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Abstract. The paper is concerned with Monte Carlo algorithms for iteration pro-

cesses. A recurrent procedure is introduced, where information on various iteration

levels is stored. Stability in the sense of boundedness of the correlation matrix of

the component estimators is studied. The theory is applied to di�erence schemes

for the wave equation. The results are illustrated by numerical examples.
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1. Introduction

An important �eld of application of Monte Carlo algorithms is the numerical treatment

of partial di�erential equations. These algorithms are based on probabilistic representa-

tions expressing solutions in form of functionals on trajectories of appropriate stochastic

processes (cf., e.g., [10], [12]).

If the partial di�erential equation is replaced by some discrete approximation in time

and space, then the stochastic process reduces to a Markov chain on the corresponding

grid. This relationship between di�erence schemes and random walks was �rst studied

in the classical paper [5]. In the case of the heat �ow equation the Markov chain is very

simple. At each step the random walker goes down to the next lower time level jumping

with equal probability to one of the neighbouring grid points in the space. If the walker

reaches the boundary or the lowest time level, then the corresponding initial and boundary

conditions are taken into account.

Stochastic algorithms of this type are well understood for partial di�erential equations

of elliptic and parabolic type (cf., e.g., [1], [8, Ch.7, �3], [11, Ch.5]). Monte Carlo and

quasi-Monte Carlo methods are also successfully applied to several classes of nonlinear

equations (see [18], [19], [26], [2], [4]). In case of second order hyperbolic equations, as the

wave equation, the situation is quite di�erent. Except some special situations, there are

no probabilistic representations, and the construction of e�cient stochastic algorithms is

a challenging task. The purpose of the paper is to make some steps into this direction,

extending the range of applicability of the Monte Carlo method. The paper is organized

as follows.

Section 2 is concerned with Monte Carlo algorithms for iteration processes providing

a general framework for di�erence schemes. Random walk interpretations of iteration

methods have been considered, e.g., in [14]. In the classical theory of di�erence scheme

the problem of stability of numerical algorithms is an important issue. If the dimension of

the problem is su�ciently high, then Monte Carlo estimators become an e�cient tool (cf.

[6]). In this case the algorithm has to be stable not only with respect to round-o� errors

but also with respect to random errors occuring in the simulation process. We introduce

the notion of stability of a Monte Carlo procedure as boundedness of the correlation

matrix of the component estimators. A related notion was used in [9]. Then we �rst

describe the classical von Neumann-Ulam scheme for solving systems of linear algebraic

equations. Second we consider the direct Monte Carlo algorithm, where just one random

walker is involved, and �nd stability conditions. Finally, we introduce a recurrent Monte

Carlo algorithm, where in general many random walkers are used, and information on

various iteration levels is stored. Here we prove our main result providing a necessary

and su�cient condition for stability of the recurrent procedure.

In Section 3 we apply the general theory to di�erence schemes. First we consider our

main example, the wave equation. Concerning di�erence schemes for the wave equation

we refer to [16], [7]. The recurrent procedure for the standard implicit scheme turns out to

be stable, while the direct procedure is unstable. For comparison we consider the heat �ow

equation as a second example. Here both procedures ful�l the stability condition. Finally,

we discuss numerical aspects of the theoretical results. Numerical tests for the implicit

di�erence scheme for the one-dimensional wave equation are presented. They illustrate
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the phenomena of stability and instability of the recurrent procedure. It is shown that

the theoretical results are useful for the prediction of the qualitative behaviour of the

algorithm.

Conclusions are given in Section 4. In particular, the important issue of paralleliza-

tion of the Monte Carlo algorithms is discussed. The proofs of some technical lemmas are

collected in an Appendix.

2. Monte Carlo algorithms for iteration processes

Consider iteration processes of the form

x
n = A0 x

n +A1 x
n�1 +A2 x

n�2 + f ; n � 2 ; (2.1)

where x0; x1 2 Rm are given initial values. A major �eld of application of such processes

are di�erence schemes for partial di�erential equations. In this case the dimension m

of the matrices A0; A1; A2 and of the vectors f; xn depends on the grid size in the space,

while the iteration index n is related to the discrete time step. The iteration process may

stop at a �nite number �n depending on the length of the corresponding time interval and

the time step. An iteration process of the form (2.1) also appears in connection with the

solution of a linear algebraic system x = Ax + f ; if one de�nes an approximation

procedure using a representation A = A0 +A1 +A2 :

Two-step iteration processes of the form (2.1) can be transformed into a one-step

process by considering the equivalent system (cf. [24, p. 363])�
x
n

x
n�1

�
=

�
A0 0

0 0

��
x
n

x
n�1

�
+

�
A1 A2

I 0

��
x
n�1

x
n�2

�
+

�
f

f

�

or

y
n = A0 y

n +A1 y
n�1 + ' ;

where

y
n =

�
x
n

x
n�1

�
; A0 =

�
A0 0

0 0

�
; A1 =

�
A1 A2

I 0

�
; ' =

�
f

f

�
: (2.2)

One obtains

y
n = (I �A0)

�1A1 y
n�1 + (I � A0)

�1
' (2.3)

and

(I � A0)
�1A1 =

�
(I �A0)

�1 0

0 I

�
A1 =

�
(I �A0)

�1
A1 (I �A0)

�1
A2

I 0

�
: (2.4)

The study of appropriate Monte Carlo algorithms for performing calculations accord-

ing to (2.1) is of considerable interest, when the dimension m is su�ciently high. Such

algorithms consist of a sequence of random estimators �n for the calculation of xn : In
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this situation an important issue is the control of the stochastic error for large n : There-

fore, we are interested in such procedures, where the covariance matrices Cov(�n) remain

bounded as n!1 ; i.e.

sup
n

kCov(�n)k <1 : (2.5)

This property is called stability of the Monte Carlo algorithm.

In the �rst part of this section we consider the well-known von Neumann-Ulam scheme,

which provides a class of estimators for inverting matrices. In the second part we study

stability properties of a Monte Carlo algorithm, where the von Neumann-Ulam scheme

is applied directly to the linear algebraic equation related to (2.1). In the third part we

introduce a recurrent Monte Carlo algorithm, which occurs when the von Neumann-Ulam

scheme is applied on each iteration step, and the obtained information is stored. We �nd

a necessary and su�cient condition for the stability of this procedure.

2.1. The von Neumann-Ulam scheme

This scheme provides Monte Carlo estimators for linear functionals (h; x) of the solution

to equation

x = Ax+ f ; (2.6)

where x; f; h 2 Rm
; A is an m � m�matrix, and (:; :) denotes the scalar product.

Assuming convergence of the successive approximations the solution is represented as

x = (I �A)�1f =

1X
k=0

A
k
f : (2.7)

Estimators �(h;A; f)(!) are de�ned on the trajectories

! = (i0; i1; : : : ; ik) ; k = 0; 1; : : : ; (2.8)

of a Markov chain with the state space f1; 2; : : : ;mg : The chain is determined by the

initial distribution � with

mX
i=1

�i = 1 ; �i � 0 ; i = 1; : : : ;m ;

and the transition matrix P with

mX
j=1

pi;j � 1 ; pi;j � 0 ; i; j = 1; : : : ;m ;

where

gi = 1 �
mX
j=1

pi;j ; i = 1; : : : ;m ;
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is called the probability of absorption. The parameters � and P of the Markov chain

are assumed to be such that the length k = k(!) of the trajectories is �nite with prob-

ability one. Moreover, they are adjusted to the parameters of the equation (2.6) by the

assumptions

�i > 0 if hi 6= 0 ; (2.9)

pi;j > 0 if ai;j 6= 0 ; (2.10)

and

gi > 0 if fi 6= 0 : (2.11)

Remark 2.1 We use the notations jf j ; f
2

g
; jAj ; A

2

P
for vectors and matrices with com-

ponents jfij ; f
2
i

gi
; jai;jj ; a

2
i;j

pi;j
; i; j = 1; : : :m ; respectively.

The following assertions can be found, e.g., in [8, p.289].

Lemma 2.2 Let the matrix of the system (2.6) be such that

%(jAj) < 1 ; (2.12)

where % denotes the spectral radius. Assume that the parameters of the Markov chain

satisfy (2.9), (2.10) and (2.11). Then the �estimator by absorption�, de�ned as (cf.

(2.8))

�abs(h;A; f)(!) =
hi0 ai0;i1 : : : aik�1;ik

fik

�i0 pi0;i1 : : : pik�1;ik
gik

; (2.13)

is unbiased, i.e.

E �abs(h;A; f) = (h; x) : (2.14)

Moreover, if

%

�
A

2

P

�
< 1 ; (2.15)

then

E [�abs(h;A; f)]
2
= (

h
2

�
;  ) ; (2.16)

where

 =
A

2

P
 +

f
2

g
: (2.17)

Finally,

E [�abs(h;A; f)]
2 � (jhj; �') : (2.18)

where

�' = jAj �'+ jf j : (2.19)
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Remark 2.3 The �estimator by collisions� is de�ned as

�coll(h;A; f)(!) =

kX
l=0

hi0 ai0;i1 : : : ail�1;il
fil

�i0 pi0;i1 : : : pil�1;il

: (2.20)

If (2.12), (2.9) and (2.10) hold, then

E �coll(h;A; f) = (h; x) : (2.21)

Remark 2.4 Note

(h; x) = (f; y) ; where y = A
T
y + h :

Corresponding �adjoint estimators� are obtained by exchanging h and f and replacing A

by AT
:

Using unbiased estimators as de�ned in (2.13) or (2.20), we construct a random

matrix � = �(A) with elements

�i;j = �i;j(A) = �(e(i); A; e(j)) ; i; j = 1; : : : ;m ;

where

e
(i)

k
=

�
1 ; if k = i ;

0 ; otherwise :

This matrix satis�es (cf. (2.14), (2.21), (2.7))

E �(A) = (I �A)�1 : (2.22)

There are di�erent ways to construct � :

Construction 1: All estimators �i;j are de�ned on one trajectory of the Markov chain

(cf. (2.8)). Using the estimator by absorption (2.13), we obtain

�i;j(!) = �abs(e
(i)
; A; e

(j))(!) =
�i;i0 ai0;i1 : : : aik�1;ik

�j;ik

�i0 pi0;i1 : : : pik�1 ;ik
gik

; (2.23)

where �i;j denotes the Kronecker symbol. Here we need condition (2.10) and conditions

(cf. (2.9), (2.11))

�min := min
i

�i > 0 ; (2.24)

gmin := min
i

gi > 0 : (2.25)

Note that

(h;�(A) f) = �abs(h;A; f) :

Since �i;j(!) = 0 if i0 6= i or ik 6= j ; one obtains

�i;j(!) ��;�(!) = 0 ; if i 6= � or j 6= � : (2.26)

Otherwise, one obtains (cf. Remark 2.1)

E �
2
i;j

=

1X
k=0

mX
i0;i1;:::;ik=1

�i;i0 a
2
i0;i1

: : : a
2
ik�1;ik

�j;ik

�i0 pi0;i1 : : : pik�1 ;ik
gik

=

 
e
(i)

�
;

�
I � A

2

P

��1
e
(j)

g

!
: (2.27)
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Remark 2.5 Using the estimator by collisions (2.20) we obtain

�i;j(!) = �coll(e
(i)
; A; e

(j))(!) =

kX
l=0

�i;i0 ai0;i1 : : : ail�1;il
�j;il

�i0 pi0;i1 : : : pil�1;il

(2.28)

and need the conditions (2.10) and (2.24). Obviously one obtains

�i;j(!) ��;�(!) = 0 ; if i 6= � :

Construction 2: The estimators �i;j are de�ned on a set of m trajectories of the Markov

chain, which start at the points i = 1; : : : ;m and are independent. Accordingly we

consider

�! =
�
!
(1)
; : : : ; !

(m)
�
;

where

!
(i) =

�
i; i

(i)

1 ; : : : ; i
(i)

k(i)

�
; i = 1; : : : ;m ;

and de�ne

�i;j(�!) = �(e(i); A; e(j))(!(i)) :

Independence of the trajectories implies

E �i;j ��;� = E �i;j E ��;� ; i 6= � : (2.29)

Using the estimator by absorption (2.13), we de�ne (cf. (2.23))

�i;j(�!) = �abs(e
(i)
; A; e

(j))(!(i)) =
ai;i1 : : : aik�1;ik

�j;ik

pi;i1 : : : pik�1;ik
gik

assuming (2.10) and (2.25). Here we omit the superscript (i) : Since �i;j(�!) = 0 ; if i
(i)

k(i)
6=

j ; one obtains

�i;j �i;l = 0 ; if j 6= l : (2.30)

Otherwise, one obtains (cf. Remark 2.1)

E �
2
i;j

=

1X
k=0

mX
i1;:::;ik=1

a
2
i;i1
: : : a

2
ik�1;ik

�j;ik

pi;i1 : : : pik�1;ik
gik

=

 
e
(i)
;

�
I � A

2

P

��1
e
(j)

g

!
: (2.31)

Remark 2.6 Using the estimator by collisions (2.20) we de�ne (cf. (2.28))

�i;j(�!) = �coll(e
(i)
; A; e

(j))(!(i)) =

kX
l=0

ai;i1 : : : ail�1;il
�j;il

pi;i1 : : : pil�1;il

and need only condition (2.10).
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2.2. Direct Monte Carlo algorithm

Introduce a matrix

A(n) =

0
BBBBBBBB@

A0 A1 A2 : : : 0 0 0

0 A0 A1 : : : 0 0 0

0 0 A0 : : : 0 0 0

� � � : : : � � �
0 0 0 : : : A0 A1 A2

0 0 0 : : : 0 A0 A1

0 0 0 : : : 0 0 A0

1
CCCCCCCCA

and vectors

F
(n) =

0
BBBBBBBB@

f

f

�
�
f

A2 x
1 + f

A1 x
1 +A2 x

0 + f

1
CCCCCCCCA
; X

(n) =

0
BBBBBBBB@

x
n

x
n�1

�
�
�
x
3

x
2

1
CCCCCCCCA
; H

(n;i) =

0
BBBBBB@

e
(i)

0

�
�
�
0

1
CCCCCCA

of dimension m (n � 1) ; where i = 1; : : : ;m : Then the iteration process (2.1) takes the

form (2.6) of a linear algebraic system

X
(n) = A(n)

X
(n) + F

(n)
; n � 1 : (2.32)

Applying the von Neumann�Ulam scheme to equation (2.32) one obtains estimates

�
n

i
= �(H(n;i)

;A(n)
; F

(n)
) ; i = 1; : : : ;m ; (2.33)

for the components of xn : We are interested in the behaviour of Cov(�n) as n!1 :

We consider the estimator by absorption (cf. (2.13)) and a Markov chain with a

transition matrix

P(n)
=

0
BBBBBBBB@

P0 P1 P2 : : : 0 0 0

0 P0 P1 : : : 0 0 0

0 0 P0 : : : 0 0 0

� � � : : : � � �
0 0 0 : : : P0 P1 P2

0 0 0 : : : 0 P0 P1

0 0 0 : : : 0 0 P0

1
CCCCCCCCA

(2.34)

such that conditions analogous to (2.10) and (2.11) are satis�ed. Note that conditions

(2.12) and (2.15) reduce to (cf. Remark 2.1)

%(jA0j) < 1

and

%

�
A

2
0

P0

�
< 1 ; (2.35)
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respectively. Condition (2.35) provides �nite variance of the estimators (2.33) for �xed

n :

According to (2.16), (2.17) the second moments of the estimators �n
i
are determined

by the vector

	(n) =

0
BBBBBBBB@

 
n

 
n�1

�
�
�
 
3

 
2

1
CCCCCCCCA

satisfying

	
(n)

=
(A(n))2

P(n)
	

(n)
+

(F (n))2

G(n)
; (2.36)

where G(n) is the vector of absorption probabilities corresponding to the transition matrix

(2.34). Note that equation (2.36) takes the form

 
n =

A
2
0

P0

 
n +

A
2
1

P1

 
n�1 +

A
2
2

P2

 
n�2 +

f
2

g
; n � 4 ;

where the vector g is determined by the matrices P0; P1; P2 : Thus (cf. (2.1), (2.2), (2.4)),

a su�cient condition for stability of the direct procedure in the sense of (2.5) is

%

0
@ (I � A

2
0

P0
)�1 (

A
2
1

P1
) (I � A

2
0

P0
)�1 (

A
2
2

P2
)

I 0

1
A < 1 : (2.37)

If the choice

P0 = jA0j ; P1 = jA1j ; P2 = jA2j
is possible then (2.37) reduces to

%

�
(I � jA0j)�1 jA1j (I � jA0j)�1 jA2j

I 0

�
< 1 :

From (2.18), (2.19) one obtains the estimate

E(�n
i
)2 � �'n

i
; i = 1; : : : ;m ;

where

�'n = jA0j �'n + jA1j �'n�1 + jA2j �'n�2 + jf j ; n � 4 :

This provides a su�cient condition for unbounded (exponential) growth of the covariance

matrices (at least, for appropriate f; x1; x0), namely

%

�
(I � jA0j)�1 jA1j (I � jA0j)�1 jA2j

I 0

�
> 1 : (2.38)
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2.3. Recurrent Monte Carlo algorithm

We consider a one-step iteration process

x
n
= A0 x

n
+A1 x

n�1
+ f ; n � 1 ; (2.39)

where x0 2 Rm is a given initial value. Let �n(A0) be a sequence of random matrices

such that (cf. (2.22))

En�1 �
n
(A0) := E (�

n
(A0) j Fn�1

) = (I �A0)
�1
; (2.40)

where Fn�1 is the �-algebra generated by �n�1
; : : : ;�1

: Assume that

En�1 �
n

i;j
(A0)�

n

k;l
(A0) = ri;j;k;l ; (2.41)

where

�n(A0) := �n(A0)� (I �A0)
�1
;

i.e. that the covariance matrix R(A0) with elements (2.41) is independent of n :

We construct a sequence of estimators

�
0
= x

0
; �

n
= �

n
(A0) [A1 �

n�1
+ f ] ; n � 1 : (2.42)

Lemma 2.7 If (2.40) holds, then the estimators �n are unbiased, i.e.

E �
n = x

n
; n � 0 : (2.43)

Proof. Using induction we note that for n = 0 the assertion is obviously ful�lled. For

n � 1 ; one obtains

E �
n = E En�1 �

n = E (I �A0)
�1[A1 �

n�1 + f ] = (I �A0)
�1[A1 x

n�1 + f ] = x
n
;

where we used (2.40) and (2.39). 2

To prepare the formulation of the main result concerning stability of the Monte Carlo

procedure, we introduce the following special operations on vectors and matrices. For any

vector y of dimension m; we de�ne the m�m-matrix M(y) as

M(y)i;j := yi yj ; i; j = 1; : : : ;m : (2.44)

For any m�m-matrix B ; we denote by
�!
B the corresponding vector of length m2

; i.e.

(
�!
B )i;j := bi;j ; i; j = 1; : : : ;m ; (2.45)

and by M(B) the m2 �m
2-matrix de�ned as

M(B)i;j;k;l = bi;k bj;l ; i; j; k; l = 1; : : : ;m : (2.46)

The following theorem provides an explicit formula for the sequence of covariance matrices.
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Theorem 2.8 Assume (2.40) and (2.41). Then, for all n � 1 ;

�����!
Cov(�n) =

n�1X
k=0

h
M((I �A0)

�1
A1) + ~R(A0)M(A1)

i
k

~R(A0)
������������!
M((I �A0)x

n�k) ; (2.47)

where ~R(A0) is a matrix with elements

~ri;j;�;� := ri;�;j;� ; i; j; �; � = 1; : : : ;m : (2.48)

The family of random matrices �n(A0) ; which determines the sequence of estimators

�
n
; is characterized by the covariance matrix R(A0) : According to Theorem 2.8, the

sequence of estimators �n is stable in the sense of (2.5) if and only if the covariance

matrix R(A0) and the sequence xn are such that the right-hand side of (2.47) is bounded.

The behaviour of the random error �n�xn for large n depends on the spectral proper-

ties of the operator S =M((I�A0)
�1
A1)+ ~R(A0)M(A1) : If the sequence x

n is bounded,

then stability follows from the condition %(S) < 1 : In the case %(S) > 1 ; the random

errors accumulate and the norm of the covariance matrices grows, in general, exponen-

tially fast. These conclusions equally apply to �nite iteration processes of the form (2.39),

which occur if a solution to a partial di�erential equation is calculated on a �nite time

interval using some di�erence scheme (see the examples in the next section).

It turns out that a stable Monte Carlo procedure can be constructed based on any

family of random matrices �n(A0) satisfying (2.40) and (2.41).

Corollary 2.9 Let the estimators �n(A0) be averaged over N independent samples. As-

sume that the sequence xn is bounded. If

%((I �A0)
�1
A1) < 1 (2.49)

and N is su�ciently large, then the recurrent algorithm (2.42) is stable in the sense of

(2.5).

Remark 2.10 For the two-step iteration process (2.1) condition (2.49) takes the form

(cf. (2.3), (2.4))

%

�
(I � A0)

�1A1

�
< 1 :

Thus, the stability condition for the recurrent procedure is identical to the standard con-

vergence condition for the iteration process (2.1).

The proofs of the above assertions are prepared by several lemmas.

Lemma 2.11 For any matrix B ;

%(M(B)) = %(B)2 : (2.50)

Proof. For any m�m-matrices B;C one obtains

[BC BT ]i;j =

mX
k=1

bi;k [C B
T ]k;j =

mX
k;l=1

bi;k bj;l ck;l

11



and therefore according to (2.45), (2.46)

�����!
B C B

T
=M(B)

�!
C : (2.51)

From

[M(B)M(C)]i;j;k;l =
X
�;�

M(B)i;j;�;�M(C)�;�;k;l =
X
�;�

bi;� bj;� c�;k c�;l

= (B C)i;k (BC)j;l =M(BC)i;j;k;l

one obtains

M(B)M(C) =M(B C) :

For any vectors y; z of dimension m; we de�ne the m�m-matrixM1(y; z) as

M1(y; z)i;j := yi zj ; i; j = 1; : : : ;m : (2.52)

Assume

B y = � y ; B z = � z :

Then according to (2.51), (2.52)h
M(B)

�����!
M1(y; z)

i
i;j

= [BM1(y; z)B
T ]i;j =

X
k;l

bi;k yk zl bj;l = �� yi zj ; i; j = 1; : : : ;m ;

so that

M(B)
�����!
M1(y; z) = ��

�����!
M1(y; z)

and (2.50) follows. 2

Lemma 2.12 If %(B) < 1 then there exists � > 0 such that k�Bk < � implies %(B +

�B) < 1 :

Proof. This property is known as �upper semicontinuity� of the spectral radius (cf.,

e.g., [20, Cor. 2.4.3]). 2

Lemma 2.13 Consider a sequence y
n = B y

n�1 +  
n
; n � 1 ; y

0 2 Rm
: If

%(B) < 1 and sup
n
k nk <1 ; then sup

n
kynk <1 :

Proof. The result follows from the representation y
n = B

j
y
n�j +

P
j�1
i=0 B

i
 
n�i

;

and the fact that kBjk < 1 ; for some j and an appropriate norm. 2

Proof of Theorem 2.8. Consider the stochastic error

"
n := �

n � x
n
; n � 1 ; (2.53)

which satis�es

"
n

= �
n
(A0)A1 "

n�1
+ �

n
(A0) [A1 x

n�1
+ f ]� x

n

= (I �A0)
�1
A1 "

n�1 +�n(A0)A1 "
n�1 +�n(A0) [A1 x

n�1 + f ] : (2.54)
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Note that (cf. (2.41))

E

mX
j=1

�n

i;j
aj

mX
l=1

�n

k;l
bl = E

mX
j;l=1

aj blEn�1 �
n

i;j
�n

k;l
=

mX
j;l=1

ri;j;k;lE aj bl ; (2.55)

if the vectors a; b are Fn�1-measurable. The �rst term in (2.54) and the rest of the sum

are uncorrelated, since En�1 �
n(A0) = 0 : The second and the third term are uncorrelated

according to (2.55), since E A1"
n�1 = 0 : Thus, (2.54) implies

Cov("n) = (2.56)

Cov((I �A0)
�1
A1 "

n�1) + Cov(�n(A0)A1 "
n�1) + Cov(�n(A0) [A1 x

n�1 + f ]) :

Note that

Cov(B "n�1) = B Cov("n�1)BT
: (2.57)

Using (2.55) one obtains

Covi;k(�
n(A0)A1 "

n�1) =

mX
j;l=1

ri;j;k;lCovj;l(A1 "
n�1) (2.58)

and (cf. (2.1))

Covi;k(�
n(A0) [A1 x

n�1 + f ]) =

mX
j;l=1

ri;j;k;l [(I �A0)x
n]j [(I �A0)x

n]l : (2.59)

According to (2.45), (2.44) and (2.48), the identities (2.58), (2.59) imply

���������������!
Cov(�n(A0)A1 "

n�1) = ~R(A0)
���������!
Cov(A1 "

n�1) (2.60)

and

�������������������!
Cov(�n(A0) [A1 x

n�1 + f ]) = ~R(A0)
�����������!
M((I �A0)x

n) : (2.61)

Note that Cov(�n) = Cov("n) ; according to (2.43) and (2.53). Using (2.57), (2.60), (2.61)

and (2.51), equation (2.56) takes the form

�����!
Cov(�n) =

h
M((I �A0)

�1
A1) + ~R(A0)M(A1)

i�������!
Cov(�n�1) + ~R(A0)

�����������!
M((I �A0)x

n) ;

and (2.47) follows. Note that Cov(�0) = 0 according to (2.42). 2

Proof of Corollary 2.9. If the estimators �n(A0) are averaged over N in-

dependent samples, then ~R(A0) is replaced by 1
N

~R(A0) : Using (2.49) and (2.50), we

apply Lemma 2.12 with B = M((I � A0)
�1
A1) and �B = 1

N

~R(A0)M(A1) : Thus,

the result follows from Lemma 2.13 with B = M((I � A0)
�1
A1) + ~R(A0)M(A1) and

 
n = ~R(A0)

�����������!
M((I �A0)x

n) ; and the boundedness of xn : 2

13



Finishing this section we consider some special cases and analyze the matrix ~R(A0) that

appears in (2.47). Considering the norm kBk = maxi
P

j
jbi;jj ; and using the de�nitions

(2.48), (2.41), one obtains

k ~R(A0)k = max
i;j

X
k;l

��En�1 �
n

i;k
�
n

j;l
�En�1�

n

i;k
En�1�

n

j;l

�� : (2.62)

where �n
i;j

denote the components of the matrices �n
: In case of construction 1 and the

estimator by absorption (2.23), one obtains from (2.26), (2.40) and (2.27)

k ~R(A0)k � max
i

X
k

En�1 [�
n

i;k
]2 + kM((I �A0)

�1)k

� �
�1
min

g
�1
min


�
I � A

2
0

P0

��1+ kM((I �A0)
�1)k : (2.63)

In case of construction 2 one obtains from (2.62), (2.29)

k ~R(A0)k � max
i

X
k;l

��En�1 �
n

i;k
�
n

i;l

��+max
i6=j

X
k;l

��En�1 �
n

i;k
En�1 �

n

i;l

��
� max

i

X
k;l

��En�1 �
n

i;k
�
n

i;l

��+ kM((I �A0)
�1)k :

For the estimator by absorption one obtains from (2.30) and (2.31)

k ~R(A0)k � g
�1
min


�
I � A

2
0

P0

��1+ kM((I �A0)
�1)k : (2.64)

From the de�nition (2.46) one obtains

kM(B)k = max
i;j

X
k;l

jM(B)i;j;k;lj = max
i;j

X
k;l

jbi;kj jbj;lj � kBk2 : (2.65)

Assuming

kA0k < 1 and P0 = A0 ;

one obtains k(I �A0)
�1k � 1

1�kA0k and gmin � 1 � kA0k ; so that

k ~R(A0)k �
c

(1 � kA0k)2
; (2.66)

where c = �
�1
min

+1 in case of construction 1 (cf. (2.63)) and c = 2 in case of construction 2

(cf. (2.64)).

Finally, it follows from (2.66), (2.65) that

N >
c kA1k2

� (1 � kA0k)2
(2.67)

is su�cient to assure k 1
N

~R(A0)M(A1)k < � (cf. Lemma 2.12). However, the estimate

(2.67) is too rough to be useful in practical calculations, since in general � may be very

small. In the symmetric case one may obtain a more explicit estimate for N ; using

� = 1 � %((I �A0)
�1
A1)

2 (cf. (2.49)) and some appropriate norm.
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3. Application to di�erence schemes

3.1. Wave equation

Consider the one-dimensional wave equation

@
2

@t2
u(t; x) =

@
2

@x2
u(t; x) ;

where x 2 [0; 1] and t � 0 ; with the initial conditions

u(0; x) = u0(x) ; (
@

@t
u)(0; x) = u1(x) (3.1)

and the boundary conditions

u(t; 0) = 0 ; u(t; 1) = 0 : (3.2)

Let

h =
1

m+ 1
(3.3)

be the discretization parameter in the space [0; 1] ; and � the discrete time step. Di�erence

schemes are de�ned using a grid function

û(j�; kh) ; j = 0; 1; : : : ; n ; k = 0; 1; : : :m+ 1 :

We denote

y
j

k
:= û(j�; kh) ; j = 0; 1; : : : ; n ; k = 0; 1; : : :m+ 1 ;

and de�ne, using the initial and boundary conditions (3.1), (3.2),

y
0
k
= u0(k h) ; k = 0; : : : ;m+ 1 ;

y
1
k
= u0(k h) + � u1(k h) ; k = 0; : : : ;m+ 1 ;

and

y
j

0 = 0 ; y
j

m+1 = 0 ; j = 0; 1; : : : ; n :

It remains to determine the vectors

y
j = (y

j

1; : : : ; y
j

m
) ; j = 2; : : : ; n :

We introduce the second order di�erence operator

(�h z)k :=
zk+1 � 2 zk + zk�1

h2
; k = 1; : : : ;m ; (3.4)
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acting on vectors z = (z1; : : : ; zm) ; where z0 = zm+1 := 0 : This operator takes the form

�h z =
1

h2
(B � 2 I) z ; (3.5)

where

B =

0
BBBBBB@

0 1 0 : : : 0 0

1 0 1 : : : 0 0

0 1 0 : : : 0 0

� � � : : : � �
0 0 0 : : : 0 1

0 0 0 : : : 1 0

1
CCCCCCA
:

This matrix has eigenvalues (cf., e.g., [17, p. 67])

2 + �l ; where �l = �4 sin2
�

� l

2 (m+ 1)

�
; l = 1; : : : ;m ; (3.6)

and eigenvectors

v
(l)

k
:= sin

� k l

m+ 1
; k; l = 1; : : : ;m :

Note that (cf. (3.3))

�4 < �4 sin2
�

2
(1 � h) � �l � �4 sin2

�

2
h < 0 ; l = 1; : : : ;m : (3.7)

Consider a three-layer di�erence scheme of the form

y
j+1
k

� 2 y
j

k
+ y

j�1
k

� 2
= � (�h y

j+1)k + � (�h y
j)k +  (�h y

j�1)k ; (3.8)

where j � 1 ; k = 1; : : : ;m ; and �; �;  are non-negative weights such that

�+ � +  = 1 : (3.9)

From (3.8) and (3.5) one obtains

h
2

� 2

�
y
j+1 � 2 yj + y

j�1� = � (B � 2 I) yj+1 + � (B � 2 I) yj +  (B � 2 I) yj�1 ;

(2� +
h
2

� 2
) yj+1 = B y

j+1 +

�
2
h
2

� 2
I + � (B � 2 I)

�
y
j +

�
 (B � 2 I)� h

2

� 2
I

�
y
j�1

;

and �nally

y
j+1 = A0 y

j+1 +A1 y
j +A2 y

j�1
;

where

A0 =
�

2� + �2
B ; (3.10)
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A1 =
2 [�2 � �]

2� + �2
I +

�

2� + �2
B ; (3.11)

A2 = �
�
2 + 2 

2� + �2
I +



2� + �2
B ; (3.12)

and

�
2 :=

h
2

� 2
: (3.13)

Thus, the vectors yj are determined by an iteration process of the form (2.1).

According to Remark 2.10, the condition for stability of the recurrent procedure

is

%(B) < 1 ;

where (cf. (2.4))

B =

�
(I �A0)

�1
A1 (I �A0)

�1
A2

I 0

�
: (3.14)

Note that jA0j = A0 ; jA1j = A1 ; if �
2 � � ; and jA2j 6= A2 :

Lemma 3.1 Consider A0 from (3.10) and

A1 =
"1

2� + �2
I +

�

2� + �2
B ; (3.15)

A2 =
"2

2� + �2
I +



2� + �2
B : (3.16)

For B de�ned in (3.14), one obtains

%(B) = max
l

j�(1;2)
l

j ; (3.17)

where

�
(1;2)

l
=
"1 + (2 + �l)� �

p
["1 + (2 + �l)�]

2 + 4 [�2 � �l �] ["2 + (2 + �l) ]

2 [�2 � �l �]
: (3.18)

Corollary 3.2 In the case "1 = 2 [�2 � �] ; "2 = �(�2 + 2 ) one obtains

�
(1;2)

l
=

2�2 + �l � �
p
�
2
l
(�2 � 4  �) + 4�l �2

2 [�2 � �l �]
: (3.19)
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Corollary 3.3 In the special case

� = 0 ;  = 1 � � ; (3.20)

one obtains

����(1;2)
l

��� =
s
1 � �l (1 � 2�)

�2 � �l �
(3.21)

so that

%(B) < 1 if � >
1
2
;

%(B) = 1 if � = 1
2
;

%(B) > 1 if � <
1
2
:

Proofs are given in the Appendix.

Example 3.4 (Standard implicit scheme �T�) In the special case

� = 1 ; � = 0 ;  = 0 ;

one obtains from (3.21) ����(1;2)
l

��� = �p
�2 � �l

and (cf. (3.7), [22, p.263])

%(B) = �q
�2 + 4 sin2(� h

2
)

< 1 :

Using sin2 x � x
2
;

1p
1+x2

� 1 � x
2

2
(x! 0) ; and taking into account (3.13), one

obtains

%(B) � 1� �
2

2�2
h
2 = 1 � �

2

2
�
2
:

This implies stability of the recurrent procedure.

Note that (cf. (3.10)-(3.12))

A0 =
1

2 + �2
B ; A1 =

2�2

2 + �2
I ; A2 = �

�
2

2 + �2
I :

One obtains (cf. (2.2))

kA0k =
2

2 + �2
; kA1k =

(
1 ; if � < 1 ;
3�2

2+�2
; if � � 1 ;

18



and (cf. (2.67))

kA1k
1 � kA0k

=

�
1 + 2

�
2 ; if � < 1 ;

3 ; if � � 1 :

However, the variance of the direct procedure is unbounded with respect to n : Note

that jA2j corresponds to "2 = �
2 and (3.18) implies (with "1 = 2�2)

�
(1;2)

l
=

2�2 �
p
4�4 + 4 [�2 � �l]�2
2 [�2 � �l]

=
�
2 � �

p
2�2 � �l

�2 � �l
:

Since the function 1+
p
2+x

1+x
is decreasing, one obtains

max
l

����(1;2)
l

��� = �
2 + �

q
2�2 + 4 sin2(� h

2
)

�2 + 4 sin2(� h
2
)

� 1 +
p
2 ;

and (2.38) is ful�lled.

Example 3.5 (Standard explicit scheme �Cross�) In the special case

� = 1 ; � = 0 ;  = 0 ;

one obtains from (3.19)

�
(1;2)

l
=

2�2 + �l �
p
�
2
l
+ 4�l �2

2�2
= 1 +

�l

2�2
�
s�

1 +
�l

2�2

�2

� 1 :

If
���1 + �l

2�2

��� > 1 ; for some l ; then %(B) > 1 : If

����1 + �l

2�2

���� � 1 ; 8l ; (3.22)

then

%(B) = 1 :

According to (3.6) we have �l 2 (�4; 0) so that a su�cient condition for (3.22) is 1� 4
2�2

�
�1 or �2 � 1 ; i.e. (cf. (3.13)) ([22, p.263])

� � h :

Note that (cf. (3.10)-(3.12))

A0 = 0 ; A1 =
2 [�2 � 1]

�2
I +

1

�2
B ; A2 = �I :

The recurrent procedure degenerates to a deterministic algorithm, since the choice

P0 = A0 corresponds to immediate absorption with probability 1 .
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The direct procedure has a variance unbounded with respect to n : Note that jA1j =
A1 (if �

2 � 1) and jA2j corresponds to "2 = �
2 and (3.18) implies (with "1 = 2 (�2 � 1))

�
(1;2)

l
=

2�2 + �l �
p
(2�2 + �l)

2 + 4�4

2�2

and

max
l

����(1;2)
l

��� � 1 +
p
2

so that (2.38) holds.

3.2. Heat �ow equation

Consider the one-dimensional heat �ow equation

@

@t
u(t; x) =

@
2

@x2
u(t; x) ;

where x 2 [0; 1] and t � 0 ; with the initial condition

u(0; x) = u0(x)

and the boundary conditions

u(t; 0) = 0 ; u(t; 1) = 0 :

Let h = 1
m+1

be the discretization parameter in the space [0; 1] ; and � the discrete

time step. De�ne

y
0
k
= u0(k h) ; k = 0; : : : ;m+ 1 ;

and

y
j

0 = 0 ; y
j

m+1 = 0 ; j � 0 :

Consider a di�erence scheme with weights (cf., e.g., [22, p.17] or [24, p.321])

y
j+1

k
� y

j

k

�
= � (�h y

j+1)k + (1 � �) (�h y
j)k ; j � 0 ; k = 1; : : : ;m ; (3.23)

where � 2 [0; 1] and �h is de�ned in (3.4). From (3.23) and (3.5) one obtains

h
2

�

�
y
j+1 � y

j
�
= � (B � 2 I) yj+1 + (1 � �) (B � 2 I) yj

and

y
j+1

= A0 y
j+1

+A1 y
j
;
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where

A0 =
�

2� + �2
B ; A1 =

(1 � �)
2� + �2

B +
�
2 � 2 (1 � �)

2� + �2
I ; (3.24)

and

�
2 :=

h
2

�
: (3.25)

Thus, the vectors yj are determined by an iteration process of the form (2.1).

The condition for stability of the recurrent procedure is (cf. (2.49))

%((I �A0)
�1
A1) < 1 : (3.26)

Lemma 3.6 One obtains

%((I �A0)
�1
A1) = max

l

j�lj ; (3.27)

where

�l =
(1 � �)�l + �

2

�� �l + �2
: (3.28)

The proof is given in the Appendix.

According to (3.6) we have �l 2 (�4; 0) so that �l < 1 : On the other hand one obtains

from (3.28)

�l > �1 () (1� �)�l + �
2
> � �l � �

2

() (1� 2�)�l + 2�2 > 0 ;

which is ful�lled (cf. (3.7), [22, p.18]) if � 2 [1
2
; 1] or if

�
2 =

h
2

�
� 2 (1 � 2�) and � 2 [0;

1

2
) : (3.29)

Thus, condition (3.26) holds for � 2 [1
2
; 1] or if (3.29) is ful�lled.

Example 3.7 (Implicit scheme) In the case � = 1 formula (3.28) takes the form

�l =
�
2

��l + �2

so that, according to (3.7),

%((I �A0)
�1
A1) =

�
2

4 sin2(�
2
h) + �2

< 1 :

Using sin2 x � x
2
;

1
1+x

� 1 � x (x ! 0) ; and taking into account (3.25), one

obtains

%((I �A0)
�1
A1) � 1� �

2

�2
h
2 = 1� �

2
� :
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Note that (cf. (3.24))

A0 =
1

2 + �2
B ; A1 =

�
2

2 + �2
I

and there is no sign change. Thus, the stability conditions for the direct and the recur-

rent algorithm are identical. One obtains (cf. (2.67))

kA0k =
2

2 + �2
; kA1k =

�
2

2 + �2
;

kA1k
1� kA0k

= 1 :

Example 3.8 (Explicit scheme) In the case � = 0 condition (3.29) takes the form

�
2 =

h
2

�
� 2 : (3.30)

Formula (3.28) takes the form

�l =
�
2 + �l

�2

so that, according to (3.27) and (3.7),

%((I �A0)
�1
A1) = 1� 4

�2
sin2(

�

2
h) < 1

and

%((I �A0)
�1
A1) � 1� �

2
� :

Note that (cf. (3.24))

A0 = 0 ; A1 =
1

�2
B +

�
2 � 2

�2
I

and there is no sign change in the case (3.30). The recurrent procedure degenerates to

a deterministic algorithm. The stability condition for the direct procedure is ful�lled.

3.3. Numerical examples

Here we study the simplest implicit scheme for the wave equation (cf. Example 3.4) in

order to illustrate the theoretical results concerning stability of the recurrent procedure.

On each time step, averaging over N independent samples is used (cf. Corollary 2.9).

First we calculate the solution up to time t = 1: in order to illustrate the qualitative

behaviour of the Monte Carlo procedure. The results are obtained by a single run of the

algorithm. The parameters of the di�erence scheme are h = � = 0:02 : The �gures below

show three typical situations. In Figure 1 (N = 100) we observe stability and negligible

stochastic errors. In Figure 2 (N = 10) the procedure is still stable, but the stochastic

�uctuations start to play some role. Finally, in Figure 3 (N = 4) the stochastic error

becomes predominant, and the procedure is unstable.
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Figure 1 Stability with small random error (N = 100)

Figure 2 Stability with moderate random error (N = 10)
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Figure 3 Instability (N = 4)

Next we present some results illustrating the quantitative behaviour of the random

error. The numbers shown in the tables are determined by the formulavuut 1

m

mX
i=1

Var(�n
i
) : (3.1)

The variances of the component estimators are approximated using averaging over inde-

pendent runs of the procedure.

First we consider the case h = � = 0:02 : The values (3.1) for di�erent N on small

time intervals are shown in Table 1.

Table 1

N t = 1: t = 2:

100 0.032 0.035

50 0.050 0.057

25 0.075 0.093

20 0.089 0.110

10 0.173 0.232

8 0.242 0.345

5 0.775 2.44

4 2.70 29.2

2 2.51E+4 1.15E+10

1 2.85E+10 5.46E+22

These results allow us to conclude that instability occurs for N = 1 and N = 2 : To

make a more precise conclusion, we calculate the values (3.1) on longer time intervals.

The results from Table 2 show that the procedure is stable for N = 8 :
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Table 2

N t = 4: t = 10: t = 100:

8 0.823 0.888 0.757

7 0.611 3.29 100245.

6 1.12 15.9 4.74E+11

Next we consider the case h = � = 0:01 : The corresponding results are given in

Tables 3 and 4. In this case the procedure becomes stable only for N = 12 :

Table 3

N t = 1: t = 2:

100 0.031 0.049

50 0.053 0.061

25 0.086 0.121

10 0.218 0.386

5 2.25 20.0

Table 4

N t = 4: t = 10: t = 100: t=1000.

12 0.323 0.468 4.56 2.78

11 0.437 2.05 16.7 4.59E+11

10 0.739 4.46 16766.

9 1.09 1.39 21378.

8 0.808 4.39 2.04E+12

Finally, the result for the case h = � = 0:005 are shown in Tables 5 and 6. Here the

procedure is stable for from N = 18 :

Table 5

N L t = 1: t = 2:

50 20 0.053 0.077

25 40 0.092 0.122

20 50 0.130 0.175

10 100 0.296 0.690

5 200 15.8 1552.

Table 6

N t = 4: t = 10: t = 100: t = 1000:

19 0.267 0.486 4.19 0.036

18 0.183 0.377 7.66 0.035

17 0.325 0.376 68.4 9.94E+10

15 0.351 0.994 167. 1.49E+17

12 0.774 4.15 3.05E+06

The number N ; for which the Monte Carlo procedure is stable, increases with a

decreasing time step. This behaviour is in accordance with the theoretical predictions.

However, the actual numbers observed in the numerical tests are much less than the upper

estimates obtained in Section 2 (cf. (2.67) and Example 3.4).
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4. Conclusions

The main concern of this paper was the study of stability properties of Monte Carlo

algorithms for iteration processes. As a basic illustration, the problem of constructing

stable Monte Carlo procedures for the wave equation has been considered. A solution to

this problem is provided by the recurrent Monte Carlo algorithm studied in Section 2.3.

As it follows from the main theorem, there exists some N ; the number of trajecto-

ries on each time layer, which is su�cient to make the algorithm stable in the sense of

uniformly bounded variances. One of the important features of Monte Carlo algorithms

is their highly e�cient implementation on parallel computer architectures. This is due

to the fact that independent samples of the corresponding random estimator can be gen-

erated on di�erent processors. As we observed in Section 3.1, the direct Monte Carlo

algorithm with independent trajectories (cf. Section 2.2) does not work successfully in

the case of di�erence schemes for the wave equation. The variances of the estimators grow

exponentially fast, leading to poor e�ciency. For the recurrent Monte Carlo algorithm,

instead of using M = LN independent trajectories in the direct scheme, N of them are

used in a form splitted over the time layers. The whole procedure is then repeated L

times independently and the �nal result is obtained by averaging. The L independent

runs can be again distributed very e�ciently among di�erent processors. Moreover, if L is

su�ciently large to apply the central limit theorem, con�dence intervals for the solution

of the problem can be constructed. As the numerical examples show, the number N need

not to be very large in applied problems.

Numerical experiments have been carried out for the one-dimensional wave equation.

This allowed us to investigate the e�ects of stability and instability in more detail. The

results, however, apply to the wave equation in more than one dimension (cf. [13], [25]).

It would be of interest to check the procedure for di�erence schemes for the wave equation

with discontinuous coe�cients (cf. [3]). Monte Carlo algorithms are especially well-suited

in situations, where equations with random coe�cients are to be solved numerically (cf.

[23]), so that wave propagation in random media (cf. [21]) is an interesting �eld of

application. The principal ideas concerning stability can be applied to more general

iteration processes, when the matrices A0; A1; A2 and vectors f in (2.1) depend on the

iteration step. Further improvements of the approach in the spirit of Halton's sequential

Monte Carlo (cf. [15]) seem to be possible.
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Appendix

Proof of Lemma 3.1. If one assumes�
(I �A0)

�1
A1 (I �A0)

�1
A2

I 0

��
z

w

�
= �

�
z

w

�

then

(I �A0)
�1
A1 z + (I �A0)

�1
A2w = � z ; z = � w ;

which implies

(I �A0)
�1
A1 � w + (I �A0)

�1
A2w = �

2
w :

and

A1 � w +A2w = �
2 (I �A0)w : (A.1)

Taking into account (3.10), (3.15), (3.16) one obtains from (A.1)

�
2

�
I � �

2� + �2
B

�
w =

�

�
"1

2� + �2
I +

�

2� + �2
B

�
w +

�
"2

2� + �2
I +



2� + �2
B

�
w
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2 �

2� + �2
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2� + �2
+



2� + �2

�
B w =

�
�
2 � �

"1

2� + �2
� "2

2� + �2

�
w :

According to (3.6) � must satisfy�
�
2 �

2� + �2
+ �

�

2� + �2
+



2� + �2

�
(2 + �l) = �

2 � �
"1

2� + �2
� "2

2� + �2
;

�
2 �l �� �

2

2� + �2
+ �

"1 + (2 + �l)�

2� + �2
+
"2 + (2 + �l) 

2� + �2
= 0

or

�
2 + �

"1 + (2 + �l)�

�l � � �2
+
"2 + (2 + �l) 

�l � � �2
= 0

Note that �l < 0 (cf. (3.7)). Thus, (3.17) follows. 2

Proof of Corollary 3.2. Using (3.9) one obtains

[2�
2
+ � �l]

2
+ 4[�

2 � �l �][��2 + �l ] =

4�
2
� �l + �

2
�
2
l
+ 4�

2
�l  + 4�

2
�l �� 4�

2
l
�  = 4�

2
�l + �

2
l
(�

2 � 4� )

and (3.19) follows. 2
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Proof of Corollary 3.3. In the case (3.20) one obtains from (3.19)

�
(1;2)

l
=

2�2 �
p
�4�2

l
(1 � �)� + 4�l �

2

2 [�2 � �l �]
=
�
2 �

p
��2

l
(1� �)� + �l �

2

�2 � �l �
:

According to (3.6) this implies

����(1;2)
l

��� =

p
�4 + �

2
l
(1� �)� � �l �

2

�2 � �l �

=

p
(�2 � �l �)2 + �l (2�� 1)�2 + �

2
l
(1 � 2�)�

�2 � �l �

=

p
(�2 � �l �)

2 + (1� 2�)�l [�l � � �2]

�2 � �l �

=

s
�2 � �l �� (1� 2�)�l

�2 � �l �
=

s
1 � (1� 2�)�l

�2 � �l �

so that (3.21) follows. 2

Proof of Lemma 3.6. If one assumes

(I �A0)
�1
A1w = � w ;

then

A1w = � w �A0 � w

and according to (3.24)

1� �

2� + �2
B w +

�
2 � 2 (1 � �)

2� + �2
w = � w � �

2� + �2
� B w
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1� � + � �
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�
� � �

2 � 2 (1 � �)

2� + �2

�
w :

According to (3.7) � must satisfy (for some l)

1� � + � �

2� + �2
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2 � 2 (1 � �)
2� + �2

;

1� �
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�
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Thus, one obtains (3.28). 2
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