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Abstract

The paper contains a macroscopic continuum model of adsorption in porous

materials consisting of three components. We consider the �ow of a �uid/adsor-

bate mixture through channels of a solid component. The �uid serves as carrier

for an adsorbate whose mass balance equation contains a source term. This

term consists of two parts: �rst a Langmuir contribution which is connected

with bare sites on internal surfaces and describes the Langmuir isotherm in

equilibrium. The second one is due to changes of the internal surface driven

by the source of porosity which is a part of the balance equation for porosity.

We clearly state the range of applicability of the model. A simple numerical

example which describes the transport of pollutants in soils illustrates the cou-

pling of adsorption and di�usion. The results show that after a certain time

arises a maximum in the rate of adsorption as a function of �uid/adsorbate

velocity.

1 Introduction

The intention of this work is the theoretical, continuum mechanical approach to

adsorption processes which appear quite often in nature. Examples are the pollu-

tion transport with rainwater in soil (organic materials like pesticides in agriculture,

heavy metals in the subsoil of �lling stations), tips where salts of industry and house-

holds are transported, the storage of atomic waste in salt layers or the penetration

of moisture in plaster and concrete.

Although the mass exchange in these examples may also be driven by chemical

processes in this work we consider physical adsorption processes. This means that

particles of the adsorbate stick to the skeleton due to weak van der Waals forces.

The type of mass exchange between �uid and skeleton (adsorption, chemisorption,

capillary e�ects) mainly depends on two factors namely the particle size of the solid

and the concentration of the adsorbate in the �uid.

For our model we consider very low adsorbate concentration. This entitles us to

use the Langmuir theory of adsorption (see: [5]). It is based on the concept of

the number of bare and occupied sites on the surface of a solid. Langmuir assumed

that the adsorbate particles settle down on the solid in one single layer, and that

there is a certain number of places where they are able to settle down. Obviously

this is only possible if the adsorbate concentration is small. Otherwise the Langmuir

isotherm of occupied sites reaches saturation. In the past many modi�cations of this

theory appeared. One of them is the BET-model (see: [3]) which is based on the
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Langmuir theory but allows mulitlayer adsorption. For our purpose there is no need

to use this more complicated version of the Langmuir model because we assume

low concentrations. In addition it should be mentioned that there are some doubts

concerning the description of multilayer adsorption.

One of the important factors for the shape of the adsorption isotherm is the size of

solid particles in relation to the pore size between them. According to Gregg/Sing

[4] there occur six types of adsorption isotherms. The three most important of them

are shown in the �gure below.

Fig. 1: Three most important types of adsorption isotherms

(adsorbed amount vs. relative partial pressure)

The �rst one a) is the graph of the common monolayer Langmuir isotherm. In

principle it describes the adsorption of particles on plane surfaces. But it also holds

in our case because the pore size of the soil under consideration is big enough for

the curvature of the pores not to play any important role. This is di�erent in the

case of isotherm c). This form of isotherm arises in case of the so-called mesopores

(20-500 Å in diameter). Both b) and c) describe multilayer adsorption processes

which is indicated by the existence of the in�ection point B. Before reaching this

point the monolayer process runs according the Langmuir isotherm i.e. adsorption is

restricted to a thin layer on the walls. After that b) and c) show di�erent behaviour.

Although in both cases the slope increases, in b) the rise �rst is approximately linear

and then rather rapid for higher relative pressures while in c) the amount adsorbed

possesses another in�ection point before the saturation vapour pressure is reached.

A characteristic feature of c) is its hysteresis loop. This is due to the capillary

condensation in the �nest pores.

Summing up our model is intended to describe monolayer adsorption with low con-

centrated adsorbate on a porous medium with relatively large pores. Then the

Langmuir isotherm looks as shown in a).

2 Three-dimensional adsorption/di�usion model

We investigate a �ow of a �uid-adsorbate mixture through channels of a porous

medium. Particles of adsorbate settle down on the internal surface of the skeleton

2



so that their kinematics changes from that of the �uid to that of the skeleton. Fluid

and adsorbate �ow with a common velocity vF through the skeleton which has the

velocity vS: Fluid, adsorbate and skeleton have the current mass densities �
F
; �

A

and �
S, respectively. Then the mass balance equations have the form

@�
S

@t

+ div
�
�

SvS
�
= ��̂A;

@�
F

@t

+ div
�
�

FvF
�
= 0; (1)

@�
A

@t

+ div
�
�

AvF
�
= �̂

A
;

where �̂A denotes the intensity of the mass source. We use the following de�nitions

�

L
:= �

F
+ �

A
; c :=

�
A

�
F + �

A
; ĉ :=

�̂
A

�
F + �

A
; (2)

to transform the balances (1) in the following ones containing quantities related to

the concentration

@�
S

@t

+ div
�
�

SvS
�
= ��Lĉ;

@�
L

@t

+ div
�
�

LvF
�
= �

L
ĉ; (3)

@c

@t

+ vF � gradc = (1� c) ĉ:

The momentum balance equations have the form

@�
SvS

@t

+ div
�
�

SvS 
 vS �TS
�
= p̂; (4)

@�
LvF

@t

+ div
�
�

LvF 
 vF + p

L1
�
= �p̂;

where the partial stress tensors of �uid components are spherical. The partial pres-

sure in the liquid phase p
L (i.e. in the �uid and adsorbate phases together) is the

sum of the partial pressures in the �uid p
F , and in the adsorbate pA. According to

Dalton's law we expect that pA �= cp
L
: This relation holds if the concentration of

the adsorbate in the �uid is small as assumed in our case. Furthermore TS denotes

the partial Cauchy stress tensor in the skeleton, and p̂ =�

�
vF � vS

�
��

L
ĉvF is the

momentum source in the liquid where � denotes the permeability coe�cient.

For the scalar �eld of porosity we have an additional balance equation as introduced

in e.g. [6]. For small deformations of the skeleton it has the form

@n

@t

+ vS � gradn + nE

�
vF � vS

�
= n̂ = �

�

�

: (5)

Here � = n � nE is the deviation of the porosity n from its equilibrium value nE

and � is the relaxation time of porosity. The above shape of the source of porosity

n̂ is based on assumptions on small deviations from thermodynamic equilibrium.
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3 Speci�cation of the mass source

One of the most important factors for the extent of adsorption is the internal surface

area of the solid. There exist numerous methods for quantitative evaluation of

this area, e.g. through measurements of adsorption itself (see investigation of type

c)-isotherms in [4]). For the purpose of the present work, where the skeleton is

considered to be a soil, we lean on a value of the internal surface mentioned by J.

Bear in [2].

Also the number of bare and occupied sites on the surface of the solid has imortant

in�uence on the adsorbed amount. This quantities were introduced by I. Langmuir

in his classical works on adsorption (e.g. [5]). On the macroscopic level of description

i.e. within a representative elementary volume (REV ) of a porous or granular

material we denote the normalized fraction of occupied sites by �, i.e. the fraction

of bare sites is 1 � �. REV is small in comparison with the volume of the whole

�ow regime but big against volumes of single pores of the skeleton. Furthermore we

denote the internal surface area of the pores in REV by fint which means that fint
V

is the internal surface area per unit volume. The mass of adsorbate per unit of the

internal surface area is mA: Then the mass source is given by the relation

�̂

A = �
m

A

V

d (� fint)

dt

= �
m

A

V

�
fint

d�

dt

+ �

d fint

dt

�
; (6)

where V is the REV -volume. This relation describes the mass transfer rate from

the liquid to the solid phase per unit time.

The �rst contribution on the right-hand side of this equation describes the change

of the fraction of occupied sites. It is speci�ed by the Langmuir evolution equation

d�

dt

= a (1� �) pA � b�e

�Eb
kT ; (7)

where pA is the partial pressure of the adsorbate in the �uid phase and a and b are

material parameters. The energy barrier Eb for particles adsorbed on the skeleton

is assumed to be constant. Furthermore k denotes the Boltzmann constant and T

is the absolute temperature.

The right hand side of Eq. (7) again consists of two terms: the adsorption rate

(�rst term) and the desorption rate (second term). In full phase equilibrium they

are equal so that the time change of occupied sites is equal to zero. In this case we

get from (7) the well-known Langmuir isotherm of occupied sites

�L =

pA

p0

1 +
pA

p0

; with p0 :=
b

a

e

�Eb
kT : (8)

An isothermal equilibrium change of � can be produced by a change of partial

pressure pA: This yields a new phase equilibrium, i.e. another point on the Langmuir

isotherm.
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The other part of (6) describes the change of the internal surface. We assume

that this change is coupled with relaxation of the porosity n; which is described

by the balance equation of porosity (for detailed information about the new model

for porous bodies with the balance equation of porosity see: Wilmanski [6]). The

source of porosity n̂ describes the intensity of dissipative changes of porosity per unit

time and volume of the porous material. Motivated by elementary considerations

about changes of the internal surface and of the porosity in a porous medium yielding

�lm adsorption (see [1]) we assume

1

fint

d fint

dt

/
n̂

n

: (9)

In the following we will illustrate the model by means of a simple example and point

out the resulting coupling of adsorption and di�usion.

4 One-dimensional example

We consider the �ow of a �uid-adsorbate mixture through a part of soil.

Fig. 2: Fluid-adsorbate mixture �ows through a part of soil.

Due to a di�erence of the external pressure, with pl at x = 0 being larger than pr

at x = l; the mixture �ows along the direction x through the porous body: The low

concentrated adsorbate is carried by the �uid and has therefore the same velocity

v
F . Then the isothermal process is described by the �elds

�
�

S
; �

L
; c; v

F
; v

S
; e

S
;�; �; fint

	
; (10)

where apart from the customary �elds for �ow processes the last three are the above

introduced additional �elds describing mass exchange processes.

For the purpose of this example we make the following assumptions:

� the skeleton does not move, i.e. vS � 0;
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� the inertia forces are small i.e. the acceleration terms in the momentum bal-

ances can be neglected,

� small changes in time of the velocity gradient, i.e. the porosity balance reduces

to the algebraic relation

� ' �nE�
@v

F

@x

:

This follows from the assumption that the characteristic macroscopic time t

is much larger than � . The algebraic form of the relation for � bears also the

positive consequence that we need no additional boundary condition for it.

4.1 Governing set of equations and constitutive relations

Under these assumptions and bearing in mind relations (6), (7) and (9) the source

of concentration ĉ can be written as

ĉ = �
�
A
ad

�
L

��
(1� �)

cp
L

p0

� �

�
1

�ad

� �

�

�

�

�
; (11)

where �ad denotes the characteristic time of adsorption, p0 is a reference pressure

of adsorption which is de�ned in (8) and it has been measured for instance by

Langmuir (see: [5]3), � is a proportionality factor and �
A
ad :=

mAfint
V

:

Then the balance equations have the following form

@�
L

@t

+
@�

L
v
F

@x

= ��Aad

��
cp

L

p0

�
�
1 +

cp
L

p0

�
�

�
1

�ad

� �

�

�

�

�
;

@c

@t

+ v

F @c

@x

= � (1� c)
�
A
ad

�
L

��
cp

L

p0

�
�
1 +

cp
L

p0

�
�

�
1

�ad

� �

�

�

�

�
; (12)

@p
L

@x

+ �v

F = 0; nE

@v
F

@x

= �
�

�

;

@�

@t

=

�
(1� �)

cp
L

p0

� �

�
1

�ad

:

The relations for the skeleton are not showed, because they can be solved separately.

The constitutive relation for the pressure in the liquid phase pL is assumed to be

p

L
= p

L
0 + �

�
�

L � �

L
0

�
+ ��; (13)

where p
L
0 and �

L
0 are initial values of the pressure and the mass density for the

liquid phase: � denotes the compressibility coe�cient and � is a material coupling

parameter.
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4.2 Initial and boundary conditions

We assume the following initial values for the �uid-/adsorbate velocity, the change

of porosity, the mass density in the liquid phase, the pressure in the liquid phase,

the concentration and the number of occupied sites, respectively

v
F (x; t = 0) = 0; �(x; t = 0) = 0;

�
L (x; t = 0) = �

L
0 ; p

L (x; t = 0) = p
L
0 � nEpext;

c (x; t = 0) = c0; � (x; t = 0) = �L �
c0

pL
0

p0

1+
pL
0

p0

:

(14)

The boundary conditions are assumed to be of third type. They express the �ow

through the boundary of the body in dependence on the di�erence of the partial

pressure in the liquid and the part of the external pressure which acts on the �uid,

as well as on the permeability � of the surface:

x = 0 : ��LvF = �

�
p

L � npl

�
;

x = l : �

L
v

F = �

�
p

L � npr

�
: (15)

4.3 Regular perturbation solution and Laplace transform

We use regular perturbation method to �nd an approximate solution of the problem.

We make the following linear ansatz

�

L = �

L
0 + "�

L
1 ; v

F = "v

F
1 ; � = "�1;

c = c0 + "c1; � = �L + "�1: (16)

These expansions which depend on a small parameter " are truncated after �rst

order contributions. The de�nition of " is based on the assumption that the pressure

di�erence between the left and the right boundary

" =
pl � pr

pr

; (17)

is small. The zeroth step of the perturbation is trivial i.e. �L0 ; c0 and �L are constants.

For the �rst step we get the following set of equations

@�
L
1

@t

+ �

L
0

@v
F
1

@x

= �

A
ad

��
�1�1 � �2c1 � �3�

L
1 � �4�1

� 1

�ad

+ �5�1

�
;

�
L
0

�
A
ad

@c1

@t

=

�
��6c1 � �7�

L
1 + (1� c0)

�
�1�1 � �2c1 � �3�

L
1 � �4�1

� 1

�ad

+

+(1� c0) �5�1g ; (18)

�

@�
L
1

@x

+ �

@�1

@x

+ �v

F
1 = 0; �1 = �nE�

@v
F
1

@x

;

@�1

@t

= �
�
�1�1 � �2c1 � �3�

L
1 � �7�1

� 1

�ad

;
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where we have used abbreviations

�1 := 1 +
c0p

L
0

p0

; �2 := (1� �L)
p
L
0

p0

;

�3 := (1� �L)
c0�

p0

; �4 := (1� �L)
c0�

p0

;

�5 := �L

�

�

; �6 := �L �
(1� �L) c0p

L
0

p0

;

�7 :=
(1� c0)

�
L
0

�
�L �

(1� �L) c0p
L
0

p0

�
: (19)

We use the following Laplace transforms to �nd an analytical solution of the linear

problem

~�L1 =

1Z
0

�

L
1 e
�st

dt and analogous for ~vF1 ;
~�1; ~c1; ~�1: (20)

The transformed quantities are functions of two variables (x; s) : Provided Sommer-

feld conditions for t!1 are ful�lled we have according to the initial data

�

L
1 e
�st

��1
0

= 0 and analogous for ~vF1 ;
~�1; ~c1; ~�1: (21)

We eliminate system (18) in order to obtain a di�erential equation for ~vF1 and get

~�1 = �nE�
@~vF1

@x

; ~c1 = z6

@~vF1

@x

;

~
�1 = z7

@~vF1

@x

and ~�
L
1 = z8

@~vF1

@x

; (22)

where the coe�cients zi depend in di�erent manner on the Laplace variable s :

z1 :=
��L0 + �

A
adnE� (�4 � �5)

s+ �3�
A
ad

; z2 :=
�
A
ad�1

s+ �3�
A
ad

; (23)

z3 :=
�
A
ad�2

s+ �3�
A
ad

; z4 :=
�3z1 � �4nE�

s+ �1 � �3z2

; z5 :=
�2 � �3z3

s+ �1 � �3z2

;

z6 :=
��7(z1 + z2z4) + (1� c0) �1z4 � (1� c0) �3(z1 + z2z4) + (1� c0)nE� (�4 � �5)

�L
0

�A
ad

s+ �6 + �7(z2z5 � z3)� (1� c0) �1z5 + (1� c0) �2 + (1� c0) �3(z2z5 � z3)
;

z7 := z4 + z5z6; z8 := z1 + z2z7 � z3z6:

Then we get the demanded equation for ~vF1

@
2~vF1

@x
2
�

�

�nE� � �z8| {z }
a

~v
F
1 = 0; (24)
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from which we get the solution

~vF1 = C1e

p
ax + C2e

�
p
ax
;

~�L1 = z8

p
a

�
C1e

p
ax � C2e

�
p
ax
�
;

~�1 = �nE�
p
a

�
C1e

p
ax � C2e

�
p
ax
�
;

~c1 = z6

p
a

�
C1e

p
ax � C2e

�
p
ax
�
;

~
�1 = z7

p
a

�
C1e

p
ax � C2e

�
p
ax
�
: (25)

To determine the integration constants we need expansions of the boundary condi-

tions. Inserting the constitutive relation (13) for pL into the boundary conditions

(15) we obtain for the �rst step

��L0 v
F
1 = �

�
��

L
1 + ��1 � pr�1 � nEpr

���
x=0

;

�

L
0 v

F
1 = �

�
��

L
1 + ��1 � pr�1

���
x=l

; (26)

where the pressure on the left hand side of the channel pl is de�ned by means of the

given pressure on the right hand side pr

pl := pr + "pr; " > 0: (27)

After applying the Laplace transform and inserting the solution (25) we have

��L0 (C1 + C2) = z9 (C1 � C2)�
�nEpr

s

;

�

L
0

�
C1e

p
al
+ C2e

�
p
al
�
= z9

�
C1e

p
al � C2e

�
p
al
�
; (28)

z9 = � [�z8 � nE� (� � pr)]
p
a:

and �nally for the integration constants

C1 = �
�nEpr

�
z9 + �

L
0

�
s

h
(z9 � �

L
0 )

2
e
2
p
al � (z9 + �

L
0 )

2
i ;

C2 = �
�nEpr

�
z9 � �

L
0

�
e
2
p
al

s

h
(z9 � �

L
0 )

2
e
2
p
al � (z9 + �

L
0 )

2
i : (29)

In order to get numerical solutions for the inverse Laplace transform we use a

FORTRAN-solver.

4.4 Results

To illustrate the above presented solution we choose the following parameters
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Length of the body l 1 m

Initial mass density �
L
0 2:3 � 102 kg

m3

Equilibrium porosity nE 0:23

Initial concentration c0 10�3

Initial pressure pL0 23 kPa

Langmuir pressure p0 10 kPa

Pressure on right h.s. pr 100 kPa

Proportionality factor � 10

Coupling constant � 1 GPa

Compressibility � 2:25 � 106 m2

s2

Permeability of solid � 109
kg

m3s

Permeability of surface � 4 � 10�8 s
m

Relaxation time � 10�3 s

Charact. time of adsorp. �ad 1 s

Fraction of occupied

sites in equilibrium �L 2:3 � 10�2

mass density of adsorbate

on internal surface �Aad 40
kg

m3

Mass density and porosity have been chosen to have typical values for rocks and

soils. The values for material parameters � and � have been chosen on the basis

of estimates of the attenuation of acoustic waves. The in�uence of permeability is

expressed by two constants � and �. The �rst one describes the resistance of the

skeleton to the �ow of the �uid/adsorbate mixture. The second one describes the

surface resistance to the out�ow of the mixture from the solid. Its appearance is

connected with a boundary layer between the porous body and the external world.

The following results are presented in the form of coe�cients of "; the normalized

di�erence between the pressures on the left and the right hand side of the channel.

For �ow processes in soil we assume that " = 0:1: This means that the pressure

di�erence between both sides is one tenth of an atmospheric pressure.

In the �gures below we present changes of various �elds (i.e. (25)) as functions

of place x for chosen values of time t. For the chosen value of characteristic time

of adsorption �ad of 1 second we obtain a total time of 10 seconds for the whole

adsorption process. However in reality the characteristic time of adsorption is of

order of hours or days so that the real time scale of the process is also of that order.

Figure 3a) shows the change of the mass density of the liquid phase. It increases in

time for all places of the channel but these increments are steeper at the beginning

of the �ow regime than at the end. At the left hand side of the channel it reaches

a maximum value of about 1.5�10�3 kg

m3 , on the other side it is only one half of this

value. The order of this quantity depends on the pressure di�erence between both

sides.
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In Figure 3b) we see the x-component of the common velocity of the �uid and the

adsorbate. Also this �eld starts from zero at the beginning of the process. The

linear line shows the shape which appears after short time: the velocity is nearly

constant in time and linearly decreasing in place.

Fig. 3: a) Change of mass density of the liquid phase,

b) Velocity of �uid and adsorbate,

c) Change of porosity,

d) Change of concentration.

The algebraic form of the porosity balance yields a change of porosity from its

equilibrium value proportional to the velocity gradient. Therefore this change is

nearly constant after a short period of time. Whereas the increments in Fig. 3c) are

very steep for the left hand side of the considered region they are almost negligible

at the right hand side.

If particles of adsorbate settle down on the skeleton the concentration of the ad-

sorbate in the liquid phase decreases, of course, in time as we can see in Fig. 3d).

It starts with its initial value of 10�3 and the maximum change is �4 � 10�5: Also
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over the length of the body the concentration decreases. These increments are much

steeper on the left hand side than on the right hand side. As concentration and

the fraction of occupied sites are coupled, of course the fraction of occupied sites

increases in the same manner as the concentration decreases (see: [1]).

The most important result of this work is the form of coupling of adsorption and

di�usion. It is shown how the amount adsorbed (absolute value of the concentration

source) depends on the relative velocity of the components. In Fig. 4 the source

of concentration over the �uid/adsorbate velocity is shown. Due to the assumption

that the skeleton does not move the �uid/adsorbat velocity in our case stands for

the relative velocity of the components. As follows from the boundary conditions

this quantity is mainly driven by the surface permeability parameter �.

The results shown in Fig. 4 are as follows. Firstly one can see the characteristic

time behaviour of the intensity of adsorption. Its absolute value has a jump at the

beginning of the process (3:5 � 10�5 � negative value is due to the reference to the

�uid). Then this value diminishes until it reaches an asymptotic value of 1:5 � 10�6:
It can be seen better in the sequence of curves for di�erent times shown in Fig. 5.

Fig. 4: In�uence of di�usion. Fig. 5: Velocity dependence for

several times.

The other important feature is the dependence on the relative velocity. This also

depends on the progress of the process. At the beginning the absolute value of

the source of concentration (i.e. the rate of adsorption) increases for every velocity

and approaches an asymptotic value. However after a certain time lapse the curves

possess a maximum which lies in the range of small velocities. With increasing time

this maximum becomes stronger pronounced.
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5 Conclusions

The main aim of this work was to show the dependence of adsorption on di�usion.

This relation is not visible if we consider a particular choice of material parame-

ters. For instance the changes in time of the rate of adsorption have an expected

behaviour: After a jump at the initial instant of time they relax smoothly. However

if we vary the relative velocity of components which in our case means a variation

of the �uid/adsorbate velocity then for each velocity the behaviour is qualitatively

the same but quantitatively there is a nonmonotonic dependence on the velocity.

This is shown in the 3D picture which has been obtained by varying the surface

permeability �. As we see, there is a region of relative velocities where the rate of

adsorption reaches a maximum value. One can conclude that in the case of very

small and very large di�usion the adsorption rate decays much faster than it is the

case for moderate di�usion.
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