? u?p
?

E
(u?; z; t) = 1:
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Note that in the convective case, the assumption (4.1 ) is quite reasonable, because

the vertical and horizontal velocity 
uctuations can be considered as approximately inde-

pendent.

Under the horizontally isotropy and assuming that the vertical velocity component is

governed as assumed in the Assumption, point (i), the model (2.1 ) takes the form

dX = Udt; dY = V dt; dZ = Wdt ;

dU = Ug(t; Z; U?;W )dt+
q
C0"dBu(t) ;

dV = V g(t; Z; U?;W )dt+
q
C0"dBv(t) ; (4:2)

dW = aw(t; Z;W )dt+
q
C0"dBw(t) :

Thomson's well-mixed condition implies in our case that

u?
@pE(u?; w; z; t)

@t
+

@

@z
(wu?pE) +

@

@u?
(u2

?
g pE) +

@

@w
(u? aw pE)

=
C0"

2

n @

@u?

�
u?

@pE

@u?

�
+

@
2

@w2

�
u?pE

�o
: (4:3)

This relation follows from (1.7 ) and from the following simple equalities

@

@u
(ugpE) +

@

@v
(vgpE) =

1

u?

@

@u?
(u2

?
gpE);

@
2
pE

@u2
+
@
2
pE

@v2
+
@
2
pE

@w2
=

1

u?

@

@u?

�
u?

@pE

@u?

�
+
@
2
pE

@w2
:

The well-mixed condition (4.3 ) can be simpli�ed as follows. Integrate (4.3 ) over u?

and use the relation 2�
R
1

0 pE(u?; w; z; t)u?du? = p
k

E
(w; z; t). This yields (assuming u2?pE

and u?
@pE

@u?
tend to zero as u? !1)

@p
k

E

@t
+

@

@z
(wp

k

E
) +

@

@w
(awp

k

E
) =

C0"

2

@
2
p
k

E

@w2
: (4:4)

This is the one-dimensional well-mixed condition (2.4 ). As in the case (2.4 ), we can �nd

from (4.4 ) the coeÆcient aw(t; z; w) :

aw(t; z; w) =
1

p
k

E
(w; z; t)

8<
:C0"

2

@p
k

E

@w
�
 
@f1E

@t
+
@F1E

@z

!9=
; ; (4:5)

where

f1E(w; z; t) =

wZ
�1

p
k

E
(w0; z; t) dw0

;

F1E(w; z; t) =

wZ
�1

w
0
p
k

E
(w0; z; t) dw0

:

To �nd the function g, we substitute (4.1 ) in (4.3 ), which in view of (4.4 ) yields
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u?
@p

?

E

@t
+

@

@z
(wu?p

?

E
) +

@

@u?
(u2

?
g p

?

E
) =

C0"

2

@

@u?

�
u?

@p
?

E

@u?

�
: (4:6)

Integrating (4.6 ) over u? from 0 to1 we get, under the condition u2
?
gp

?

E
! 0 as u? ! 0,

that

@PE

@t
+ w

@PE

@z
+ u

2
?g(t; z; u?; w)p

?

E
=

C0"

2
u?

@p
?

E

@u?
; (4:7)

where

PE(u?; z; t) =

u?Z
0

up
?

E
(u; z; t)du:

This de�nes the function g if p?
E
is given.

For example, if

p
?

E
(u?) =

1

2��2(t; z)
exp

n
� u

2
?

2�2(t; z)

o
; PE(u?) =

1

2�

�
1� exp

n
� u

2
?

2�2(t; z)

o�
;

then,
@PE

@z
=

@ ln�?

@z
(u2

?
p
?

E
);

@PE

@t
=

@ ln�?

@t
(u2

?
p
?

E
);

@p
?
E

@u?
= �u?

�
2
?

p
?

E
;

and we get

g =
1

u2
?
p?
E

nC0"

2
u?

@p
?

E

@u?
� @PE

@t
� w

@PE

@z

o
= �C0"

2�2
?

� @ ln�?

@t
�w

@ ln�?

@z
: (4:8)

As to the coeÆcient aw(t; z; w), it is suggested in Luhar and Britter (1989) for the

stationary convective boundary layer.

Remark. We have assumed here the factorization (4.1 ), which simpli�es the form of

g. Generally, when (4.1 ) is not true, the function g can be found analogously but its

structure is more complicated.

5 Boundary conditions

Note that to complete the description of the Lagrangian stochastic model, we need to

de�ne the behaviour of (X(t); Y (t); Z(t); U(t); V (t);W (t)), the solution to

(1.2 ) in the neighbourhood of the boundary � = f(x; y; z) : z = 0g. We assume that

the boundary is impenetrable, i.e., that w = 0 at the boundary of �. This implies that

the true Lagrangian trajectories never reach �. Therefore it is reasonable to require that

the same property holds for X(t); Y (t); Z(t), the solutions to (1.2 ). This can be done by

special choice of the function "(z; t). Indeed, in the neighbourhood of �, it is reasonable to

consider the 
ow as ideally neutral strati�ed. Therefore, pE(w) is Gaussian, with constant

�w, and the vertical pro�le of "(z) is given by (e.g., see Monin and Yaglom, 1971):

"(z) =
u
3
�

�z
; � ' 0:4; z > z0: (5:1)

Here � is the Karman constant, and z0 is the roughness height.

16



The equation of vertical motion then is

dZ = W dt; dW (t) = � a

Z
W (t)dt+

bp
Z
dB(t); (5:2)

where

a =
u
3
�

2��2
w

; b =
�C0u

3
�

�

� 1

2

:

If we assume that the formula (5.1 ) is true for all z > 0, then all the solutions to

(5.2 ) do not reach the boundary �. Indeed, let � be a random variable (wich depends on

the trajectory Z(t)) de�ned by

�(t) =

tZ
0

ds

Z(s)
:

Then, the vertical velocity in new variable W (�) satis�es the equation

dW (�) = �aW (�)d� + b dB(�):

Therefore, from
dZ

d�
=

dZ

dt

dt

d�
= W (�)Z(�)

we have

Z(�) = Z(0) expfS(�)g; S(�) =

�Z
0

W (� 0) d� 0:

The functionW (�) is an Uhlenbeck-Ornstein process with continuous samples. Therefore,

jS(�)j <1 for all � > 0 with probability one. This implies that Z(�) > 0 provided that

Z(0) > 0. Thus the function Z(�) never reaches the boundary �. The same is true for

Z(t). To show this, it is suÆcient to note that t(�) ! 1 as � ! 1. Let us show this

property. We have

t(�) =

�Z
0

dt

d� 0
d�

0 =

�Z
0

Z(� 0) d� 0 = Z(0)

�Z
0

expfS(� 0)g d� 0:

In Kurbanmuradov (1995) it is shown that with probablity one,

1Z
0

expfS(�)g d� =1:

This implies that with probability one t(�)!1 as � !1.

6 Conclusion

A uniquely de�ned Lagrangian stochastic model in the class of well-mixed models is con-

structed from physically plausible assumptions: (i) in the neutrally strati�ed horizontally

homogeneous surface layer, the vertical motion is mainly controlled by eddies whose size

is of order of the current height, and (ii), the streamwise drift term is independent of

the crosswind velocity 
uctuations. The supposition (i) is motivated by the well known
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property that the vertical motion of vortices whose size is much larger than the current

height is damped by the ground surface. Therefore, it is reasonable to assume that the

vertical drift term is the same as in the isotropic case: a0
w
= a

0

w
(t; z; w). As to the point

(ii), it comes from the assumption that in the special coordinate system where the X-

axis is oriented along the mean velocity vector, the crosswind velocity 
uctuations are

symmetrically distributed with respect to the plane XZ.

In the free convective layer the mean velocity vector vanishes, and the horizontal

motion is isotropic. This property is used to de�ne uniquely the model using only the

point (i) of the Assumption.

In the model presented the Eulerian pdf pE may be not Gaussian, as, for instance, in

the forest canopy (Wilson and Flesch, 1992). The Gaussian case is analysed in details.

The model is compared against the wind-tunnel experiment of Raupach and Legg (1983)

and models due to Thomson (1987), Flesch and Wislon (1992) and Reynolds (1998).

Numerical experiments have shown a good agreement of our model with the models of

Thomson (1987), Flesch and Wilson (1992), and with experimental measurements as well.

However there is a large discrepancy of these results with the results obtained by Reynolds'

model. Our model shows the best �t to the measurements for C0 = 3:5� 0:5; namely, at

C = 4:, we found the best agreement between the calculated and measured values of the

universal constants a; b; c and Pr; at C0 = 3:, the best agreement with the wind-tunnel

experiments by Raupach and Legg (1983) was achieved. It is interesting to note that our

model, also being quadratic in velocity (in the Gaussian case), does not belong to the

general two-parametric class of models suggested by Reynolds (1997); it is also not in the

family of \zero-spin" models introduced by Wilson and Flesch (1997).

It is beleived that the model proposed is well suited for the case of neutrally (or close

to) strati�ed surface layer. For the whole boundary layer with the mean velocity vector

varying with height the generalization might be possible, but requires a special study. The

same is true for the generalization to compressible 
ows which is important for studying

a stably strati�ed surface layer.
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Appendix A. Derivation of the coeÆcients in the Gaussian case.

Here we derive the coeÆcients (2.14 )-(2.16 ) from (2.8 )-(2.10 ) in the case of Gaussian

pdf (2.13 ). First we remark that from (2.5 ) and (2.7 ) it follows

p
0

1E(w; z; t) =
1p
2��w

exp

(
� w

2

2�2
w

)
;

p
0

2E(u; w; z; t) =
1

2��u=w�w
exp

8<
:� 1

2�2
u=w

(u� �w)2 � w
2

2�2
w

9=
; :
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Consequently,

f1E(w; z; t) =

Z w

�w

�1

1p
2�

exp (�t2=2) dt = �

�
w

�w

�
;

F1E(w; z; t) = ��2
w
p
0

1E(w; z; t):

Note that

1

p01E

@p
0

1E

@w
= � w

�2
w

; � 1

p01E

@F1E

@z
=

1

2
(w2 + 1)

@�
2
w

@z
;

and
@f1E

@t
= � w

�2
w

@�w

@t

_�(w=�w);

where

�(�) =

Z
�

�1

1p
2�

exp (�t2=2) dt; _�(�) =
d�

d�
:

From (2.8 ) we �nd

a
0

w
(t; z; w) = �

 
C0"

2�2
w

� 1

�w

@�w

@t

!
w +

1

2

@�
2
w

@z

 
w
2

�2
w

+ 1

!
:

Note that this coincides with Thomson's relevant expression in his 1D model.

By the de�nition

f2E(u; w; z; t) = p
0

1E(w; z; t) �
�u� �w

�u=w

�
:

To �nd a
0

u
from (2.9 ) we need the expressions for

@f2E

@t
;

@f2E

@z
;

@f2E

@w
;

@p
0

2E

@u
;

@
2
f2E

@w2
:

By de�nition we get

@p
0

2E

@u
= �(u� �w)

�2
u=w

p
0

2E;
@f2E

@t
= f2E

(
1

2�2
w

@�
2
w

@t

 
w
2

�2
w

� 1

!
+	(�)

@�

@t

)
;

@f2E

@z
= f2E

(
1

2�2
w

@�
2
w

@z

 
w
2

�2
w

� 1

!
+	(�)

@�

@z

)
;

@f2E

@w
= f2E

(
� w

�2
w

� 	(�)�

)
;

@
2
f2E

@w2
= f2E

(h
� w

�2
w

�	(�)�
i2 � 1

�2
w

+ �
2 _	(�)

)
;

where

	(�) =
d

d�
ln�(�); _	(�) =

d	(�)

d�
; � =

u� �w

�u=w
; � =

uw

�u=w�
2
w

:

Substituting these expressions in (2.9 ) yields
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a
0

u
=� C0"

2�2
u=w

(u� �w) +
1

p
0
2E

(
�@f2E

@t
�w

@f2E

@z
�f2E

@a
0

w

@w
�a

0

w

@f2E

@w
+
C0"

2

@
2
f2E

@w2

)

= � C0"

2�2
u=w

(u� �w) +
f2E

p02E

(
� 1

2�2
w

@�
2
w

@t

 
w
2

�2
w

� 1

!
� 	(�)

@�

@t

�w
"

1

2�2
w

@�
2
w

@z

 
w
2

�2
w

� 1

!
+	(�)

@�

@z

#
� @a

0

w

@w
� a

0

w

"
� w

�2
w

�	(�)�

#

+
C0"

2

2
4
 
� w

�2
w

� 	(�)�

!2

� 1

�2
w

+ �
2 _	(�)

3
5
9=
; : (A1)

Since
f2E	

p
0
2E

= �u=w;
_	(�) = �	(�)(� +	(�)) ;

we �nd from (A1)

a
0

u
(t; z; u; w) = �C0"(1 + �

2)

2�2
u=w

(u� �w) +
�

2�2
w

 
C0"+

@�
2
w

@t

!
w

+
�

2

@�
2
w

@z

 
w
2

�2
w

+ 1

!
� �u=w

 
@�

@t
+ w

@�

@z

!

= �C0"(1 + �
2)

2�2
u=w

(u� �w) +
�

2�2
w

 
C0"+

@�
2
w

@t

!
w +

�

2

@�
2
w

@z

 
w
2

�2
w

+1

!

�
�@�
@t
+w

@�

@z

�
w � 1

�u=w

�@�u=w
@t

+ w
@�u=w

@z

�
(u��w) ;

Since for the case considered the condition (2.11) is satis�ed, we use here the expression

(2.12 ). Substituting

1

pvE

@pvE

@v
= � v

�2
v

;
1

pvE

@fvE

@t
= � v

�v

@�v

@t
;
1

pvE

@fvE

@z
= � v

�v

@�v

@z

into (2.12 ), we get

a
0

v
(t; z; u; v; w) = �

 
C0"

2�2
v

� 1

�v

@�v

@t

!
v +

1

2

@�
2
v

@z

vw

�2
v

:

Appendix B. Relation to other models.

Two-parametric class of models due to Reynolds.

Here we analyse Reynolds' two-parametric class of models in the case of horizontal-

ly homogeneous turbulence with the mean velocity direction not varying with height.

It is also assumed that the X-axis is oriented along the mean velocity vector, and the

crosswind velocity 
uctuations are symmetric with respect to the plane XZ. Then the

two-parametric class of models quadratic in velocity, which satis�es the well-mixed con-

dition for Gaussian pE, considered by Reynolds (1997), reads

dX1 = (U 0

1 + �u(X3; t))dt; dX2 = U
0

2dt; dX3 = U
0

3dt;

dU
0

1 = a
0

1(t; X3; U
0

1; U
0

2; U
0

3)dt+
q
C0" dB1(t);
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dU
0

2 = a
0

2(t; X3; U
0

1; U
0

2; U
0

3)dt+
q
C0" dB2(t); (B1)

dU
0

3 = a
0

3(t; X3; U
0

1; U
0

2; U
0

3)dt+
q
C0" dB3(t) ;

where

a
0

i
(t; z; u1; u2; u3) = �C0"

2
�ijuj +

1

2

@�i3

@z
+

1

2
C2

�@�i3
@z

+ �i3�km
@�km

@z

�

�1

2
�im

@�jm

@t
uj + C1

�
�i3

@�u

@z
�j1 � Æ1iÆ3j

@�u

@z

�
uj � 1

2
C2�i3

@�jk

@z
ujuk

�1

2
(1� C2)�im

@�km

@z
u3uk; i = 1; 2; 3: (B2)

Here we adopt the summation convention, hence the notation (X; Y; Z) = (X1; X2; X3)

and (U; V;W ) = (U1; U2; U3) is used; Æij is the Kronecker symbol, �ij = (��1)ij are the

velocity covariances which in the case considered have the form:

�11 = �
2
u
; �22 = �

2
v
; �3 = �

2
w
; �12 = �21 = �23 = �32 = 0; �13 = �31 = uw;

�11 =
�
2
w

�
; �22 =

1

�2
v

; �33 =
�
2
u

�
; �12 = �21 = �23 = �32 = 0; �13 = �31 = �uw

�
;

where �2
u
, �2

v
, and �

2
w
are the variances of velocity components, � = �

2
u
�
2
w
� (uw)2.

Thus the model includes two free parameters C1 and C2. Reynolds (1998) has sug-

gested C1 = �3, and C2 = 0 to �t the experimental results for wind-tunnel boundary

layer by Legg (1983).

It is interesting to �nd if there are some values of C1, C2 such that the model (B2)

reduces to our model (2.14 )-(2.16 ). To this end, it is suÆcient to check if the model (B2)

satis�es the Assumption of our model (see Section 2.1). It is clear that the point (ii) of

the Assumption is satis�ed i� C2 = 0, since in the expression for a01, the dependence on

u2 can be eliminated only if C2 = 0. Thus taking C2 = 0, we analyse the point (i) of

the Assumption. In the expression for a03(t; z; u1; u2; u3) we are interested in the terms

depending on u1 and u2, therefore we write it as

a
0

3 = f: : :g+ C1�33
@�u

@z
�11u1 � 1

2
C0"�31u1 � 1

2
�3m

@�1m

@z
u3u1

where f: : :g stands for the terms not depending on u1 and u2. From this we see that if

the term @�1m

@z
is not equal to zero, then the point (i) cannot be satis�ed. Note that this

term iz zero in the ideally-neutral strati�cation (L = 1). In this case (i) is satis�ed, i�

C1 = C0u
4
�
=(2�4

w
).

From this we conclude that only in the case of ideally-neutral strati�cation our model

belongs to the class of models (B1)-(B2) if C2 = 0, and C1 = C0u
4
�
=(2�4

w
).

The \zero-spin" property.

Here we show that in our model (for simplicity we consider the stationary turbulence)

the average increment hd�; zi to the orientation � = arctan(w0
=u

0) of the Lagrangian

velocity 
uctuation vector in 2D case is negative, and hence it does not belong to the

\zero-spin" class of models.
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Wilson and Flesch (1997) showed that

hd�; zi = dt

1Z
�1

1Z
�1

u�
0

w
� w�

0

u

u2 + w2
du dw ;

where
�
0

u

p0
E

= a
0

u
� C0"

2

@ ln p
0

E

@u
;

�
0

w

p0
E

= a
0

w
� C0"

2

@ ln p
0

E

@w
:

For our model (see (2.18 )) we �nd

�
0

u

p0
E

= w
2d�

dz
+

1

�

d�

dz
w(u� �w)� C0"�

2

2�2
(u� �w) +

C0"�

2�2
w

w +
�

2

d�
2
w

dz

�
1 +

w
2

�2
w

�
;

�
0

w

p
0
E
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1

2

d�
2
w

dz

�
1 +

w
2

�2
w

�
� C0"�

2�2
(u� �w);

where we use the notation � = �u=w. After some algebra we can �nd that

hd�; zi = � dt
C0"�

2

1Z
�1

1Z
�1

p
0

E

u2 + w2

�u2
�2

+
�
2
w
2

�2
+
w
2

�2
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�
du dw < 0 :
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