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I. Introduction

Consider the joint measure corresponding to a random in�nite volume Gibbs measure of

a disordered lattice spin system. By this we mean the measure IP (d�)�[�](d�) on the product

space of disorder variables � and spin variables �. Here �[�](d�) is a random Gibbs measure and

IP is the a-priori distribution of the disorder variables. Prototypical examples for such quenched

random systems are the random �eld Ising model or an Ising model with random couplings.

In this paper we investigate of the question: When can these measures be understood as

Gibbs measures on the skew space, respectively suitable generalizations thereof? More specif-

ically, are there well-de�ned Hamiltonians, given in terms of interaction potentials depending

on both spin and disorder variables, that provide an annealed description for such a system?

The formal description of disordered systems in terms of such potentials was termed \Morita's

equilibrium ensemble approach to disordered systems" (see e.g [Ku1,2], [MKu], [Mo], [SW] and

references in [Ku2]) in the theoretical physics community. However, the existence of such Hamil-

tonians was never investigated rigorously but taken for granted, and various approximation

schemes were based on the truncation of the corresponding potentials. In this respect there

is an analogy between the problems of the existence of joint potentials and of the existence of

\renormalized potentials" that are supposed to give a Gibbsian description of a measure that

appears as an image measure of a Gibbs measure under a renormalization group transforma-

tion. There is a huge literature about the latter ones but the present question has remained

mathematically neglected until recently ([EMSS], [K6]).

Now, mathematically, it turns out that the answer to our question is a somewhat compli-

cated but interesting one. It depends on the kind of generalization of the notion of Gibbsianness

one is asking for and on the speci�c system. Therefore such joint measures corresponding to

quenched random systems provide a rich class of examples to illustrate the subtleties of the

di�erent generalizations of the notion of Gibbsianity. We believe that, while interesting in itself,

the study of these measures is also valuable for the understanding of the �ne (and not always

very intuitive) distinctions that are necessary if one attempts to extend Gibbsian theory to

non-Gibbsian measures.

Recall that Gibbs measures of an in�nite volume lattice system are characterized by the fact

that their conditional expectations (given the values of the variables outside of a �nite volume)

can be written in terms of an absolutely convergent interaction potential. Equivalently, they are

the measures for which these conditional expectations are continuous functions of the condition-

ing. (The less trivial part of the equivalence, i.e. existence of a potential assuming continuity

of conditional expectations, is due to the construction of [Koz]). For general information about

scenarios of the failure of the Gibbsian property for lattice measures and possible generalizations
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of Gibbsianness see e.g. [F],[E],[DS],[BKL],[MRM], [MRSM], references therein, and the basic

paper [EFS].

In the �rst mathematical paper [EMSS] which studied a joint measure of a quenched random

system it was shown that the joint measure resulting from the diluted Ising ferromagnet at low

temperatures is not a Gibbs measure in the strict sense described above: [EMSS] showed that

there is a point of essential discontinuity in the conditional expectations as a function of the

conditioning. So, the measure does not allow for a Hamiltonian constructed from an absolutely

summable interaction potential. However, the set of such discontinuities has zero measure in this

example. Measures with this property are commonly called \almost Gibbsian" measures. The

notion of \almost Gibbsianness" is a straightforward measure-theoretic attempt to generalize the

classical notion of Gibbsianness where the conditional expectations are continuous everywhere.

In a recent paper [K6] we investigated the question of discontinuity of the conditional ex-

pectations in the general setup of quenched lattice spin systems with �nite range quenched

Hamiltonians depending on independent disorder variables. In particular, we gave an example

where the set of discontinuities was even a full measure set. So, even worse, this measure

even fails to be \almost Gibbsian"! The example was the random �eld Ising model in the phase

transition regime. It is particularly illuminating because it shows in a transparent manner a

more general fact: The question of discontinuity of the conditional expectations is related to

whether a discontinuity can be felt on certain local expectations of the quenched measure by

varying the disorder variables arbitrarily far away. The local expectation under consideration

is just the magnetization for the random �eld Ising model; more generally this has to be re-

placed by the spin-observable conjugate to the independent disorder variables. In [K6] we also

discussed another interesting phenomenon: We argued that whether the set of discontinuity

points is of measure zero or one can depend on the random Gibbs measure, for the same choice

of the parameters. This phenomenon should appear in the random bond ferromagnet at low

temperatures, weak disorder, and high dimensions: We argued that it is to be expected that the

set of discontinuities should be of measure zero for the ferromagnetic plus state while it should

be of measure one for the random Dobrushin state.

While we focused on \almost Gibbsianness" in [K6], the aim of the present paper is to �nd

out what can be said about \weak Gibbsianness". The latter notion is a di�erent attempt to

weaken (even more) the classical notion of Gibbs measure. Here one requires only the existence

of a potential that is convergent (or even absolutely convergent) on a full measure set (and not

necessarily everywhere). [MRM] noted that, in general, an almost Gibbsian measure always has

a potential that is convergent on a set of full measure. It is however not expected that there is

always an absolutely convergent potential in this situation. Also, [MRM] gave an example of
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a measure having a convergent potential which was not almost Gibbsian.

In this note we will give a completely general positive answer to the question of weak

Gibbsianness for our measures. That is, at least from the point of view of weak Gibbsianness,

the situation gets easier again. We will show:

The joint measures corresponding to a random in�nite volume Gibbs measure

always posses a potential that converges absolutely on a full measure set.

For the speci�c example of the random �eld Ising model in the phase transition regime this

gives, together with the result of [K6] the following interesting statement: The set of discontinuity

points of the joint measure has full measure, but still there is a potential that converges absolutely

on a set of full measure. 1 So, almost Gibbsianness does not hold, but weak Gibbsianness does

(even in a strong form). In fact, we expect the convergence to be very fast on a set of measure

one (see Chapter V.)

Our existence result is true for any quenched lattice spin systems with �nite range quenched

Hamiltonians depending on sitewise independent disorder variables. We stress here that no

continuity assumptions at all are needed on the measures involved. This may seem surprising

and is a main non-trivial point. Let us describe our results at �rst in words, before we put them

down in precise formulas. They will all have the following form: We construct a potential and

explain its properties and how it is related to the given \quenched potential" that is the starting

point and de�nes the system we are dealing with.

Now, to put the �rst result in perspective, we remark that in the case of a general lattice

measure, the existence of an a.s. convergent potential can be obtained once there is at least one

direction of (a.s.) continuity for the conditional expectations (see [MRM]) using the correspond-

ing vacuum potential. Due to the special form of the joint measures we are considering here, we

can improve on this in our case (see Theorems 2.1,2.3). For this we take advantage of the speci�c

form of the in�nite volume conditional expectations of the joint measures derived in Chapter II.

The trick to get the stronger result is to use not a vacuum potential, but a di�erent one; this

will allow to conclude convergence of the potential by a soft martingale argument. From this we

can get an existence result for an a.s. absolutely convergent potential generalizing the one of

[Koz]. We remark that also for this latter step we are again exploiting the special nature of our

measures; it would not work for a general lattice measure.

Nevertheless, it is also interesting to see what can be said about the convergence of vacuum

1 Recently [Le] constructed an independent example of a lattice measure (not related to random

systems) to illustrate that this phenomenon can really occur.
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potentials (see Theorem 2.2). For this we need in fact some continuity, conveniently expressed in

terms of the behavior of the corresponding in�nite volume Gibbs state: One needs continuity of

the corresponding in�nite volume quenched Gibbs-expectation of the spin-observable conjugate

to the independent disorder variables, as a function of the quenched variables, in the direction of

a certain realization of the disorder. These are the same observables whose behavior was crucial

also for the question of \almost sure Gibbsianness".

Next, if one would like to have more information about the decay of the potential, one has

to assume some information about the clustering properties of the quenched random system.

We relate the decay of a joint potential to the decay of disorder-averages of certain quenched

correlations in Theorem 2.4. These correlations are taken between the spin- observables conju-

gate to the independent disorder variables, the same ones as above. Physically, superpolynomial

decay of such averaged correlations is typically to be expected (o� the critical point). So, we

should typically expect the existence of a potential that decays superpolynomially outside of a

set of measure zero. Of course, to prove it, speci�c analysis of the system under consideration

is needed, which can be very hard.

The paper is organized as follows. In Chapter II we de�ne the class of models we will treat

and state our results in precise terms. In Chapter III we prove the important formula for the

in�nite volume conditional expectations of the joint measure that is the starting point of the

following. In Chapter IV we will prove the theorems stated in Chapter II. In Chapter V we

will discuss the examples of the random �eld Ising model, Ising models with random couplings

(which also �t into our framework), and the diluted Ising ferromagnet, including some heuristic

considerations.

Acknowledgments:

The author thanks A.C.D.van Enter for pointing out the physical relevance of the problem

and various comments on an earlier draft of the paper.

II. The Models and the Results

Denote by 
 = 
ZZ
d

0 the space of spin-con�gurations � = (�x)x2ZZd , where 
0 is a �nite

set. Similarly we denote by H = HZZd

0 the space of disorder variables � = (�x)x2ZZd entering

the model, where H0 is a �nite set. Each copy of H0 carries a measure �(d�x) and H carries

the product-measure over the sites, IP = �
ZZd . We denote the corresponding expectation by

IE. The space of joint con�gurations �
 := 
 � H = (
0 � H0)
ZZd

is called skew space. It is

equipped with the product topology and the corresponding Borel sigma algebra.
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A potential on the joint variables is a family U of real functions UA : �
! IR where A

runs over the subsets of ZZd s.t. UA(�) depends only on �A. We consider disordered models whose

�nite volume Gibbs-measures can be written in terms of a potential � = (�A)A�ZZd on the joint

variables. In this context we will call � the disordered potential. We �x a realization of the

disorder � and de�ne probability measures ��
b.c.

� [�] on the spin space 
, called the quenched

�nite volume Gibbs measures, by

��
b.c.

� [�](�) :=
e
�

P
A:A\� 6=;

�A(���
b.c.

ZZdn�
;�)

P
~��
e
�

P
A:A\�6=;

�A(~���
b.c.

ZZdn�
;�)

1�
ZZdn�

=�b.c.
ZZdn�

(2.1)

The �nite-volume summation is over �� 2 
�
0 . The symbol ���

b.c.

ZZdn�
denotes the con�guration

in 
 that is given by �x for x 2 � and by �b.c.

x for x 2 ZZdn�. We assume for simplicity �nite

range, i.e. that �A = 0 for diamA > r. This form is really quite general. It is a simple matter to

write the random �eld Ising model or an Ising model with disordered nearest neighbor couplings

in the above form.

Next, we suppose from the beginning that we have the existence of a weak limit

lim
�"ZZd

�
�
b.c.
@�

� [�] = �[�] (2.2)

for IP -a.e. � � �ZZd with a nonrandom boundary condition �b.c.. In ferromagnetic examples like

the random �eld Ising model this can be concluded by monotonicity arguments. Note that there

is however no general argument that would give the existence of this limit - indeed it is expected

to fail e.g. for low temperature spinglasses.2

Assuming (2.2) it follows that �1[�ZZd ] is an in�nite-volume Gibbs measure for P -a.e. �

that depends measurably on �. We look at spins and disorder variables at the same time and

de�ne joint spin variables �x = (�x; �x) 2 
0 � H0. The central object of our study is the

corresponding in�nite volume joint measure on the skew space (
0 �H0)
ZZd

de�ned by

K(d�; d�) := IP (d�)�[�](d�) (2.3)

2 Side-remark about the relation to \metastates": It is this existence problem that led to the

introduction of the general notion of metastates, which are distributions of Gibbs-measures, see

e.g. [NS1]-[NS5], [K2]-[K5]. Also, more generally than in the present note, in large parts of [K6]

we did not assume the a.s. convergence of the random �nite volume Gibbs measures, but only the

weaker property of convergence of the corresponding �nite volume joint measures. Assuming the

existence of a corresponding metastate, such a measure K is its barycenter. The case of the present

note corresponds to the trivial metastate which is supported only on a single state �[�].
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We say that a potential U on the joint variables is a potential for the joint measure K if U

produces the correct conditional expectations for K, i.e.

e
�

P
A:A\�6=;

UA(�)

P
~��
e
�

P
A:A\�6=;

UA(~���ZZdn�)
= K[��j�ZZdn�] (2.4)

for K-a.e. �. This work is about the existence of such a potential. It provides a description

of the joint measure as an \annealed system". This notion should not be confused with the

\trivial" annealed system appearing in the next de�nition.

We call a potential Uann on the joint variables a potential for the annealed system if

it is �nite range and produces the annealed local speci�cation, i.e.

e
�

P
A\� 6=;

UannA (���
b.c.

ZZdn�
;���

b.c.

ZZdn�
)

P
~��;~��

e
�

P
A\�6=;

Uann
A

(~���
b.c.

ZZdn�
;~���

b.c.

ZZdn�
)
=

�(��)e
�

P
A\�6=;

�A(���
b.c.

ZZdn�
;���

b.c.

ZZdn�
)

P
~��;~��

�(~��)e
�

P
A\� 6=;

�A(~���
b.c.

ZZdn�
;~���

b.c.

ZZdn�
)

(2.5)

We call this system \annealed" because the r.h.s. describes a joint system given by an Hamilto-

nian which is simply the quenched Hamiltonian and a priori measure given by the independent

distribution IP for the disorder variables. Of course, its properties may di�er completely from

the quenched system. Trivially, one such potential is Uann
A (�; �) = �A(�; �)� 1A=fxg log �(�x).

We remark that, of course, the problem of classifying the equivalent potentials U for given �;�

is long solved and can be found in [Geo], see paragraphs (2.3) and (2.4) therein.

Finally, a potential U is called summable for � if, for any ��ZZd, we have that the limit

lim�"ZZd
P

A:A\�6=;;A�� UA(�) =:
P

A:A\�6=; UA(�) exists and is independent of the sequence of

�'s. This is needed for the sums in (2.4) to make sense. U is called absolutely summable for

� if, for any ��ZZd we have that sup��ZZd
P

A:A\�6=;;A�� jUA(�)j <1.

Now, the most natural approach to �nd a potential for the joint measure is to write down a

formal vacuum potential on the joint space and ask what we can say about its convergence (see

Theorem 2.2). We remind the reader that a potential U is called vacuum potential with vacuum

�̂, if UA(�Anx�̂x) = 0 whenever x 2 A. However, it turns out that we get our strongest general

existence result of Theorem 2.1 for a di�erent potential. To this end, let �(d�) be a product

probability measure. Then, a potential U is called �-normalized if
R
�x(d~�x)UA(�Anx ~�x) = 0

whenever x 2 A. Obviously, for � = Æ
�̂
, an �-normalized potential is a vacuum potential with

vacuum �̂. This notion was �rst introduced by Israel [I] but we use the terminology of Georgii.

In the following we assume that we are given a joint measure of the type (2.5) corresponding

to a quenched random lattice model de�ned by (2.1), (2.2). Then the following statements hold.
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Theorem 2.1 (Existence of a.s. summable potential): There exists a potential U for

K that is summable for K-a.e. �. This is true under no further assumptions on the continuity

properties of �[�]. This potential has the form U(�; �) = Uann(�; �) + U fe

� (�). In this equation

Uann is any �nite range potential for the annealed system, independently chosen of the second

term.

U fe

� is a potential depending only on � which is convergent for IP -a.e. �. As a potential

on the disorder space it is IP -normalized. In general, two di�erent measurable in�nite volume

Gibbs-states � : � 7! �[�] corresponding to the same random local speci�cation will yield di�erent

U fe

� .

The notation U fe

� (�) is meant to suggest to the reader, that this potential comes from a

decomposition into local terms of what in �nite volume would be the disorder dependent free

energies of the quenched system. This will become clear in the proofs. An analogous �nite

volume quantity is called \disorder potential" in [Ku2].

To describe the kind of continuity we need for the existence of the vacuum potential in

detail we need some more notation. For a subset V�ZZd, we call the expression

�HV (�V ; �
1
V ; �

2
V ; �@V ) :=

X
A:A\V 6=;

�
�A

�
�
V
; �1V �@V

�
� �A

�
�
V
; �2V �@V

��
(2.6)

the V -variation of the Hamiltonian w.r.t. the disorder variables. To denote the corre-

sponding function on the spin-variables obtained by �xing the disorder variables we will drop

the spin-variable � on the l.h.s. of (2.6). In particular, for V = fxg, the expression (2.6) is the

observable conjugate to the independent disorder variable �x. We put

Qx(�
1
x; �

2
x; �ZZdnx) := �[�2x; �ZZdnx](e

��Hx(�
1
x;�

2
x;�@x)) (2.7)

for its quenched expectation.

Theorem 2.2 (A.s. summability of vacuum potential): Suppose moreover that

there exists a direction �̂ of a.s. continuity for the quenched expectation of the spin observable

conjugate to the disorder variables, i.e.

lim
�"ZZd

Qx(�
1
x; �

2
x; ��nx�̂ZZdn�) = Qx(�

1
x; �

2
x; �ZZdnx) (2.8)

for all x, �1x, �
2
x, for IP -a.e. �. We assume that Q is de�ned by the weak limit (2.2) and (2.7)

and this weak limit exists for IP -a.e. �. Here we have �xed a nonrandom boundary condition �b.c.

for those � that are not in the IP -zero-set of �'s of the form (���̂ZZdn�). Moreover we assume

that (2.2) also exists for �̂ (and thus for all the countably many �'s of the form (���̂ZZdn�)), with

some possibly di�erent boundary condition �̂b.c..
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Then there is a vacuum potential V fe

� (�) on the disorder space with vacuum �̂ s.t. U 0(�; �) =

Uann(�; �)+V fe

� (�) is a potential for the joint measure K which is summable K-a.s.. Here Uann

is any arbitrarily chosen �nite range potential for the annealed system.

Note that our hypothesis is weaker than requiring a.s. continuity of �[�] itself in direction �̂

(by which one understands continuity of all probabilities �[�](��) in this direction.) Note that,

in general, the same choices of boundary conditions to construct the state �[�̂], and the state

�[�] for typical � might yield a state of di�erent type (see V(iii)).

Now, in the situation of Theorem 2.2, �x any �̂. Then we can in particular choose Uann(�; �)

to be the unique vacuum potential for the annealed system with vacuum (�̂; �̂). 3 This gives

the simple

Corollary 1: If �̂ is a direction of continuity for �(�), for any �̂ 2 
, the formal vacuum

potential for K with vacuum �̂ = (�̂; �̂) is convergent for K-a.e �. Here we have assumed that

�[�] is de�ned by the weak limit (2.2) with boundary conditions as in the hypothesis of Theorem

2.2.

Remark: IfK is translation-invariant, so are the potentials constructed in the proof of Theorem

2.1 and Theorem 2.2. In general, they need not be absolutely summable.

The proof of Theorem 2.2 also gives

Corollary 2: The sum
P

A:A\�6=;

R
IP (d~�)V fe

�;A(~�) converges. Hence U
ann
A (�; �)+

h
V fe

�;A(�)�R
IP (d~�)V fe

�;A(~�)
i
is a potential for the joint measure which is summable K-a.s., too.4

From Theorem 2.1 one can obtain an absolutely summable potential, if one gives up trans-

lation invariance.

Theorem 2.3 (Existence of a.s. absolutely convergent potential): There exists

an a.s. absolutely summable potential U abs for the joint measure K of the form U abs(�; �) =

3 A clear proof of the existence of an �-normalized convergent potential in the case of continuous

conditional expectations can be found in [Geo] Theorem (2.30). Under our assumptions of discrete

joint spin space and �nite range of the de�ning disordered potential � this theorem shows in

particular: For any � there exists a unique equivalent �-normalized potential for the annealed

system with the same range.

4 This proves general existence of potentials of the form generalizing the one that was written

down in �nite volume in [Ku2 (32)] for the special case of the dilute Ising model, where no proof

of the in�nite volume limit was given (see also Chapter V).
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Uann(�; �) + U fe, abs

� (�). Here, as above, Uann is any �nite range potential for the annealed

system. U fe, abs

� is a potential depending only on � which is absolutely convergent for IP -a.e.

�. U fe, abs

� is not necessarily translation invariant even if K is translation invariant. As in

Theorem 2.1, this results holds under no further continuity assumptions on �[�].

Remark: In fact the new `free energy' potential U fe, abs

� is even integrable w.r.t. K (which

is to say integrable w.r.t. IP ). There is no estimate on the speed of convergence.

U fe, abs

� (�) is supported on a very sparse system of subsets of ZZd. It is obtained by a

resummation of the IP -normalized `free energy' potential U fe

� from the construction Kozlov used

on the vacuum potential in the case of a measure with continuous conditional expectations [Koz].

We remark that the same construction can in general not be applied to the vacuum potential

V fe

� of Theorem 2.2, unless there is additional information on its decay.

Remark: Let us also comment on the easy case, when Q is continuous everywhere, by

which we mean that

lim
�"ZZd

sup
�̂

��Qx(�
1
x; �

2
x; ��nx�̂ZZdn�)�Qx(�

1
x; �

2
x; �ZZdnx)

�� = 0 (2.9)

for all � and all x, �1x, �
2
x. Then, the in�nite volume conditional expectations ofK are continuous,

and so K is a Gibbs measure. The \free energy potentials" U fe

� (of Theorem 2.1) and V fe

� (of

Theorem 2.2) are both convergent everywhere. Furthermore, the stronger version of Theorem 2.3

holds where \a.s. absolute summability" is strengthened to \absolute summability everywhere".

To get an absolutely summable potential for the joint measure that is also translation

invariant, more information on the clustering properties of the quenched system on the average

is needed. Theorem 2.4 below describes the existence of an a.s. absolutely summable potential

that is translation invariant, if the measure K is. Moreover it gives information about the

decay of this potential.

Theorem 2.4 (A.s. absolutely summable translation invariant potential):

Assume that the averaged quenched correlations satisfy the decay property
P1

m=1m
2d�1�c(m) <

1 where �c(m) := sup x;y:jx�yj=m

�x;�y2H0

R
IP (d~�) jcx;y(�x; �y; ~�)j with

cx;y(�x; �y; ~�)

:= �[~�]

�
e
��Hfx;yg(�fx;yg;~�fx;yg;~�

��
@fx;yg

)
�
� �[~�]

�
e
��Hx(�x;~�x;~�

��
@x

)

�
�[~�]

�
e
��Hy(�y;~�y;~�

��
@y

)

�

(2.10)

Then there is an a.s. absolutely summable potential U fe,abs,inv

� (�) on the disorder space s.t.

U (4)(�; �) = Uann(�; �) + U fe,abs,inv

� (�) is a potential for the joint measure K, for any arbitrarily

chosen �nite range potential Uann for the annealed system.
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If K is translation invariant, then U fe,abs,inv

� (�) is translation invariant, too.

Remark: Again, the potential is even integrable. Moreover, for any nonnegative translation

invariant function w(A) giving weight to a subset A�ZZd we have the following estimate on its

decay X
A:A3x0

w(A)

Z
IP (d~�)

���U fe,abs,inv

�;A (~�)
��� � C1 + C2

1X
m=2

m2d�1 �w(m)�c(m) (2.11)

where �w(m) := w
�
fz 2 ZZd; z � 0; jzj � mg

�
where � denotes the lexicographic order. The

constants C1, C2 are related to a-priori bounds on �Hx.

Under the stronger condition that we have bounds of the same form on the sup x;y:jx�yj=m

�x;�y2H0

sup~� jcx;y(�x; �y; ~�)j the absolute convergence is not only a.s. but everywhere, and (2.11) holds

for all realizations without the IP -integral (with non-random constants).

III. The in�nite volume conditional expectations

We start with a suitable representation of the in�nite volume conditional expectations of

the joint measure.

We write � = (�; �) here and below, so that, for any set A�ZZd we have �A = (�A; �A).

Recall that r is the range of the de�ning potential �. We write A = fy 2 ZZd; d(y; A) � rg for

the r-neighborhood of a set A, and put @A = AnA.

Proposition 3.1: Assume there is a set of realizationsH0�H of IP -measure one such that the

quenched in�nite volume Gibbs measure �[�] is a weak limit (2.2) of the quenched �nite volume

measures (2.1) for all � 2 H0. Then, a version of the in�nite volume conditional expectation of

the corresponding joint measure K(d�; d�) = IP (d�)�[�](d�) is given by the formula

K
�
��
���ZZdn�� = �

ann,�@�
� (��)R

�
ann,�@�
� (d~��)Q�(��; ~��; �ZZdn�)

(3.1)

Here �
ann,�@�
� (��) is the annealed local speci�cation given by (2.7), which can be written in

terms of the special annealed potential Uann
A (�; �) = �A(�; �)� 1A=fxg log �(�x).

Further we have put

Q�(�
1
�; �

2
�; �ZZdn�) := �[�2��ZZdn�](e

��H�(�
1
�;�

2
�;�@�)) (3.2)

According to our assumption on the measurability on �[�], Q� depends measurably on �ZZdn�.

We note the following properties

11



(i) Q�(�
1
�; �

2
�; �ZZdn�) =

�
Q�(�

2
�; �

1
�; �ZZdn�)

��1

(ii) For any ��� we have Q�(�
1
���n�; �

2
���n�; �ZZdn�) = Q�(�

1
�; �

2
�; �ZZdn�)

(iii) For any �3� we have
Q�(�

1
�;�

3
�;�ZZdn�)

Q�(�
2
�
;�3

�
;�
ZZdn�

)
= Q�(�

1
�; �

2
�; �ZZdn�)

whenever � 2 H0.

Remark: Note that, by our assumption on the a.s. convergence of the in�nite volume

Gibbs measures, Q� can be written in the form

Q�(�
1
�; �

2
�; �ZZdn�) = lim

�N"ZZ
d
�
�b.c.@�N

�N
[�2�

�N
]
�
e��H�(�

1
�;�

2
�;�@�)

�
= lim

�N"ZZ
d

Z
�b.c.@�N

�N
[�1���Nn�]

Z
�b.c.
@�N

�N
[�2���Nn�]

(3.3)

with the quenched partition function

Z
�b.c.
@�

� [�
�
] =

X
��

e
�

P
A:A\�6=;

�A(���
b.c.
@� ;�

�
)

(3.4)

whenever � 2 H0. Morally, Q� is thus a fraction between in�nite volume partition functions

whose disorder variables di�er in the volume �.

Remark: We note that formulas for the �nite volume conditional expectations have ap-

peared in [K6] [see Lemma 2.1, (2.4) therein]. They seem to look more complicated than the

in�nite volume expression (3.1). In that paper we wanted to be able to deal also with the more

general case in which we do not assume IP -a.s. convergence of the �nite volume Gibbs measures,

but only convergence of the �nite volume joint measures. Then (3.1) is not available.

Proof: Properties (i),(ii),(iii) are clear from (3.3).

To get (3.1) we will show at �rst that, for the measureK
�b.c.@�N

�N
(��N ; ��N ) := IP (�

�N
)�

�b.c.@�N

�N
[�
�N

](��N )

on 
� � H�
we have, for �nite �;�;�N with ��� and ���N , the formula

K
�b.c.@�N

�N

�
��
����n�� =

Z
K
�b.c.@�N

�N

h
d���Nn�d���Nn�

����n�
i �

ann,�@�\���@�n�
� (��)

R
�
ann,�@�\���@�n�
� (d~��)

Z
�b.c.
@�N

�N
[����n����Nn�

]

Z
�b.c.
@�N

�N
[~����n����Nn�

]

(3.5)

In particular the formula holds true for � = �. Now, (3.4) is just a computation. Indeed, write

K
�b.c.@�N

�N

�
��
����n��

=

Z
K
�b.c.@�N

�N

h
d���Nn�d���Nn�

����n�
i
K
�b.c.@�N

�N

h
��
����n����N n����Nn�

i (3.6)

12



and note that the term under the integral on the r.h.s. equals

K
�b.c.@�N

�N

h
����n����Nn����Nn�

i
P

~��
K
�b.c.
@�N

�N

h
~����n����Nn����Nn�

i

=
IP (��)�

�b.c.@�N

�N
[����n����Nn�](����n����Nn�)P

~��;~��
IP (~��)�

�b.c.
@�N

�N
[~����n����Nn�](~����n����Nn�)

(3.7)

Spelling out the quenched local speci�cations in terms of the random potential � this can be

rewritten in terms of the special annealed potential Uann
A (�; �) = �A(�; �)� 1A=fxg log �(�x) as

e
�

P
A:A\�6=;

UannA (����n����Nn�;����n����Nn�
)

P
~��;~��

e
�

P
A:A\�6=;

Uann
A

(~����n����Nn�;~����n����Nn�
) Z

�b.c.
@�N

�N
[����n����Nn�

]

Z
�b.c.
@�N

�N
[~����n����Nn�

]

(3.8)

Note that, due to cancellations for ���N , the U -sums do not depend on �b.c.. Note that, for

���, (3.8) does not depends on ���Nn�. In this case the outer integral in (3.4) reduces to an

integration over the disorder variables. Note however that this is not a product integration!

Finally, normalizing numerator and denominator of (3.8) by the annealed partition functionP
~��;~��

e
�

P
A:A\�6=;

UannA (~����n����Nn�;~����n����Nn�
)
we get the desired (3.5).

Next we claim that

K
�
��
����n�� =

Z
K
�
d��ZZdn�

����n�� �
ann,�@�\���@�n�
� (��)R

�
ann,�@�\���@�n�
� (d~��)Q�(��; ~��; ��n���ZZdn�)

(3.9)

To see this, write down (3.5) explicitly in terms of the quenched local speci�cations and (3.9)

in terms of the in�nite volume Gibbs measure. Note that the dependence on those measures is

completely local- therefore (3.9) follows by the assumption of IP -a.s. local convergence of the

�nite volume Gibbs measures. But from (3.9) we can conclude now, that what is under the

integral on the r.h.s. must be the in�nite volume conditional expectation. More precisely, (3.1)

follows from the following general measure-theoretic

Fact: Assume that �ZZd is a random �eld with distribution K, �x taking values in a �nite

set, and ~K
�
��
���ZZdn�� is a Borel probability kernel that satis�es

K
�
��
����n�� =

Z
K
�
d��ZZdn�

����n�� ~K �
��
����n���ZZdn�� (3.10)

for all �nite ���, where K
�
d��ZZdn�

����n�� is a version of the conditional expectation. Then

~K
�
��
���ZZdn�� is a version of the in�nite volume conditional expectation K

�
��
���ZZdn��.

13



We include a proof for the convenience of the reader:

~K
�
��
���ZZdn�� is assumed to be �

�
�ZZdn�

�
-measurable. So, to verify the de�nition of the

conditional expectation we have to show that, for all events C 2 �
�
�ZZdn�

�
and A 2 � (�ZZd) we

have that Z
C

�Z
A

~K
h
d��

���0
ZZdn�

i

 Æ�0

ZZdn�

(d�ZZdn�)

�
K(d�0

ZZdn�
) = K(A \ C) (3.11)

Writing A in the form A =
P

��
(f��g �A��) where A�� 2 �

�
�ZZdn�

�
we see that this is

equivalent to
P

��

R
C
~K
h
��
���0
ZZdn�

i
1�0

ZZdn�
2A��

K(d�0
ZZdn�

) =
P

��
K(f��g � (A�� \ C)). So, it

suÆces to show that, for any B 2 �
�
�ZZdn�

�
and any �� we have that

Z
B

~K
h
��
���0
ZZdn�

i
K(d�0

ZZdn�
) = K(f��g �B) (3.12)

To see this, we apply the standard Dynkin-class argument to show an equality for all sets of

a given �-algebra, see e.g. [Co] Theorem 1.6.1 (which states that, for any \-stable set F of

subsets, the smallest �-algebra which contains F coincides with the smallest Dynkin-class which

contains F). First note that the system D of sets B in �
�
�ZZdn�

�
for which this equality holds

is a Dynkin class: That 
 2 D follows from (2.10) for � = �; furthermore D is stable under

formation of complements and countable unions of pairwise disjoint sets, by the properties of

the integral.

Thus we only need to prove (3.12) for the set of cylinder sets, since they form a \-stable

generator of �
�
�ZZdn�

�
. It suÆces to take sets of the form B = f�; ��n� = �

(1)

�n�
g. But note that

in this case

Z
B

~K
h
��
���0ZZdn�

i
K(d�0ZZdn�) =

Z
~K
h
��
����n��0ZZdn�

i
K(d�0ZZdn�j��n�)K(��n�)

= K
�
��
����n��K(��n�) = K(f��g �B)

(3.13)

where we have used the hypothesis in the second equality. This concludes the proof of the \fact"

and concludes the proof of the proposition. }

IV. Construction of Potentials - Proof of the Theorems

Starting from the formula of Proposition 3.1 for the in�nite volume conditional expectations

of the joint measure K we will prove Theorems 2.1 and 2.2 at the same time. A little later we

will prove Theorem 2.4.

As a �rst consequence of Proposition 3.1 we separate the potential for the joint measures

we are about to construct into an \annealed part" and a \free energy" part. We have

14



Lemma 4.1: Suppose that U ann(�) is a potential for the annealed system. Then we have that

U(�; �) = U ann(�; �) + U fe(�) generates the conditional expectations for the joint measure K if

U fe(�) is summable for IP -a.e � and, IP -a.s.,

lim
�"ZZd

X
A:A��;A\�6=;

�
U
fe

A (�1��ZZdn�)� U
fe

A (�2��ZZdn�)
�
= logQ�(�

1
�; �

2
�; �ZZdn�) (4.1)

Proof: For �nite ��� we write

e
�

P
A:A��;A\�6=;

UA(�)

P
~��
e
�

P
A:A��;A\�6=;

UA(~���ZZdn�)

=
e
�

P
A:A��;A\�6=;

Uann
A (�)

P
~��
e
�

P
A:A��;A\�6=;

Uann
A

(~���ZZdn�)e
�

P
A:A��

(UfeA (~���ZZdn�)�U
fe

A
(�))

=
�
ann,�@�
� (��)R

�
ann,�@�
� (d~��)e

�

P
A:A��

(UfeA (~���ZZdn�)�U
fe

A
(�))

(4.2)

Here the �rst equality is just a resummation of sums and the second follows from normalizing

by the annealed partition function. Now the claim follows from formula (3.1) for the in�nite

volume conditional expectations of K by the limit � " ZZd. }

Thus we are completely reduced to the investigation of the Q-part. Hence we will de�ne our

potentials in terms of logarithms of Q�'s. This makes life much easier and formulas much more

transparent than dealing with the full conditional probabilities of the joint measures themselves.

The situation is especially nice here, since the Q- part depends only on the disorder variables

and the marginal of the joint measures we consider on the disorder variables is just a product

measure.

Proof of Theorem 2.1 and 2.2: Denote by � any product-measure on the disorder

space. Later we will put either � = IP or � = Æ�̂ for a �xed realization of the disorder �̂,

the �rst case corresponding to the proof of Theorem 2.1, the second case corresponding to

the proof of Theorem 2.2. For the second case we assume that �̂ is in the set of realizations

for which the convergence (2.2) holds. From this follows: For all realizations which are �nite

volume perturbations of �̂ the convergence (2.2) to an in�nite volume Gibbs measure with the

corresponding local speci�cation holds, too. (This is seen by splitting o� the corresponding

terms in the Hamiltonian and treating them as a local observable.) So the l.h.s. of (2.8) is

uniquely de�ned.
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We de�ne the `relative energy'

E�
�(��) :=

Z
�(d~�) logQ�(��; ~��; ~�ZZdn�)

=

Z
�(d~�) log�[~�](e��H�(��;~��;~�@�))

(4.3)

and de�ne a potential by the inclusion-exclusion principle

U
fe;�

A (�) :=
X

�:��A

(�1)jAn�jE�
�(��) so that

E�
�(��) =

X
A:A��

U
fe;�

A (�)
(4.4)

We remark that the application of the inclusion-exclusion principle to de�ne a formal potential

is a classical thing that goes back even before [Koz]. Note that, by choosing � = Æ�̂, (4.3)

becomes an expectation w.r.t. a non-random system and thus, for a suitable translation-invariant

realization �̂, might even be amenable to explicit computations in certain cases. Of course, for

� = IP , (4.3) involves the full disorder-dependence of the random Gibbs measure and will hardly

ever be suitable for explicit computations.

Note that the family of random variables E�
� , indexed by �nite subsets ��ZZd, is a mar-

tingale w.r.t. the product measure �. This means that, for each ���,

Z
�(d~�)E�

�(��~��n�) = E�
�(��); E�

;
:=

Z
�(d~�)E�

�(~��) = 0 (4.5)

Indeed, we have by Proposition 3.1 (iii)

Z
�(d��)

Z
�(d~�) logQ�(�����n�; ~��; ~�Zdn�)

=

Z
�(d��)

Z
�(d~�)

�
logQ�(�����n�; ���; ~�Zdn�) + logQ�(���; �

0

�; ~�Zdn�) + logQ�(�
0

�; ~��; ~�Zdn�)
�

(4.6)

for any �xed �0. The last two terms cancel, due to Proposition 3.1 (i) and the �rst term equals

E�
�(��), due to (ii), as desired. Note that this works also in the case � = Æ�̂ since we assumed

weak convergence for the point �̂!

From this follows easily from the usual play with signed sums that, in fact, the potential

U fe;� is �-normalized as a potential on the disorder space, i.e.
R
�x(d~�x)U

fe;�

A (�Anx~�x) = 0

whenever x 2 A.
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Next, to prove that the potential converges, writeX
A:A��;A\�6=;

U
fe;�

A (�) =
X

A:A��

U
fe;�

A (�)�
X

A:A��n�

U
�;fe

A (�)

= E�
�(�)�E�

�n�(�)

=

Z
�(d~�) log

Q�(��; ~��; ~�ZZdn�)

Q�(~����n�; ~��; ~�ZZdn�)

=

Z
�(d~�) logQ�(��; ~��; ��n�~�ZZdn�)

(4.7)

The second equality is (4.4) and for the next two equalities we have used properties (ii) and

(iii) for Q. The important point that exploits the nature of � being a product measure is the

convergence statement

lim
�"ZZd

Z
�(d~�) logQ�(�

1
�; �

2
�; ��n�~�ZZdn�) = logQ�(�

1
�; �

2
�; �ZZdn�) for �-a.e. � (4.8)

This follows by the martingale convergence theorem, since, for any �xed �nite ��ZZd and �xed

�1�; �
2
� the expression under the limit on the l.h.s indexed by �nite subsets ��ZZd s.t. ���, is

a martingale w.r.t the distribution given by �.

Theorem 2.1: We put � = IP . Then we see from (4.7) and (4.8) that the potential converges

with � " ZZd for IP -a.e. �. Since IP is the marginal of K on the disorder-space, this is exactly

what we want.

Theorem 2.2: We put � = Æ�̂ where �̂ is the assumed direction of continuity. In this case the

r.h.s. of (4.7) is just Q�(��; �̂�; ��n��̂ZZdn�). Using property (iii) for Q� we may rewrite this as

a telescoping sum
P

x2�Q�(���x; ��<x; ��n��̂ZZdn�). Here we have put the lexicographic order

on ZZd and written ��x = fz 2 �; z � xg (and the analogous notation for \<"). Thus we see

that (2.7) really implies convergence of the potential with � " ZZd.

Next we prove that the potential generates the in�nite volume conditional expectations of

the joint measure K. We must verify hypothesis (4.1) of Lemma 4.1. We have
X

A:A��

�
U
fe
A (�1��ZZdn�)� U

fe
A (�2��ZZdn�)

�

= E�
�(�

1
���n�)�E�

�(�
2
���n�)

=

Z
�(d~�ZZd) log

Q�(�
1
���n�; ~��; ~�ZZdn�)

Q�(�
2
���n�; ~��; ~�ZZdn�)

=

Z
�(d~�ZZd) logQ�(�

1
�; �

2
�; ��n�~�ZZdn�)

(4.9)

But, recalling (4.8), the proof of (4.1) is the same as that of the convergence of the potential,

in the respective cases of Theorem 2.1 and Theorem 2.2. This concludes the proof of Theo-

rems 2.1 and 2.2. The convergence statement of Corollary 2 follows from (4.7) by integration
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over � w.r.t. IP . In fact, we see that
P

A:A\�6=;

R
IP (d~�)V fe

�;A(~�) equals the �nite quantityR
IP (d�) logQ�(~��; �̂�; ~�ZZdn�). Finally we also note that, assuming continuity of Q everywhere,

we have even pointwise convergence of (4.8) for both choices of �. This proves the �rst conver-

gence statement after (2.9). }

A general remark about resummed potentials:

The potentials used in the proofs of Theorem 2.3 and Theorem 2.4 are obtained by re-

summing the supports of the �-normalized potential U
�;fe

A (�). The general construction is the

following: Denote by P the set of �nite subsets of ZZd and let P =
S
a Pa be a disjoint union

s.t. (i) Ca :=
S
A:A�Pa

A is �nite for every a, and (ii) there exists a net of �nite sets ���ZZ
d

s.t. lim��� = ZZd and: for all �nite �, we have that, for suÆciently large �� , for all A���

s.t. A \ � 6= ; there exists an a with Ca��� s.t. A 2 Pa. Then U�;fe, gr

C (�), de�ned by

U
�;fe, gr
Ca

(�) :=
X

A:A�Pa

U
�;fe
C (�); U

�;gr
C (�) := 0 if C 6= Ca for all a (4.10)

is called the resummed potential corresponding to the given decomposition of P . The reason

for the complicated looking requirement (ii) is that one has

Lemma 4.2: Suppose that U
�;fe, gr

C (�) is a resummed potential obtained from the �-normalized

free energy potential U
�;fe
C (�) that converges absolutely for IP -a.e. �. Then U(�; �) = U ann(�; �)+

U�;fe, gr(�) generates the conditional expectations for the joint measure K (for any annealed po-

tential), if the �-normalized potential does.

Proof: For any �xed � we have that, for any suÆciently large �� ,

X
C:C���;C\�6=;

�
U
�;fe, gr
C (�1��ZZdn�)� U

�;fe, gr
C (�2��ZZdn�)

�

=
X

A:A���;A\�6=;

�
U
�;fe
A (�1��ZZdn�)� U

�;fe
A (�2��ZZdn�)

� (4.11)

This is clear, since, for every term in the right sum there is precisely one term in the left sum

containing its contribution, due to property (ii). Conversely, those contributions on the l.h.s.

coming from A's that don't intersect � cancel because the �eld con�gurations agree outside of

�. Thus, the l.h.s. converges to the r.h.s. of (4.1) along the net �� . By the hypothesis of

absolute convergence this implies convergence for any sequence � " 1, which proves the claim,

by Lemma 4.1.}

The resummations used in the proofs of Theorem 2.3 and 2.4 were invented already by

[Koz] and used in various publications since then. There are of the following general form. Take

� any total order of the lattice points in ZZd. Let, for any lattice point x 2 ZZd, an increasing
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sequence of �nite subsets Ax;m�fy : y � xg, m = 1; 2; : : : be given s.t.
S
m
Ax;m = fy : y � xg.

Put Ax;m=0 = ; and de�ne Px;m := fA : x 2 A�Ax;m; A \ (Ax;mnAx;m�1) 6= ;g. The second

condition for the sum is empty form = 1. Then
S
x;m Px;m = P is a disjoint union and condition

(i) is satis�ed. Indeed, to see (ii), take the family �m =
S
x2ZZd Ax;mx

where m = (mx)x2ZZd is

an integer vector s.t. only �nitely many of the mx's are nonzero.

Proof of Theorem 2.3: By Lemma 4.2 it suÆces to show a.s. summability of a certain

resummed potential. The proof of this statement essentially relies on an L1-statement corre-

sponding to the convergence result (4.8). In order to explain why this ensures the existence of

an a.s. summable potential, however, we have to write down explicit formulas. Let x 7! #(x)

denote a one-to-one map from ZZd to the integers f1; 2; : : :g. (The reader may think of some

spiraling order.) Then the L1-martingale convergence theorem gives us that

Z
IP (d�)

���
Z

IP (d~�) logQx(�x; ~�x; ~�fy:1�#(y)<#(x)g�fy:#(x)<#(y)�rg ~�fy:#(y)>rg)

�

Z
IP (d~�) logQx(�x; ~�x; ~�fy:1�#(y)<#(x)g�fy:#(y)>#(x)g)

��� =: �x(r) # 0
(4.12)

with r " 1, for any �xed x. This is clear, since the �rst line of the expression under the modulus

is a martingale w.r.t. to the parameter r, for any �xed x and �xed �x.

Take some subsequence r(n) of the integers, to be de�ned below. For x � 1, m � 1 de�ne

Ax;m := fz 2 ZZd;#(x) � #(z) � r(x+m)g, put also Ax;m=0 = ;. Starting from general �, let

us de�ne the resummed potential by the formula corresponding to (4.10), i.e.

U
�;fe, abs
Ax;m

(�) :=
X

A:x2A�Ax;m
A\(Ax;mnAx;m�1)6=;

U
�;fe
A (�); U

�;fe, abs
C (�) = 0 otherwise

(4.13)

for all x 2 ZZd and m � 1. Then we have for m � 2

U
�;fe, abs
Ax;m

(�) = E�
Ax;m

(�)�E�
Ax;m�1

(�)� E�
Ax;mnx

(�) +E�
Ax;m�1nx

(�)

=

Z
�(d~�ZZd) log

QAx;m(�Ax;m ; ~�Ax;m ; ~�ZZdnAx;m)QAx;m(�Ax;m�1nx~�Ax;mn(Ax;m�1nx); ~�Ax;m ; ~�ZZdnAx;m)

QAx;m(�Ax;m�1
~�Ax;mnAx;m�1

; ~�Ax;m ; ~�ZZdnAx;m)QAx;m(�Ax;mnx~�x; ~�Ax;m ; ~�ZZdnAx;m)

(4.14)

In the �rst line we have used the expression of the relative energies in terms of the potential. In

the last line we have used the de�nition of the relative energies and property (iii) for Q. Again,

by (iii), this can be rewritten as

U
�;fe, abs
Ax;m

(�) =

Z
�(d~�) log

Qx(�x; ~�x; �Ax;mnx~�ZZdnAx;m)

Qx(�x; ~�x; �Ax;m�1nx~�ZZdnAx;m�1
)

(4.15)

The previous formula was true for any resummed potential starting from the �-normalized free

energy potential. Let us switch to � = IP and drop the subscript �. Now we have from the
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convergence property (4.12) our main estimate:

Z
IP (d~�)

���U fe, abs

Ax;m
(~�)
��� � 2�x(r(x+m� 1)) (4.16)

Similar to (4.14), (4.15) we have for m = 1

U
�;fe, abs
Ax;1

(�) = E�
Ax;1

(�)�E�
Ax;1nx

(�)

=

Z
�(d~�) log

QAx;1 (�Ax;1 ; ~�Ax;1 ; ~�ZZdnAx;1)

QAx;1 (�Ax;1nx~�x; ~�Ax;1 ; ~�ZZdnAx;1)

=

Z
�(d~�) logQx(�x; ~�x; �Ax;1nx~�ZZdnAx;1)

(4.17)

This is uniformly bounded in modulus by some constant Const 1. From the last two estimates

one concludes that

X
C:C3x

Z
IP (d~�) jU fe, abs

C (~�)j �
X

y:#(y)�#(x)

1X
m=1

Z
IP (d~�)

���U fe, abs

Ax;m
(~�)
���

� Const 1jfy;#(y)� #(x)gj+ 2
X

y:#(y)�#(x)

1X
m=2

�y(r(#(y) +m� 1))

(4.18)

But, it is a simple matter to convince oneself that it is possible to choose a subsequence r(m) of

the integers s.t. the m-sum is �nite for all y. (In fact, from �x(r) # 0 one can �nd a subsequence

r(n) s.t. even
P1

n=1 �y(r(n)).) This completes the de�nition of the potential and proves IP -

integrability and thus, in particular, IP -a.s. summability.}

The readers may check for themselves that one may rerun the proof for both choices of �

under the hypothesis of continuity of Q everywhere. This proves the strengthened version of

Theorem 2.3 promised after (2.9). One may however not rerun the proof for � = Æ�̂ without

further assumptions other than the continuity of Qx in the direction �̂ with the hope to obtain

an absolutely summable potential. This is because the speed of convergence of the analogue of

(4.12) (obtained by replacing IP by Æ�̂) may be nonuniform in � in this case.

Proof of Theorem 2.4:

This time, denote Ax;m := fz 2 ZZd; z � x; jz�xj � mg and de�ne the potential by the same

formula (4.13), with the new A's. Then (4.15) and (4.17) stay true. (4.17) is uniformly bounded.

The potential can be rewritten in terms of correlations. Introduce Qx;m;�y := Lx;m�1 [ fz 2

Lx;mnLx;m�1; z � yg. Then, for m � 2 we have

U fe,abs,inv

Lx;m
(�) =

X
y2Lx;mnLx;m�1

�
E�(�Qx;m;�y)� E�(�Qx;m;<y)� E�(�Qx;m;�ynx) +E�(�Qx;m;<ynx)

�

(4.19)
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The term in brackets can be expressed as

�

Z
�(d~�) log

�[�Qx;m;<ynx]

�
e
��Hfx;yg(�fx;yg;~�fx;yg;�

Qx;m;<ynx
��
@fx;yg

)
�

�[�Qx;m;<ynx]

�
e
��Hx(�x;~�x;�

Qx;m;<ynx
��
@x

)

�
�[�Qx;m;<ynx]

�
e
��Hy(�y;~�y;�

Qx;m;<ynx
��
@y

)
�

(4.20)

where we have used the notation �A := (�A~�ZZdnA). Note that this gives a ~�-dependence for the

�-integral. So we get that �-expectation of the modulus of the l.h.s. is bounded from above by

Z
�(d�)

���E�(�Qx;m;�y)� E�(�Qx;m;<y)� E�(�Qx;m;�ynx) +E�(�Qx;m;<ynx)
���

� Const

Z
�(d�)

�����
Z

�(d~�)�[�Qx;m;<ynx]

�
e
��Hfx;yg(�fx;yg;~�fx;yg;�

Qx;m;<ynx
��
@fx;yg

)
�

�

Z
�(d~�)�[�Qx;m;<ynx]

�
e
��Hx(�x;~�x;�

Qx;m;<ynx
��
@x

)

�
�[�Qx;m;<ynx]

�
e
��Hy(�y;~�y;�

Qx;m;<ynx
��
@y

)

������

(4.21)

where, as always, we have used that �Hx is uniformly bounded to drop the logarithm. Let us

now switch to the case � = IP . We use the inequality j
R
f j �

R
jf j for the ~�-integration to

see that the r.h.s. is bounded from above by Const
R
IP (d~�) jcx;y(�x; �y; ~�)j, the latter quantity

being de�ned in (2.10). Recalling �c(m) := sup x;y:jx�yj=m

�x;�y2H0

R
IP (d~�) jcx;y(�x; �y; ~�)j we have from

this and (4.21) that

Z
IP (d�)

���U fe,abs,inv

Lx;m
(�)
��� � Const jLx;mnLx;m�1j �c(m) � Const 0md�1�c(m) (4.22)

But this gives

X
A:A3x0

w(A)

Z
IP (d~�) jU fe,abs,inv

A (~�)j

�

1X
m=1

X
y:jy�x0 j�m

w(Ay;m)

Z
IP (d~�)

���U fe,abs,inv

Ay;m
(~�)
��� � Const 1 + Const 2

1X
m=2

m2d�1w(A0;m)�c(m)

(4.23)

which �nishes the proof. }

We remark that the trick to relate some formal potential to expectations of certain observ-

ables by a telescoping [as in (4.19), (4.20)] was used in various papers before. Observe e.g. the

analogy to the recent [MRSM] where a.s. strongly decaying potentials for renormalized measures

of low temperature spin systems were constructed.
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V. Examples

The results of Theorems 2.1 and 2.3 are general existence results that always apply. Let us

however also see what the more speci�c assumptions needed for the convergence of the vacuum

potential and the strengthenings of Theorems 2.1,2.3 given after (2.9) and in Theorem 2.4 mean

in the examples of the (i) random �eld Ising model, (ii) Ising models with random couplings,

and the (iii) diluted Ising ferromagnet. These examples were discussed already in [K6] w.r.t the

question of almost Gibbsianness.

(i) The Random-Field Ising Model: The single spin space for the variables �x is


0 = f�1; 1g. The disorder variables are given by the random �elds �x that are i.i.d. with

single-site distribution � that is supported on a �nite set H0 and assumed to be symmet-

ric. The disordered potential �(�; �) is given by �fx;yg(�; �) = �J�x�y for nearest neighbors

x; y 2 ZZd, �fxg(�; �) = �h�x�x, and �A = 0 else. Note that e��Hx(�x;�
1
x;�

2
x) = eh(�

1
x��

2
x)�x =

eh(�
2
x
��1

x
) + 2 sinh h(�1x � �2x) 1�x=1. Then, treating this exponential as an observable and using

the `�nite volume perturbation formula' as in [K6] we see the following. Condition (2.8) (giving

the convergence of the vacuum potential) holds if and only if

lim
�"ZZd

�[���̂ZZdn�](~�x = 1) = �[�](~�x = 1) (5.1)

for �x, for all x, for IP -a.e. �. (Here, as always, we used the notation that spins that are

integrated are decorated with tildes.) This is true for any measurable in�nite volume Gibbs

measure �[�] which is obtained as a weak limit with a non-random boundary condition. We

note that whether (5.1) holds is independent of �x. Similarly, condition (2.9) (giving continuity

of the conditional expectations) holds, whenever

lim
�"ZZd

sup
�̂

���[���̂ZZdn�](~�x = 1)� �[�](~�x = 1)
�� = 0 (5.2)

From this we have

Corollary to Theorem 2.2: For any choice of the parameters of the model, the joint measure

corresponding to the ferromagnetic plus-state has a convergent vacuum potential with vacuum

(�+; �). Here �+ is the con�guration taking the maximum of the possible values of the magnetic

�eld for all sites x and � is an arbitrary spin-con�guration.

Corollary to Theorems 2.1,2.3: Suppose that lim�"ZZd �
+
� [��](~�x = 1) = lim�"ZZd �

�

� [��](~�x =

1) for all choices of the magnetic �elds � 2 H. Here the expressions under the limit refer to the

�nite volume Gibbs-measures with + (resp. �) boundary condition.

Then the corresponding (unique) joint measure is Gibbs and the potentials of Theorems 2.1

and 2.2 are both convergent everywhere. There is also a potential of the form announced in

Theorem 2.3 that is absolutely convergent everywhere.
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Proof of Corollaries: It is known that the limit �+[�] = lim�"ZZd �
+
� [��] exists for any choice

of the parameters and any con�guration of the quenched random �elds �x, due to monotonicity

reasons. To prove the �rst Corollary we show that (5.1) holds for �+ and �̂ = �+ and any �.

To see this use the fact that the function (�; �bc) 7! ��
bc

� [��] (~�x = 1) is monotone (w.r.t. the

partial order of its arguments obtained by site-wise comparison.) From this we have

�+[�](~�x = 1) = lim sup
�"ZZd

�+� [��](~�x = 1) � lim sup
�"ZZd

�[���
+

ZZdn�
](~�x = 1) (5.3)

for any � where inequality under the limsup follows from the DLR-equation and the monotonicity.

Additionally we have the converse estimate that follows from

�+[�](~�x = 1) = lim
�2"ZZ

d
�+�2

[��2
](~�x = 1) � lim

�2"ZZ
d
�+�2

[���
+
�2n�

](~�x = 1) = �[���
+

ZZdn�
](~�x = 1)

(5.4)

by taking the lim inf over �. This proves the claim. The other Corollary follows from the

remark after (2.9) and the fact that (5.2) follows from the hypothesis by ��� [��](~�x = 1) �

�[���̂ZZdn�](~�x = 1) � �+� [��](~�x = 1) for any �̂.}

Next we discuss the hypothesis of Theorem 2.4 giving decay of a translation invariant

potential. Again, using the special form of the single-site perturbation of the Hamiltonian, it is

not diÆcult to see that we have

�c(m) � Const sup
x;y:jx�yj=m

Z
IP (d~�) j�[~�](~�x~�y)� �[~�](~�x)�[~�](~�y)j (5.5)

for m � 1. (Here the sup over the possible di�erent choices of �x and �y was absorbed in the

constant. To see this we used the `�nite volume perturbation formula' as in [K6] Chapter III.1)

Now, let us assume that we are in the interesting region of the parameter space where

existence of ferromagnetic order is proved. I.e, let us assume that we are in dimensions d � 3

and we have small disorder and large temperature, i.e. J > 0 suÆciently large and h=J is

suÆciently small. Then, a re�ned analysis of the renormalization group proof of Bricmont and

Kupiainen should lead to the fact that (5.5) decays faster than any power with m " 1 for

the plus-state �+[�]. [Unfortunately this does not follow directly from the (related) statement

(2.6) given under [BK] Theorem (2.1) which asserts that the quenched correlation under the

IP -integral decays like Const (~�)e�const jx�yj, since Const (~�) is unbounded.] This has to be

contrasted with the fact that in this region the system was already proved to be not almost

Gibbsian in [K6]. (The set of \bad con�gurations" of � even has full measure. The reason for

this is that the magnetization �+[�](~�x) can be made to jump for typical � by varying the signs

of the �eld � in a large annulus arbitrarily far away from x. So, (5.2) does certainly not hold.)
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In the opposite "high temperature" case where the coupling J is suÆciently small, one

gets exponential decay �c(m) � Const e�const jx�yj. In fact, stronger than that, one has an

exponential bound on the random correlations in (5.5), uniformly in all realizations of the

�eld. For small J this can be seen by a standard expansion of the nonrandom interaction term

eJ1�x=�y = eJ1�x=�y � 1+1. Indeed, summation over the spins w.r.t. the independent measures

�(d�x)e
h�x�x then produces an �-dependent polymer model that has exponential decay of corre-

lations, uniformly in �. Of course, exponential decay of quenched correlations, uniformly in the

realization of the �elds, always holds in one dimension. This can be seen (e.g.) by disagreement

percolation arguments. By the remark after Theorem 2.4 this implies that the joint measure is

Gibbsian with an interaction potential that is superpolynomially decaying everywhere.

(ii) Ising Models with RandomNearest Neighbor Couplings: RandomBond,

EA-Spinglass: The single spin space is again 
0 = f�1; 1g. Denote by E := f(1; 0; 0; : : : ; 0);

(0; 1; 0; : : : ; 0); : : : ; (0; 0; : : : ; 1)g the set of nearest neighbor vectors pointing in `positive direc-

tions'. The disorder variables (random couplings) Jx;e take �nitely many values, independently

over the `bonds' x; e. We put �x = (Jx;e)e2E . The joint spin at the site x is then �x =

(�x; �x) = (�x; (Jx;e)e2E). The disordered potential �(�; �) is given by �fx;yg(�; �) = �Jx;e�x�y

if y = x + e for some e 2 E , and �A = 0 else. Speci�c distributions of interest are a) Jx;e takes

values strictly bigger than zero (random bond ferromagnet); b) Jx;e is symmetrically distributed

(EA-spinglass).

Now, the crucial observable is the correlation between nearest neighbors. We use the special

form of the single site perturbation of the Hamiltonian w.r.t. �x and similar arguments as for

the random �eld Ising model (see [K6] chapter III.3). In this way we see that: (2.8) holds if

lim
��"(ZZd)�

�1[J�� Ĵ(ZZd)�n�� ](~�x~�y) = �1[J(ZZd)� ](~�x~�y) (5.6)

for any nearest neighbor pair x, y. Here we have written (ZZd)� for the lattice of bonds of ZZd.

Also, the condition (2.9) giving continuity of the conditional expectation holds if

lim
��"(ZZd)�

sup
Ĵ

����1[J�� Ĵ(ZZd)�n�� ](~�x~�y)� �1[J(ZZd)� ](~�x~�y)
��� = 0 (5.7)

for nearest neighbors. Finally, the quantity giving the decay of the potential is

�c(m)

� Const sup
x;y:jx�yj=m

e;e02E

Z
IP (dJ)

������[J ](~�x~�x+e~�y~�y+e0 )� �[J ](~�x~�x+e)�[J ](~�y~�y+e0)

�����
(5.8)

for m big enough s.t. fx; x+ eg \ fy; y + e0g is always empty. (Again the sup over the possible

di�erent choices of �x and �y was absorbed in the constant.) This quantity could be called the

quenched average of the `energy-energy'- correlation function.
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We expect this to decay faster than any power in a very general situation. Exponential

decay of the quantity under the modulus, uniformly in J holds of course in a high-temperature

regime where the maximum of the possible values of jJx;ej is suÆciently small. If this value

is small enough, this can be seen by a usual high-temperature cluster expansion. This results

in the existence of a translation invariant potential, whose sup-norm decays according to the

remark after Theorem 2.4.

In [K6] we gave a heuristic discussion of the example of a joint measure corresponding

to a random Dobrushin state for a random ferromagnet describing a stable interface between

the plus and the minus state. Such states are believed to exist in d � 4 for low temperature,

and weak disorder, though this is only proved in the solid-on-solid approximation (see [BoK1]).

We argued that the corresponding joint measure should not be almost Gibbsian, if the set of

possible values of the couplings contains a value that is small enough such that the corresponding

homogeneous system is in the high temperature phase. Indeed, choosing this coupling in a large

annulus one can decouple the inside of the system from the outside. So, the inside of the system

should be in a mixture of the ferromagnetic plus resp. minus state rather than the Dobrushin

state, a di�erence that can be observed on the nearest neighbor correlations. Nevertheless, we

expect fast decay of the averaged correlations (5.8). So, as for the random �eld Ising model

in the phase transition regime, we should have another example of a joint measure that is not

almost Gibbsian, but has a translation- invariant interaction potential that decays faster than

any power outside of a set of measure zero.

This following example appears in the physical literature [Ku1,2], [MKu] and was �rst

rigorously discussed by [EMMS] below the percolation threshold. We are a little more explicit

in the discussion than in our previous examples.

(iii) The diluted random ferromagnet (`GriSing �eld'): The single spin space for

the variables �x is again 
0 = f�1; 1g. The disorder variables are given by the occupation

numbers �x taking values in f0; 1g, independently w.r.t. x with density IP [�x = 1] = p. The

disordered potential �(�; �) is given by �fx;yg(�; �) = �J�x�x�y�y for nearest neighbors x; y 2

ZZd and �A = 0 else. So the one-site variation of the Hamiltonian is �Hx(�x; �
1
x; �

2
x; �@x) =

�J(�1x � �2x)�x
P

y:d(y;x)=1 �y�y.

By the results of [EMSS] and [K6] we know that, for any p, for suÆciently large J , any weak

limit of the joint measures of the GriSing random �eld is non-Gibbs. [EMSS] noted that, for p

below pc, the percolation threshold for ordinary site percolation, one easily obtains a potential

for the joint measure by putting UA(�) = logZ0
An@(Ac)

for the free energy potential if An@(Ac)

is a connected component of fx; �x = 1g and UA(�) = 0 else. (Here Z0
B is the partition function
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of the ordinary fully occupied Ising model on the set B with open boundary conditions on @B.)

It is well-de�ned on the full-measure set of con�gurations where there is no in�nite cluster and

(trivially) absolutely summable on this set.

On the other hand, by the general result Theorem 2.1, we know that there is a IP -normalized

potential which is convergent for IP -a.e. � for any value of p, 0 < p < 1. By Theorem 2.3

we know that there is a (suitably regrouped) potential constructed from this potential that

converges even absolutely for IP -a.e �. To be a little more speci�c: It is easy to see that in

this case a IP -normalized potential on the disorder space can be written in the form U fe

�;A(�) =

cA(J; p)
Q
x2A(�x � p). From the proof of Theorem 2.1 we see that, for a given measurable

Gibbs measure �[�], the parameters cA(J; p) of the corresponding free energy potential are to be

determined from the equations (4.3) and (4.4). A.s. convergence is guaranteed by Theorem 2.1

and means
P

A:A3x cA(J; p)
Q
y2A(�y � p) <1 for IP -a.e. �. Note, on the other hand, that we

certainly have that
P

A:A3x jcA(J; p)j(1� p)jAj = 1 for p � 1
2
and

P
A:A3x jcA(J; p)jp

jAj = 1

for p � 1
2
for J suÆciently large. This is clear because the above sums are just the sums over

the sup-norms of the interactions and otherwise the potentials would be absolutely uniformly

summable.

It is however also interesting to discuss the vacuum potentials and check the hypothesis of

Theorem 2.2. We start with the potential corresponding to the `empty' vacuum �̂
(0)
x � 0. It has

the form V fe

�;A(�) = c
(0)

A
(J)

Q
y2A

�y (corresponding to [Ku2(31)]). Note that the de�nition of

the constants c
(0)

A (J) by (4.3) and (4.4) involves only expectations w.r.t. �[�̂(0)] which is just an

in�nite product over symmetric Bernoulli measures. Trivially, the weak convergence (2.2) holds,

and is independent of the boundary condition. So, the constants are explicitly computable up to

any desired magnitude of jAj. In particular, they do not depend on p. Corollary 2 states that,

under the hypothesis of Theorem 2.2, also the potential of the form c
(0)

A (J)
�Q

y2A �y � pjAj
�

(which corresponds to [Ku2(32)]) is an a.s. convergent potential for the joint system. The

vacuum potential with `occupied' vacuum �̂
(1)
x � 1 has the form V fe

�;A(�) = c
(1)

A
(J)

Q
y2A

(�y�1).

By (4.3), (4.4) the constants are expressed in terms of averages w.r.t. �[�̂(1)] (obtained as weak

limit with suitably chosen boundary condition.) We note that these constants must be such thatP
A:A3x jc

(0)

A (J)j = 1 and
P

A:A3x jc
(1)

A (J)j = 1, because �[�] would be a Gibbs-measure else,

as above.

p < pc (easy case): There is a unique quenched Gibbs measure IP -a.s. which is just the

independent product over the connected components of the occupied sites (which are all �-

nite, IP -a.s.) . Assuming that � is such that all connected components of occupied sites are

�nite, one has (2.8) for any �̂. From this follows that the vacuum free energy potential con-

verges, for any vacuum �̂. In particular one has, for the empty (resp. the full) vacuum that
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P
A:x2A�fy2ZZd;�y=1g

c
(0)

A (J) <1 (resp.
P

A:x2A�fy2ZZd;�y=0g
(�1)jAjc

(1)

A (J) <1). For the vac-

uum potential V
(0)

A
with empty vacuum the situation is particularly simple: We see by (4.3) and

(4.4) that V
(0)

A (�) = 0 unless A is a subset of a connected component of fx 2 ZZd; �x = 1g. [Be-

cause: (4.3) decomposes into a sum over the connected components of the occupied sites in �, i.e.

E
(0)

� (�) =
P

i logZ
0
B�;i(�)

+ C� where B�;i(�) are the connected components of fx 2 �; �x = 1g

and C� does not depend on �]. This implies that c
(0)
A = 0 unless A is connected. So, V

(0)
A (�) is

just obtained by the decomposition of the individual logs of partition functions over all subsets

A of those connected components of occupied sites and is thus a `re�nement' of the potential

given just by the logs. Consequently
P

A:A3x V
(0)

A (�) contains only �nitely many terms for all �

such that fy 2 ZZd; �y = 1g is �nite.

p > pc: There is an in�nite cluster of occupied sites with probability one. One may have di�erent

Gibbs measures on this in�nite cluster, including the ferromagnetic ones, and also, in suÆciently

high dimensions, low dilution and low temperature, Dobrushin type interface states (the latter

is only partially proved [BoK1]).

Let us assume at �rst that p; J are such that we have a ferromagnetic plus state �+[�]

for IP -a.e. �. We look at the vacuum potential with empty vacuum, given by the same p-

independent formulas as for the p < pc case in terms of coupling constants c
(0)

A for connected

subsets A�ZZd. Next we assume that � is such that the �nite volume Gibbs-measures with open

boundary conditions converge to the symmetric mixture 1
2
(�+[�] + ��[�]). But, this means

that �[���̂
0
ZZdn�

]! 1
2
(�+[�] + ��[�]), because, on �, the l.h.s. is nothing but the �nite volume

Gibbs measure with open boundary conditions on �\fx 2 ZZd; �x = 1g. Thus, the r.h.s. di�ers

from the plus state as a measure, so there is no continuity on the level of measures. However,

since the observable conjugate to the disorder variables is symmetric in �, the corresponding

expectations are the same for the plus and the minus state and we have (2.8), i.e. continuity

on the level of the Q's. Assuming that the set of �'s with the above property is full measure,

the vacuum potential converges IP -a.s. and the corresponding joint potential describes the joint

measure corresponding to the ferromagnetic plus state (and also the minus state). Conversely

we have

Proposition 5.1: Consider the dilute Ising ferrogmanet, at any �xed J > 0. Assume that

there is a convergent free energy vacuum potential with empty vacuum �̂x = 0 for all x for the

joint measure corresponding to a given Gibbs-measure �[�] of the form

U
fe;0
A (�) := c

(0)

A

Y
x2A

�x (5.9)
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where A is running over the connected subsets of ZZd. Then we must have

c
(0)

A =
X

�:��A

(�1)jAn�j log
Z0
�

2j�j
(5.10)

where, as above, Z0
� is the partition function of the fully occupied model in � with zero boundary

conditions. In particular, if two (possibly di�erent) Gibbs-measures corresponding to the same

J both have a potential of the form (5.9), it must be the same.

The proof is given below. Applying the proposition to the random Dobrushin (interface)

state we see that we expect a di�erent scenario for the corresponding joint measure. Assuming

that there is a free energy potential of the form (5.9) it is the same as for the joint measure

of the plus state. This is the potential constructed from (4.3) in a straightforward way. From

(3.1) we see however that the conditional expectations in the in�nite volume will be di�erent in

plus-state and Dobrushin-state, because: Equality of the l.h.s. of (3.1) for di�erent �[�] implies

equality of Qx for di�erent �[�] (by varying the boundary condition �@x). The corresponding

Qx in turn are essentially given in terms of nearest neighbor correlations and these will di�er

in interface states and ordered states. So, both states cannot have the same potential. This

provides an example of a convergent potential constructed in a natural way that produces the

wrong measure.

Finally we look at the vacuum potential with the fully occupied vacuum. We discuss again

the joint measure corresponding to the ferromagnetic plus state and the Dobrushin state. If

these states do exist a.s. then they also exist for the fully occupied system. So we can construct

the state �[�̂], and the state �[�] for typical � with the same type of boundary conditions,

in both cases. Also, in both cases, we expect that �[���̂
1
ZZdn�

] ! �[�] which, in particular,

implies (2.8). So the corresponding vacuum potential converges and yields the right conditional

probabilities. Observe, that in a situation where a typical realization of the disorder destroys

the Dobrushin state that is present for �̂(1), a weak limit of �nite volume Gibbs measure with

plus/minus boundary condition will yield a symmetric mixture of plus and minus state. Thus, to

get a correct potential, we should of course choose the corresponding �[�̂(1)] to be (say) the plus

state (which yields the same free energy potential as the symmetric mixture). The Dobrushin

state in the ordered system which will result from plus/minus boundary conditions will give

a wrong potential. This illustrates the `freedom of choice' of the boundary condition for the

Gibbs-measure with corresponding to �̂ o�ered in Theorem 2.2.

It remains to give the

Proof of Proposition 5.1: We claim that in order that the conditional expectations be
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the correct ones we must have that

lim
�"ZZd

X
A:A��;A3x

�
U
fe

A (�1x�ZZdnx)� U
fe

A (�2x�ZZdnx)
�
= logQx(�

1
x; �

2
x; �ZZdnx) (5.11)

for IP -a.e. �, for all �1x and �2x. This follows from the fact that the �-limit of (4.2) (which is

assumed to exist) and (3.1) must coincide, IP -a.e., which is equivalent to

Z
�ann,�@x
x (d~�x)e

�

P
A:A3x

(UfeA (~�x�ZZdnx)�U
fe

A
(�)) =

Z
�ann,�@x
x (d~�x)Qx(�x; ~�x; �ZZdnx) (5.12)

A simple computation shows that the one-site annealed distribution is given by �ann,�@x
x (�x =

1)=�ann,�@x
x (�x = 0) = cosh(J

P
y2@x �y�y). Thus, by writing (5.12) for di�erent values of �@�

corresponding to di�erent values for the expression in the cosh we can conclude that (5.12) really

implies (5.11). Fix �. Knowing that �[�] satis�es the DLR-equation for IP -a.e. � we have that

�[���̂@��ZZdn�](��) = �0�[��](��), for IP -a.e. �ZZdn�. So we have from (5.11) (putting �1x = �x,

�2x = �̂x)

lim
�"ZZd

X
A:A��;A3x

U
fe;0
A

(���̂@��ZZdn�) = logQx(�x; �̂x; ��nx�̂@��ZZdn�) = log
Z0
�(�x��nx)

Z0
�(�̂x��nx)

(5.13)

for IP -a.e. �
ZZdn�

whenever x 2 �. The l.h.s. equals
P

A:A��;A3x U
fe;0
A (�) due to the assumption

on the form of the potential involving only connected A's. From this one sees by telescoping

over the sites in � that
P

A:A�� c
(0)

A =
P

A:A�� U
fe;0
A (1A) = logZ0

�=2
j�j which, by the inclusion-

exclusion formula gives (5.10).}
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