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Abstract. We are interested in algorithms for constructing surfaces � of possibly

small measure that separate a given domain 
 into two regions of equal measure.

Using the integral formula for the total gradient variation, we show that such separa-

tors can be constructed approximatively by means of sign changing eigenfunctions of

the p-Laplacians, p! 1, under homogeneous Neumann boundary conditions. These

eigenfunctions are proven to be limits of a steepest descent methods applied to suit-

able norm quotients. Finally we use these ideas for the construction of separators

on simplex grids.

1 Introduction

Let 
 � IR
n
; n � 1; be an open, bounded, connected Lipschitzian domain. We

denote by C1
0 ; L

p
; H

1;p and (H1;p)0 = H
�1;p0

; 1 � p � 2; p0 = p

p�1 ; the usual spaces

of functions de�ned on 
 (comp [13]); (�; �) means the pairing between spaces and

their duals, jj � jjp is the norm in Lp. Further BV denotes the space of functions with

bounded variation on 
 [10] and

Z


jDuj = sup

g

�Z


ur � g dx

�
; g 2 C

1
0 (
; IR

n); jg(x)j � 1; x 2 
:

(Note that
R

 jDuj = kruk1, provided u 2 H1;1). Let �nally

Vp =

(
fu 2 H1;p

;
R

 juj

p�2
u dx = 0g; if p > 1;

fu 2 BV;
R

 sign u dx = 0g ; if p = 1:

)

There is a practical interest [11], [12] in algorithms for constructing surfaces � of

possibly small measure j�j which separate 
 into two regions of equal measure, i. e.

, in solving the minimum problem

'1(E) = 2
P
(E)

jEj
! min; E � 
; jEj =

j
j

2
; (1)

where P
(E) = j�j is the perimeter of E relative to 
 and jEj is the measure of E.

This paper aims to solve the geometrical problem (1) by analytical tools. Roughly

speaking, we look for approximative solutions of the form E = fx 2 
; u(x) > 0g,

where u minimizes

F1(u) =

R

 jDuj

jjujj1
! min; u 2 V1: (2)
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The key idea for this approach is Federer's observation (comp. [5]), that the in�mum

of the functional

'(E) =
P
(E)

min(jEj
1

p� ; j
 n Ej
1

p� )
! min; E � 
; p

� =
n

n� 1
; (3)

coincides with that of

�(u) =

R

 jDuj

jju� t0(u)jjp�
! min; u 2 BV; (4)

where the functional t0 is de�ned by

t0(u) = sup ft : jEtj � j
 n Etjg ; Et = fx 2 
; u(x) > tg: (5)

To specify the connection between (3) and (4) we quote some basic facts from [5],

[6]:

(i) Let u be locally integrable on 
. ThenZ


jDuj =

Z 1

�1
P
(Et)dt: (6)

(ii) Let 
 � IR
n be an open, bounded and connected Lipschitzian domain. Then 


satis�es a relative isoperimetric inequality, i. e., there exists a constant Q = Q(
),

such that

min(jEj
1

p� ; j
� Ej
1

p� ) � QP
(E): (7)

(iii) Let 
, Q be as in (ii) and let u be as in (i). Then

jju� t0(u)jjp� � Q

Z


jDuj: (8)

A special case of (i) is Z


jD�Ej = P
(E); (9)

where � is the characteristic function. Hence the map E ! �E � �
nE directly

connects (1) and (2). The inverse direction may be indicated by the map u ! Eu

with

Eu = fx 2 
; u(x) > 0g:

The functional F1 still is unpleasant from the algorithmical point of view. Therefore

we shall approximate F1 by (apart from zero) di�erentiable functionals

Fp(u) =
jjrujjp

p

jjujj
p
p

; 0 6= u 2 Vp; p 2 (1; 2]: (10)

The next section clari�es the relation between '; '1 and F1. In Section 3 we prove

convergence of minimizers of Fp; p! 1; to minimizers of F1. Section 4 is devoted the

convergence proof of a steepest descent method for Fp. Here each iteration up;i has

to be calculated as (unique) solution of a nonlinear elliptic boundary value problem

under homogeneous Neumann conditions. It is shown that Fp(up;i) for i!1 tends

monotonously decreasing to Fp(up), where up is a sign changing eigenfunction of the

p-Laplacien. Finally we consider a numerical example related to graph partitioning.
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2 Relations between '1 and F1

In this Section we want to justify the transition from (1) to (2). We start with an

adaption of inequality (8), being more convenient for our purposes.

Lemma 1 Let Q be the relative isoperimetric constant from (7). Then

jjujj1 �

 
j
j

2

! 1

n

Q

Z


jDuj ; u 2 V1;

jjujjp � 2
p�1

p

 
j
j

2

! 1

n

Qjjrujjp ; u 2 H
1;p
\ V1; p 2 [1; p� =

n

n� 1
]: (11)

PROOF:

Following the proof of (8) in [6], let

At =

(
Et; if t > 0;

f
 n Etg; if t � 0:

)

Since u 2 V1, we have jAtj � jf
 n Atgj for all t and for all x 2 
 ([10])

u(x) =

Z 1

�1
sign t �At

(x) dt

and hence (comp. [6])

kukp �

Z 1

�1
k�At
kp dt:

Now, Hölder's inequality, (6) and (7) yield

kukp �

Z 1

�1
k�At
kp dx �

 
j
j

2

! 1

p
� 1

p�
Z 1

�1
k�At
kp� dt

�

 
j
j

2

! 1

p
� 1

p�

Q

Z 1

�1
P
(At) dt =

 
j
j

2

! 1

p
� 1

p�

Q

Z


jDuj

=

 
j
j

2

! 1

p
� 1

p�

Qkruk1 � 2
p�1

p

 
j
j

2

! 1

n

Qkrukp:

2

Remark 1 The inequality (11) speci�es the constant in Poincaré's inequality. For

p = 1, (11) is sharp. Indeed, suppose equality is attained in (7) for a set E with

jEj = j
j
2
, as for example in the case of convex domains 
 � IR

2 (comp. [2]). Then

u = �E � �
nE 2 V1 and

jjujj1 = j
j = 2

 
j
j

2

! 1

n

 
j
j

2

! 1

p�

= 2

 
j
j

2

! 1

n

QP
(E)

= 20
 
j
j

2

! 1

n

Q

Z


jDuj:
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For convex domains 
 another speci�cation is well known [9]

jjujjp �

 
j
j

!n

! 1�n

n

d
n
jjrujjp; u 2 H

1;p
;

Z


u dx = 0;

where !n is the volume of the unit sphere in IR
n and d is the diameter of 
.

The minimum problems (3) and (2) are equivalent in the following sense:

Proposition 1 A set E1 � 
 with jE1j =
j
j
2

is minimizer of ' if and only if

u1 = �E1
� �
nE1

2 V1 is minimizer of F1.

PROOF:

(!) By (11) we �nd for arbitrary u 2 V1

F1(u) �

� j
j
2

�� 1

n

Q
=

 
j
j

2

!� 1

n 2P
(E1)

jE1j
1

p�

=
2P
(E1)

j
j
= F1(u1):

( ) Let E � 
 be any set with P
(E) <1. Then (11) and (9) imply

'(E) �
1

Q
=

 
j
j

2

! 1

n

F1(u1) =

 
j
j

2

! 1

n 2P
(E1)

j
j
=

P
(E1)

jE1j
1

p�

= '(E1):

2

Remark 2 Evidently, each minimizer E of ' with jEj =
j
j
2

is solution of the

minimum problem (1). For convex domains 
 � IR
2 the existence of such minimizers

is proved in [2].

On the basis of the next result we shall replace (1) by (2).

Theorem 1 (i) Let u1 2 V1 be minimizer of F1 and E1 = fx 2 
; u1(x) > 0g.

Then

'1(E1) � '1(E) for all E � 
 with jEj =
j
j

2
: (12)

(ii) Let in addition jfx 2 
; u1(x) = 0gj = 0. Then u1 is solution of (1).

PROOF:

(i) By (11) and (9) we get

'1(E) =
2P
(E)

j
j
=

 
j
j

2

!� 1

n P
(E)

jEj
1

p�

�

� j
j
2

�� 1

n

Q
= F1(u1): (13)
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Let for " > 0

w"(x) = tanh (
u1(x)

"
):

Since u1 is minimizer of F1 and w" 2 BV , we have

1

jju1jj1
(jjw"jjBV � F1(u1)jjw"jj1) =

d

dt
F1(u1 + tw")jt=0 = 0:

Passing "! 0, the lower semicontinuity of the BV -norm [10] and Lebesgue's domi-

nated convergence theorem imply

'1(E1) =
2P
(E1)

j
j
� F1(u1): (14)

Putting this together with (13), we get (12).

(ii) u1 2 V1 along with jfx 2 
; u1(x) = 0gj = 0 imply jE1j =
j
j
2
. Thus (ii) is a

consequence of (i).

2

3 The functionals Fp and the limit p! 1

In this Section we will justify the transition from the minimum problem (2) to the

regularized minimum problems

Fp(u) =
jjrujjp

p

jjujj
p
p

! min; 0 6= u 2 Vp; p 2 (1; 2]: (15)

Remark 3 Since Fp is homogeneous, (15) is equivalent with

Gp(u) = jjrujjp ! min; u 2 Vp; kukp = 1; p 2 (1; 2]:

Proposition 2 Let

d = inf
u2Vp

Fp(u):

Then there exists a (minimizer) u 2 Vp such that Fp(u) = d.

PROOF:

Let (vi) � Vp be a minimal sequence, i.e., vi 6= 0; Fp(vi) ! d. In view of Remark

3 we set ui = vi=kvikp. Because of the re�exity of H1;p, its compact imbedding

into Lp and the continuity of the operator u! jujp�2u 2 (Lp ! L
p

p�1 ), there are a

subsequence (uj) � (ui) and a u 2 Vp such that

uj ! u in L
p
; kujkp = 1; uj * u in H

1;p
; Fp(uj)! d:

Since v ! krvkp is weakly lower semicontinuous, this implies Fp(u) = d. 2
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Minimizers of u 2 H
1;p satisfy necessarily the Euler Lagrange equations, i. e., the

nonlinear eigenvalue problem (comp.[4])

Apu = Fp(u)Bpu; (16)

where the operators Ap; Bp 2 (H1;p ! (H�1;p0) are de�ned by

(Apu; h) = (jrujp�2ru;rh); 8h 2 H1;p
;

(Bpu; h) = (bp(u); h); bp(u) = juj
p�2

u:

(17)

Remark 4 (16), (17) can be seen as weak formulation (comp. [8]) of the nonlinear

eigenvalue problem

�r � (jrujp�2ru) = Fp(u)juj
p�2

u in 
; � � ru = 0 on @
;

where � is the outer unit normal on @
.

The minimum problem (15) approximates (2) in the following sense:

Theorem 2 Let up 2 H
1;p 1 < p � 2, be minimizer for Fp in (15), such that

jjupjjp = 1: (18)

Then:

(i) up 2 Vp;

(ii) A sequence pi ! 1 and a function u 2 BV exist such that

ui := upi ! u in L
q
; q 2 (1; p�); Fpi

(ui)! � � F1(u);

(iii) u is minimizer of F1;

(iv)

Biui * z in L
q
; z 2 Su;

Z


z dx = 0;

where S is the maximal monotone operator generated by the (multivalued) function

Sign s =

(
sign s; ifif s 6= 0;

[�1; 1]; if s = 0:

)

PROOF:

(i) Testing (16) with h = 1 yields (Bpup; 1) = 0, i. e., up 2 Vp.

(ii) Let w 2 H1 be �xed. Using that up is minimizer and (18), we �nd

j
j1�pjjrupjj
p

1 � jjrupjj
p

p
= Fp(up)jjupjj

p

p
� Fp(w)jjujj

p

p
� c:

6



Since H1;1 is compactly imbedded into Lq
; q < p

�, a sequence pi ! 1 and u 2 BV

exist such that

ui := upi ! u in Lq and a: e: in 
; (19)

Fpi
(ui) ! �: (20)

Using the lower semicontinuity of the BV-norm, Hölder's and Young's inequalities,

we get from (16), setting p = pi; r =
p�(p�1)
p��1 temporaryly,

Z


jDuj � lim inf

Z


jDuij = lim inf jjruijj1

� lim inf(j
j
p�1

p jjruijjp) � lim inf(
p� 1

p
j
j+

1

p
jjruijj

p

p
)

� lim inf jjruijj
p

p
= lim inf(Fp(ui)jjuijj

p

p
)

= � lim inf jjuijj
p

p
� � lim inf(jjuijj

p�r
1 jjuijj

r

p�)

� � lim inf((p� r)jjuijj1 + (1 + r � p)jjuijj
r) = �jjujj1

and hence

F1(u) � �: (21)

(iii) Let v 2 BV; v 6= 0. We want to show that F1(u) � F1(v). To this end let

(vj) � C
1 be a sequence (comp. [10]) such that

vj ! v in L1
;

Z


jDvjj !

Z


jDvj: (22)

We have

F1(v) = F1(vj) + F1(v)� F1(vj) = Fp(vj) + F1(vj)� Fp(vj) + F1(v)� F1(vj)

� Fp(up)� jF1(vj)� Fp(vj)j � jF1(v)� F1(vj)j:

(23)

By (22) we can choose j such that for given " > 0

jF1(v)� F1(vj)j < ":

Further we have

jjrvjjj
p

p
� jjrvjjj1jjrvjjj

p�1
1 �

1

p
jjrvjjj

p

1 +
p� 1

p
jjrvjjj

p

1

� jjrvjjj1(1 + j
1

p
jjrvjjj

p�1
1 � 1j) +

p� 1

p
jjrvjjj

p

1

and

jjvjjj
p

p
�

1

p
jjvjjj

p

1 +
p� 1

p
jjvjjj

p

1 � jjvjjj1(1 + j
1

p
jjvjjj

p�1
1 � 1j) +

p� 1

p
jjvjjj

p

1:

7



Consequently, we can choose pi = pi(j) such that

jF1(vj)� Fpi
(vj)j < ":

Thus, using (19) and (21), we get from (23)

F1(u) � Fpi
(ui) � F1(v) + 2":

Passing to "! 0, we see that u is minimizer of F1.

(iv) Since

kBiuikn = kjuij
p�1
kn � kuik

p�1
p� j
j

1

n
� p�1

p� � c;

we can assume that

Biui * z in L
n
:

Then

(z; 1) = lim
i!1

(Biui; 1) = 0;

and for any v 2 Lq

(z � Sv; u� v) = lim
i!1

(Biui � Sv; u� v) � lim
i!1

(Biui � sign v; u� v) (24)

= lim
i!1

(Biui � Biv; u� v) � 0: (25)

Thus the maximal monotonicity of S implies z = Su. 2

4 Steepest descent method

Due to the Theorems 1,2 the original minimum problem (1) is approximatively re-

duced to construction of minimizers up of the functional Fp for suitable p near 1.

In this section we �x p 2 (1; 2] and establish a steepest descent method for solving

iteratively the corresponding Euler Lagrange equations, i. e., the nonlinear eigen-

value problems (16).

Bpui + �Apui = Bpui�1 + �Fp(ui�1)Bpui; ; i = 1; 2; :::; u0 2 Vp; ; u0 6= 0; (26)

where � is a relaxation parameter, which may be interpreted as time step.

Theorem 3 Let �p0Fp(u0) < 1; p0 = p

p�1 . Then:

(i) for each i (26) has a unique solution ui 2 Vp;

(ii) the sequence (Fp(ui)) is decreasing, Fp(ui)! � > 0;

(iii) the sequence (jjuijjp) is bounded, moreover

ku0k
p

p
� kuik

p

p
� c :=

1

1� �p0F (u0)
ku0k

p

p
; kBpui � Bpui�1k1 ! 0;

(iv) there exist a subsequence (uij) � (ui) and a function u 2 Vp such that u is

nontrivial solution of the nonlinear eigenvalue problem (16) and

uij ! u in H
1;p
; Fp(u) = �;

Z


Bpu dx = 0:

8



PROOF:

For simplifying the notation during the proof we drop the index p at A;B; F and V .

(i) The operator A+B 2 (H1;p! H
�1;p0) is continuous ([8], [13]). The inequalities

(comp. [3])

0 � (jyjp�1 � jzjp�1)(jyj � jzj) � (jyjp�2y � jzjp�2z; y � z) � c(p)jy � zj
p
; y; z 2 IR

n
;

(27)

imply strict monotonicity and coercitivity of A + B. Thus the Browder-Minty the-

orem ensures existence of a unique solution ui 2 H
1;p for given ui�1 2 H

1;p.

(ii) Testing (26) by h = ui � ui�1 and using the inequalities of Hölder and Young,

we get

(
1

�
� F (ui�1))(Bui � Bui�1 ; ui � ui�1) + (Aui; ui)

= (Aui; ui�1)) + F (ui�1)(Bui�1; ui � ui�1)

� jjruijj
p�1
p
jjrui�1jjp + F (ui�1)(jjui�1jj

p�1
p
jjuijjp � jjui�1jj

p

p
)

�
1

p
[(p� 1)jjruijj

p

p
+ jjrui�1jj

p

p
+ F (ui�1)(jjuijj

p

p
� jjui�1jj

p

p
)]

=
jjuijj

p

p

p
((p� 1)F (ui) + F (ui�1));

and hence

(
1

�
� F (ui�1))(Bui � Bui�1; ui � ui�1) + jjuijj

p

p
(F (ui)� F (ui�1)) � 0: (28)

Since �F (u0) < 1 and B is monotone, this means

F (ui) � F (ui�1); i = 1; 2; ::; F (ui)! � > 0 (29)

and

0 � (Bui � Bui�1; ui � ui�1)! 0: (30)

(iii) Testing (26) by h = ui�1, using Hölder's inequality and (ii) yield

kui�1k
p

p
= (1� �F (ui�1))(Bui; ui�1) + �(Aui; ui�1)

� (1� �F (ui�1))jjuijj
p�1
p
kui�1kp + � jjruijj

p�1
p
krui�1kp (31)

� (1� �F (ui�1))jjuijj
p�1
p
kui�1kp + �F (ui)

p�1

p jjuijj
p�1
p

F (ui�1)
1

pkui�1kp

� (1� �F (ui�1))jjuijj
p�1
p
kui�1kp + �F (ui�1)

p�1

p jjuijj
p�1
p

F (ui�1)
1

pkui�1jp

= kuik
p�1
p
kui�1kp

and hence

kui�1kp � kuikp:

Now, in order to show kuik
p

p
� c we test (26) by h = ui and apply Young's inequality

to get

1

�p0
(jjuijj

p

p
�kui�1k

p

p
)+(Aui; ui) �

1

�
(jjuijj

p

p
� (Bui�1; ui))+(Aui; ui) = F (ui�1)kuik

p

p

9



and thus

1

�p0
(jjuijj

p

p
� kui�1jj

p

p
) � jjuijj

p

p
(F (ui�1)� F (ui)) � max

i

fjjuijj
p

p
g(F (ui�1)� F (ui))

(32)

Summing up over i = 1; k and using (29) and (32), we get

jjukjj
p

p
� jju0jj

p

p
+ �pmax

i
fjjuijj

p

p
g(F (u0)� F (uk)) � jju0jj

p

p
+ �p

0max
i
fjjuijjj

p

p
gF (u0))

Since this holds for all k and �p
0
F (u0) < 1, we conclude

jjuijj
p

p
� c; krupk = F (up)kupk

p

p
� cF (u0): (33)

This along with (30) and Lemma 1.8 from [1] imply

jjBui � Bui�1jj1 ! 0: (34)

(iv) Because of (29), (32), (33) and the compactness of the imbedding of H1;p into

L
p there exist a subsequence (uij ) � (ui) and a function u 2 H

1;p
; kukp � ku0kp

such that

uij * u in H
1;p
; uij ! u in L

p
; F (uij)! �: (35)

Hence we get

(Auij ; uij) = F (uij)jjuij jj
p

p
! �jjujj

p

p
= �(Bu; u): (36)

Further, using the continuity of B, (34) and (35), we �nd for arbitrary h 2 H1;p\L1

j(Auij � �Bu; h)j = j(F (uij�1)Buij � �Bu; h) +
1

�
(Buij�1 �Buij ; h)j

� jF (uij�1)� �jkuijk
p�1
p
khkp + �j(Buij � Bu; h)j

+
1

�
kBuij � Buij�1k1jjhjj1! 0:

Since Auij is bounded in H
�1;p0 and H

1;p \ L1 lies densely in H
1;p this means

Auij * �Bu in H
�1;p0

: (37)

In view of (36) and (37) we can apply the usual monotonicity argument ([8], [13])

in order to verify that

Au = �Bu:

Testing this equation with h = u, we �nd F (u) = � and by (35)

jjruij jjp! jjrujjp:

This along with the weak convergence and the uniform convexity of H1;p ensure the

strong convergence of uij to u in H
1;p. Finally, the continuity of B and uij 2 V

imply Z


Bu dx = lim

j!1

Z


Buij dx = 0:

2

Reinserting the index p and using that (16) is homogeneous we get

10



Corollary 1 The nonlinear eigenvalue problem (16) has a solution up 2 H
1;p for

p 2 (1; 2] such that

kupkp = 1;

Z


jupj

p�2
up dx = 0:

up is in H
1;p strong limes of the iteration sequence up;i de�ned by (26). Moreover,

Fp(up;i) #i!1 Fp(up):

5 Construction of separators on simplex grids

In this section we want to apply our results to partition discretized domains. For

this purpose let us assume that we are given a simplex discretization 
h of 
, as it

is commonly used for numerically solving partial di�erential equations. To give an

example, Figure 1 shows a triangulation of a two dimensional section through an

electronic device to be simulated.

Let pi 2 
h be a grid point and let

Vi = fx 2 IR
n : kx� pik < kx� pjk; 8 pj 2 
hg

denote the corresponding Voronoi volume with the Voronoi surface @Vi. The Voronoi

volume element VSi of the vertex i with respect to the simplex S � 
h is the

intersection of Vi and S. The discrete gradient of a piecewise linear function u on a

simplex S is given by (comp. [7])

rujS = �SGSu; GS := �S
~GS; u

T = (upi); pi 2 S:

with suitable matrices ~GS and �S. In the two dimensional special case of triangles

S with vertices pi = (xi; yi) (indices have to be understood as the cyclic extension,

if necessary) we have

~GS =

0
B@

0 1 �1

�1 0 1

1 �1 0

1
CA :

The symmetric positive de�nite matrix �S represents the underlying metric. For a

triangle S under Euclidian metric it holds

�
2
ii

=
�i

li
; �ij = 0 if i 6= j;

l
2
i

= (xj � xk)
2 + (yj � yk)

2
; �i =

li

8jSj
(l2
j
+ l

2
k
� l

2
i
):

In view of e�cient parallelization procedures one is interested to partition 
h into

two parts 
hi; i = 1; 2; containing equal numbers of Voronoi volumes and minimal

numbers of cut edges, for instance. Consequently we replace the usual Euclidian

metric by the graph metric assigning the length l = 1 to each simplex edge. For a

triangle S that implies: �i =
1

2
p
3
; 8i; jSj =

p
3
4
.
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The discrete Lp-norm of u on a simplex S is de�ned by

jjujj
p

S;p
=
X
i2S

VSi juij
p
;

and the discrete Lp-norm of the modulus of the gradient of u on S is de�ned by

jjrujj
p

S;p
= jSjsp; s

2 = jruj2
S
= u

T

S
G

T

S
GSuS=jSj:

Accordingly, we de�ne discrete norms on 
h by:

jjujj
p

p
=
X
i

jjujj
p

Si;p
; jjrujj

p

p
=
X
i

jjrujj
p

Si;p
;

and herewith the discrete counter part of (10)

Fp(u) =
jjrujjp

p

jjujj
p
p

; u 2 Vp; (38)

Vp =
n
u : u 6= 0; V

Tdiag(juij
p�2)u = 0; u

T = (u(pi)); pi 2 
h; 1 < p � 2
o
:

(39)

Di�erentiation of the discrete functional yields the discrete Euler Lagrange equa-

tions:

Ap(jruj)u = Fp(u)Bp(juj)u;

and

Ap =
X
S

AS; AS = G
T

S
jruj

p�2
S

GS; Bp(juj) = diag(Vijuij
p�2):

The steepest descent scheme preserves its properties independent of the special

choice of the matrix �S: Using Hölder inequalities with weights (�i > 0) (j
P

i �iuivij =

j
P

i(�
1=p0

i ui)(�
1=p
i vi)j � (j

P
i �ijuij

p0)1=p
0

(j
P

i �ijuij
p)1=p) the proof of Theorem 3 can

be repeated. Monotonicity can be shown for Apu per simplex, for Bpu per vertex.

The steepest descent equations for constructing the unique solutions ui 2 Vp are

solved by Newtons method. The modulus is regularized by jsj2
�
= s

2 + �, jsj0
�
=

s=jsj� and the Jacobian matrices (of Apu; Bpu) related to powers �0 degenerate

proportional to p� 1 (in gradient direction Ap;J , Bp;J per node).

The initial value is constructed by solving the linear eigenvalue problem for p = 2

(A2~u = �V ~u). The constraint u0 2 Vp is ful�lled by the ansatz u0 := ~u + c(p)

such that the constant c(p) satis�es 1TB(j~u + c(p)j)(~u+ c(p)) = 0 (p = 1:05 in the

example presented).

(Partioning the domain accordingly to the signs of the components of u0 (with

c(p); p! 1) is equivalent to the approach of sorting the vector ~u, (~upi � ~upi+1), and

assigning the points pi related to the �rst half of components to the �rst subdomain,

compare [11]. Hence this algorithm is understood from the presented point of view

as using a linear approximation ~u and ful�lling the constraint afterwards by sorting

and counting.)

Due to rounding errors the transformation of variables z := B(juj)u is introduced �

the transformation back to u has to be evaluated to compute the functional. Figure

1 shows the eigenvector ~u and the stationary solution z on the domain 
h. z changes

its sign along the rather steep jump, the 'separator surface'.
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eigenvector min: -2.35E-02 max:  5.62E-03 rel: -4.18E+00                              

0

u                             

x                             

y                             

z(t_end) min: -6.35E-01 max:  4.99E-01 rel: -1.27E+00                           

0

z                             

x                             

y                             

Figure 1: Upper left: the triangulation of 
h; upper right: triangle sign pattern

related to the solution (triangles with sign change red (grey), neighbours white,

negative part green (light-grey), positive part blue (dark)); lower left: eigenvector

~u, p = 2; lower right: the stationary solution z, p = 1:05; (f̂ : linear interpolant of

f , the level lines ~̂u = 0, ẑ = 0 are indicated in red (black respectively white)).

14


