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Abstract

Surface waves at an interface between a saturated porous medium and a

liquid are investigated. Existence and peculiarities of surface wave propaga-

tion are revealed. Three types of surface waves are proven to be possible:

true Stonely surface wave propagating almost without dispersion, leaky slow

pseudo-Stonely wave, and leaky generalized Rayleigh wave. True Stonely and

generalized Rayleigh waves correspond to those waves, which exist at a free

interface of a saturated porous medium with vacuum.

1 Introduction

In this paper we proceed to study the e�ect of �uid-�lled porous media on the veloc-

ity and attenuation of surface waves, which propagate along the interface separating

porous and liquid half-spaces.

Let us recall that at a single component solid-liquid interface there exist two surface

waves: a generalized Rayleigh wave and a true Stonely wave (sometimes called the

Scholte wave) [1-3]. The phase velocity of generalized Rayleigh wave, which is a

system of three waves (one in the liquid and two in the solid), is higher than the

wave velocity in the �uid alone. This surface wave radiates energy continuously into

the liquid, forming therein an inhomogeneous wave departing from the boundary.

Since the energy �ows across the interface (leaky wave), the wave attenuates along

the propagation direction.

Stonely surface wave consists of an inhomogeneous wave in the liquid and two in-

homogeneous waves in the solid and it propagates parallel to the boundary without

attenuation. Its velocity is lower than all the bulk velocities in the solid, and in the

liquid.

Due to the presence of a second compressional wave in a �uid-saturated porous

medium, the properties of surface waves at interfaces of �uid-�lled porous solid in

contrast to solid-liquid interface are di�erent. Three types of surface waves are

proven to be possible. Before we proceed to investigate these waves, it is instructive

to compare the approach presented in [1], where wave number k is de�ned as k =

k(!), and approach, presented in this paper and [4], where frequency ! is de�ned

as ! = !(k).

Traditionally, for the research of inhomogeneous boundary-value problems (see [1])

frequency ! is choosen to be real and wave number k = k(!) is sought as a solution

of corresponding dispersion equation and can be complex. It is easy to show that
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complex roots k 2 C; jkj � Constj!j1+Æ; Æ > 0, can be represented in terms of

complex roots ~!, which have been derived in [4] and in Part 4 of this paper, in the

following form:

k =
!

~!
+ o(1=j!j); j!j � 1 (1:1)

Both approaches [1,4] lead to the same structure of solution for isolated waves,

namely

U� = A(y)exp(i(kx� !t)); (1:2)

where indices � denote half-spaces y > 0 and y < 0 respectively and an amplitude

A(y)! 0 as jyj ! 1. However, a linear function ikx, which can be written as

ikx = i
!x

j~!j2Re~! +
!x

j~!j2 Im~! (1:3)

increases for x > 0 and decreases for x < 0 (or vice versa, depending on sign Im~!).

Therefore, surface waves with complex wave number k cannot exist as isolated waves

and following [5] in order to get bounded solutions one should consider Fourier

integrals with respect to k. The latter means that these surface waves exist only as

a result of interaction with the bulk waves.

In contrast to [1], our approach, where k is real and ! has to be de�ned as a function

of k, (see [4] and present paper) allows one in the case of the complex roots of the

dispersion equation to consider isolated surface waves without interaction with the

bulk waves. Most likely, this approach also allows one to investigate the stability of

isolated surface waves and, consequently, to prove the existence of surface waves for

nonlinear problems.

2 Mathematical Model and Boundary Conditions

Consider two semi-in�nite spaces 
I and 
II having a common interface �. Let the

region 
I is occupied by a saturated porous medium and the region 
II is occupied

by the liquid. In dimensionless variables the set of �eld equations describing the

porous medium has the form (x 2 R3; t 2 [0; T ]) [4,6]:

Mass conservation equations

@

@t
%f + div(%fvf) = 0;

@

@t
%s + div(%svs) = 0: (2:1)

Here % is the mass density, v is the velocity vector and indices f and s indicate a

�uid or solid phases, respectively.
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Momentum conservation equations

%f

�
@

@t
+ (vfj;

@

@xj
)

�
vfi �

@

@xj
T
f
ij + �(vfi � vsi) = 0;

%s

�
@

@t
+ (vsj;

@

@xj
)

�
vsi �

@

@xj
T s
ij � �(vfi � vsi) = 0: (2:2)

Here T f
ij and T

s
ij are the stress tensors, � is a positive constant. The stress tensor in

the �uid is assumed to be given by the following linear law:

T
f
ij = �pfÆij � ��mÆij; pf = pf0 + �(%f � %f0); (2:3)

where pf is the partial �uid pressure. pf0 and %f0 are the initial values of this pressure

and �uid mass density, respectively. � is the constant compressibility coe�cient of

the �uid depending only on equilibrium value of the porosity mE. �m = m�mE is

the change of the porosity. � denotes the coupling coe�cient of the components.

The stress tensor in skeleton has the following form:

T s
ij = �ekkÆij + 2�eij + ��mÆij; (2:4)

where � and � are the Lame constants of the skeleton, which depend only on mE,

and eij is the strain tensor of small deformations.

Equation for the change of porosity

@

@t
�m + (vsi;

@

@xi
)�m +mEdiv(vf � vs) = ��m

�
; (2:5)

where � is the relaxation time of porosity.

For the strain tensor one has:

eij =
1

2

�
@ usi

@xj
+
@usj

@xi

�
; (2:6)

where us is the displacement vector for the solid phase with vs = @us=@t.

Basic conservation equations describing the liquid in the region 
II have the form:

Mass conservation equation

@

@t
%�f + div

�
%�f v

�
f

�
= 0: (2:7)

Here upper index ��� indicates the region 
II .

Momentum conservation equation

%�f

"
@

@t
+

�
v�fj;

@

@xj

�#
v�fi �

@

@xj
T�ij = 0: (2:8)
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Here T�ij is the stress tensor:

T�ij = �p�f Æij; p�f = p�f0 + ��
�
%�f � %�f0

�
: (2:9)

Liquid is assumed to be compressible with constant compressibility coe�cients ��.
p�f0 and %

�
f0 are the initial values of pressure and liquid density.

After linearization about equilibrium state with constant values %�f = %�f0 and v
�
f =

0, equations (2.7), (2.8) take the following form:

@

@t
%�f + %�f0

@

@xi

 
@u�fi
@t

!
= 0; (2:10)

%�f0
@2u�fi
@t2

+
@

@xj
p�f Æij = 0; (2:11)

where u�f is the displacement vector for the liquid with v�f = @u�f
Æ
@t

In what follows we consider 2D-problem of propagation of surface waves along the

interface y = 0, which separates the porous medium (semi-in�nite space y > 0) and

the liquid (semi-in�nite space y < 0).

On the interface y = 0 the following linearized boundary conditions, which are the

consequence of the general conditions [4], have to be satis�ed:

a) the continuity of total stresses:�
T s
ij + T

f
ij

�
nj

���I = T�ij nj
���II; (2:12)

i.e.

 
@us1

@y
+
@us2

@x

!���
y=0

= 0 (2:13)

and

�div us + 2�
@us2

@y
� �
�
%f � %f0

����
y=0

= ���
�
%�f � %�f0

����
y=0

(2:14)

b) the continuity of mass �ux across the interface

%f0
@

@t

�
uf2 � us2

����
y=0

= %�f0
@

@t

�
u�f2 � us2

����
y=0

(2:15)

c) proportionality between discontinuity in pressure and relative velocity of the �uid

with respect to solid phase

�%f0
�
vf2 � vs2

����
y=0

= �
�
pf �mEp

�
f

����
y=0

(2:16)
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In order to prove that boundary value problem (2.11)-(2.15) [4],(2.10)-(2.16) has

solutions as surface waves, we will investigate the propagation of harmonic wave

whose frequency is !, wave number is k, and amplitude depends on y. It should be

noted here that as in [4] we consider the solutions of (2.1)-(2.9) in the absence of

external forces which are de�ned uniquely by Cauchy data. In this case it is natural

to derive ! as a function with respect to real wave number k 2 R1. Thus, Re!=k

de�nes the phase velocity of the waves, while Im! de�nes attenuation.

3 Construction of Solution

As in the case of the free interface of the porous medium, solution is sought in the

following form:

uf = r'f +
�
( f )y;�( f )x

�
; us = r's +

�
( s)y;�( s)x

�

'f = Af(y) exp
�
i(kx� !t)

�
; 's = As(y) exp

�
i(kx� !t)

�
 f = Bf(y) exp

�
i(kx� !t)

�
;  s = Bs(y) exp

�
i(kx� !t)

�
%f � %f0 = A%;f(y) exp

�
i(kx� !t)

�
%s � %s0 = A%;s(y) exp

�
i(kx� !t)

�
(3:1)

�m = A�m(y) exp
�
i(kx� !t)

�
Consequently, solution (3.32) [4] remains to be valid.

For the liquid, occupying region y < 0, the solution has the form:

u
�
f = r'�f

'�f = A�f (y) exp
�
i(kx� !t)

�
(3:2)

%�f � %�f0 = A�%;f(y) exp
�
i(kx� !t)

�
Substituting (3.2) into (2.10), (2.11) one gets:

�%�f0!2A�f + ��A�%;f = 0; (3:3)

whence
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A�%;f =
�
k�f
�2
%�f0A

�
f ;

�
k�f
�2

=
!2

��
(3:4)

and

A�%;f + %�f0

 
d2

dy2
� k2

!
A�f = 0: (3:5)

Taking into account (3.4), (3.5) has the following bounded solution

A�f = C�1 (0) exp(
�
1 y); �1 =

q
k2 � (k�f )

2 = jkj
r

1� ~!2

��
; (3:6)

where ~! = !
Æ
k.

In order to derive dispersion relation and de�ne the frequencies of the surface waves,

one should substitute solutions (3.32) [4] and (3.6) into boundary conditions (2.13)-

(2.16). We proceed to do so.

4 Dispersion Relation

Substituting the solution into boundary conditions for the case � = 0 and jkj �
1 one gets the following system of equations with respect to unknown constants

C1(0); C2(0); Cs(0) [see 4] and C
�
1 (0) :

(�+ 2�)(~22 � 1)C2 + 2�C2 + 2�i~�sCs � ~!2%f0C1 = �~!2%�f0C
�
1 ; (4:1)

~2C2 +
i

2

�
~�2s + 1

�
Cs = 0; (4:2)

�~1C1 + ~2C2 + iCs =
%�f0
%f0

~�1 C
�
1 ; (4:3)

i
�
~�1 C

�
1 + ~2C2 + iCs

�
= �~!

%f0

%�f0

�
C1 � C�1

�
; (4:4)

where

~1 =

r
1� ~!2

�
; ~2 =

s
1� ~!2

a2s1
;
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~�s =

s
1� ~!2

a2s2
; ~�1 =

r
1� ~!2

��
: (4:5)

The condition that the determinant of the system (4.1)-(4.4) must vanish yields the

dispersion equation for the de�nition of frequencies of the surface waves:

 
� �

~1~2
Pv + %�f0

~!4

~1a
2
s2

! 
~�1 � i�~!

 
~�1
~1

+mE

!!

�%�f0

 
1 +

~�1
~1

!
~!4

a2s2

 
1� i

~1
�~!(1�mE)

!
= 0: (4:6)

Here Pv is the dispression relation, corresponding to the case of surface waves at a

free interface of a porous medium [4]:

Pv = ~1PR + ~2
%f0

%s0

~!4

a4s2
; (4:7)

whereas PR is a classical Rayleigh equation [4]:

PR =

 
2� ~!2

a2s2

!2

� 4~2~�s: (4:8)

Obviously, (4.6) includes radicals ~1; ~
�
1 ; ~2; ~�s, which are multi-valued functions. In

order to make these function single-valued, consider Riemann surface of ~! with the

cuts outgoing from the points ��;���;�as2;�as1. In the following we will consider
this Riemann surface, where the signs at radicals on the real axis satisfy radiation

condition [1]. The latter means that solutions (3.1) and (3.2) are bounded.

Next consider for simplicity the case when the liquid, saturating a porous medium,

and the liquid, occupying half-space y < 0, are the same and, consequently, �� = �

as well as ~�1 = ~1.

Let either

Condition 1

1 > maxRe

 
~!2

a2f1
;
~!2

a2s2
;
~!2

a2s1

!
(4:9)

and, consequently, ~1; ~2 and ~�s are de�ned as in (4.5),

or
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Condition 2

Re
~!2

a2f1
> 1 > maxRe

 
~!2

a2s2
;
~!2

a2s1

!
; (4:10)

hold. Then ~2 and ~�2 are de�ned as above. However

~1 = i

r
~!2

�
� 1 (4:11)

for the �rst strip of the Riemann surface (see Appendix 1 for detailed explanation).

Next we will show that dispersion equation (4.6) has three roots satisfying either

(4.9) or (4.10). In what follows we investigate the dependence of the roots of (4.6)

on parameters � and %�f0 and consider the correspondence of these roots with those

odtained in [4] for the case porous medium-vacuum.

5 Asymptotics of the Roots

First let us prove that there exists a root ~!1 of (4.6) satisfying (4.9), i.e. Re~!1 2
[0;
p
�). The solution is sought in the following form:

~! =
p
�(1� c1�

2 + � � � ): (5:1)

Substituting (5.1) into (4.6) one gets:

��
p
2c1�

"
� 2

�
1

a2s2
� 1

a2s1

�
�+ 4

�
1

a2s2
� 1

a2s1

�
c1

�
�3

#

�
�p

2c1�� i�
p
�(1� c1�

2)(1 +mE)
�

�2(1� c1�
2)4

a2s2

"
(%�f0 � %f0)

�p
2c1�� i�

p
�(1� c1�

2)(1 +mE)
�

�2%�f0
�p

2c1�� i�
p
�(1� c1�

2)(1�mE)
�#

+O(�13) = 0: (5:2)

Here we consider outer expansion � � 1 of the roots with respect to �. Thus, the

coe�cient of lowest power of �

�2�
p
2c1

�
1

a2s2
� 1

a2s1

�
(1 +mE) +

(1 +mE)%f0 + (1� 3mE)%
�
f0

a2s2
%�f0 = 0 (5:3)

8



and, consequently,

p
2c1 =

(1 +mE)%f0 + (1� 3mE)%
�
f0

2a2s2�

�
1
a2
s2

� 1
a2s1

�
(1 +mE)

: (5:4)

By virtue of physical reasons,

(1 +mE)%f0 + (1� 3mE)%
�
f0 > 0; (5:5)

and, consequently, c1 > 0. Therefore

Re~!1 =
p
�
�
1� c1�

2 +O(�3)
�
2 [0;

p
�): (5:6)

This phase velocity corresponds to very slow surface wave (true Stonely wave),

propagating almost without dispersion. Its speed is less than the velocities of all

bulk waves in the porous medium and in the liquid and has order O(
p
�).

Next we will show that dispersion equation (4.6) has also two complex roots, sat-

isfying Condition (4.10). These roots correspond to the localized with respect to y

surface waves whose phase velocities are close to
p
� and as2 respectively.

First of them is sought in the following form:

~! =
p
�(1 + c2�+ c3�

3=2 + � � � ): (5:7)

Substitution of (5.7) into (4.6) yields:

��(
p
2c2
p
� +

c3p
2c2

�)

"
� 2

�
1

a2s2
� 1

a2s1

�
� + 4c2

�
1

a2s2
� 1

a2s1

�
�2

#

�
 
�
p
2c2
p
�� c3p

2c2
� + �

p
�(1 + c2�+ c3�

3=2)(1+mE)

!
� i

�2(1 + c2�+ c3�
3=2)4

a2s2

�
(
(%�f0 � %f0)~2

�
�
p
2c2
p
�� c3p

2c2
�+ �

p
�(1 + c2�+ c3�

3=2)(1 +mE)
�

�2%�f0~2
�
�
p
2c2
p
�� c3p

2c2
�+�

p
�(1+c2�+c3�

3=2)(1�mE)
�)

+O(�11) = 0: (5:8)

It should be noted here, that for ~1 the following branch was taken: ~1 = i

q
~!2

�
� 1:

For the lowest O(�2) approximation one gets:

�
p
2c2 + �(1 +mE) = 0 (5:9)
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and, consequently,

c2 =
�2

2
(1 +mE)

2 > 0: (5:10)

For the next O(�5=2) approximation one has:

�2�
�

1

a2s2
� 1

a2s1

�
c3 �

i

a2s2

"
� 2%�f0

�
�
p
2c2 + �(1�mE)

�#
= 0; (5:11)

whence

c3 = �i 2

a2s2

%�f0�mE

�
�

1
a2
s2

� 1
a2
s1

� : (5:12)

Finally, one gets the following expansion for the second root of dispersion relation

(4.6):

~!2 =
p
�
�
1 + c2�+ c3�

3=2 +O(�2)
�
; (5:13)

where coe�cients c2 and c3 are de�ned above. This root de�nes slightly dispersive

surface wave (pseudo-Stonely wave), whose phase velocity is close but somewhat

more than
p
�. This is a leaky wave, thus reradiation of energy occurs across the

interface.

As it was mentioned already, dispersion equation (4.6) has one more complex root,

satisfying also (4.10). It corresponds to generalized Rayleigh wave with phase ve-

locity cR0 ! cR as %�f0 ! 0, where cR is a velocity of the classical Rayleigh wave

in elastic half-space. Taking into account that here we have to choose the following

branch ~1 = i

q
~!2

�
� 1 and, due to the fact that cR0 is close to as2,

q
~!2

�
� 1 � ~!p

�
,

equation (4.6) can be rewritten as:

 
PR � i

p
�~2

%f0

%s0
+ i
p
�~2

%�f0
%s0

~!3

a4s2

!�
1�

p
��(1 +mE)

�

�i2~2
p
�
%�f0
%s0

~!3

a4s2

�
1�

p
��(1�mE)

�
= 0: (5:14)

The solution is sought in the following form:

~! = 
0 +
p
�
1 + � � � (5:15)

It is easy to see that leading part 
0 of expansion (5.15) satis�es the Rayleigh

equation: PR(
0) = 0, i.e. 
0 = cR. For the next term 
1 one gets the following

10



equation:

i

s
1� 
2

0

a2s1

%�f0 + %f0

%s0


3
0

a4s2

�
"

4

a4s2

3
0 �

8

a2s2

0 � 4

d

d~!

�s
1� ~!2

a2s1

s
1� ~!2

a2s2

�����
~!=
0

#

1 = 0: (5:16)

Finally, one has:

~!R0 = cR +
p
�
1 +O(�) (5:17)

where 
1 is imaginary and is determined by (5.16). It is easy to estimate that

Im
1 > 0. Thus, solutions (3.1),(3.2) decrease as y ! �1, i.e. indeed we obtained

the solution in the form of surface waves. It should be noted that complex roots

~!2 and ~!R0 lie at the �rst strip of the Riemann surface, while ~!1 lies at the upper

(second) strip of the Riemann surface. Moreover, if � ! 0 and %�f0 ! 0 (limit

passage to the vacuum), the roots ~!1 and ~!R0 continuously pass to the corresponding

roots deriveded in [4] for the case of a free interface of a saturated porous medium.

Simultaneously, the root ~!2 tends to
p
�, i.e. this surface wave is transformed into

the bulk compressional wave of the second kind (see Appendix 2).

Because of two-parametrical dependence of dispersion equation (4.6) on � and %�f0,
bifurcation of its roots may happen. That is why we have to consider asymptotics

of the roots with respect to �main� parameter � (see Appendix 2).

6 Conclusions

The results presented in the paper concern surface waves which propagate on an

interface separating a saturated porous media and a liquid. The present research

reveals new features of surface waves in porous media in comparison with the case of

liquid/elastic medium interface. In contrast to this classical case, where two surface

wave exist, namely true Stonely wave and generalized Rayleigh wave, in porous

materials three types of surface waves are proven to be possible. They are due to

the combination of four waves: three waves in porous medium and one wave in

liquid.

The �rst mode is a true Stonely wave, which, as shown in (5.6), propagates almost

without dispersion. Asymptotic analysis showed that its velocity is less than the

velocities of all bulk waves in unbounded porous medium and in a liquid and is

in�uenced primarily by the compressibility coe�cient of the liquid phase. If �! 0

and %�f0 ! 0 (limit passage to the vacuum), this wave passes to the analogous one

at a free interface of a porous medium.

The second type of surface waves are leaky pseudo-Stonely waves. Its velocity is

close but somewhat more than velocity of the lowest logitudinal wave of the second

kind and is de�ned, as for the true Stonely wave, by the compressibility coe�cient
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of the liquid phase. If �! 0, than this wave is degenerated to the bulk logitudinal

wave of the second kind.

The third mode is a leaky generalized Rayleigh wave since its phase velocity is close

to the velocity of the classical Rayleigh wave. In typical case of an interface between

liquid and elastic half-spaces a generalized Rayleigh wave is carried mostly by the

elastic half-space and radiates some of its energy into the liquid. In porous materials

most likely the main part of its energy is absorbed by a slow compressional wave.

However, this statement has solely a physical nature and could not yet be proven.

If %�f0 ! 0, this wave is transformed to the generalized Rayleigh wave at a free

interface of a porous medium.

Leaky modes are the intermediate waves between surfaces waves and bulk waves. It

is obvious that due to energy radiation into the bulk of the medium, they can exist

only in the limited domain (localized waves).

Appendix 1

Here we expalin in detail how to choose the sign at the radical ~1 for the upper

(second) and �rst strips of the Riemann surface.

Locally, in the small neighborhood of ~! =
p
� Riemann surface consists of two

strips. Any point at this surface ~! =
p
�(1 + z) can be described by the pair

(%; '(mod4�)); % 2 (0; Æ]; ' 2 R1, where z = % exp(i')(1 + o(�)); 0 < % <
p
�,

�3
2
� � ' < 1

2
� for the �rst stript and 1

2
� � ' < 5

2
� for the second strip. Then

r
1� !2

�
=
p
�2% exp(i')(1 + o(�)) = i exp(

1

2
i')
p

2%(1 + o(�))

for the �rst strip �3
2
� � ' < 1

2
� andr

1� !2

�
=
p
�2% exp(i')(1 + o(�)) = i exp(

1

2
i(2� + '))

p
2%(1 + o(�))

= �i exp(1
2
i')
p

2%(1 + o(�))

for the second strip �3
2
� � ' < 1

2
� (this strip is called upper in [1]).

Appendix 2

True Stonely and generalized Rayleigh waves

Let us prove that for the case � ! 0; %�f0 ! 0 (limit passage to the vacuum) the

roots ~!1 and ~!R0 of dispersion equation (4.6) continuously pass to the roots ~!1 and

~!R0 of dispersion relation derived in [4] for the free interface of a porous medium.
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Regarding generalized Rayleigh wave this statement simply follows from (5.16) if

%�f0 ! 0. Than (5.17) coincides with (4.26) [4].

In order to prove this statement for true Stonely wave, we have to consider inner

expansion of the roots with respect to �, i.e. let � = �0
p
�; �0 � 0. Then for !1

(see (5.1)) dispersion relation (4.6) takes the form:

� 1

a2s2

�
2�(1� �)(

p
2c1)

2 �
p
2c1(%f0 + %�f0 + 2i�0�(1 +mE)(1� �))

+i�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

��
�3 +O(�7=2); (A2:1)

where � = a2s2=a
2
s1. From the leading part of (A2.1) it follows that

p
2c1 = Z satis�es

the equation

2�(1� �)Z2 �
�
%f0 + %�f0 + 2i�0�(1 +mE)(1� �)

�
Z

+i�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
= 0: (A2:2)

Since Rec1 should be positive, we look for the roots such that ReZ > 0 and ReZ2 > 0.

For �0 = %�f0 = 0 one has:

Z
�
Z � %f0

2�(1� �)

�
= 0 (A2:3)

and, consequently, Z = 0 or

Z =
%f0

2�(1� �)
and c1 =

%2f0

8�2(1� �)2
: (A2:4)

Thus, (A2.4) de�nes the �rst approximation of

~!vac
1 =

p
�(1� c1�

2 + :::) (A2:5)

for the case porous medium-vacuum (see (4.22) [4]). Obviously, (A2.3) has the

unique root such that ReZ > 0 and ReZ2 > 0.

Now we will prove that for �0 � 0 equation (A2.2) has two roots Ẑ+ and Ẑ�,
satisfying conditions ReẐ� > 0 and Re(Ẑ+)2 > 0 and Re(Ẑ�)2 < 0. Let

Ẑ� = a�0 + �0a
�
1 + �20a

�
2 + ::: (A2:6)

Substituting (A2.6) into (A2.2) one gets:

13



a+0 =
%f0 + %�f0
2�(1� �)

; a+1 = i
4mE%

�
f0

%f0 + %�f0
; (A2:7)

i.e. ReẐ+ > 0 and Re(Ẑ+)2 > 0, and

a�0 = 0; a�1 = i
(1 +mE)%f0 + (1� 3mE)%

�
f0

%f0 + %�f0
;

a�2 =
8�(1� �)mE

(%f0 + %�f0)
3

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
: (A2:8)

Using (5.5) one gets

(Ẑ�)2 � �

h
(1 +mE)%f0 + (1� 3mE)%

�
f0

i2
(%f0 + %�f0)

2
�20 +O(�30) (A2:9)

and ReẐ� > 0 and Re(Ẑ�)2 < 0.

Lemma 1 The roots Z(�0; %
�
0 ) of equation (A2.2) for any parameters �0 > 0, %�0 �

0 do not belong to real and imaginary axes of complex plane.

Proof. Let us show that for any �0; %
�
0 roots Z do not intersect imaginary axis. Set

Z = iQ; Q = Q(�0; %
�
0 ) 2 R1: (A2:10)

Substitution of (A2.10) into (A2.2) yields

�2�(1� �)Q2 + 2�0�(1 +mE)(1� �)Q

= i
h
(%f0 + %�f0)Q+ �0((1 +mE)%f0 + (1� 3mE)%

�
f0)
i

(A2:11)

Equation (A2.11) has real solution, if Q satis�es the following system:

�
(%f0 + %�f0)Q+ �0((1 +mE)%f0 + (1� 3mE)%

�
f0) = 0

�0(1 +mE) = Q;
(A2:12)

i.e

(1 +mE)%f0 + (1�mE)%
�
f0 = 0: (A2:13)

Since (A2.13) never holds, equation (A2.11) has no real roots.

Analogously, let us show also that for any �0; %
�
0 roots Z do not intersect real axis.

Setting Z = Q1; Q1 2 R1, one gets:

14



2�(1� �)Q2
1 � (%f0 + %�f0)Q1

= i�0

h
(1 +mE)%f0 + (1� 3mE)%

�
f0 +2�(1� �)(1 +mE)Q1

i
(A2:14)

and (A2.14) has a real root under the same condition (A2.13). As we have mentioned

already, (A2.13) never holds. Thus (A2.14) has no real roots.

Finally we have that equation (A2.2) has two roots Z�(�0; %
�
f0) such that for any

�0 > 0; %�0 > 0 they lie in the �rst quater of complex plane.

Let us denote as Z+ the root such that Re(Z+)2 � 0 (and Z� with Re(Z�)2 < 0 ).

From (A2.2) one gets that

Re(Z+)2 =
1

2�(1� �)

h
(%f0+ %�f0)ReZ

+� 2�0�(1+mE)(1� �)ImZ+
i
> 0 (A2:15)

if

ReZ+ >
2�0�(1 +mE)(1� �)

%f0 + %�f0
ImZ+: (A2:16)

Obviously, (A2.16) is always true for �0 � 0, that is con�rmed by the root Ẑ+ (see

(A2.7)).

Next we have to consider the behaviour of roots of (A2.2) for the case �0 !1. Let

Z = �0W . Then

2�(1� �)W 2 �
h%f0 + %�f0

�0
+ 2i�(1 +mE)(1� �)

i
W

= � i

�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
: (A2:17)

Substituting

W = b0 +
b1

�0
+
b2

�20
+ ::: (A2:18)

into (A2.17) one gets two roots ~Z+ and ~Z� with

b+0 = 0; b+1 =
((1 +mE)%f0 + (1� 3mE)%

�
f0)

2�(1 +mE)(1� �)
;

b+2 =
2i%�f0b

+
1

�(1 +mE)2(1� �)
(A2:19)
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and

b�0 = i(1 +mE); b
�
1 =

%�f0
�(1 +mE)(1� �)

: (A2:20)

Due to (5.5) ~Z� > 0, and, obviously, Re( ~Z+)2 > 0 and Re( ~Z�)2 < 0. Thus,

it was shown that, as for the case �0 � 0, if �0 ! 1; %�f0 > 0 there exist

two roots ~Z�(�0; %
�
f0) of equation (A2.2) with Re ~Z+ > 0, Re( ~Z+)2 > 0, and

Re( ~Z�)2 < 0. Moreover, as it is clear from (A2.19) and (5.4), asymptotics for

the case � = �0
p
�; �0 ! 1 coincides with asymptotics for the case � � 1 if

�0 = �=
p
�.

It is interesting to note, that Re(Ẑ+)2 > Re( ~Z+)2. This means that if � increases,

than surface wave propagates faster.

Next we will investigate the behaviour of the roots Z� of equation (A2.2) for any

�0 > 0; %�f0 > 0 and will show that roots Ẑ�(�0; %
�
f0) and

~Z�(�0; %
�
f0) are continu-

ously connected.

Lemma 2 For any �0 > 0; %�f0 > 0 from domain 
 = R++n, where

R++ = f�0 > 0; %�f0 > 0g;

 = f�0; %�f0; %�f0 � (%�f0)
�; �0 = ��0(%

�
f0)g; (A2:21)

the roots Z�(�0; %
�
f0) depend continuously and uniquely on parameters �0; %

�
f0 so

that Re(Z+)2 > 0 and Re(Z�)2 < 0. Moreover, at the upper and lower sides of the

cut  the root Z+ equals to Q�(1 + i), respectively, where

Q� =
1

4�(1� �)

�
%f0 + %�f0 �

s
%f0 + %�f0
1 +mE

q
�(1 +mE)%f0 � (1� 7mE)%

�
f0

�
(A2:22)

Proof. Let us assume that

Z = Q(1 + i); Q 2 R1; Q > 0; (A2:23)

i.e. the roots of (A2.2) lie at the main diagonal of complex plane. Substiuting

(A2.23) into (A2.2) one gets the following equation system with respect to Q:

8>><
>>:
�(%f0 + %�f0)Q+ 2�0�(1 +mE)(1� �)Q = 0

4�(1� �)Q2 �
�
%f0 + %�f0 + 2�0�(1 +mE)(1� �)

�
Q

+�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
= Q;

(A2:24)
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It is obvious that if �0 6= ��0(%
�
f0), where

��0(%
�
f0) =

%f0 + %�f0
4�(1� �)(1 +mE)

; (A2:25)

than system (A2.24) has no roots. Otherwise, Q� is de�ned as in (A2.22) and Q�

will be real, if %�f0 � (%�f0)
�, where

(%�f0)
� =

(1 +mE)%f0

7mE � 1
: (A2:26)

It is easy to estimate that for the real materials with porosity of order 0.2-0.5,

(%�f0)
� > 0.

Next we will show that roots Z� intersect the main diagonal of complex plain only

at the points Q�(1+ i) respectively. Moreover, with the change of parameter �0 the

root Z+(�0; %
�
f0), %

�
f0 > (%�f0)

�, passes at the point Q+(1+ i) = Z+(��0(%
�
f0); %

�
f0) to

the root Z�(�0; %
�
f0), �0 > ��0, lying above the main diagonal of the complex plain.

Simultaneously, the root Z�(�0; %
�
f0) at the point Q�(1 + i) = Z�(��0(%

�
f0); %

�
f0)

passes to the root Z+(�0; %
�
f0), �0 > ��0, lying below the main diagonal.

As it is clear from (A2.24) for any %�f0 > 0, �0 6= ��0, the roots Z
�(�0; %

�
f0) of (A2.2)

do not intersect the main diagonal of the complex plain (Fig.1) and Re(Z+)2 > 0,

Re(Z�)2 < 0.

If �0 = ��0 and %
�
f0 = (%�f0)

�, than equation (A2.2) has a multiple root Z, such that

Z = Z+(��0; (%
�
f0)

�) = Z�(��0; (%
�
f0)

�) = Q(1 + i); (A2:27)

Q =
%f0 + (%�f0)

�

4�(1� �)

and ReZ2 = 0 (i.e. Z belongs to main diagonal of the complex plain, Fig.2).

If �0 = ��0(%
�
f0) and %

�
f0 > (%�f0)

�, then equation (A2.2) has two roots Z� = Q�(1+i)
which lie at the main diagonal. We have to show that each root Z�(�0; %

�
f0) with

growing �0 intersects the main diagonal only at one point Q�(1+ i) respectively. It

is not di�cult to check, that

Re
dZ

d�0

���
Z=Q�(1+i)

= �
(1 +mE)%f0 + (1� 3mE)%

�
f0

2(4�(1� �)Q� � %f0 � %�f0)
> 0; (A2:28)

Re
dZ

d�0

���
Z=Q+(1+i)

= �
(1 +mE)%f0 + (1� 3mE)%

�
f0

2(4�(1� �)Q+ � %f0 � %�f0)
< 0 (A2:29)

and
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dZ

d�0

���
Z=Q�(1+i)

= �
(1 +mE)%f0 + (1� 3mE)%

�
f0

2(4�(1� �)Q� � %f0 � %�f0)
(1 + i)

+2i
�(1 +mE)(1� �)Q�

4�(1� �)Q� � %f0 � %�f0
(A2:30)

Thus, at the point Z = Q+(1 + i) the vector dZ
d�0

���
Z=Q+(1+i)

is directed into domain

above the main diagonal, while at the point Z = Q�(1 + i) the vector dZ
d�0

���
Z=Q�(1+i)

is directed into domain below the main diagonal. As far as for some %�f0 > (%�f0)
�

dZ�

d�0
is a velocity along the branches Z�(�0; %

�
f0), than Z

�(�0; %
�
f0) with growing �0

intersects the main diagonal at the point Q�(1 + i); �0 = ��0 and passes to the root

Z+(�0; %
�
f0); �0 > ��0, lying below the main diagonal. Analogously, Z+(�0; %

�
f0)

with growing �0 intersects the main diagonal at the point Q+(1 + i); �0 = ��0 and
passes to the root Z�(�0; %

�
f0); �0 > ��0, lying above the main diagonal (Fig.3).
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Thus, for %�f0 > (%�f0)
� and �0 = ��0(%

�
f0) we have di�erent limit values of Z

+ from

the left and right of �0 = ��0, namely

lim
�0%��

0

Z+(�0; %
�
f0) = Q+(1 + i) (A2:31)

and

lim
�0&��

0

Z+(�0; %
�
f0) = Q�(1 + i): (A2:32)

Analogously, for the root Z�(�0; %
�
f0) we have:

lim
�0%��

0

Z�(�0; %
�
f0) = Q�(1 + i) (A2:33)

and
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lim
�0&��

0

Z�(�0; %
�
f0) = Q+(1 + i): (A2:34)

In order to get single-valued roots Z�(�0; %
�
f0) it is necessary to make a cut  in

the domain R++ of parameters (�0; %
�
f0) such that

 = f�0; %�f0; %�f0 � (%�f0)
�; �0 = ��0(%

�
f0)g (A2:35)

(see Fig.4). Then in the domain 
 = R++n the roots Z� depend uniquely and

continuously on parameters (�0; %
�
f0) and Re(Z+)2 > 0, Re(Z�)2 < 0 in 
 .

Let us note also that roots Z� smoothly connect the limit values Ẑ� and ~Z�, i.e.

Ẑ�(0; %�f0) = lim
�0&0

Z�(�0; %
�
f0) (A2:36)

and
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~Z�(�0; %
�
f0) = lim

�0% �p
�

Z�(�0; %
�
f0): (A2:37)

Remark. The necessity to make a cut  in parameter plane (�0; %
�
f0) results from

the appearance of bifurcation of the roots of dispersion equation (4.6) at critical

values � = ��0(%
�
f0)
p
� and %�f0 = (%�f0)

�.

��

����

��fofo
--

����fofo
--����  

����
������fofo

--��

FigFig.4.4

Pseudo-Stonely wave

Finally, we consider the root ~!2 and show that pseudo-Stonely surface wave is de-

generated into bulk slow compressional wave as �! 0.

Let � = �0
p
�; �0 � 0 and

~!2 =
p
�(1 + c2�

2 + � � � ): (A2:38)

Taking into account that ~1 = i

q
~!2

�
� 1 disperion relation (4.6) takes the form:
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� 1

a2s2

�
2�(1� �)(

p
2c2)

2 �
p
2c1(�i(%f0 + %�f0) + 2�0�(1 +mE)(1� �))

�i�0
�
(1 +mE)%f0 + (1� 3mE)%

�
f0

��
�3 +O(�7=2): (A2:39)

From the leading part of (A2.39) it follows that
p
2c2 = Z satis�es the equation

2�(1� �)Z2 �
�
� i(%f0 + %�f0) + 2�0�(1 +mE)(1� �)

�
Z

i�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
= 0: (A2:40)

Since Rec2 should be positive, we look for the roots such that ReZ > 0 and ReZ2 > 0.

Next we will prove that for �0 � 0 equation (A2.40) has two roots Ẑ+ and Ẑ�,
satisfying conditions ReẐ� > 0 and Re(Ẑ+)2 > 0 and Re(Ẑ�)2 < 0. Let

Ẑ� = a�0 + �0a
�
1 + �20a

�
2 + ::: (A2:41)

Substituting (A2.41) into (A2.40) one gets:

a+0 = 0; a+1 =
(1 +mE)%f0 + (1� 3mE)%

�
f0

%f0 + %�f0
; a+2 = �1

8�(1� �)mE%
�
f0a

+
1

(%f0 + %�f0)
2

(A2:42)

and

a�0 = �i
%f0 + %�f0
2�(1� �)

; a�1 =
4mE%

�
f0

%f0 + %�f0
;

a�2 = �i2�(1� �)a�1
(%f0 + %�f0)

2

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
: (A2:43)

Finally we have:

Ẑ+ =
(1 +mE)%f0 + (1� 3mE)%

�
f0

%f0 + %�f0
�0 � i

8�(1� �)mE%
�
f0a

+
1

(%f0 + %�f0)
2

�20 +O(�30); (A2:44)

Ẑ� = �i
%f0 + %�f0
2�(1� �)

+
4mE%

�
f0

%f0 + %�f0
�0 +O(�20) (A2:45)

Thus, ReẐ� > 0 and Re(Ẑ+)2 > 0, Re(Ẑ�)2 < 0 and both roots lie in the fourth

quarter of the complex plane.
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Obviously, Ẑ+ ! 0 as �0 ! 0. The latter means that phase velocity of pseudo-

Stonely wave tends to
p
� and this mode is degenerated into bulk slow compressional

wave.

Lemma 3 The roots Z(�0; %
�
0 ) of equation (A2.40) for any parameters �0 > 0,

%�0 � 0 do not belong to real and imaginary axes of complex plane.

(The proof is analogous to Lemma 1.)

Next consider the behaviour of the roots Z(�0; %
�
0 ) of equation (A2.40) for �0 !1.

Let Z = �0W . Then

2�(1� �)W 2 �
h
� i

%f0 + %�f0
�0

+ 2�(1 +mE)(1� �)
i
W

=
i

�0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
: (A2:46)

Substituting

W = b0 +
b1

�0
+
b2

�20
+ ::: (A2:47)

into (A2.46) one gets two roots ~Z+ and ~Z� with

b+0 = 1 +mE; b
+
1 = �i

2mE%
�
f0

�(1 +mE)(1� �)
;

b+2 =
mE%

�
f0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
�2(1� �)2(1 +mE)3

(A2:48)

and

b�0 = 0; b�1 = �i
(1 +mE)%f0 + (1� 3mE)%

�
f0

2�(1 +mE)(1� �)
;

b�2 =
mE%

�
f0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
�2(1� �)2(1 +mE)3

: (A2:49)

Finally,

~Z+ = �0(1 +mE)� i
2mE%

�
f0

�(1 +mE)(1� �)
+O

� 1

�0

�
; (A2:50)
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~Z� = �i
(1 +mE)%f0 + (1� 3mE)%

�
f0

2�(1 +mE)(1� �)

+
1

�0

mE%
�
f0

�
(1 +mE)%f0 + (1� 3mE)%

�
f0

�
�2(1� �)2(1 +mE)3

O
� 1

�20

�
: (A2:51)

Taking into account (5.5), we have ~Z� > 0, and, obviously, Re( ~Z+)2 > 0 and

Re( ~Z�)2 < 0. Both roots lie in the fourth quarter of the complex plane.

Moreover, as it is clear from (A2.50) and (5.13), asymptotics for the case � = �0
p
�,

�0 !1 coincides with asymptotics for the case � � 1 if �0 = �=
p
�.

Lemma 4 The roots Z(�0; %
�
0 ) of equation (A2.40) for any parameters �0 � 0,

%�0 � 0 do not intersect the secondary diagonal of complex plane.

(The proof is analogous to Lemma 2.)
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