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Abstract

A shape optimization problem is considered related to the design of induction

hardening facilities. The mathematical model consists of a vector potential formu-

lation for Maxwell's equations coupled with the energy balance and an ODE to

describe the solid�solid phase transition in steel during heating. Depending on the

shape of the coil we control the volume fraction of the high temperature phase. The

coil is modeled as a tube and is de�ned by a unit�speed curve. The shape optimiza-

tion problem is formulated over the set of admissible curves. The existence of an

optimal control is proved. To obtain the form of the shape gradient of the cost func-

tional, the material derivative method is applied. Finally, the �rst order necessary

optimality conditions are estabished for an optimal tube.

1 Introduction

We investigate the problem of �nding the optimal design for an inductor coil in induction

hardening machines. The mode of operation of these machines relies on the transformer

principle. A given current density in the inductor coil induces eddy currents inside the

workpiece. Because of the Joule e�ect these eddy currents lead to an increase in temper-

ature in the boundary layers of the workpiece. Then the current is switched o� and the

workpiece is quenched by spray�water cooling. The solid�solid phase transitions during

this heat treatment lead to the desired hardening e�ect.

For an induction hardening machine there are generally speaking two control parameters.

One is the frequency of the AC�current applied. This is prede�ned by choosing a particular

machine. Thereby, also the greatest possibe hardening depth is �xed, since it depends on

frequency through the skin e�ect.

The second control parameter is the shape of the inductor coil. These coils are made

individually for the speci�c workpiece from long copper tubes of quadratic or circular

cross section. The design of decent coils for speci�c hardening purposes up to now mostly

depends on experience.

However, there is a growing demand in industry for a more precise process control, mainly

for two reasons. One is the general goal of weight reduction especially in automotive indus-

try, leading to components made of thinner and thinner steel sheets. Surface hardening of

these sheets is a very delicate task, since one must be careful not to harden the complete

sheet, which would lead to undesirable fatigue e�ects. The second one is the tendency for

using high quality steels with only small carbon content, which again demands for a very

precise process control, now for metallurgical reasons, since the hardenability of a steel is

directly related to its carbon content.

There are already numerous papers on modeling and simulation of induction heating

machines, e.g. [6], [8], [10], [14]; results on the mathematical analysis can be found in [2].
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Models for phase transitions in steel have been investigated in [10], [12] and [18]. Optimal

control problems in the case of laser surface hardening have been considered in [1], [13],

and for a 2D induction heating problen in [3].

In this paper for the �rst time a control problem for the 3D induction heating process

including phase transitions is investigated. In Sec. 2 we derive the model, consisting of

a vector potential formulation of Maxwell's equations, the balance of internal energy and

an ODE to describe the phase transition during heating, and prove its well-posedness. In

Sec. 3 we formulate the shape design problem for the inductor coil modeled as a tube

with circular cross section. In Sec. 4, we prove the existence of an optimal design and

�nally in the last section �rst order necessary optimality conditions are derived.

Figure 1: The setting
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2 The state equations

2.1 The vector potential formulation of Maxwell's equations

We consider the following slightly idealized geometric setting (cf. �g. 1). Let D � IR3

with su�ciently smooth boundary and 
 � D be the coil. Its boundary @
 is dissected

into two parts. In �1 the normal component of the current density will be prescribed, this

is where in reality the coil is connected to the primary circuit of the hardening machine.

� is the workpiece to be hardened and G := 
 [ � the set of conductors. Moreover, we

de�ne Q = �� (0; T ).

In eddy current problems we can neglect displacement currents, hence we consider the

following set of Maxwell equations:

curl H = J; (2.1a)

curl E = �Bt (2.1b)

div B = 0 (2.1c)

Here, E is the electric �eld, B the magnetic induction, H the magnetic �eld and J the

current density. In addition we consider the following linear constitutive relations

J = �E; in D;

B = �H; in D;

with the magnetic permeability � and the electric conductivity �. We assume zero current

density outside conductors, i.e.

�(x) =

(
�0 > 0; in �G;

0; in D n �G;

The magnetic permeability takes di�erent values in the coil (usually made of copper), in

the workpiece and in the surrounding air. Hence, we assume

�(x) =

8><>:
�1; in �


�2; in ��

�3; in D n (�
 [ ��):

(2.2)

Using (2.1a,b) one now introduces the magnetic vector potentialA and the scalar potential

� such that

B = curl A; (2.3)

E = �At � grad �: (2.4)
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Then, Maxwell's equations (2.1a�c) can be rewritten in the following way:

�At + curl
�1
�
curl A

�
+ � grad � = 0; in D: (2.5a)

The scalar potential � is determined by the continuity equation div J = 0, i.e.

� div
�
� grad �+ �At

�
= 0; in G: (2.5b)

Since B is not uniquely de�ned by (2.3), we impose the Coulomb gauge

div A = 0: (2.6)

Then (2.5b) can be reduced to the Laplace equation

��� = 0; in G (2.7a)

with boundary condition

��0
@�

@n
=

(
jg; in �1;

0; in @� [ �2;
(2.7b)

with �2 = @
 n �1.

The system (2.7a,b) is a linear elliptic problem, which can be solved separately in 
 and

�. At the workpiece boundary @�, we have homogenous boundary conditions, i.e. the

solution is constant in �. Since only the gradient enters in (2.5a), we restrict the domain

of � to the coil 
.

Assuming that the tangential component of A vanishes on @D, i.e.

n�A = 0; (2.8)

we introduce the spaces

H(curl;D) = fv 2 L2(D); curl v 2 L2(D)g;

H0(curl;D) = fv 2 H(curl;D); n� v
���
@D

= 0g;

H(div;D) = fv 2 L2(D); div v 2 L2(D)g;

where L denotes the vector�valued counterpart L = [L]3 for any real�valued Sobolev

space L. Then, there holds (cf. [7]):

H0(curl;D) \H(div;D) = fv 2 H1(D); n � v
���
@D

= 0g:

Finally, we introduce the Hilbert space

X = fv 2 H0(curl;D); div v = 0g;
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which is a closed subspace of H1(D), equipped with the norm

kvkX = k curl vkL2(D)

and recall the Green's formula

< n� f; g >=

Z
D

curl f � g dx �

Z
D

f � curl g dx; (2.9)

for all f 2 H( curl ;D) and g 2 H1(D), where < :; : > denotes the duality pairing between

H
�1=2(@D) and H1=2(@D).

We assume

(H1) jg 2 H
1(0; T ;H1(�1)), such that

R
�1

jg dx = 0; and
R
�1

jg;t dx = 0;

(H2) A0 2 X.

Using (2.8) and (2.9) we obtain the following weak formulation of (2.5a), (2.7a,b):

Find (A;�), such that A(0) = A0,

�0

Z
G

At � v dx+

Z
D

1

�
curl A � curl v dx + �0

Z



r� � v dx = 0; (2.10)

�0

Z



r� � ru dx+

Z
�1

jgu dx = 0; (2.11)

for all v 2 X and u 2 H1(
).

In view of (H1), we obtain easily:

Lemma 2.1 Assume (H1), then (2.11) has a solution. Moreover, r� is uniquely de�ned

and satis�es

kr�kH1(0;T ;L2(
)) � C;

where C only depends on T and jg.

We assume further

(H3) There exists y0 2 X such that

�0

Z
G

y0 � v dx+

Z
D

1

�
curl A0 � curl v dx+ �0

Z



r� � rv dx = 0;

for all v 2 X, where � is the unique solution to (2.11) (cf. [16]).

Then, we have
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Lemma 2.2 Assume (H1)�(H3) and let � be the unique solution to (2.11). Then, (2.10)

has a unique solution A 2 L1(0; T ;X). Moreover, there exists a constant C > 0 such

that

kAtkL4(0;T ;L4(G)) � C:

Proof:

Uniqueness follows from standard arguments. To prove existence, we �x M 2 IN and

de�ne h = T=M , A0 = A0, and

�m(x) =
1

h

mhZ
(m�1)h

�(x; t)dt for m 2 f1; : : : ;Mg:

Then, we consider the time-discrete version of (2.10):

�0

Z
G

�hA
m � v dx+

Z
D

1

�
curl Am � curl v dx+ �0

Z



r�m � v dv = 0 for all v 2 X;

(2.12)

for m 2 f1; : : : ;Mg, with �hA
m = 1

h
(Am �Am�1).

Owing to (H2), the �rst two terms in (2.12) de�ne a coercive bilinear form on X, hence

applying the Lax�Milgram lemma, inductively we obtain a unique solution Am to (2.12)

for m 2 f1; : : : ;Mg. Next, we insert v = Am � Am�1 into (2.12) and sum up for

m = 1; : : : ; k:

�0

kX
m=1

h

Z
G

����hAm

���2dx+ kX
m=1

Z
G

1

�
curl Am �

�
curl Am � curl Am�1

�
dx

+�0

kX
m=1

Z



r�m � (Am
�Am�1)dx = 0:

Using the inequalities of Young and Hölder, we obtain

�0

kX
m=1

Z



r�m � (Am �Am�1)dx

�
�0

2

kX
m=1

h

Z



���r�m���2dx+ �0

2

kX
m=1

h

Z



����hAm

���2dx:
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Routine calculations show

kX
m=1

Z
G

1

�
curl Am

�

�
curl Am

� curl Am�1
�
dx

=

kX
m=1

Z
G

1

�

��� curl Am
j
2dx�

kX
m=1

Z
G

1

�
curl Am

� curl Am�1 dx

=

kX
m=1

Z
G

1

2�

��� curl Am
� curl Am�1

���2dx +

Z
G

1

2�

��� curl Ak
j
2dx�

Z
G

1

2�

��� curl A0
j
2dx:

Hence, using Lemma 2.1, we obtain

�0

2

MX
m=1

h



�hAm




2
L2(G)

+
1

2�1
max

1�k�M




 curl Ak




2
L2(D)

+

+
1

2�1

MX
m=1




 curl Am
� curl Am�1




2
L2(D)

� c1; (2.13)

with a constant c1 independent of M .

To obtain higher regularity, we take the di�erence of (2.12) for m and m� 1 divided by

h,

�0

Z
G

�2hA
m
� v dx+

Z
D

1

�
curl �hA

m
� curl v dx+ �0

Z



r�h�
m
� v dx = 0 for all v 2 X;

with �2hA
m = 1

h
(�hA

m � �hA
m�1). In view of (H4), we de�ne �hA

0 := y0. Then, the

previous equation is valid for m 2 f1; : : : ;Mg:

Putting v = �hA
m � �hA

m�1, in the same manner as above we get

�0

2

MX
m=1

h




�2hAm




2
L2(G)

+
1

2�1
max

1�k�M




 curl �hA
k




2
L2(D)

+

+
1

2�1

MX
m=1




 curl �hA
m
� curl �hA

m�1



2
L2(D)

� c2;

with a constant c2 independent of M .

Now, we de�ne approximating functions

Ah(t) = Am + t�mh

h
(Am �Am�1) for t 2 [(m� 1)h;mh];

Âh = Am; for t 2 ((m� 1)h;mh]:

In view of (2.13), we have

kAhkH1(0;T ;L2(G))\L1(0;T ;X) � c3; (2.14a)

kÂhkL1(0;T ;X) � c4; (2.14b)
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and

kAh � Âhk
2
L2(0;T ;X) �

h

3

MX
m=1

Z
D

��� curl Am
� curl Am�1

���2dx �! 0;

for h! 0. Thus, we have the convergences

Ah �! A; weakly�star in L1(0; T ;X) \H1(0; T ;L2(G));

Âh �! Â; weakly�star in L1(0; T ;X):

Moreover,

A = Â a.e. in D � (0; T )

and A is a solution to (2.10).

Now, let ym = �hA
m and

A
(1)

h (t) = ym + t�mh

h
(ym � ym�1) for t 2 [(m� 1)h;mh];

Âh

(1)
= ym; for t 2 ((m� 1)h;mh]:

As before, we get

A
(1)

h �! y; weakly�star in L1(0; T ;X) \H1(0; T ;L2(G));

strongly in L2(0; T ;L2(G))

Â
(1)

h �! ŷ; weakly�star in L1(0; T ;X);

and y = ŷ a.e. in D � (0; T ). On the other hand, we have

Â
(1)

h
= Ah;t �! At; weakly in L2(0; T ;L2(G)):

Hence, we conclude

y = At a.e. in G � (0; T ):

Using Sobolev embedding theorem we �nally obtain

kAtkL4(0;T ;L4(G)) � kykL1(0;T ;X) � c4: (2.15)

2

2.2 Energy balance and the formation of austenite

A good measure for the hardness penetration depth in the workpiece is the formation of

austenite during heating, which can be described be the following initial�value problem

derived by Leblond & Deveaux [15] (for details, we refer to [10]):

z(0) = 0; (2.16a)

zt(t) =
1

a(�)

h
b(�)� z

i+
; (2.16b)
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where z is the volume fraction of austenite and � the temperature. To avoid technical

di�culties, we assume for the positive part function [:]+ and the temperature dependent

coe�cients a,b:

(H4) [x]+ = x � H(x), where H is a regularized, smooth Heaviside function,

(H5) b 2 C1;1(IR), b(x) 2 [0; 1] for all x 2 IR,

(H6) a 2 C1;1(IR), m � a(x) �M for all x 2 IR, and constants 0 < m < M .

We consider the following semi�linear energy balance equation:

�cp�t � div (k grad �) = ��Lzt + �0

���At

���2; in �� (0; T ) (2.17a)

@�

@n
= 0; in @�� (0; T ) (2.17b)

�(:; 0) = �0 in �: (2.17c)

�; cp; k; L are density, speci�c heat at constant pressure, heat conductivity and latent

heat, assumed to be constant. The �rst term on the right�hand side of (2.17a) measures

the latent heat inside the workpiece �, which is consumed during the formation of austen-

ite. The second one describes the Joule heating �0jEj
2, cf. (2.4). Note that r� � 0 in

�:

Using the results of [12], we can easily prove

Lemma 2.3 Assume (H4)�(H6) and let �0 2 H1(�). Then (2.16a,b), (2.17a�c) has a

unique solution (z; �) 2 W 1;1(0; T ;L1(�))�H2;1(Q).

Here, we have used the abbreviation Q = �� (0; T ).

3 The shape design problem

The technological aim is to obtain a certain, possibly uniform penetration depth of austen-

ite inside the workpiece. The most important control parameter to achieve this goal is

the shape of the coil 
. Hence, we consider the following cost functional:

J(
) =

Z
�

�
z(x; T )� �z(x)

�2
dx; (3.1)

where �z is a given distribution of austenite.

Note that the cost functional depends on 
 only implicitely, through the solution to the

Maxwell equation (2.10).
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Inductor coils are manufactured from copper tubes with approximately quadratic cross�

section. For convenience, we will consider tubes with circular cross-section. These tubes

can easily be generated from curves in the following way (cf. Gray, [11]).

Let 
 : [0; l] �! IR3 be a unit speed curve, i.e.

jT (s)j = 1; s 2 [0; l];

where T (s) = 
0(s) is the unit tangential vector. Since the arc�length of a unit�speed

curve is given by Z t

0

j
0(s)jds = t;

unit�speed curves are said to be parametrized by arc length. If the curvature �(s) =

j
00(s)j does not vanish, we can de�ne the unit normal and binormal vector �elds N and

B, respectively, by

N(s) =
1

�(s)
T 0(s);

B(s) = T (s)�N(s):

If �(s) = 0, one can easily choose two vectors N , B to form an orthogonal system with

T (s).

Then, the tube with circular cross�section R > 0 corresponding to 
 is given by


 = 
(
) = f!
(s; r; #) j 0 � s � l; 0 � r � R; 0 � # � 2�g;

with

!
(s; r; #) = 
(s) + r cos#N(s) + r sin#B(s): (3.2)

The faces of the tube, i.e. the parts, where the inductor is connected to the hardening

machine (cf. (2.7b)) are de�ned by

�1 = f!
(0; r; #) j 0 � r � R; 0 � # � 2�g [ f!
(l; r; #) j 0 � r � R; 0 � # � 2�g:

The lateral boundary is parametrized by

�2 = f!
(s;R; #) j 0 � s � l; 0 � # � 2�g:

Therefore, @
 = �1 [ �2.

Even simply connected curves may generate tubes with intersecting parts. For obvious

technical reasons this case has to be excluded. To this end we introduce the notion of

reach (cf. Federer [9]).
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De�nition 3.1 (Federer, 1959)

Let �
 = f
(s) ; s 2 [0; l]g be the trace of 
. We call Unp (�
) the set of all points

x 2 IR3, for which there exists a unique projection onto �
 . For y 2 �
 we de�ne

reach (�
; y) = sup
n
r ; fx 2 IR3 ; jx� yj < rg � Unp (�
)

o
; and

reach (�
) = inf
n
reach (�
 ; y) ; y 2 �

o
:

In other words, reach of a subset B � IRn is the largest " such that for all x in an

"�surrounding of B, there exists a unique projection onto B. If B is convex, then

reach (B) = 1. On the other hand, if B is concave with a reentrant corner, e.g. an

L-shaped domain, then reach (B) = 0. In our situation, to avoid too narrow twists of the

curve 
, we demand

reach (�
) � R + �; (3.3)

where � > 0 is a given positive parameter and R is the tube radius.

Now we can introduce the set of admissible curves

Uad = f
 : [0; l]! IR3
n UR+�(�) ; j


0
j = 1 in [0; l]; reach (�
) � R + �;

0 < L1 � l � L2; k
kH4[0;l] �M; 
(0) = 
(l) = 0; 
0(0) = 
0(l);


00(0) = 
00(l); 
000(0) = 
000(l)g;

the corresponding set of admissible domains

Uad = f
(
) ; 
 2 Uadg;

and give a precise de�nition of our control problem, which reads

(CP) Minimize J(
), given by (3.1)

subject to


 2 Uad

and the state equations (2.10), (2.11), (2.16), (2.17).

Note that (CP) is a non�convex optimization (control) problem due to the non�convexity

of Uad and of the cost functional.

For the derivation of optimality conditions it will be convenient to introduce perturbations

of the admissible curves, hence we introduce the further notation

I(
) = J(
(
)): (3.4)
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4 The existence of an optimal domain 
�

Theorem 4.1

Assume (H1)�(H6), then (CP) admits a solution 

�

2 Uad.

For the proof we take a minimizing sequence f
ng � Uad for (3.1). We have 
n = 
(
n)

and 
n : [0; ln]! IRn
n U�(�). We extend 
n by de�ning


n(s) =

3X
k=0


(k)n (ln)(s� ln)
k; for s 2 [ln; L2]:

Hence f
ng is bounded in H4(0; L2) and there exists a subsequence (still indicated by n)

satisfying


n ! 
� in C3(0; L2):

Extracting possibly a further subsequence we also have ln ! l� 2 [L1; L2]: Obviously, 


is a unit�speed curve satisfying also (3.4). Let P = 0 be the prescribed endpoint of the

curves de�ned in Uad, then

j
n(l
�)� P j � j
n(ln)� P j+ j
n(l

�)� 
n(ln)j � cjl� � lnj ! 0; for n!1:

In the same manner, we obtain 
�
0

(0) = 
�
0

(l�), 
�
00

(0) = 
�
00

(l�) and 
�
000

(0) = 
�
000

(l�),

and thus, we have 

�

= 
(
�) 2 Uad.

For an arbitrary curve 
 the lateral boundary �2 of the corresponding tube is parametrized

by the function ~!
(s; #) = !
(s;R; #) de�ned in (3.2). The normal and binormal vectors

N(s); B(s) depend on the second derivative of 
, therefore ~!
(s; #) is a C1 function

and the lateral boundary �2 is uniformly Lipschitz continuous, with a Lipschitz constant

depending on M in the de�nition of the family Uad. Therefore, for the sequence f
ng

corresponding to our subsequence of curves f
ng selected above, we have the following

properties:

D n 
n �! D n 
� in the sense of Hausdorf metric; (4.1a)

�
n
= �


n
�! � = �


�
in Lp(D) for all p <1; (4.1b)

for all K �� 
� there exists N such thatK �� 
n for all n > N: (4.1c)

We refer the reader to [5] for the compactness results in the class of uniformly Lipschitz

domains. Using these properties, in the following Lemmas we are going to pass to the

limit for n ! 1 in the state equations and show the convergence of solutions, which

implies J(
n)! J(

�

) and, therefore the existence of an optimal domain 

�

= 
(
�).

We begin with the equation for the scalar potential (2.11). Denoting

gr�n(x) =
(
r�n(x) ; x 2 
n;

0 ; x 2 D n 
n:
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we have

�0

Z
D

�ngr�n � ru dx+ Z
�1

jgu dx = 0; for all u 2 H1(D): (4.2)

and obtain

Lemma 4.1 There exists a subsequence satisfying

gr�n �! fr� strongly in H1(0; T ;L2(D)): (4.3)

Proof:

Since fgr�ng is bounded in L2(0; T ;L2(D)), (4.3) holds weakly in L2(0; T ;L2(D)). More-

over, taking u = gr�n in (4.2) we haveZ
D

jgr�nj2 dx = �
1

�0

Z
�1

jg�n dx �! �
1

�0

Z
�1

jg�dx =

Z
D

jfr�j2 dx
and thus, strong convergence in L2(0; T ;L2(D)). Di�erentiating (4.2) formally with re-

spect to t and reasoning as above completes the proof. 2

Now, we consider the equation for the magnetic vector potential (2.10). We denote

�n(x) =

8><>:
�1 ; in 
n;

�2 ; in �;

�3 ; in D n (
n [ �) = D nGn;

which can be expressed using characteristic functions as

�n = �1�n + �2�� + �3(1 � �n � ��):

According to (4.1b), we have

�n �! � in Lp(D) for all p 2 [1;1):

We rewrite (2.10) as

�0

Z
Gn

An
t � v dx+

Z
D

1

�n
curl An

� curl v dx+ �0

Z
D

gr�n � v dx = 0:

Making a priori estimates analogous to the discrete ones of Lemma 2.2 (cf. (2.14), (2.15)),

we obtain

Lemma 4.2 There exists a subsequence fAng satisfying

An
�! A; weakly in L1(0; T ;X)

�
Gn
An
t �! �

G
At; weakly in L4(0; T ;L4(D)):
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The equations for temperature and phase transition (2.16),(2.17) depend only implicitely

on the shape of 
n, namely through An. Standard a priori estimates for this system yield

kzkW 1;1(0;T ;L1(�)) + k�kH2;1(Q) � c1;

with a constant c1 independent of n. Hence, using Lebesgue's convergence theorem we

obtain

Lemma 4.3 There exist subsequences f�ng; fzng satisfying

�n �! �; strongly in C([0; T ];H1(�));

zn �! z; strongly in C([0; T ];L2(�)):

In view of Lemmas 4.1 � 4.3, we can pass to the limit in the state equations (2.10), (2.11),

(2.16), (2.17) and in the cost functional (3.1), which concludes the proof of Theorem 4.1.

5 Necessary optimality conditions

5.1 Introduction and main results

We propose the following procedure in order to derive the �rst order optimality conditions.

Let 
 = 
(
) be an admissible domain. First, we investigate J(
) using the speed method

[17]. Given an admissible vector �eld V with sup V \@
 6= ; and the associated mapping

T�(V ) : IR3
! IR3, we show that there exists the limit

dJ(
;V ) = lim
�!0

(J(
�) � J(
)); (5.1)

where 
� = T�(V )(
). Furthermore, the Eulerian derivative dJ(
;V ) is linear and con-

tinuous with respect to to V . Therefore, the shape gradient g@
 is supported on @


and

dJ(
;V ) =< g@
; V � � >;

where � is the outer unit normal vector on the lateral boundary of the tube 
.

Next step is to relate the perturbations of @
 by means of T�(V ) with perturbations of

the curve 
 in the form 
", where 
" is a unit�speed parametrization of ~
" = 
 + "�.

We associate with 
" = 
(
") the vector �eld V (�) for " = 0. To this end, for a given

parametrization X" of @
" for " � 0 we just have to evaluate

V (�) = lim
"&0

1

"
(X" �X):

The �eld is de�ned on @
 and we have

lim
"&0

1

"
(J(
")� J(
)) = dJ(
;V (�)) =< g@
; V (�) � � > :

14



Therefore, we can use the shape derivative dJ(
;V ) in order to evaluate

dI(
;�) = lim
"&0

1

"
(I(
")� I(
)) =< g@
; V (�) � � > :

This means that knowing the the form of the shape gradient g@
 for J(
) and of the speed

vector �eld V (�) on @
 associated with the deformations of the tube 
" = 
(
"), we can

evaluate the directional derivative dI(
;�) and derive the optimality conditions. In the

same way, we can obtain the second order derivative of I(
) (for example for Newton's

method).

Our main result is

Theorem 5.1 Assume (H1)�(H6) then there exists an optimal curve 
� and an optimal

domain 
� = 
(
�), such that the following optimality system is satis�ed:

(1) The state equations (2.10), (2.11), (2.16), (2.17) written with 
� = 
(
�).

(2) The adjoint state equations:

Find (�;B; p; r) such that for all ' 2 H1(
�),  2 X and � 2 H1(�),Z

�

r� � r'dx+ �0

Z

�

B � r'dx = 0; a.e. in (0; T ) (5.2a)

B(T ) = 0; in � (5.2b)

��0

Z
G�

Bt �  dx +

Z
D

1

�
curl B � curl  dx

�2�0

Z
�

�
pAt

�
t
�  = 0; a.e. in (0; T ) (5.2c)

p(T ) = 0; in � (5.2d)

��cp

Z
�

pt� dx+ k

Z
�

rp � r� dx�

Z
�

@f

@�
r� = 0; a.e. in (0; T ) (5.2e)

r(T; x) + 2(z(T; x)� �z(x)) = 0; in � (5.2f)

�rt � �Lpt �
@f

@z
r = 0; in � � (0; T ): (5.2g)

15



(3) The optimality condition

TZ
0

Z
@
�

r' � r�V (h(�)) � � dx dt + �0

TZ
0

Z
@
�

At �BV (h(�)) � � dxdt+

+

TZ
0

Z
@
�

r' �BV (h(�)) � � dxdt+

+

TZ
0

Z
@
�

h1
�

curl A
i
@
�

� curl BV (h(�)) � � dxdt � 0;(5.3)

for all � 2 TUad(

�); where V (h) is the speed of @
" at " = 0 in the direction

h = h(�) given by

h(�)(s) = �(s)� (
�)0(s)

sZ
0

(
�)0 � �0d~s:

� is an admissible tangent direction, which de�nes the unit�speed perturbation 
" of


� by putting

~
�(s) = 
�(s) + "�(s); 0 � s � l�

and


"(s) = ~
"(�"(s));

where the parameter transformation �" is characterized by(
j� 0"(s)j = j
0(�"(s)) + "�0(�"(s))j

�1

�"(0) = 0:

Admissible � 2 TUad(

�) satisfy the following conditions

(i) if l� = L1, then � satis�es

@�"

@"

���
"=0

(L1) = �

L1Z
0


0 � �0ds � 0;

if l� = L2, then � satis�es

@�"

@"

���
"=0

(L2) = �

L2Z
0


0 � �0ds � 0;

(ii) if k
�kH4(0;l�) =M , then � satis�es

(h(�); 
)H4(0;l�) � 0:
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Remark 5.1 Note that 
" is admissible only, if reach (
") � R + � for " > 0, small

enough.

The proof of theorem 5.1 uses the following results on the shape di�erentiability of the

shape functional J(
).

Theorem 5.2 Assume (H1)�H(6), then the shape fuctional J(
) is shape di�erentiable

at any domain 
 2 Uad.

A direct consequence of Theorem 5.2 is that we can apply the structure theorem (cf.

Theorem 2.27 in [17]) and obtain

Corollary 5.1 There exists a distribution g@
 supported on the lateral boundary �2 � @


such that

dJ(
;V ) =< g@
 ; V � � > :

5.2 Proof of Theorem 5.2

For a given admissible domain 
 2 Uad and a speed vector �eld

V 2 C1(��1; �1;C
2(IR3; IR3));

such that supp V � �
 and supp V \ � = ;, we denote


� = T�(V )(
); � 2 [0; �1]

the family of domains associated with the �ow of the �eld V , in particular 
0 = 
. All

equations de�ned in 
� can be transported to the �xed domain 
 using the transformation

T�1� : 
� ! 
.

In the sequel we indicate functions on 
� with subscript � and functions transported to

the �xed domain 
 with superscript � , i.e. f � = f� � T� .

The following lemma describes the transport of div and grad to the �xed domain. The

proof can be found in [17], Sec. 2.

Lemma 5.1 Let B1(� )
�1 = det(DT� )DT

�1
� , then we have

(1)

( grad ') � T� =
�DT�1� � grad (' � T�) for all ' 2 H1(IRN );

(2)

( div  ) � T� =
1

det(DT� )
div

�
B1(� )

�1( � T�)
�
; for all  2 H1(
):

17



Using Lemma 5.1, we obtain for (2.11) and u 2 H1(
� )

�

Z
�1

jgu dx = �0

Z

�

r�� � ru dx

= �0

Z



det(DT� )
�
r�� � ru

�
� T� dx

= �0

Z



B2(� )r�
�
r(u � T�) dx

with

B2(� ) = �(� )DT�1�
�DT�1� and �(� ) = det(DT� ):

Hence, (2.11) is replaced with

�

Z
�1

jgu dx = �0(�; �
� ; u); for all u 2 H1(
); (5.4)

and

�0(�; �
� ; u) = �0

Z



B2(� )r�
�
� ru dx:

For the Maxwell equation (2.10) the situation is more complicated, since functions A�

that are divergence free on 
� generally loose this property when transported to the �xed

domain. Therefore we introduce an auxiliary unknown function

�� = B1(� )
�1A� ; (5.5)

for which we have (cf. Lemma 5.1(2))

div A� = 0 in 
� () div �� = 0 in 
:

In the same manner we replace the test functions v in 
� with

w = B1(� )
�1v � T� in 
: (5.6)

Next we transport the curl operater to the �xed domain. Let ei be the unit vector in xi

direction, then we may write

curl A =
�
div (A� e1); div (A� e2); div (A� e3)

�T
and using Lemma 5.1, we obtain

( curl A�) � T� =
1

det(DT� )

�
div [B1(� )

�1(A�
� e1)];

div [B1(� )
�1(A�

� e2)]; div [B1(� )
�1(A�

� e3)]
�T
: (5.7)
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Invoking (5.6) and (5.7) we obtain for (2.10):

�0

Z
G�

@A�

@t
v dx = �0

Z
G

det(DT� )A
�
t � v � T� dx

= �0

Z
G

B3(� ) �
�
t � wdx = �1(�; �

�
t ; w);

with

B3(� ) = det(DT� )
�B1(� )B1(� ) =

1

det(DT� )
�DT�DT� :

Using Einstein's summation convention, we get for the next termZ
D

1

�
curl A� � curl v dx =

Z
D

det(DT� )

�

�
div (A� � ei) div v � ei)

�
� T� dx

=

Z
D

1

�(� )�
div [B1(� )

�1(A� � ei)] div [B1(� )
�1(v � T� � ei)] dx

=

Z
D

1

�(� )�
div [B1(� )

�1(B1(� )�
�
� ei)] div [B1(� )

�1(B1(� )w � ei)] dx

= �2(�; �
� ; w):

For the last term in (2.10) we haveZ

�

r�� � v dx =

Z



det(DT� )
�
r�� � v

�
� T� dx

=

Z



det(DT� )
�DT�1� r�� �B1(� )w dx

=

Z



r�� � wdx = F (r��; w):

Altogether, we have replaced (2.10) with

�1(�; �
�
t ; w) + �2(�; �

� ; w) + F (�� ; w) = 0; for all w 2 X; (5.8a)

��0 = B1(� )
�1A0 � T� : (5.8b)

With these preparations we can derive the material derivatives. We begin with

Lemma 5.2 B1, B2, B3, � are di�erentiable. The derivatives at � = 0 are given by

�0(0) = div V (0);

B01(0) = � div V (0)I +DV (0);

B02(0) = div V (0)I � 2"(V (0));

B03(0) = � div V (0)I + 2"(V (0)):
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Here, "(V (0)) is the symmetrized part of DV (0), i.e. "(V (0)) = 1
2
(DV (0) + �DV (0)): For

the proof we refer again to [17], Sec. 2.13.

Corollary 5.2 For � > 0 small enough, we have

�(� ) = 1 + ��0(0) + o(� )

Bi(� ) = I + �B0i(0) + o(� ); i = 1; 2; 3:

A particular consequence of Corollary 5.1 is

Corollary 5.3 Let � > 0 be small enough and gi be real�valued functions satisfying

gi(� ) = o(� ); i = 0; 1; 2.

(1) For all u1; u2 2 H
1(
) we have

�0(�; u1; u2) = �0(0; u1; u2) + ��
0;�
(0; u1; u2) + ~�0(�; u1; u2);

�
0;�
(0; u1; u2) =

Z



B02(0)ru1ru2 dx;���~�0(�; u1; u2)
��� � g0(� )kru1k

L2(
)
kru2k

L2(
)
;

(2) For all w1; w2 2 L
2(D); we have

�1(�; w1; w2) = �1(0; w1; w2) + ��
1;�
(0; w1; w2) + ~�1(�; w1; w2);

�
1;�
(0; w1; w2) =

Z
G

B 03(0)w1 � w2 dx;���~�1(�; w1; w2)
��� � g1(� )kw1k

L2(
)
kw2k

L2(
)
;

(3) For all w1; w2 2 X; we have

�2(�; w1; w2) = �2(0; w1; w2) + ��
2;�
(0; w1; w2) + ~�2(�; w1; w2);

�
2;�
(0; w1; w2) = �

Z
D

�0(0)

�
curl w1 � curl w2 dx+

Z
D

1

�
div [(B�11 )0(0)(w1 � ei)] ( curl w2)i dx

+

Z
D

1

�
div [B01(0)w1 � ei] ( curl w2)i dx

+

Z
D

1

�
( curl w1)i div [(B�11 )0(0)(w2 � ei)] dx

+

Z
D

1

�
( curl w1)i div [B01(0)w1 � ei] dx;���~�2(�; w1; w2)

��� � g2(� )kw1kXkw2kX:

20



Using Corollary 5.1, we can prove

Lemma 5.3 (Stability)

Assume (H1)�(H6), then there exists a constant C > 0 such that

(1) kr�� � �kH1(0;T ;L2(
)) � C � j� j,

(2) k�� �AkL2(0;T ;X) + k��t �AtkL4(0;T ;L4(G)) � C � j� j,

(3) kz� � zkH1(0;T ;L2(�))\L1(0;T ;L4(�)) � C � j� j,

(4) k�� � �kH2;1(Q) � C � j� j.

Remark 5.2 (z� ; �� ) is the solution to (2.16),(2.17) where At in (2.17a) has been replaced

with ��t . In view of (5.5) we have ��t = A�
t = A�;t on �.

Proof: According to Lemma 5.1 we have B2(� ) = I + �B02(�) for � small enough and

� 2 (0; � ). Using (H1) this gives immediately

kr��kH1(0;T ;L2(
)) � c1

independent of � . Moreover, we have

0 = �0(�; �
� ; u)� �0(0; �; u)

= �0(0; �
�
� �; u) + �

Z



B02(�)�
�
r�� � ru dx:

Inserting u = �� � � and using Young's inequality we obtain

kr�� �r�kL2(0;T ;L2(
)) � c2j� j:

Since the same estimate holds true for ��t � �t, assertion (1) is proved. In the same way,

writing B1(� ) = I + �B 01(�); B3(� ) = I + �B03(�); (note that (B
�1
1 )0 = �B01), we obtain

k��kL2(0;T ;X) � c3;

independent of � , and, de�ning

��0;t = B1(� )
�1y � T� (5.9)

(cf. (H3) and (5.8b)), we get

k��t kL4(0;T ;L4(G)) � c4:

Now we take the di�erence of (5.8) for �� and A and obtain

0 = �1(�; �
�
t ; w) + �2(�; �

� ; w) + F (�� ; w)� �1(0; At; w)� �2(0; A;w)� F (�;w)

= �1(0; �
�
t �At; w) + �2(0; �

�
�A;w) + F (�� � �;w) + �

Z
G

B03(�)�
�
t wdx+ �G(�� ; w);
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with a function G that satis�es

jG(w1; w2)j � c5kw1kX � kw2kX:

Putting w = �� �A and integrating in time leads to

�0

2

Z
G

j��(t)�A(t)j2 dx+

tZ
0

Z
D

1

�
j curl (�� �A)j2 dx dt

�

tZ
0

Z
D

jr(�� � �) � (�� �A)j dx dt+
�0

2

Z
G

j��0 �A0j
2 dx

+j� jc5

tZ
0

k��k
X
� k�� �Ak

X
+ j� jc6

tZ
0

k��t kL2(G)
� k�� �Ak

L2(G)
:

Applying the inequalities of Young and Gronwall and using (5.8b) the �rst part of assertion

(2) is proved. Di�erentiating (5.8a) formally with respect to time, making the same

computations as before but using (5.9) �nishes the proof of assertion (2).

Now, we test the di�erence of (2.16) for z� and z with �zt = z�t � zt. Using (H4)�(H6) and

Young's inequality, de�ning �� = �� � �, we obtain

1

2

tZ
0

Z
�

�z2s dx �
1

2

tZ
0

Z
�

�[b(��)� z� ]+

a(��)
�

[b(�)� z]+

a(�)

�2
dxds

� c7

tZ
0

Z
�

��2 dxds + c8

tZ
0

Z
�

�z2 dxds

Invoking Gronwall's inequality leads to

k�zkH1(0;T ;L2(�)) � c9k��kL2(Q): (5.10)

Next, we test the di�erence of (2.17) for �� and � with ��t and apply the inequalities of

Hölder and Young to get:

�cp

tZ
0

Z
�

��2s dxds +
k

2

Z
�

���r��(t)
���2 dxds

� �L

tZ
0

Z
�

�zs��s dxds+ �0

tZ
0

Z
�

���(��s �As) � (�
�
s +As)

���2 dxds
�

�cp

2

tZ
0

Z
�

��2s dxds + c10

tZ
0

k��k2L2(�) + c11

tZ
0

k��s �Ask
2
L4(�)k�

�
s +Ask

2
L4(�):
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Using (5.10), assertion (2) and Gronwall's inequality, we get

k��kL1(0;T ;H1(�))\H1(0;T ;L2(�)) � c12j� j:

In view of the last inequality we can test the di�erence of (2.16) for z� and z with �z3,

apply the inequalities of Young and Gronwall and obtain

k�zkL1(0;T ;L4(�)) � c13j� j:

Testing (2.17) with ���� making the same computations as above �nishes the proof. 2

Remark 5.3 All the unknowns depend on the shape of 
� , either explicitly as A� and ��

or implicitly as �� and z� . For all these quantities, we call

_f = lim
�!0

f � � f

�

the strong material derivative of f , whenever the limit exists in the strong sense.

Our main result in this subsection is

Lemma 5.4 (Strong material derivatives)

Assume (H1)�(H6), then the following are valid:

(1) The strong material derivative

r _� exists in H1(0; T ;L2(
));
_A exists in L1(0; T ;X) and W 1;4(0; T ;L4(G));

_z exists in H1(0; T ;L2(�)),
_� exists in H2;1(Q).

(2) Moreover, ( _�; _A; _z; _�) satisfy the linearized state equations

�0(0; _�; u) + �0;�(0; �; u) = 0; for all u 2 H1(
);(5.11a)

�1(0; _At; w) + �2(0; _A;w) + F ( _�;w) (5.11b)

+�1;�(0; At; w) + �2;�(0; A;w) = 0; for all w 2 X; (5.11c)

_A(0)�DA0V (0) +B01(0)A0 = 0; in D; (5.11d)

_zt �
@f

@�
_� �

@f

@z
_z = 0; in Q; (5.11e)

_z(0) = 0; in �; (5.11f)

�cp _�t � k� _� + �L _zt � 2�0At � _At = 0; in Q; (5.11g)

@ _�

@�
= 0; in @�� (0; T ); (5.11h)

_�(0) = 0; in �; (5.11i)

where f is the right-hand side of (2.16b).
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Proof:

Similar to the proofs of Lemma 2.1�2.3 one can show that (5.12a�i) has a solution and

that (r _�; _A; _z; _�) are uniquely de�ned. It remains to show that these solutions are the

strong material derivatives. To this end let

 � =
1

�
(�� � �)� _�; (5.12)

then according to Corollary 5.3(1), (5.4) and (5.11a),  � satis�es

�0(0;  
� ; u) = �

1

�

�
�0(�; �

� ; u)� �0(0; �
� ; u)

�
� �0(0; _�; u)

= �0;�(0; �� �� ; u)�
1

�
~�0(0; �

� ; u)

Integrating in time, inserting u =  � and using Corollary 5.3(1) once again we obtain

kr �
kL2(0;T ;L2(
)) = O(� ):

Since the same computations hold for r�t, the �rst part of assertions (1) and (2) is

proved.

Next, de�ning

p� =
1

�
(�� �A)� _A;

and using (5.12) and Corollary 5.3, we see that p� satis�es

�1(0; q
�
t ; w) + �2(0; p

� ; w) = �
1

�

�
F (�� ; w)� F (�;w)

�
�
1

�

�
�1(�; �

�
t ; w)� �1(0; �

�
t ; w)

�
�

1

�

�
�2(�; �

� ; w)� �2(0; �
� ; w)

�
+F ( _�;w) + �1;�(0; At; w) + �2;�(0; A;w)

= �F ( �; w)� �1;�(0; �
�
t �At; w)� �2;�(0; �

�
�A); w)

�
1

�
~�1(�; �

�
t ; w)�

1

�
~�2(�; �

� ; w):

We take w = p� and integrate in time to obtain

�0

2

Z
G

jp� j2 dx�
�0

2

Z
G

jp�0j
2 dx+

tZ
0

Z
D

1

�
j curl p� j2 dxds

� c1

tZ
0

Z
G

jp� j2 dx+ �

tZ
0

Z
D

1

�
j curl p� j2 dxds+ c2

tZ
0

Z
G

j��t �Atj
2 dxds

+
1

4�

tZ
0

Z
D

1

�
j curl �� � curl Aj2 dxds+ c3

tZ
0

Z
G

jr �
j
2 dxds+O(� 2): (5.13)
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Using (5.8b), the second term in (5.13) givesZ
G

jp�0j
2 dx =

Z
G

j
1

�
(B1(� )

�1A0 � T� �A0)� _A0j
2dx:

According to [17], Sec. 2.14, � 7! A0 � T� is di�erentiable with

d

d�
(A0 � T�)

���
�=0

= DA0V (0);

hence

A0 � T� = A0 + �DA0V (0) + o(� ):

Moreover, Corollary 5.2 implies

B1(� )
�1 = I � �B01(0) +O(� 2):

Altogether, we obtain Z
G

jp�0j
2 dx = O(� 2):

Taking � small enough and invoking Gronwall's Lemma, we obtain from (5.13)

kp�k2L1(0;T ;L2(G)) +

TZ
0

kp�k2
X
= O(� 2):

Now, we di�erentiate (5.8) formally with respect to time, using (5.9) as initial condition

and make the same estimates as above. Reasoning similar to the end of the proof of

Lemma 2.2, we obtain

kp�t kL4(0;T ;L4(G)) = O(� ): (5.14)

To prove the di�erentiability of �� and z� , we �rst remark that there exists a constant

C > 0, such that

k _�kH2;1(Q) + k _zkH1(0;T ;L2(�))\L1(0;T ;L4(�)) � C:

We de�ne

q� =
1

�
(�� � �)� _�

r� =
1

�
(z� � z)� _z;

then, (q� ; r� ) solve

�cpq
�
� k�q� = ��Lr� + �0� j _Atj

2 + �0p
�
t �

�
2At + 2� _at + �p�t

�
(5.15a)

r� =
1

�

�
f(�� ; z�) + f(�; z)

�
�
@f

@�
(�; z) _��

@f

@z
(�; z) _z (5.15b)

=: G(� ) (5.15c)

@q�

@�
= 0; q� = 0; r� (0) = 0: (5.15d)
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Owing to (H4)�(H6), we can apply Taylor's formula to develop G(� ) and obtain (with a

constant � 2 [0; 1])

jG(� )j =
���1
�

�
f(� + � (q� + _�); z + � (r� + _z))� f(�; z)

�
�
@f

@�
(�; z) _� �

@f

@z
(�; z) _z

���
=

���(q� + _�)
@f

@�
(� + �� (q� + _�); z + �� (r� + _z))

+(r� + _z)
@f

@z
(� + �� (q� + _�); z + �� (r� + _z))�

@f

@�
(�; z) _� �

@f

@z
(�; z) _z

���
� c4jq

�
j+ c5jr

�
j+ j _�j

���@f
@�

(� + �� (q� + _�); z + �� (r� + _z))�
@f

@�
(�; z)

���
+j _zj

���@f
@z

(� + �� (q� + _�); z + �� (r� + _z))
@f

@z
(�; z)

���
�

�
c4 + c6j� jj _�j+ c8j� jj _zj

�
jq� j+ j� j

�
c6 _�

2 + c8j _�jj _zj
�
+
�
c5 + c7j� jj _�j

�
jr� j+ c9j _zjjz

�
� zj:

Invoking Hölder's inequality, Sobolev's embedding theorem and Lemma 5.3(3), we can

conclude

tZ
0

kG(� )k2L2(�)ds � O(� 2) +

tZ
0




(c4 + c6j� jj _�j+ c8j� jj _zj)



2
L4(�)

kq�k2H1(�) ds

+

tZ
0

�
c5 + c7j� jk _�kH2(�)

�
kr�k2L2(�) ds:

Now testing (5.15b) with r�t and applying Gronwall's and Young's inequality leads to

1

2

tZ
0

Z
�

r2s dxds � O(� 2) + c1)

tZ
0




(c4 + c6j� jj _�j+ c8j� jj _zj)



2
L4(�)

kq�k2H1(�) ds:

The proof is concluded by testing (5.15a) successively with q�t and ��q�, taking into

account the previous estimate as well as (5.14) and Gronwall's inequality. 2

Using Lemma 5.4, we see that the Eulerian derivative (5.1) exists and that it is linear and

continuous with respect to V . This concludes the proof of Theorem 5.2.

5.3 Proof of Theorem 5.1

Let 
 be an optimal solution and 
" = 
 + "h+ o(") in C3 be an admissible perturbation

of the curve 
 (cf. Appendix). Then,

I(
") � I(
); (5.16)

where I is de�ned in (3.4). In view of Theorem 5.1, we have

J(
(
")) = J(
(
)) + " dJ(
(
);V (h)) + o("):
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Hence, from (5.16) it follows that

dJ(
(
);V (h)) � 0

for all admissible directions h 2 C3; and in particular

dI(
;h) = lim
"&0

1

"
[I(
")� I(
)] = dJ(
(
);V (h)):

Applying the structure theorem (cf. Corollary 5.1) we obtain

dI(
;h) =< g@
;V (h) � � > :

In general, g@
 is a distribution. Assuming that the density g@
 is a function, it can

be identi�ed in the following way. Utilizing a general strategy to derive the �rst order

optimality system described eg. by Cea in [4], we introduce the Lagrangean

L"(�; �;A;B; �; p; z; r) = J(
")

+

TZ
0

Z

"

r� � r� dxdt�

TZ
0

Z
�1

j� dxdt

+

TZ
0

Z
D

h
�"0At �B +

1

�"
curl A � curl B

i
dxdt+ �0

TZ
0

Z

"

r� �B dxdt

+

TZ
0

Z
�

h
�cp�tp + kr� � rp+ �Lztp � �0jAtj

2p
i
dxdt

+

TZ
0

Z
�

h
zt � f(�; z)

i
r dxdt:

Here, 
" = 
(
") and �
"
0 = �0 in 
" and 0 otherwise.

The adjoint state equations are obtained for " = 0 by di�erentiation of the Langrangean

with respect to the state variables, i.e. < @L0
@�

; ' >= 0 gives (5.2a), < @L0
@A

;  >= 0 gives

(5.2b,c), < @L0
@�

; � >= 0 gives (5.2d,e), < @L0
@z

; w >= 0 gives (5.2f,g).

It is easy to see that the linear system of adjoint equations admits a unique solution. First

of all, one proves that (5.2d�g) admits a unique strong solution (p; r) by a contraction

mapping argument in H1(0; T ;L2(�)). Then, (5.2b,c) is solved using Lemma 2.2 and

�nally standard elliptic theory shows the solvability of (5.2a).

The gradient of the cost functional is given by the derivative

dI(
;h) = dJ(
(
);V (h)) =
@L"

@"

���
"=0

;

assuming that we have enough regularity for the solution to the state and the adjoint

equations. To derive the gradient, we make use of the following
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Lemma 5.5 (cf. Proposition 2.46 in [17])

Let f 2 W 1;1(IR3) and 
 � IR3 with boundary of class Ck; k � 1, then� @
@"

Z

"

f dx
����

"=0
=

Z
@


f V � � dx;

where � is the outer unit normal on @
.

Using this lemma and taking into account the di�erent values for permeability in the tube

and in the air, we directly obtain (5.3), which concludes the proof of Theorem 5.1.
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A Calculation of the speed vector �eld

In the appendix we explain, how the speed vector �eld V (h(�)) of @
(
") at " = 0 can

be computed from a perturbation of the curve 
. To this end let ~
" = 
 + "�, then 
" is

the unit�speed curve


"(s) = 
(�"(s)) + "�(�"(s)); 0 � s � l"; " � 0; (A.1)

where �" : [0; l"] ! [0; l] is a reparametrization satisfying �"(0) = 0, �"(l") = l and

� 0"(s) > 0 for all s 2 [0; l"].

We recall that the lateral tube boundary �2 is parametrized by

�2 = fx 2 IR3 jX(u; v) = 
(u) +R cos v N(u) +R sin v B(u); 0 � u � l; 0 � v < 2�g:

29



Using (A.1) and the unit-speed property of 
", we have


" = 
 + "h(�) + o(") in C3[0; l"];

where

h(�)(s) = �(s)� 
0(s)

sZ
0


0(�) � �0(�)d�:

If l" > l, we of course have to extend 
 in the same way than in the proof of Theorem 4.1.

We assume that the normal and binormal vector �elds N"(u); B"(u) take the form

N" = N+ "N1(h) + o("); in C1[0; l"];

B" = B+ "B1(h) + o("); in C1[0; l"]:

Remark A.1 If j
00(u)j > 0 for all u 2 [0; l], then we have the Frenet Formulas

T 0 = �N;

N 0 = ��T + �B;

B0 = ��N;

where � is the torsion, and the curve 
" de�nes in a unique way the �elds N"(u); B"(u).

The lateral boundary of @
" = @
(
") is de�ned by the parametrization

X"(u; v) = 
"(u) +R cos v N"(u) +R sin v B"(u)

= X(u; v) + "
n
h(u) +R cos v

hh00(u)
�(u)

�

00(u) � h00(u)

j
00(u)j2
N(u)

i
+R sin v

h
�

00(u) � h00(u)

�2(u)
B(u) + h0(u)�N(u) +

1

�(u)
T (u)� h00(u)

io
+ o(")

in the space of continuous functions C, provided 
; � 2 C3, here 0 � u � l; 0 � v < 2�.

Therefore, the speed of @
" with respect to the parameter " at " = 0 is given by

V (h)(u; v) =
@X"

@"

���
"=0

(u; v)

= h(u) +R cos v
hh00(u)
�(u)

�

00(u) � h00(u)

j
00(u)j2
N(u)

i
+R sin v

h
�

00(u) � h00(u)

�2(u)
B(u) + h0(u)�N(u) +

1

�(u)
T (u)� h00(u)

i
:

Remark A.2

(1) In order to have V (u; v) to be C1, we need 
 2 C4, since h depends on 
0.

(2) If the condition j
 00(u)j 6= 0 is not satis�ed, we cannot use the Frenet formulas and

should directly construct the �eld V from the given parametrization of @
".
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