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Abstract. We are interested in algorithms for constructing surfaces I' of possibly
small measure that separate a given domain €2 into two regions of equal measure.
Using the integral formula for the total gradient variation, we show that such separa-
tors can be constructed approximatively by means of sign changing eigenfunctions of
the p-Laplacians, p — 1, under homogeneous Neumann boundary conditions. These
eigenfunctions are proven to be limits of a steepest descent methods applied to suit-
able norm quotients. Finally we use these ideas for the construction of separators
on simplex grids.

1 Introduction

Let Q2 C IR*, n > 1, be an open, bounded, connected Lipschitzian domain. We
denote by C, LP, H'? and (H"?) = H""' 1<p<2, p = 21, the usual spaces
of functions defined on Q (comp [13]); (+,-) means the pairing between spaces and
their duals, || - ||, is the norm in LP. Further BV denotes the space of functions with

bounded variation on € [10] and

[ 1Dl =sup ([ u¥-gds), ge i@, R, lg@)| <1, v e
g
(Note that [, |Du| = ||Vul1, provided u € HY!). Let finally

v o— {ve H?, [o [ulf7?udz =0}, ifp>1,
P 1 {ueBV, [,signudx=0} , ifp=1.

There is a practical interest [11], [12] in algorithms for constructing surfaces I' of
possibly small measure |T'| which separate €2 into two regions of equal measure, i. e.
, in solving the minimum problem

Po(E)
|E]

Q
— min, F CQ, |E|:|—2|, (1)

p1(E) =2

where Po(E) = |I'| is the perimeter of E relative to Q and |E| is the measure of E.
This paper aims to solve the geometrical problem (1) by analytical tools. Roughly
speaking, we look for approximative solutions of the form E = {z € Q, u(z) > 0},
where v minimizes

_ Jo|Du|

A0 =

— min, u € V. (2)



The key idea for this approach is Federer’s observation (comp. [5]), that the infimum
of the functional

Po(E
o(E) = 19( ) — —min, FECQ, p*= n , (3)
min(|E|?",|Q\ E|?") n—1
coincides with that of
D
o(u) = _Ja|Dul — min, u € BV, (4)
[[u — to(w)][p

where the functional ¢, is defined by

to(u) =sup{t: |E| > |Q\ E¢|}, E; = {z € Q,u(z) > t}. (5)

To specify the connection between (3) and (4) we quote some basic facts from [5],

[6]:

(i) Let u be locally integrable on €. Then

/Q |Du| = /o:o Po(E;)dt. (6)

(ii) Let © C IR™ be an open, bounded and connected Lipschitzian domain. Then Q
satisfies a relative isoperimetric inequality, i. e., there exists a constant Q@ = Q(2),
such that

min(|E|#, |Q — E|7) < QPo(E). (7)
(iii) Let Q, @ be as in (ii) and let u be as in (i). Then
lu=to(wllyr < Q [ Dul. ®)
A special case of (i) is
| 1Dx5] = Pa(B), (9)

where x is the characteristic function. Hence the map E — xg — xo\g directly
connects (1) and (2). The inverse direction may be indicated by the map u — E,
with

E,={z € Q, u(z) > 0}.
The functional F} still is unpleasant from the algorithmical point of view. Therefore
we shall approximate F; by (apart from zero) differentiable functionals

[Vull
Fy(u) = =—2,

P = g
The next section clarifies the relation between ¢, ¢; and Fj. In Section 3 we prove
convergence of minimizers of F,, p — 1, to minimizers of F;. Section 4 is devoted the
convergence proof of a steepest descent method for F,,. Here each iteration u,; has
to be calculated as (unique) solution of a nonlinear elliptic boundary value problem
under homogeneous Neumann conditions. It is shown that F,(u, ;) for i — oo tends
monotonously decreasing to F},(u,), where u, is a sign changing eigenfunction of the
p-Laplacien. Finally we consider a numerical example related to graph partitioning.

0£u€V,pe(l,2]. (10)
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2 Relations between ¢; and F}

In this Section we want to justify the transition from (1) to (2). We start with an
adaption of inequality (8), being more convenient for our purposes.

Lemma 1 Let Q be the relative isoperimetric constant from (7). Then

fulh < (@Q Q[ o, wew,

s (19) 7 .
P <%> QlVull,, we H"nVi, pell,p’=—-] (11)

IN

[lullp

PROOF:
Following the proof of (8) in [6], let

At:{ E,, %ft>0,}

{Q\ E;}, ift<o.

Since u € V4, we have |A;| < [{Q\ A;}| for all ¢ and for all z € Q ([10])
u(z) = /o:o sign t xa,(x) dt

and hence (comp. [6])

lulp < [ lcadly dt.

Now, Holder’s inequality, (6) and (7) yield

Jull, < f:mmuws(%g
< (3)" e fLma=(3)
_ <|g22|> 2]

QW|h<zp(3) QIvull,
Remark 1 The inequality (11) specifies the constant in Poincaré’s inequality. For
p =1, (11) is sharp. Indeed, suppose equality is attained in (7) for a set E with
|E| =& as for ezample in the case of convex domains Q C IR? (comp. [2]). Then

" (|f22|> F_, (%') ' QPo(E)

u=xXg— Xo\r € V1 and
Q
Hw1=|M—20;)
Y]
= 2 (7) Q/|Du|
3

71)_1* oo
| e dt

S =

L L
r* r*

B =
Q=

Q [ 1Dyl

_L
P*

=

O



For conver domains Q another specification is well known [9]

1-n
o) .
ol < ()7 apeuly, wene, [uas=o,

n

where w,, is the volume of the unit sphere in IR"™ and d is the diameter of €.

The minimum problems (3) and (2) are equivalent in the following sense:

Proposition 1 A set E; C Q with |Ey| = & i minimizer of ¢ if and only if

2
U1 = XB, — Xo\E, € V1 is minimizer of Fi.

PROOF:
(—) By (11) we find for arbitrary u € V;

Fy(u) > )’ - (M> T 2Pu(B) _ 2PulBy

2 B |9

(<) Let E C Q be any set with Po(E) < co. Then (11) and (9) imply

L @% w) — 1€ %ZPQ(El)_PQ(El)_
(’O(E)Zé_<2) Fi( 1)—<2> Q |E11% = p(Ey).

O

Remark 2 Fvidently, each minimizer E of ¢ with |E| = % is solution of the
minimum problem (1). For convex domains Q C IR? the existence of such minimizers
is proved in [2].

On the basis of the next result we shall replace (1) by (2).
Theorem 1 (i) Let uy € Vi be minimizer of Fy and E; = {z € Q, ui(z) > 0}.
Then

Q
01(E1) < @1(E) for all E C Q with |E| = % (12)

(ii) Let in addition |{z € Q, u,(z) =0} =0. Then u; is solution of (1).

PROOF:
(i) By (11) and (9) we get
) (e (B
)= 2P = (5) = e - e 1




Let fore >0
ul(x))

we(z) = tanh ( .

Since uq is minimizer of F; and w, € BV, we have

1

d
el = FuCulfued) = Ao + )l =0

dt

Passing ¢ — 0, the lower semicontinuity of the BV -norm [10] and Lebesgue’s domi-
nated convergence theorem imply

2Py (Ey)

¢1(Er) = T < Fi(uy). (14)

Putting this together with (13), we get (12).
(i) w1 € Vi along with |[{z € Q, ui(z) = 0}| = 0 imply |E| = &L Thus (ii) is a
consequence of (i).

O

3 The functionals F, and the limit p — 1

In this Section we will justify the transition from the minimum problem (2) to the
regularized minimum problems

VullP
oo VUl

o )_W —min, 0#£ueV, pe(l,2]. (15)

Remark 3 Since F), is homogeneous, (15) is equivalent with

Gp(u) = [|Vullp, = min, weVy, |lull,=1, pe(1,2]

Proposition 2 Let
d = inf F,(u).

u€Vp

Then there exists a (minimizer) u € V, such that F,(u) = d.

PROOF:
Let (v;) C V, be a minimal sequence, i.e., v; # 0, F,(v;) = d. In view of Remark
3 we set u; = v;/||vil|,- Because of the reflexity of H'?, its compact imbedding

into L? and the continuity of the operator u — |u|P~2u € (LP — L#-1), there are a
subsequence (u;) C (u;) and a u € V}, such that

Uj = u in LP, ||u]||P =1, uy—u in Hl’pa Fp(uj) — d.
Since v — || V||, is weakly lower semicontinuous, this implies F,(u) = d. O
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Minimizers of u € H'P satisfy necessarily the Euler Lagrange equations, i. e., the
nonlinear eigenvalue problem (comp.[4])

A,u = F,(u)Byu, (16)
where the operators A,, B, € (H'? — (H~%*") are defined by

(Apu,h) = (|VuP2Vu,Vh), Vh € H,
(Bpu,h) = (by(u),h), by(u) = [uf~u.

(17)

Remark 4 (16), (17) can be seen as weak formulation (comp. [8]) of the nonlinear
etgenvalue problem

—V - (|VulP?Vu) = F,(u)|uf’ ?uin Q, v-Vu=0 on 89,
where v is the outer unit normal on OX).

The minimum problem (15) approximates (2) in the following sense:

Theorem 2 Let u, € H'? 1 < p < 2, be minimizer for F, in (15), such that
||upllp = 1. (18)

Then:
(Z) U’P S V;J;
(ii) A sequence p; — 1 and a function u € BV ezist such that

ui =1up, —u in L1, g€ (1,p"), F,(ui) = A > Fi(u);

(1ii) u is minimizer of F\;
(iv)
Biu; — z in LY, z € Su, /zdsz,
Q

where S is the mazimal monotone operator generated by the (multivalued) function

. _ signs, ifif s #0,
Sign § = { [~1,1], if s=0. }

PROOF:
(i) Testing (16) with h =1 yields (Byu,, 1) =0, i. e., u, € V.
(ii) Let w € H* be fixed. Using that u, is minimizer and (18), we find

QP V] < [Vl = By (up)[[up|y < Fp(w)|[ullf < c.

6



Since H! is compactly imbedded into L?, q < p*, a sequence p; — 1 and u € BV
exist such that

u; '=u, — uinlLl? and a.e.in Q, (19)
F.(u;)) — A (20)
Using the lower semicontinuity of the BV-norm, Hélder’s and Young’s inequalities,
)
we get from (16), setting p =p;, r = pp*% temporaryly,

/|Du| < liminf/ | Du;| = liminf || Vu]|;
Q Q

1 1

< liminf(jQ)F [|Vauil],) < liminf(E—=10] + =||Vu,|[?)
p

< liminf||Vu;|[5 = lim inf(F} (us)]|ui] )

= Aliminf ||ug|[2 < Aliminf(||ug| 777 |usl|],)

< Miminf((p — r)||ui||p + (1 +7 — p)||uw]|") = AlJul|x

and hence
Fi(u) < A. (21)

(iii) Let v € BV, v # 0. We want to show that Fi(u) < Fj(v). To this end let
(v;) C C* be a sequence (comp. [10]) such that

vj = vin L, /Q|DUJ-H/Q|DU|. (22)

We have

Fi(v) = Fi(v) + Fi(v) — Fi(v;) = Fp(vj) + Fi(vy) — Fp(v;) + Fi(v) — Fi(v))
> Fp(up) — [Fi(v;) — Fp(vi)| — [Fi(v) — Fi(vy)|.

(23)

By (22) we can choose j such that for given £ > 0
|Fi(v) — Fi(v))| <e.
Further we have

_ 1 p—1
IVuills < IVl [Vl 55T < ]—9||ij||’1’+ THWJ'H’SO

IN

1 _ p—1
IVl (1 + IEIIWJ-II’{ P11+ TIIWJ-II’;O

and

p—1 p—1

1 1, pet
||vj||£§1—,||vj||’1’+ ||vj||€o§||Uj||1(1+|1—,||vj||’1’ -1+ Jicr] e
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Consequently, we can choose p; = p;(j) such that
IFy(og) — F(v)] <.
Thus, using (19) and (21), we get from (23)
Fi(u) < Fp,(u;) < Fi(v) + 2e.

Passing to € — 0, we see that u is minimizer of Fj.
(iv) Since
1 p-1
| Biilln = [[Jwil” Hn < [Jus Q| o<e

we can assume that

p—1
p*

Bu; — z in L".

Then
(2,1) = lim (B;u;, 1) =0,

1—00

and for any v € L?

(z— Sv,u—v) = lim(Bju; — Sv,u—v) > lim(B;u; —sign v,u —v) (24)
1—»00 1—>00
= lim(Byu; — Bjv,u —v) > 0. (25)
1— 00
Thus the maximal monotonicity of S implies z = Su. 4

4 Steepest descent method

Due to the Theorems 1,2 the original minimum problem (1) is approximatively re-
duced to construction of minimizers u, of the functional F, for suitable p near 1.
In this section we fix p € (1,2] and establish a steepest descent method for solving
iteratively the corresponding Euler Lagrange equations, i. e., the nonlinear eigen-
value problems (16).

Byu; + TApu; = Byu;y + TF,(uis1)Bpui, ,i=1,2,..., up €V,, ,ug#0, (26)

where 7 is a relaxation parameter, which may be interpreted as time step.

Theorem 3 Let 7p'F,(up) <1, p' = z%' Then:
(i) for each i (26) has a unique solution u; € V),;
(ii) the sequence (F,(u;)) is decreasing, F,(u;) — A > 0;

(i11) the sequence (||u;||,) is bounded, moreover

1

P < WwP<e = — =
ol < Juall < €= s

[wollps [1Bpui = Byuialls = 0;

(iv) there exist a subsequence (u;;) C (u;) and a function u € V, such that u is
nontrivial solution of the nonlinear eigenvalue problem (16) and

ui;, @ u in HY, F,(u) = A, /Bpu dz = 0.
Q



PROOF:

For simplifying the notation during the proof we drop the index p at A, B, F" and V.
(i) The operator A+ B € (H'» — H *') is continuous ([8], [13]). The inequalities
(comp. [3])

0< (Il — [z )yl —l2l) <yl *y — 2P 22,y —2) < e(p)ly — 217, y,2 € R,
(27)

imply strict monotonicity and coercitivity of A + B. Thus the Browder-Minty the-

orem ensures existence of a unique solution u; € H? for given u;_; € H?P.

(ii) Testing (26) by h = u; — u; 1 and using the inequalities of Holder and Young,

we get

1
(— — F‘(’U,Z,l))(B’U,Z — B’U,ifl, U; — ’U,z;l) + (A’U,Z, ’U,Z)

-
= (Aui, ui—1)) + F(ui1)(Bug_1,u; — ;1)
< NIVul BV llp + F(uioa) (| B wallp — [lui][2)

1

< 5[(1? = DIVuillp + [[Vuially + F(uia)([|wil[; — luial})]
[l lp
= T((P — 1)F(u;) + F(ui-1)),

and hence

1
(= = F(uim1))(Bui = Buioy, ui — wim) + [Jual P(E (i) = F(uiza)) 0. (28)

Since 7F(ug) < 1 and B is monotone, this means

and
0< (BU, — B’U,i_l, U; — U,‘_l) — 0. (30)

(iii) Testing (26) by h = u;_1, using Holder’s inequality and (ii) yield

luizallp = (1 —7F(ui—1))(Bug, ui—1) + 7(Aui, ui_q)
< (U= rF(um)) el B |uim llp + 7Vl b [ Vaiall, (31)
< (U= 7F (i) el il + 7F ()7 (el 27 F (1) sl
< (U= 7F (i) el 5 Mt llp + 7 (1) 7 el 5 F (i a)# i
= sl ui-allp
and hence

Jwiallp < fluillp-

Now, in order to show |lu||} < c we test (26) by h = u; and apply Young’s inequality
to get

(wal lp = (Bui -1, ws)) + (Aui, ui) = F (i)l Jusll}

S

1
T_])'(||Ui||g_ ui—1 ) + (Aug, u;) <



and thus

Tip,(lluillﬁ — Nwiallp) < sl [p(F (ui1) = F(ui)) < max{||ui| [f}(F(wi1) = F(w))

(32)
Summing up over i = 1,k and using (29) and (32), we get

[lurl [ < [luollp + Tp max{|Jua| [} (F (uo) — F(ur)) < [luol [ + 71" max{||us||[}} F (o))
Since this holds for all ¥ and 7p'F'(up) < 1, we conclude

lalle < e, IVl = Flup)lupll2 < cF(uo). (33)
This along with (30) and Lemma 1.8 from [1] imply
(iv) Because of (29), (32), (33) and the compactness of the imbedding of H? into
L? there exist a subsequence (u;;) C (u;) and a function v € H'?, ||ull, > |luoll,

such that
ui;, ~u in H'?, w;; »win L, F(u;)— A (35)

Hence we get
(Aug;,ug,) = F(uzj)||uzj||£ — )\||u||§ = A(Bu,u). (36)
Further, using the continuity of B, (34) and (35), we find for arbitrary h € H“»* N L*>

1
|(A’U,z] — )\B’U,, h)| = |(F(’U,i]._1)B’U,i]. — )\B’U,, h) + _(B'U'i]-—l - Bu,-],, h)|
T
< 1P (ugy-) = Alllug |2, + Al(Bus, — Bu,h)|
1

Since Au;; is bounded in H~%#' and H' N L™ lies densely in H'? this means
Au;; = ABu in H 7. (37)

In view of (36) and (37) we can apply the usual monotonicity argument ([8], [13])
in order to verify that
Au = \Bu.

Testing this equation with A = u, we find F(u) = A and by (35)
[V llp = [[Vullp-

This along with the weak convergence and the uniform convexity of H'* ensure the
strong convergence of u;; to u in H L Finally, the continuity of B and u; €V
imply
Bu dz = lim / Bu;; dz = 0.
Q Q

J—00

Reinserting the index p and using that (16) is homogeneous we get

10



Corollary 1 The nonlinear eigenvalue problem (16) has a solution u, € H'? for
p € (1,2] such that

llly =1 [ fupl~u, do = 0.

u, is in HYP strong limes of the iteration sequence u,; defined by (26). Moreover,

Fp(up,i) dicvoo Fp(up).

5 Construction of separators on simplex grids

In this section we want to apply our results to partition discretized domains. For
this purpose let us assume that we are given a simplex discretization €2, of €2, as it
is commonly used for numerically solving partial differential equations. To give an
example, Figure 1 shows a triangulation of a two dimensional section through an
electronic device to be simulated.

Let p; € Q5 be a grid point and let
Vi={z e R": [lo —pi|| <llz —p;ll, V pj € W}

denote the corresponding Voronoi volume with the Voronoi surface 0V;. The Voronoi
volume element Vg, of the vertex ¢ with respect to the simplex S C (2 is the
intersection of V; and S. The discrete gradient of a piecewise linear function u on a
simplex S is given by (comp. [7])

V’LL|S = usGsu, Gg:= lu,sés, ul = (Upz.), p; € S.

with suitable matrices Gg and pg. In the two dimensional special case of triangles
S with vertices p; = (z;,y;) (indices have to be understood as the cyclic extension,
if necessary) we have

The symmetric positive definite matrix pg represents the underlying metric. For a
triangle S under Euclidian metric it holds

g; o - .
pe T Hig =0 if i,
l;

In view of efficient parallelization procedures one is interested to partition €25 into
two parts Qp;, ¢ = 1,2, containing equal numbers of Voronoi volumes and minimal
numbers of cut edges, for instance. Consequently we replace the usual Euclidian
metric by the graph metric assigning the length [ = 1 to each simplex edge. For a
triangle S that implies: o; = 2%/5, Vi, |S| = ?.

11



The discrete LP-norm of u on a simplex S is defined by
lull5, =D Vs,

€S

ui|pa

and the discrete L,-norm of the modulus of the gradient of u on S is defined by
IVullg, = IS]s*, s* = |Vuls = ugGsGsus/|S].

Accordingly, we define discrete norms on €2 by:

lully = X lullp o 11Vl = X1 Vullh,,
and herewith the discrete counter part of (10)
[Vullp
Fylu) = 102, wev, (39)
[lullz
Vo = {“ ru#0, Vidiag(|wlP™*)u =0, u” = (u(p)), picQ, 1<p< 2} '

39
Differentiation of the discrete functional yields the discrete Euler Lagrange eo(lua?
tions:
Ap(|Vul)u = Fy(u) By(Ju)u,
and
Ap =3 As, As=G5|VulsGs, By(|ul) = diag(Vilus' ™).
s

The steepest descent scheme preserves its properties independent of the special
choice of the matrix pg: Using Holder inequalities with weights (a; > 0) (| X; auuvi| =
|50 wi) (0 P0:)| < (| S5 il P )P (| £ i |uil?)/P) the proof of Theorem 3 can
be repeated. Monotonicity can be shown for A,u per simplex, for B,u per vertex.

The steepest descent equations for constructing the unique solutions u; € V), are
solved by Newtons method. The modulus is regularized by |s|? = s? + ¢, |s|. =
s/|s|c and the Jacobian matrices (of A,u, Byu) related to powers €’ degenerate
proportional to p — 1 (in gradient direction A, ;, B, s per node).

The initial value is constructed by solving the linear eigenvalue problem for p = 2
(Aot = AVa). The constraint uy € V,, is fulfilled by the ansatz uy := @ + c(p)
such that the constant c(p) satisfies 17 B(|t + ¢(p)|) (@ + ¢(p)) = 0 (p = 1.05 in the
example presented).

(Partioning the domain accordingly to the signs of the components of u, (with
c(p), p— 1)isequivalent to the approach of sorting the vector a, (%, < 4,,,,), and
assigning the points p; related to the first half of components to the first subdomain,
compare [11]. Hence this algorithm is understood from the presented point of view
as using a linear approximation u and fulfilling the constraint afterwards by sorting
and counting.)

Due to rounding errors the transformation of variables z := B(|u|)u is introduced —
the transformation back to u has to be evaluated to compute the functional. Figure
1 shows the eigenvector u and the stationary solution z on the domain 2. z changes
its sign along the rather steep jump, the 'separator surface’.

12
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Figure 1: Upper left: the triangulation of j; upper right: triangle sign pattern
related to the solution (triangles with sign change red (grey), neighbours white,
negative part green (light-grey), positive part blue (dark)); lower left: eigenvector
u, p = 2; lower right: the stationary solution z, p = 1.05; (f linear interpolant of
f, the level lines & = 0, 2 = 0 are indicated in red (black respectively white)).
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