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Abstract

We prove existence and uniqueness of solutions u 2W
1;2(
) \ L

1(
) to equations of the form

�

nX
i=1

@

@x
i

[�(u)b
i
(x;

@u

@x
)] + a(x; u;

@u

@x
) = 0; x 2 
:

Our nonstandard assumptions on the coe�cients are such that log �(u) is concave and
a(x;u;�)

�(u)
is

increasing in u. Such assumptions are natural in view of drift di�usion processes for example in

semiconductors and chemotaxis.

1 Introduction

We study existence and uniqueness of weak solutions of the problem

�

nX
i=1

@

@xi
[�(u)bi(x;

@u

@x
)] + a(x; u;

@u

@x
) = 0; x 2 
 � IRn; (1)

u(x) = f(x); x 2 @
: (2)

This problem is the stationary variant of nonlinear problems that have been studied extensively by

many authors (see for example papers of H. W. Alt and S. Luckhaus [1], F. Benilan and P. Wittbold

[2], F. Otto [9], H. Gajewski and K. Gröger [4]). Many applied problems, especially drift-di�usion

processes in porous media and semiconductors are modelled by such type of equations. We consider

the problem (1), (2) under standard conditions for the functions b(x; �), a(x; u; �) to be formulated in

Section 2. Our main speci�c assumptions are the following:

�) � 2 (IR1
! IR1) with �(u) > 0; u 2 IR1; is continuous and has a piecewise continuous

derivative �0 such that
�0(u)

�(u)
is nonincreasing on IR1;

a)
a(x; u; �)

�(u)
is nondecreasing with respect to u 2 IR1; for arbitrary x 2 
; � 2 IRn:

A special uniqueness result for problem (1), (2) was obtained in [3] by showing that (1) de�nes a so-

called E-monotone operator, provided that (i) log �(u) is concave and (ii) a = a(x; u) is nonnegative
and � is nonincreasing or a(x; u) is nonpositive and � is nondecreasing. Moreover, in [3] it was pointed

out that such conditions resp. E-monotonicity imply uniqueness for drift-di�usion-reaction equations

describing charge transport in semiconductors [4] or chemotaxis [5].

We consider the problem (1), (2) with a boundary function f satisfying

f 2W 1;2(
) \ L1(
): (3)

De�nition 1 A function u 2W 1;2(
) is called solution of (1), (2) if
Z


�(u)j

@u

@x
j
2 dx <1; u� f 2W

1;2
0 (
) (4)

and equation (1) is satis�ed in the sense of distributions.
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This de�nition will be justi�ed in Section 2.

There we also prove a priori estimates of solutions u to (1), (2) in the W 1;2(
)-norm. An L1(
)
estimate for u is given in Section 3. Using both these estimate we establish in Section 4 the solvability

of the problem (1), (2). Our main result, uniqueness of solutions, is proved in Section 5.

The key role in our paper play special test functions ((18), (31), (60)) which us allow to analyze the

behavior of solutions u on subsets of 
, where �(u) could tend to zero. For regular coe�cients and

smooth solutions uniqueness for problems like (1), (2) can be proved using results of monographs of O.

A. Ladyzhenskaja, N. N. Uraltseva [7] or D. Gilbarg, N. S. Trudinger [6].

We are planing in forthcoming papers to apply our approach to problem (1), (2) with unbounded

f , to corresponding parabolic problems and systems of equations describing electro-reaction-di�usion

processes.

2 A priori estimate in W 1;2(
)

Let 
 be a bounded open set in IRn. Let the coe�cients from (1) in addition to the speci�c assumptions

of Section 1 satisfy:

i) a(x; u; �); bi(x; �); i = 1; :::; n; are measurable with respect to x for every u 2 IR1; � 2 IRn

and continuous with respect to u 2 IR1; � 2 IRn for almost every x 2 
;

ii) there exist positive constants �1; �2 and functions b0 2 L2(
); a0 2 Lp(
); p >
n

2
;

such that for arbitrary x 2 
; u 2 IR1; � 2 IRn

ii)1

nX
i=1

bi(x; �)�i � �1j�j
2;

ii)2 jbi(x; �)j � �2j�j+ b0(x);

ii)3 ja(x; u; �)j � �2(a0(x) + jujq1 + j�jq1)(�(u) + 1); 0 � q1 < 1:

We note some simple consequences from condition �): Let

�� = lim
u!�1

�(u): (5)

Then, for nonconstant � at least one of the numbers ��; �+ is zero. If �� = 0, then

�(u) � R1 exp (�1u) for u � 0 (6)

holds with positive numbers R1; �1. Analogously, if �+ = 0, then

�(u) � R2 exp (��2u) for u � 0 (7)

holds with positive numbers R2; �2. Finally

�(u) � R3 exp (�3juj)

holds with positive numbers R3; �3 for all u 2 IR1.

From (6), (7) we get

j

Z �1

0
�(s) dsj � R4; if �� = 0: (8)
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Remark also that we can choose a positive number N such that

��0(u) < 0 for � u > N; if �� = 0: (9)

Besides of (1) we shall consider the regularized equation

�

nX
i=1

@

@xi
[�
@u

@xi
+ �(u)bi(x;

@u

@x
)] + a(x; u;

@u

@x
) = 0; � 2 [0; 1]; (10)

for proving our existence theorem in Section 4.

Accordingly De�nition 1, u 2W 1;2(
) is solution of (10), (2), if condition (4) is satis�ed and

Z



n nX
i=1

h
�
@u

@xi
+ �(u)bi(x;

@u

@x
)
i @'
@xi

+ a(x; u;
@u

@x
)'
o
dx = 0 8' 2 C1

0 (
): (11)

In order to justify this de�nition we have to show that this integral identity is well de�ned. From

condition �) we infer the inequality

�1=2(u) = �1=2(0) + 2

Z
u

0

�0(s)

�(s)
�1=2(s) ds�1=2(0) + 2j�0(0)�(0)

Z
u

0

�0(s)

�(s)
�1=2(s) dsj: (12)

For a function u satisfying (4) we obtain by Sobolew's embedding theorem and (12)

�1=2(u) 2 L
2n

n�2 (
): (13)

Now (13), (4) and condition ii) show that the integral in (11) is well de�ned for ' 2 C1
0 (
).

Since C1
0 (
) lies densely in W

1;2
0 (
; �), (11) holds actually for all ' 2W

1;2
0 (
) such that

Z


�(u)(j'j2 + j

@'

@x
j
2) dx <1: (14)

Denote

F0 = ess supfjf(x)j; x 2 
g; F1 = kfk1;2; (15)

where k � k1;2 is the norm in W 1;2(
).

In what follows we will understand as known parameters all numbers from conditions ii), F0; F1, norms

of a0; b0 in resp. spaces, measure of 
, R4 and values of the function � on intervals depending only on

n; �1; �2 ; F0; N .

Theorem 1 Let the conditions i), ii), �), a), (3) be satis�ed and let � be an unbounded function on IR1

or �� = �+ = 0. Then there exists a constant M1 depending only on known parameters and independent

of � such that each solution of (10), (2) satis�es

kuk1;2 �M1: (16)

PROOF:

Denote 
� = fx 2 
 : � [u(x) � f(x)] > 0g. We shall estimate the norm of j@u
@x
j in L2(
+). An

estimate of this function in L2(
�) can be proved analogously.

We will use following notations

vk(x) := [v(x)]k = minfv(x); kg; k 2 IR1; [v(x)]+ = max fv(x); 0g; (17)

for an arbitrary function v de�ned on 
.
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Let us consider �rstly the case �+ = 0. Inserting the test function

' =
1

�(uk)

h Z uk

m

�(s) ds
i
+
; k > m = max fF0; Ng; (18)

into (11) we get

Z
fm<u<kg

nX
i=1

n
�
@u

@xi
+ �(u)bi(x;

@u

@x
)
o @u

@xi

n
1�

�0(u)

�(u)
'
o
dx+

Z
fu>mg

a(x; u;
@u

@x
)' dx = 0; (19)

where fm < u < kg = fx 2 
 : m < u(x) < kg and the set fu > mg is analogously de�ned.

Now condition �) for u > m implies

�

�0(u)

�(u)

Z
u

m

�(s) ds � �

Z
u

m

�0(s) ds = �(m)� �(u): (20)

Further condition a) and (8), (9) imply

a(x; u; @u
@x

)

�(uk)

Z
uk

m

�(s) ds =
a(x; u; @u

@x
)

�(u)

�(u)

�(uk)

Z
uk

m

�(s) ds

�

a(x; 0; @u
@x

)

�(0)

�(u)

�(uk)

Z
uk

m

�(s) ds � �R4

ja(x; 0; @u
@x

)j

�(0)
: (21)

Using (20) and (21), we get from (19)

�(m)

Z
fm<u<kg

nX
i=1

bi(x;
@u

@x
)
@u

@xi
dx � c1

Z
fu>mg

ja(x; 0;
@u

@x
)j dx; (22)

and passing to the limit k !1 and applying the monotone convergence theorem, we obtain

Z
fu>mg

nX
i=1

bi(x;
@u

@x
)
@u

@xi
dx � c2

Z
fu>mg

ja(x; 0;
@u

@x
)j dx: (23)

Here and in what follows cl; l = 1; 2; :::; denote positive constants depending only on known parameters.
Estimating the left hand side of (23) by ii)1 and the right hand side of (23) by ii)3 and Young's inequality
we obtain Z

fu>mg

j

@u

@x
j
2 dx � c3: (24)

In order to estimate the integral of j@u
@x
j
2 over the set ff < u < mg, we insert the test function

'(x) = min f[u(x) � f(x)]+;m+ F0g (25)

into (11). We obtain by standard calculations

Z
f0<u�f<m+F0g

j

@u

@x
j
2 dx � c4

Z
fu>fg

h
1 + a0(x) + j

@u

@x
j

i
dx: (26)

Using (24), (26), we get the estimate

Z

+

j

@u

@x
j
2 dx � c3 + c4

Z
fu>fg

h
1 + a0(x) + j

@u

@x
j

i
dx;

and hence the estimate Z

+

j

@u

@x
j
2 dx � c5; (27)
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which completed the proof for the case �+ = 0.

It remains to prove (24) for the case �+ =1. For this purpose we insert the test function

'(x) = [u(x)� �]+; � > F0 + 1;

into (11) and obtain after simple calculations
Z
fu>�g

�(u)j
@u

@x
j
2 dx � c6

Z
fu>�g

(�(u) + 1)
h
a0 + juj

q

1 + j

@u

@x
j
q1

i
(u� �) dx: (28)

Now we want to estimate the terms containing �(u) on the right hand side of (28). By the embedding

theorem and condition �) we getZ
fu>�g

�(u)u1+q1 dx � �q1�1
Z
fu>�g

�(u)u2 dx � 2�q1�1
Z
fu>�g

n
j�

1

2 (u)u� �
1

2 (�)�j2 + �(�)�2
o
dx

� c7

n
�(�)�2 + �q1�1

Z
fu>�g

jr(�(u)
1

2u)j2 dx
o

� c7

n
�(�)�2 + �q1�1(

�0(0)

2�(0)
+ 1)2

Z
fu>�g

�(u)j
@u

@x
j
2 dx

o
:

Hence the desired estimate of j@u
@x
j on the set fu > �g follows, provided

� � K (29)

where K is a constant depending only on known parameters. Now we �x � satisfying (24) and prove

the corresponding estimate on the set ff < u < �g analogously to the case �+ = 0.

Remark 1 From the proof of Theorem 1 it follows that its assertion is true for bounded function �

satisfying supf�(u) : u 2 IR1
g > K where K is the number from (29).

3 A priori estimate in L1(
)

In this Section we will prove a L1(
) a priori estimate:

Theorem 2 Let the conditions i), ii), �), a), (3) be satis�ed. Then there exists a constant M0 depending

only on known parameters and kuk1;2 being independent of �, such that each solution of (10), (2) satis�es

ess supfju(x)j : x 2 
g �M0: (30)

PROOF:

We keep the notations of Section 2 and estimate the maximum of ju(x)j on the set 
+. Again the proof

for 
� runs analogously.

Starting with the case �+ = 0, we insert the test function

'(x) =
[uk(x)�m]r

�(uk(x))

h Z uk(x)

m

�(s) ds
i
+
; k > m; r � 0; (31)

into (11) and obtain

Z
fm<u<kg

nX
i=1

h
�j
@u

@xi
j
2 + �(u)bi(x;

@u

@x
)
@u

@xi

i

�

h
r
[u(x)�m]r�1

�(u(x))

Z
u(x)

m

�(s) ds+ [u(x)�m]r[1�
�0(u(x))

�2(u(x))

Z
u(x)

m

�(s) ds]
i
dx

+

Z
fu>mg

a(x; u;
@u

@x
)
[uk(x)�m]r

�(uk(x))

Z
uk(x)

m

�(s) ds dx = 0: (32)
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Now (20) implies

r
[u(x) �m]r�1

�(u(x))

Z
u(x)

m

�(s) ds+ [u(x)�m]r[1�
�0(u(x))

�2(u(x))

Z
u(x)

m

�(s) ds]
i

�

�(m)

�(u(x))
[u(x)�m]r: (33)

On the other hand (21) and ii)3 give

Z
fu>mg

a(x; u;
@u

@x
)
[uk(x)�m]r

�(uk(x))

Z
uk(x)

m

�(s) ds dx

� �c8

Z
fu>mg

[a0 + j

@u

@x
j][uk �m]r dx: (34)

Taking (33) and (34) into account, we get from (32)

Z
fm<u<kg

[u(x)�m]rj
@u

@x
j
2 dx � c9

Z
fu>mg

[u(x)�m]r[a0(x) + j

@u

@x
j] dx: (35)

Let us denote

I(r) =

Z
fu>mg

[u(x)�m]rj
@u

@x
j
2 dx; J(r) =

Z
fu>mg

[u(x)�m]r[a0(x) + j

@u

@x
j] dx (36)

and suppose that J(r) <1 for some r, then, by taking the limit k !1 we see that I(r) <1. Now,

by Theorem 1 we have J(r0) <1 for r0 = 1 and hence I(r0) <1. This implies [u�m]
r0
2
+1

+ 2W 1;2(
)

and [u �m]
r0
2
+1

+ 2 L
2n

n�2 (
). Thus we have J(r1) < 1 for r1 = 
r0 with 
 = minfn�1
n�2

; n

p0(n�2)
g > 1.

Iterating this we see that I(r); J(r) are �nite for each positive number r and

Z
fu>mg

[u(x)�m]rj
@u

@x
j
2 dx � c9

Z
fu>mg

[u(x)�m]r[a0(x) + j

@u

@x
j] dx (37)

and hence Z
fu>mg

[u(x)�m]rj
@u

@x
j
2 dx � c10

Z
fu>mg

[u(x)�m]r[1 + a0(x)] dx: (38)

From this we obtain the desired estimate for the maximum of [u�m]+ by Moser's (comp. [8]) iteration

technique in the case. �+ = 0.

In the case �+ > 0 we insert the test function

'(x) = [u(x)k �m]r+1; r > 0; (39)

into (35) and use Moser's iteration to prove the result.

4 Existence

In order to prove existence of a solution to (1), (2) we must replace condition ii)1, by a monotonicity

condition. In view of the next section we assume a stronger condition as needed here:

ii)� condition ii) holds with

ii)�1

nX
i=1

[bi(x; �)� bi(x; �)](�i � �i) � �1j� � �j2; 8 x 2 
; �; � 2 IRn (40)

instead of ii)1.

6



Theorem 3 Let the conditions i), ii)�, �), a), (3) be satis�ed and let � be unbounded or �� = �+ = 0.
Then the boundary value problem (1), (2) has at least one solution u 2W 1;2(
) \ L1(
).

PROOF:

In the case that � is an unbounded function we shall modify the functions � and a in the following way:

Denote

R0 = max f�(u) : juj �M0g; (41)

where M0 is the constant from Theorem 2. We can choose a number m� depending only on known

parameters such that

�(u) � K +R0; � �0(u) > 0 for � u > m� if �� 6= 0; (42)

where K is the constant from (29). Then we de�ne functions

��(u) = �(min fu;m�
g); (43)

a�(x; u; �) = a(x;min fu;m�
g; �) (44)

which satisfy the conditions �), a), i), ii), with the same parameters as � and a.

Now we consider for t; � 2 [0; 1] the following parametric family of boundary value problems

�

nX
i=1

@

@xi
[�
@u

@xi
+ ��(u)bi(x;

@u

@x
)] + ta�(x; u;

@u

@x
) = 0; x 2 
; (45)

u(x) = tf(x); x 2 @
: (46)

By Theorems 1 and 2 we get a priori estimates for solutions to (45), (46)

kuk1;2 �M1; ess supfju(x)j : x 2 
g �M0 (47)

with constants M0; M1 independent of t; �.

From (41)-(44), (47) we see that a solution to (45), (46) with t = 1; � = 0 is a solution to (1), (2). We

shall prove �rstly existence of a solution to (45), (46) for t = 1; � > 0 and after that take the limit

� ! 0, to prove Theorem 3.

For �xed number � 2 (0; 1] we consider the parametric family of operators At 2 (W 1;2
0 (
) !

(W 1;2
0 (
))�); t 2 [0; 1], de�ned by

< At; v; ' >=

Z



n nX
i=1

h
�
@(tf + v)

@xi
+ ��(tf + v)bi(x;

@(tf + v)

@x
)
i @'
@xi

+ ta�(x; u;
@(tf + v)

@x
)'
o
dx = 0:

(48)

Easily to check that the operator At satis�es the following condition:

for arbitrary sequences vj 2W
1;2
0 (
) and tj 2 [0; 1] such that

vj * v0 2W
1;2
0 (
) (weakly); tj ! t0 and lim

j!1
< Atj

vj ; vj � v0 >� 0; (49)

it follows that vj ! v0 (strongly):

That means that the operator At; t �xed satis�es the condition (S+).

For proving existence we will apply the degree theory for (S+) operators (I. V. Skrypnik [10]). For this
purpose we consider operators At on the ball B = fv 2W

1;2
0 (
) : kvk1;2 � Rg, where R = F1+M1+1

and F1; M1 are the constants from (15), (47). By (47)

Atv 6= 0 for v 2 @B; t 2 [0; 1] (50)

7



and consequently the family fAtg realizes homotopy of the operators A0 and A1.

Since < A0v; v >> 0 for v 6= 0 it follows from [10], Theorem 4.4, chapter 2, that Deg(A0; �B; 0) = 1.
This implies Deg(A1; �B; 0) = 1 and by the principle of non-zero degree ([10], Corollary 4.1, chapter 2)

the existence of a solution v to the equation A1v = 0 on B. This means that the problem (10), (2) has

the solution u = f + v.

Consider now the sequence �j =
1
j
and let uj 2W 1;2(
) be a solution of (10), (2) for � = �j. Then by

(47)

kujk1;2 �M1; ess supfjuj(x)j : x 2 
g �M0 (51)

and we can assume that uj * u0 2W 1;2(
). From the condition ii)� we have

kuj � u0k1;2 � c11

Z



nX
i=1

��(uj)
h
bi(x;

@uj

@x
)� bi(x;

@u0

@x
)
i@(uj � u0)

@xi
dx: (52)

Using the integral identity (11) we can see that the right hand side of (52) tends to zero for j ! 1.

Hence uj ! u0 in W
1;2(
). Now we can pass to the limit � = �j ! 0 in (11) in order to verify that u0

is solution to (1), (2).

5 Uniqueness

In this section the main result of our paper is established. We need now the following local Lipschitz

continuity condition:

iii) there exist a positive nondecreasing function � 2 (IR1
! IR1) and functions

a1 2 Lp(
); a2 2 L2p(
); p >
n

2
; such that

ja(x; u; �) � a(x; v; �)j � [�(N) + a1(x) + j�j
2

p ]ju� vj; (53)

ja(x; u; �) � a(x; u; �)j � [�(N) + a2(x)]j� � �j (54)

hold for arbitrary N > 0 and x 2 
; juj; jvj � N; �; � 2 IRn:

Theorem 4 Let the conditions i), ii)�, iii), �), a), (3) be satis�ed and let bi(x; 0) = 0; i = 1; :::; n.
Then the boundary value problem (1), (2) has a unique solution u 2W 1;2(
) \ L1(
) satisfying (4).

PROOF:

The Theorems 1-3 guaranty existence of a bounded solution to (1), (2). Now we will assume the

existence of two solutions u1; u2 2W 1;2(
)\L1(
) and show that necessarily u1 = u2. By Theorems

1, 2 we have

kujk1;2 �M1; ess supfjuj(x)j : x 2 
g �M0; j = 1; 2: (55)

Denote v = u2 � u1 and suppose contradictorily

M = ess supfjv(x)j : x 2 
g > 0: (56)

It is su�cient to prove that the positive part [v]+ of v vanishes. The functions uj; j = 1; 2, satisfy the
following integral identities

Z



n nX
i=1

h
�(uj)bi(x;

@uj

@x
)
i @'
@xi

+ a(x; uj ;
@uj

@x
)'
o
dx = 0 8' 2W

1;2
0 (
); j = 1; 2: (57)

We insert the test function

' = [v �m]+; m 2 [0;M ] (58)
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into (57), j = 2, and obtain

Z
fv>mg

n
�(u1 + v)

nX
i=1

bi(x;
@(u1 + v)

@x
)
@v

@xi
+ a(x; u1 + v;

@(u1 + v)

@x
)(v �m)

o
dx = 0: (59)

Additionally we insert the test function

' =
1

�(u1)

h Z u1+v

u1+m
�(s) ds

i
+

(60)

into (57), j = 1. Thus we get

Z
fv>mg

n nX
i=1

bi(x;
@u1

@x
)
h@(u1 + v)

@xi
�(u1 + v)�

@u1

@xi
�(u1 +m)

i

�

nX
i=1

bi(x;
@u1

@x
)
@u1

@xi
�0(u1)'+ a(x; u1;

@u1

@x
)'
o
dx = 0: (61)

Taking the di�erence of (59) and (61), we obtain

Z
fv>mg

n
�(u1 + v)

nX
i=1

h
bi(x;

@(u1 + v)

@x
)� bi(x;

@u1

@x
)
i @v
@xi

�

nX
i=1

bi(x;
@u1

@x
)
@u1

@xi
[�(u1 + v)� �(u1 +m)] +

nX
i=1

bi(x;
@u1

@x
)
@u1

@xi
�0(u1)' (62)

+a(x; u1 + v;
@(u1 + v)

@x
)(v �m)� a(x; u1;

@u1

@x
)'
o
dx = 0:

Now condition �) implies

�0(u1)' �

Z
u1+v

u1+m
�0(s) ds = �(u1 + v)� �(u1 +m): (63)

Further condition a) yields

�a(x; u1;
@u1

@x
)' � �

Z
u1+v

u1+m
a(x; s;

@u1

@x
) ds: (64)

Moreover, (40) along with bi(x; 0) = 0; i = 1; :::; n, give

nX
i=1

bi(x;
@u1

@x
)
@(u1)

@xi
� 0: (65)

Thus, using (63)-(65) we obtain from (62)

Z
fv>mg

n
�(u1 + v)

nX
i=1

h
bi(x;

@(u1 + v)

@x
)� bi(x;

@u1

@x
)
i @v
@xi

+a(x; u1 + v;
@(u1 + v)

@x
)(v �m)�

Z
u1+v

u1+m
a(x; s;

@u1

@x
) ds

o
dx � 0: (66)

We estimate summands from (66) containing the function a by using condition iii) and (55):

ja(x; u1 + v;
@(u1 + v)

@x
)(v �m)�

Z
u1+v

u1+m
a(x; s;

@u1

@x
) dsj

= j

Z
u1+v

u1+m
[a(x; u1 + v;

@(u1 + v)

@x
)� a(x; s;

@u1

@x
)] dsj (67)

� c12

n
[a2(x) + 1]j

@v

@x
j+ [a1(x) + 1 + j

@u1

@x
j

2

p ](v �m)
o
(v �m); x 2 fv > mg:

9



Thus by ii)�1 we get from (66)

Z
fv>mg

j

@v

@x
j
2 dx � c13

Z
fv>mg

n
[a2(x) + 1]j

@v

@x
j+ [a1(x) + 1 + j

@u1

@x
j

2

p ](v �m)
o
(v �m) dx:

Using Young's and Hölder's inequalities, we obtain

Z
fv>mg

j

@v

@x
j
2 dx � c14

Z
fv>mg

n
[v �m]2p

0

dx
o 1

p0 ; p0 =
p

p� 1
; (68)

where c14 depends only on known parameters and norms of the functions a1; a2 in Lp(
), L2p(
)
respectively.

Let now q < 2 be de�ned by nq

n�q
= 2p0. Using the embedding theorem and Hölder's inequality we can

evaluate the right hand side of (68) in the following way

nZ
fv>mg

[v �m]2p
0

dx
o 1

p0

� c15

n Z
fv>mg

j

@v

@x
j
q dx

o 2

q

= c15

n Z
fm<v<Mg

j

@v

@x
j
q dx

o 2

q

(69)

� c15

h
measfm < v < Mg

i 2
q
�1

Z
fv>mg

j

@v

@x
j
2 dx:

We used here (56) and the fact that j@v
@x
j = 0 almost every where on the set fv = Mg. From (68), (69)

we conclude Z
fv>mg

j

@v

@x
j
2 dx � c16

h
measfm < v < Mg

i 2
q
�1

Z
fv>mg

���@v
@x
j
2 dx: (70)

Since the measure of the set fM�
1
j
< v < Mg tends to zero for j !1, (70) implies that for su�ciently

large j0 Z
fv>m(j0)g

j

@v

@x
j
2 dx = 0; m(j0) = M �

1

j0
> 0: (71)

Using Friedrich's inequality we get from (71)

Z
fv>m(j0)g

jv �m(j0)j
2 dx = 0

and consequently v � m(j0) almost every where on 
. This contradicts (56).

We conclude this section showing that our conditions for unicity are sharp in some sense. More precisely,

we give a counter example concerning the function a0 from condition ii)3. To this end let us consider

the special boundary value problem

�

nX
i=1

@

@xi
[e2u

@u

@xi
] + a�(x; u; j

@u

@x
j) = 0; x 2 
 = B1 = fx 2 IRn : jxj < 1g; (72)

u = 1; x 2 @B1; (73)

with

a�(x; u; s) = ne2ujxj��2minfs; s�g; s � 0; � 2 (0; 1):

It is easy to see that (72) satis�es all conditions of our paper except

a0 2 Lp(
); p >
n

2
: (74)

10



Indeed ii)3 holds with a0 = jxj
��2

1�� , i.e., a0 violates (74) for su�cient small �.

On the other hand the problem (72), (73) has the two di�erent solutions

u1(x) = 1; u2(x) = ln (ejxj):

Consequently, (74) cannot be weakened as

a0 2 Lp(
); p > �; � <
n

2
:
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