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Abstract

We study regularization methods for the integral equation of the �rst kind with

analytical kernel of logarithmic type. The problem is severely ill-posed. In [1] a

logarithmic type convergence rate for the Tikhonov regularized solution was proved.

Here we are concerned with numerical aspects of the solution. First we consider the

selfregularization of the problem by using projection methods in the sense of [9].Then

we will see that the Tikhonov regularization of such methods is in accordance with

a discretized version of the Tikhonov regularized solution in [1]. Finally, we describe

numerical experiments being in a good agreement with the theoretical results.

1 Introduction

Many inverse problems from applications, such as tomography [8], geophysics [7], non-

destructive detection [6], inverse contact problems [3], give rise to integral equations of

the �rst kind with analytic kernels. In [2], [4], for certain integral equation of the �rst

kind with analytic kernel, a conditional stability could be proved, provided some a-priori

information about the solution is known. Since �rst kind integral equations with analytic

kernels are severely ill-posed problems, their numerical solution is extremely di�cult.

Let us consider the integral equation with logarithmic kernelZ 1

0
log(x� t)f(t)dt = g(x); x 2 [2; 3]: (1.1)

Since [0; 1] \ [2; 3] = ;, the kernel is analytic with respect to x; t. The integral equation

(1.1) is severely ill�posed in Hadamard's sense. The purpose of this paper is to study

fully discretized regularization methods for this problem.

In Section 2 we are engaged with projection methods in the sense of [9]. We describe the

methods of least squares, dual least squares and collocation and investigate their proper-

ties. In each case the discretized problem is equivalent to a system of linear equations. As

the matrix is ill-conditioned in the general case, for its numerical solution a combination

with an additional regularization procedure is necessary.

The Section 3 is devoted to a discretized version of the Tikhonov regularized solution in

the sense of [1]. This discretized version can be considered as the least squares method

combined with additional Tikhonov regularization. In this section the results of [1] are

used. The numerical experiments concern the two kinds of regularity assumptions: First,

the solution is supposed to be H1
0 on [0; 1] and second, the solution is supposed to be H1

in a neighborhood of one point. In the �rst case the L2-convergence of the approximating

sequence to the solution is investigated, while in the second case the pointwise convergence

is studied locally. Moreover, near a discontinuity point of the solution the sequence of

approximated regularized solutions is growing unboundedly in the L2-sense. We perform

three experiments with synthetic data, con�rming the theoretical results of [1].

2 Selfregularization by projection methods.

In this paper the problem

Af = g; (2.1)
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is considered, where the operator A : L2(0; 1)! L
2(2; 3) is de�ned as

(Af)(x) =
Z 1

0
log(x� t)f(t)dt; x 2 [2; 3]: (2.2)

Let A� : L2(2; 3)! L
2(0; 1) be the adjoint operator,

(A�g)(t) =
Z 3

2
log(x� t)g(x)dx; t 2 [0; 1]:

Projection methods.

First of all we are concerned with the de�nition and properties of abstract projection

methods studied in [9].

Let X and Y be Hilbert spaces and A a uniquely invertible operator mapping X into Y

with R(A) = Y . Let Y 0 be the space of linear continuous functionals on Y (Y 0 can be

identi�ed with Y ), let further k � k and (�; �) be norm and scalar product in X and Y .

Consider �nite dimensional subspaces Xn � X (trial spaces) and Y
0

n
� Y

0 (test spaces)

and de�ne the discretized problem:

Find fn 2 Xn such that

 (Afn) =  (g) (2.3)

holds for all  2 Y 0

n
.

We assume that (2.3) is uniquely solvable for any g 2 Y and consider its solution as the

approximate solution of the operator equation (2.1). In the case where we have instead

of the exact right-hand side g only uncertain data g�, with kg � g�k < �, at disposal we

denote the solution of (2.3) by fn;�.

Now, on the lines of [9] let us de�ne the linear operators Pn : X ! Xn and Qn : Y ! Xn.

Let fn be the solution of (2.3) where g = Af holds. Then

Pnf := fn:

As Pnu = u for u 2 Xn the operator Pn is a projector from X onto Xn: Let fn be the

solution of (2.3) where g 2 Y holds. Then

Qng := fn:

It is clear that generally

Pn = QnA (2.4)

holds.

Proposition 2.1 If Pnf ! f (n!1) for each f 2 X, then kPnk � c:

If kPnk � c;

dist(f;Xn) := inf
u2Xn

kf � uk ! 0;

then Pnf ! f:

Proof. The �rst assertion follows by the theorem of Banach-Steinhaus, the second one by

kf � fnk = k(I � Pn)(f � u)k � (1 + kPnk)dist(f;Xn): (2.5)
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In the case of unexact data, using (2.5) we have the estimate

kf � fn;�k � (1 + kPnk)dist(f;Xn) + kQnk�: (2.6)

In the ill-posed case kQnk will grow for growing n. To get a reasonable numerical proce-

dure (2.3) we must

(i) be sure that kPnk is bounded,

(ii) estimate kQnk from above,

(iii) choose n depending on the error level � such that kQnk� decreases for growing n with

a rate similar to the rate of the �rst summand at the right-hand side of (2.6).

Generalized orthoprojectors.

Let S; Z be n-dimensional subspaces of the Hilbert space X,

S = spanf�1; � � � ; �ng; Z = spanf�1; � � � ; �ng:

Let

Z
? = f�? 2 X; (�?; �) = 0 8� 2 Zg:

Proposition 2.2 If S \ Z? = f0g; then any f 2 X can be uniquely represented as

f = � + �
?
; � 2 S; �? 2 Z?: (2.7)

Proof. From

(�; �) = (f; �) 8� 2 Z; (2.8)

� is uniquely determined: Let be � =
P

n

1 yi�i: Then the linear system

nX
i=1

yi(�i; �j) = (f; �j); j = 1; � � � ; n;

is uniquely solvable as its matrix ((�i; �j)) is invertible because of the assumption.

Now, let us de�ne the generalized orthoprojector PZ

S
as

P
Z

S
f := �;

where � is uniquely determined by (2.7). Clearly, the generalized orthoprojector is a

projector. Moreover, in the case S = Z

PS := PS

S

is the usual orthoprojector to S, where the assumption S \ S? = f0g is trivially ful�lled.

Proposition 2.3 Suppose S\Z? = f0g: The generalized orthoprojector has the following

properties:

(PZ

S
f; �) = (f; �) 8� 2 Z; (2.9)

PZP
Z

S
= PZ ; (2.10)

kPZ

S
k � kP�1

Z
k; (2.11)

kf �PSfk � kf �PZ

S
fk:

where in (2.11) the restriction of PZ to S is considered, being uniquely invertible.
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Proof. PZ� = 0 means � 2 Z
?
; i.e. � = 0 if � 2 S: Therefore, the restriction of PZ to

S is uniquely invertible, and (2.11) immediately follows from (2.10). The assertions (2.9)

and (2.10) are immediate from (2.7).

Example 2.1 Let be Xn = spanf'1; � � � ; 'ng; Yn = spanf 1; � � � ;  ng; with the property

Xn \ (A�Yn)
? = f0g: Consider the projection method (cf.(2.3)): Find fn 2 Xn such that

(Afn; v) = (g; v) 8v 2 Yn: (2.12)

Then Pn = PZ

S
, where S = Xn; Z = A

�
Yn:

Proof. Write (2.12) as

(fn; A
�
v) = (f; A�v) 8v 2 Yn:

The assertion then follows from (2.8).

We are going to study more concrete projection methods, where the assumption of Propo-

sition 2.2 (necessary for the unique solvability) is ful�lled.

Method of least squares.

Let be Xn = spanf'1; � � � ; 'ng; Yn = AXn:

Find fn 2 Xn such that

(Afn; Au) = (g; Au) 8u 2 Xn: (2.13)

Let fn =
P

n

i=1 xi'i. Then x = (x1; � � � ; xn) can be calculated from the linear system

nX
i=1

xi(A'i; A'j) = (g; A'j); j = 1; � � � ; n: (2.14)

It is clear that (2.14) is uniquely solvable.

Let Pn be the orthoprojector of Y to Yn and denote the restriction of A to Xn by An.

The operators Pn; Qn, de�ned above, have the following properties.

Proposition 2.4

AQn = Pn; (2.15)

APn = PnA; (2.16)

kQnk � kA�1
n
k; (2.17)

Pn = PZ

S
; S = Xn; Z = A

�
AXn; (2.18)

kAQng � gk � kAu� gk 8u 2 Xn: (2.19)

Proposition 2.5 If R(A�) = X, and dist(f;Xn) ! 0, then Pnf tends to f in the weak

topology.

Proof. Using (2.16), for each y 2 Y we have

(f � Pnf; A
�
y) = (Af � APnf; y) = (Af �PnAf; y) � kAf �PnAfkkyk:
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As Pn is the orthoprojector of Y to AXn we obtain

kAf �PnAfk � kAf � APXn
fk � ckf �PXn

fk;

where PXn
is the orthoprojector of X to Xn. Since kf�PXn

fk ! 0 the proof is complete.

Method of least error.

This method is also called dual method of least squares. Here we choose

Yn = spanf 1; � � � ;  ng; Xn = A
�
Yn:

Find fn 2 Xn, i.e. fn = A
�
wn; wn 2 Yn such that

(A�wn; A
�
v) = (g; v) 8v 2 Yn: (2.20)

Let wn =
P

n

i=1 xi i. Then x = (x1; � � � ; xn) can be calculated from the linear system

nX
i=1

xi(A
�
 i; A

�
 j) = (g;  j); j = 1; � � � ; n: (2.21)

Again it is clear that (2.21) is uniquely solvable.

Let Pn be the orthoprojector of X to Xn and f 2 X arbitrary. Then Pn has the following

properties:

Proposition 2.6

Pn = Pn; (2.22)

kPnf � fk � ku� fk 8u 2 Xn; (2.23)

kPnk � c: (2.24)

Collocation method.

Here we must suppose that X and Y are function spaces. Let

X = L
2(0; 1); Y = L

2(2; 3):

Suppose further, the data g is taken from C[2; 3]. Given n collocation points

�j 2 (2; 3); j = 1; � � � ; n;

let be

Y
0

n
:= spanf�1; � � � ; �ng;

where �j is the point evaluation at �j,

�jg = g(�j); j = 1; � � � ; n:

Choose

Xn = spanf'1; � � � ; 'ng:

and �nd fn 2 Xn such that

(Afn)(�j) = g(�j); j = 1; � � � ; n: (2.25)

Then, setting fn =
P

n

i=1 xi'i, the vector x = (x1; � � � ; xn) is to be calculated from the

linear system
nX
i=1

xi(A'i)(�j) = g(�j); j = 1; � � � ; n: (2.26)
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Proposition 2.7 (i)The system (2.26) is uniquely solvable if the following is true:

If u 2 Xn; (Au)(�j) = 0; j = 1; :::; n then u = 0 identically.

(ii)Let (2.26) be uniquely solvable. For f 2 X we obtain fn = Pnf ! f if the following

is true:

If for the sequence �n 2 X holds (A�n)(�j) = 0; j = 1; � � � ; n then �n ! 0.

Proof. (i)The matrix ((A'i)(�j)) has full rank if its rows are linearly independent, i.e.P
n

i=1 �i(A'i)(�j) = 0; j = 1; :::; n implies �i = 0; i = 1; :::; n. This means that (Au)(�j) =

0; j = 1; :::; n, where u :=
P

n

i=1 �i'i.

(ii)Take �n = f � fn, where Adn(�j) = 0 follows from (2.25).

Now, using the concrete form (2.2) of the operator A we see that

(Af)(�j) = (f; �j); j = 1; :::; n; (2.27)

where for t 2 [0; 1]

�j(t) = log(�j � t); j = 1; :::; n:

It can easily be proved that �j; j = 1; :::; n; for di�erent �j are linearly independent.

Denote

Bn = spanf�1; :::; �ng:

Proposition 2.8 Assume Xn \ B?

n
= f0g. Then

(i)The matrix of (2.26)

((A'i)(�j)) = (('i; �j)) (2.28)

has full rank.

(ii) There holds

Pn = PBn

Xn

; (2.29)

kPnk � kP�1
Bn

k; (2.30)

where in (2.30) PBn
is the restriction to Xn of the orthoprojector of X to Bn.

Proof. (i) is clear from the assumption. (ii) follows writing (2.26) equivalently as

X
xi('i; �j) = (f; �j); j = 1; :::; n;

or (fn; �) = (f; �)8� 2 Bn:

Estimation of kQnk:

In the case of the least squares method let

Xn = spanfe1; :::; eng;

where ei = �[(i�1)=n;i=n] are the characteristic functions. Clearly

(ei; ej) = �ij=n:

6



For g 2 Y let Qng =
P
xiei: Then kQngk = jxj=

p
n: From (2.14) we obtain

Mx = m; M = ((Aei; Aej)); m = ((g; Aej)):

Then

kQngk = jxj=
p
n = jM�1

mj=
p
n;

jmj2 =
X
j

(g; Aej)
2 � c

2kgk2:

We obtain

kQnk � cjM�1j:

In the case of the dual least squares method (method of least error) let

Yn = spanfe01; :::; e
0

n
g;

where e0
i
= �[2+(i�1)=n;2+i=n] again are the characteristic functions. Clearly

(e0
i
; e
0

j
) = �ij=n:

For g 2 Y let Qng =
P
xiA

�
e
0

i
: Then Qng = A

�
Rng: From (2.20) we obtain

(AQng; Rng) = (g; Rng):

(2.21) gives

Lx = l; L = ((A�e0
i
; A

�
e
0

j
)); l = ((g; e0

j
)):

Then

kQngk2 � kRngkkgk = kgkjxj=
p
n � jL�1jkgk2=

p
n:

We obtain

kQnk �
 
jL�1j
p
n

!1=2

:

Finally, in the case of the collocation method let

Xn = spanfe1; :::; eng:

For g 2 C[2; 3] let Qng =
P
xiei: From (2.26) we obtain

Kx = k; K = (Aei(�j)); k = (g(�j)):

Then

kQngk2 = jxj2=n � jK�1j2jkj2=n = jK�1j2kgk2;

approximately, as jkj2=n =
P
g(�j)

2
=n � kgk2: We obtain

kQnk � jK�1j:
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3 Tikhonov regularization. A numerical treatment

Here we are engaged with the numerical solution of

Af0 = g;

where A : L2(0; 1) ! L
2(2; 3) is de�ned in (2.2) and only an approximation g� of g is

given,

kg � g�kL2(2;3) � �:

We will �nd the numerical solution by discretization combined with Tikhonov regulariza-

tion. To this end we are going to cite some results from [1]. Then we will give an overview

over numerical experiments con�rming the theoretical results.

Crucial for the numerical approximation is the a priori assumption on the solution f0: Let

us start our considerations with the

A priori assumption: f0 2 H1
0 (0; 1):

Let � > 0 be �xed and f 2 H1
0 (0; 1): Consider the functional

F�(f) = kAf � g�k2L2(2;3) + �kfk2
H1
0
(0;1); (3.1)

where � > 0: De�ne

� = inf
f2H1

0
(0;1)

F�(f);

and the regularized solution f �
�
such that

F�(f
�

�
) � � + �

2
:

Proposition 3.1 Suppose f0 2 H1
0 (0; 1); � = �

2. Then for � ! 0 the regularized solution

converges to f0 and

kf �
�
� f0kL2(0;1) � C1

1

j log 1
�
j
;

where C1 > 0 is a constant which depends on f0.

Computation of a regularized solution.

We assume f0 2 H1
0 :

Consider in the interval [0,1] the equidistant discretization

ti = i=n; i = 1; � � � ; n� 1:

De�ne

Xn = spanf�i; i = 1; � � � ; n� 1g;

where �i is linear and continuous with �i(tj) = 1 for j = i and = 0 for j 6= i; i =

1; � � � ; n� 1:

It is known (cf.e.g. [5]), that for ' 2 H1
0 ; 'n =

P
n�1
i=1 '(ti)�i will converge to ' for n!1:

If ' 2 H1+�

k'� 'nkH1
0
� c � n��k'kH1+� :
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Consider (3.1).

From the identity

F� ( sf + (1� s)g) = sF�(f) + (1� s)F�(g)

�s(1� s)fkAf �Agk2
L2

+ �kf � gk2
H1
0
g;

F� is strongly convex, locally Lipschitz continuous and weakly lower semicontinuous.

There is a unique f � 2 H1
0 with

F�(f
�) = inf

f2H
1
0

F�(f);

and there is a unique f �
n
2 Xn with

F�(f
�

n
) = inf

fn2Xn

F�(fn):

This element f �
n
can for n > n0 serve as a regularized solution f �; since

F�(f
�

n
) �! F�(f

�) (n!1):

This is clear by going to the limit in

F�(f
�) � F�(f

�

n
) � F�(fn);

where the sequence fn approximates f �:

Calculation of f �
n
: To minimize

min
f2Xn

fkAf � g�k2L2 + �(kfk2
L2

+ kf 0k2
L2
)g

let us consider the equivalent problem: Set f =
P

n�1
i=1 xi�i; and solve

min
x2IR

n�1
f< Wx+ y; x > + bg;

where x = (xi);W = ((A�i;A�j) + �((�i;�j) + (�0
i
;�0

j
)));

y = (�2(A�i; g�)); b = (g�; g�) and < �; � > is the scalar product in IRn�1
: From the

necessary (and su�cient) condition for a minimum we get

f
�

n
=

n�1X
i=1

x0i�i;

where x0 = W
�1
v; v = �y=2:

Local regularization of a discontinuous solution

Let x0 2 (0; 1) and consider the neighborhood Or = Or(x0):

For �; � > 0 �xed and f 2 L2(0; 1) \H1(Or) de�ne

G�(f) := kAf � g�k2L2(2;3) + �(kfk2
L2(0;1) + kfk2

H1(Or)
): (3.2)

�1 := inf
f2L2(0;1)\H1(Or)

G�(f):

and the locally regularized solution f �
�
such that

G�(f
�

�
) � �1 + �

2
:
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Proposition 3.2 Suppose � = �
2 and

f0 2 L2(0; 1) \H1(Or):

Then a locally regularized solution converges for � ! 0 to f0 in some neighborhood of x0;

and

jf �
�
(x)� f0(x)j � C1

1

j log 1
�
j

; jx� x0j � r1 < r;

where C1 > 0 depends on f0, r and r1.

Now, let us consider discontinuity points of the solution.

Proposition 3.3 Suppose that the exact solution f0 is a piecewise smooth function and

x0 is a discontinuity point such that

f0 2 C
2((x0 � �; x0), f0 2 C

2(x0; x0 + �) and f0(x0 + 0) 6= f0(x0 � 0). Let f �
�
be a locally

regularized solution. Then for � = �
2

lim
�!0

kf �
�
kH1(Or(x0)) =1:

Proposition 3.4 Let Or be an open subinterval of [0; 1]. There is a discontinuity point

of the solution f0 in Or if and only if for a locally regularized solution f �
�
holds for � = �

2:

kf �
�
kH1(Or) is unbounded for � ! 0.

For proofs of Propositions 3.1 to 3.4 we refer to [1].

Our following numerical experiments concern 3 cases:

(i) The reconstruction of f0 2 H
1
0 (0; 1), where the approximating sequence converges in

the sense of Proposition 3.1.

(ii) The reconstruction of f0 2 L2(0; 1) \H1(O); where O is an open subinterval of (0; 1)

and the approximating sequence converges inside O pointwise in the sense of Proposition

3.2.

(iii) Let O0 be such that f0 has a discontinuity point inside O0. Then the approximating

sequence will grow according to Proposition 3.3.

The approximating sequence f(n; �; �) will depend on the discretization number n, the

regularization parameter � and the noise level �: It belongs to a �nite-dimensional space

Un, that is a subspace of H1
0 (0; 1) in the case (i) and of L2(0; 1) \H1(O) in the cases (ii)

and (iii). In the case (iii) the interval O0 is not contained in O.

Now, let n be a �xed natural number and denote

f
�

�
= f(n; �; �):

Let O � [0; 1] be such that its boundary points are points of the equidistant discretization

ti = i=n; i = 0; :::; n;

O = (i0=n; i1=n); i0 < i1:

Let [0; 1] = [�i; �i = [(i � 1)=n; i=n] and de�ne as basis functions �j; j = 1; :::; n + 1;

the functions
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��i
if �i \O = ;; �i if i=n 2 O; ��i0; �

+
i1
,

and numbering them according to the position of their support in [0,1]. Here ��i
is the

characteristic function of �i and

��
i
(t) =

�
�nt + i+ 1 if t 2 �i+1

0 else
; �+

i
(t) =

�
nt� i+ 1 if t 2 �i

0 else
;

�i(t) =

8<
:
�+
i
(t) if t 2 �i

��
i
(t) if t 2 �i+1

0 else

are the usual hat-functions. Now de�ne

Un =

�
spanf�2; :::; �ng if O = (0; 1)

spanf�1; :::; �n+1g if O � (0; 1)
:

The solution f �
�
of the minimum problems

inf
f2Un

fkAf � g�kL2(2;3) + �kfk2
H1g

or

inf
f2Un

fkAf � g�kL2(2;3) + �

�
kfk2

L2(0;1) + kfk2
H1(O)

�
g

if f0 2 H
1
0 (0; 1) (case (i)) or f0 2 L

2(0; 1) \ H1(O) (case (ii)), respectively, is gained by

f
�

�
=
P
xi�i; where x = (xi) is the solution of the linear system

Wx = u;

W = ((A�i;A�j) + �f(�i; �j) + (�0
i
; �

0

j
)g) in case (i),

W = ((A�i;A�j) + �f(�i; �j) + �ijg) in case (ii), where �ij = (�i; �j) + (�0
i
; �

0

j
) if both

�i; �j have support in O, and = 0 if not. Moreover,

u = ((A�i; g�)):

The scalar products in L2(2; 3) are calculated by using Simpson's rule in an equidistant

discretization si; i = 1; :::; m of the interval [2,3]. The data g� are simulated in the

following way.

Let f0 2 L2(0; 1) be given. De�ne

g�(si) = (Af0)(si) + � � z(si); i = 1; :::; m;

where z(si) is a random number,jz(si)j � 1:

The calculation was performed by using the LAPACK FORTRAN program system.

Let us descibe the numerical experiments. We put always � = �
2
; n = 50; m = 200:

Experiment 1 (case (i)). Here f0 was taken linear with the properties f0(0:6) = 1; f0(0) =

f0(1) = 0:

Experiment 2 (case (ii)). Here f0 = 1 in the interval (0.1,0.6) and f0 = 0 else. We set

O = (0:2; 0:4) and calculated at the point t1 = 0:35 2 O:
Experiment 3 (case(iii)). Here we took f0 as in Experiment 2 and O0 = (0:5; 0:7):

The results are given in Table 3.1.

Table 3.1

� 10�1 10�2 10�3 10�4 10�5 10�6 10�7

1 kf �
�
� f0kL2 0.290 0.285 0.283 0.240 0.051 0.049 0.037

2 j(f �
�
� f0)(t1)j 0.38 0.300 0.28 0.25 0.23 0.019 0.016

3 kf �
�
kH1(O0) 0.43 0.77 0.78 0.74 0.86 2.31 2.29
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