
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Asymptotic behaviour for a phase-�eld system with

hysteresis

Pavel Krej£í 1 ; 3 ; 4, Jürgen Sprekels 1 ; 4, Songmu Zheng 2 ; 5

submitted: 6th October 1999

1 Weierstrass Institute

for Applied Analysis and Stochastics,

Mohrenstrasse 39

D�10117 Berlin, Germany

E-Mail: krejci@wias-berlin.de

sprekels@wias-berlin.de

2 Institute of Mathematics

Fudan University

Shanghai 200433, China

E-Mail: szheng@srcap.stc.sh.cn

3 On leave from the

Mathematical Institute

Academy of Sciences of the Czech Republic

�itná 25

CZ�11567 Praha 1, Czech Republic

E-Mail: krejci@math.cas.cz

Preprint No. 520

Berlin 1999

WIAS
1991 Mathematics Subject Classi�cation. 35K55, 47H 30, 80A 22.

Key words and phrases. Phase-�eld systems, phase transitions, hysteresis operators, asymptotic

behaviour.

4 Supported by Deutsche Forschungsgemeinschaft (DFG).
5 Supported by the grant No. 19831060 from NSF of China, and the grant No. 96024603 from State

Education Commission of China.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

The method of hysteresis operators in modelling phase transitions is applied here

to the problem of asymptotic stabilization of solutions to a phase-�eld system with

hysteresis. While it is known that a unique global strong solution exists for every

initial data and that the evolution process described by this system is thermodynam-

ically consistent in the sense that the absolute temperature remains positive for all

times and the Clausius-Duhem inequality holds almost everywhere, we study here

the asymptotic behaviour of the solution as t!1 .

1 Introduction

This paper is devoted to the study of asymptotic behaviour of the solution to the problem

�(�)wt + f1[w] + � f2[w] = 0 ; (1.1)

(� + F1[w])t � �� = 0 ; (1.2)

in 
� ]0;1[ , subject to the initial and boundary conditions

�(x; 0) = �
0(x) ; w(x; 0) = w

0(x) in 
 ;
@�

@n
= 0 on @
� ]0;1[ ; (1.3)

where 
 � IR
N is an open bounded Lipschitzian domain, w0 , �0 , � are given functions

and f1 , f2 , F1 denote hysteresis operators ful�lling the hypotheses H3 � H5 below.

Systems of the form (1.1) � (1.2) arise as phase-�eld equations from the mathematical

study of phase transitions with hysteresis (see [KS1]�[KS3]) that include among others

the relaxed Stefan problem introduced in [FV] and hysteretic analogues of the models

due to Caginalp [C] and Penrose-Fife [PF] for nonconserved order parameters with zero

interfacial energy.

It was shown in [KS1] � [KS3] in detail how the energy dissipation properties in hypothesis

H5 ensure on the one hand the unique global solvability of the above system, and, on

the other hand, the thermodynamic consistency of the model, that is, the positivity of

the temperature �eld � and the validity of the Clausius-Duhem inequality. Our objective

here is to study the asymptotic behaviour of the solution to Eqs. (1.1) � (1.3) as t!1 ,

see Theorem 2.3 below.

Long time behaviour of solutions to phase-�eld systems has been studied in the literature,

see e.g. [EZ], [BZ], [BCH], [L] for the Caginalp model, and [Z], [ShZ2], [KK] and the

references cited there for the Penrose-Fife model. However, all these papers mentioned

above deal with the case where Eq. (1.1) contains a term of the form ���w with � > 0
and no hysteresis operators are involved.

The result proved in this paper could be expected from the combined e�ects of dissipation

due to thermal conductivity, relaxation and hysteresis; it turns out, however, that the
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result requires an additional concept related to the hysteresis dissipation, namely the

`second order energy inequality' introduced in [K1] and reformulated here as Proposition

5.2 below, which has been systematically used as the main tool for solving hyperbolic

equations with hysteresis, see [K].

The paper is organized as follows. In Section 2 we recall the notion of hysteresis operators

and state the main result (Theorem 2.3). In Section 3 we use a variant of the Moser

iteration scheme for proving a global L1 -bound for solutions to a general nonlinear heat

equation (Theorem 3.1) which is substantially used in the proof of Theorem 2.3 given in

the subsequent Section 4. Finally, since hysteresis always implies lack of smoothness, we

devote Section 5 to results from nonsmooth analysis that are used throughout the paper.

2 Preliminaries and statement of the main result

We �rst introduce some notation. By j � jp , 1 � p � 1 , we denote the norm in L
p(
) .

Since we are interested in the large time behavior of solutions to the system (1.1) � (1.3),

we de�ne the spaces

Cloc = fu : [0;1[! IR ; uj[0;T ] 2 C[0; T ] 8T > 0g ; (2.1)

W
k;p

loc = fu 2 Cloc ; uj[0;T ] 2 W k;p(0; T ) 8T > 0g ; (2.2)

for 1 � p �1 , k 2 IN , endowed with the system of seminorms

kuk[0;t] := max
0���t

ju(� )j ; (2.3)

jujW k;p(0;t) :=
k�1X
j=0

ju(j)(0)j+ ju(k)jLp(0;t) ; (2.4)

respectively. We further de�ne the spaces

L
p


;loc := fu : 
� ]0;1[! IR ; uj
� ]0;T [ 2 Lp(
� ]0; T [ ) 8T > 0g : (2.5)

We consider hysteresis operators acting in the spaces Cloc and W
1;1
loc . Recall that a

mapping f : Cloc ! Cloc is called a hysteresis operator if it is

causal , that is, if the implication

u(� ) = v(� ) 8 � 2 [0; t] ) f [u](t) = f [v](t) (2.6)

holds for every t � 0 , and

rate-independent , that is, if for every u 2 Cloc , every t > 0 and every nondecreasing

mapping � of [0; t] onto [0; t] we have

f [u � �](� ) = f [u](�(� )) 8� 2 [0; t] : (2.7)

The following easy result has been proved in [K], Proposition II.4.14.

Lemma 2.1 Let g : Cloc ! Cloc be a rate-independent operator and let u 2 Cloc be
a function which is monotone (nondecreasing or nonincreasing) in an interval [t1; t2] �
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[0;1[ , u(ti) = ui , i = 1; 2 . Then there exists a continuous function � : Conv fu1; u2g !
IR such that for every function v 2 Cloc which is monotone in [t1; t2] and v(t) = u(t)
for every t 2 [0;1[ n ]t1; t2[ we have

g[v](t) = �(v(t)) 8t 2 [t1; t2] : (2.8)

Lemma 2.1 states that every rate-independent operator can be locally represented in each

interval of monotonicity of the input function by a superposition operator. The functions

� are called shape functions of the operator g .

De�nition 2.2 A rate-independent operator g : Cloc ! Cloc is said to be clockwise

convex, if all shape functions � corresponding to nondecreasing inputs are concave and

all shape functions corresponding to nonincreasing inputs are convex.

Clockwise convex rate-independent operators play a particular role in the theory (see the

monograph [K]), since they admit an `energy-type' inequality of the form

wtt g[w]t � V[w]t � 0 in the sense of distributions (2.9)

for every input function w 2 W 2;1
loc , where

V[w](t) :=
1

2
wt(t) g[w]t(t) : (2.10)

According to (2.9), V[w] can be interpreted as `potential energy' corresponding to the

`power' wtt g[w]t .

Inequality (2.9) will be rigorously reformulated and proved below in Proposition 5.2. We

now state the main result of this paper under the following hypotheses.

Hypotheses

H1. The initial data are given in such a way that

(i) w
0 2 L1(
) ; �0 2 W 1;2(
) \ L1(
) ; (2.11)

(ii) 9� > 0 : �0(x) � � for a. e. x 2 
 :

H2. The function � : [0;1[! ]0;1[ is continuously di�erentiable, �(�) � �0 > 0 for

every � � 0 .

H3. The operators f1; f2 map Cloc into Cloc , W
1;1
loc into W

1;1
loc , and there exist con-

stants K1 > 0 , K2 > 0 such that the implications

w1; w2 2 Cloc ) jfi[w1](t) � fi[w2](t)j � K1 jw1 � w2j[0;t] ; (2.12)

w 2 W 1;1
loc ) jfi[w]t(t)j � K1 jwt(t)j ; (2.13)

w 2 Cloc ) jfi[w](t)j � K2 (2.14)

hold for i = 1; 2 and a. e. t > 0 .

H4. The operator F1 maps W
1;1
loc into W

1;1
loc , and there exists a constant K3 > 0 such

that

w 2 W 1;1
loc ) jF1[w]t (t)j � K3jwt(t)j a. e. (2.15)
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We moreover assume that the following implication holds for every t > 0 :

8R > 0 9MR > 0 : w1; w2 2 W 1;1
loc ; jwijW 1;1(0;t) � R ; i = 1; 2; (2.16)

) jF1[w1](t) � F1[w2](t)j � MR jw1 � w2jW 1;1(0;t) :

H5. There exist hysteresis operators F2; g : Cloc ! Cloc which map W
1;1
loc into W

1;1
loc

such that g is clockwise convex, and there exists a constant K4 > 0 such that for all

w 2 W 1;1
loc we have

1
K4

(g[w]t)2 � wt g[w]t � K4 w
2
t a. e. ; (2.17)

Fi [w]t � g [w]t fi[w] a. e. ; i = 1; 2 ; (2.18)

Fi[w](t) � 0 8t 2 [0; T ] ; i = 1; 2 : (2.19)

In applications, we typically have either g[w] = w , or g[w] = s[w] , where s is the stop

operator with thresholds 0 and 1 . In both cases, the operator g ful�ls the conditions of

hypothesis H5 whenever fi , Fi are of the form fi[w] = ~fi[g[w]] , Fi[w] = ~Fi[g[w]] , i =
1; 2 , where, according to the terminology introduced in [BS], ~fi are clockwise admissible

hysteresis operators with potentials ~Fi .

According to Theorem 2.2 of [KS3], system (1.1) � (1.3) admits a unique solution (w; �) 2
L
1


;loc�L1
;loc such that wt 2 L1
;loc , �t;�� 2 L2

;loc , Eqs. (1.1) � (1.2) are satis�ed almost

everywhere and there exists � > 0 such that �(x; t) � � e
��t .

The main objective of this paper is to prove the following result.

Theorem 2.3 Let the hypotheses H1 � H5 hold. Then there exists a constant Ĉ > 0
such that the solution (w; �) to the system (1.1) � (1.3) satis�es the conditions

0 < �(x; t) � Ĉ ; jwt(x; t)j � Ĉ a. e. in 
� ]0;1[ : (2.20)

Moreover, if for t > 0 we put

8>>><
>>>:
E1(t) := 1

2

R

 jr�(x; t)j2dx ;

E2(t) := 1
2

R

 wt(x; t) g[w]t(x; t)dx ;

E(t) := E1(t) + E2(t) ;

(2.21)

then we have Z
1

0
E(t) dt � Ĉ ; lim

t!1
E1(t) = 0 ; (2.22)

and there exists a function E
�

2 : [0;1[! [0;1[ such that

E2(t) = E
�

2(t) a. e. ; lim
t!1

E
�

2(t) = 0 ; Var
[0;1[

�
(E1 + E

�

2)
2
�
� Ĉ : (2.23)

In particular, the function E2 satis�es the condition

lim
t!1

sup ess fE2(s) ; s > tg = 0 : (2.24)
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3 An L
1 -estimate

We use here a variant of the Moser iteration scheme, see e. g. [LSU], to prove Theorem

3.1 below which will be substantially exploited in the next section. We �rst recall the

well-known interpolation inequality

jvj2 � A

�
� jrvj2 + �

�N=2 jvj1
�
; (3.1)

which holds for every v 2 W 1;2(
) and every � 2 ]0; 1[ with a constant A > 0 indepen-

dent of v and � . Let us note that it is equivalent to Gagliardo-Nirenberg's inequality

jvj2 � A
�

�
jvj1 + jvj

2

N+2

1 jrvj
N

N+2

2

�
: (3.2)

Theorem 3.1 Let H : L1
;loc ! L
1


;loc be a mapping with the following property:

9B > 0 8u 2 L1
;loc : jH[u](x; t)j � B (1 + ju(x; t)j) a. e. (3.3)

Let u0 2 L
1(
) be a given function and let u 2 L

1


;loc

T
L
2(0; T ;H1(
)) for any T > 0

be a solution of the problem

ut � �u = H[u] in 
� ]0;1[ ; (3.4)

u(x; 0) = u
0(x) in 
 ;

@u

@n
= 0 on @
� ]0;1[ ; (3.5)

such that
9E > 0 8t � 0 : ju(t)j1 � E : (3.6)

Then there exists a constant R > 0 depending only on A , B , E , N , j
j := meas 
 and

U := ju0j1 such that
ju(t)j1 � R for a. e. t > 0 : (3.7)

Proof. For k 2 IN put

 k := u juj2
k�1

�1 (3.8)

and test Eq. (3.4) with u juj2k�2 . For a. e. t > 0 this yields

2�k
d

dt

Z


juj2

k

dx + (2k � 1)
Z


jruj2 juj2

k
�2
dx � B

Z



�
juj2

k
�1 + juj2

k
�
dx ; (3.9)

where Z


juj2

k

(x; t) dx = j k(t)j22 ; (3.10)

Z


juj2

k
�1(x; t) dx � j
j2

�k

�Z


juj2

k

(x; t) dx
�1�2�k

(3.11)

� 2�k j
j + (1� 2�k) j k(t)j22 ;Z


jruj2 juj2

k
�2(x; t) dx =

Z



�
jruj juj2

k�1
�1
�2

(x; t) dx = 22�2k jr k(t)j22 : (3.12)
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Inequality (3.9) can therefore be written as

d

dt
j k(t)j22 + 4 (1 � 2�k) jr k(t)j22 � B

�
j
j + (2k+1 � 1) j k(t)j22

�
(3.13)

for every k 2 IN and a. e. t > 0 . The interpolation inequality (3.1) for v =  k(t) yields

j 1(t)j2 � A

�
� jr 1(t)j2 + �

�N=2
E

�
; (3.14)

j k(t)j2 � A

�
� jr k(t)j2 + �

�N=2 j k�1(t)j22
�

(3.15)

for every k � 2 , � 2 ]0; 1[ and a. e. t > 0 .

We now estimate the right-hand side of Ineq. (3.13) using (3.14) and (3.15) with an

appropriately chosen � .

Throughout this section, we denote by C1; C2; : : : any positive constants depending ex-

clusively on A , B , E , N , U and j
j . We may indeed assume that minfA;Bg � 1 .

Putting � := (21+(k=2)
A

p
B)�1 in (3.14), (3.15), we infer from (3.13) that the inequalities

d

dt
j 1(t)j22 + jr 1(t)j22 � C1 ; (3.16)

d

dt
j k(t)j22 + jr k(t)j22 � C1

�
1 + 2� k j k�1(t)j42

�
(3.17)

hold for every k � 2 and a. e. t > 0 , with � := 1 + (N=2) . Using again Ineqs. (3.14),

(3.15) for, say, � := 1=(2A) , we obtain from (3.16), (3.17) the inequalities

d

dt
j 1(t)j22 + j 1(t)j22 � C2 ; (3.18)

d

dt
j k(t)j22 + j k(t)j22 � C2

�
1 + 2� k j k�1(t)j42

�
(3.19)

for k � 2 and a. e. t > 0 , hence

j 1(t)j22 � max
n
j 1(0)j22 ; C2

o
; (3.20)

j k(t)j22 � max
�
j k(0)j22 ; C2

�
1 + 2� k max

0���t
j k�1(� )j42

��
(3.21)

for all k � 2 and t � 0 .

We have by de�nition j k(t)j22 = ju(t)j2k
2k

for every k 2 IN and t � 0 , hence in particular

j k(0)j22 = ju0j2
k

2k � j
jU2k 8k 2 IN : (3.22)

Let us introduce the auxiliary functions

zk(t) := max
0���t

ju(� )j2k (3.23)

for k 2 IN and t � 0 . Ineqs. (3.20), (3.21) then read

z1(t) � C3 ; (3.24)

z
2k

k (t) � C3 max
n
U

2k
; 1 + 2� k z2

k

k�1(t)
o

(3.25)

� C3

�
1 + 2� k

� �
maxfU; 1; zk�1(t)g

�2k

6



for k � 2 and t � 0 . Let us now �x any t � 0 and for k 2 IN put yk := maxfU; 1; zk(t)g .
Then

y1 � C4 ; (3.26)

yk �
�
C3

�
1 + 2� k

��2�k
yk�1 for k � 2 ; (3.27)

and we easily obtain

yk � C4 exp

0
@ kX
j=2

2�j log
�
C3

�
1 + 2� j

��1A � C5 (3.28)

independently of k and t . We thus conclude that

sup
t�0; k2IN

ju(t)j2k � C5 ; (3.29)

and to complete the proof of Theorem 3.1, it su�ces to put R := C5 .

4 Proof of Theorem 2.3

The proof of Theorem 2.3 is based on a series of estimates. Similarly as in the previous

section, we denote by C1; C2; : : : any positive constant independent of x and t .

Estimate 1.

Integrating Eq. (1.2) over 
 , we obtain

j�(t)j1 + jF1[w](t)j1 � C1 : (4.1)

From Eq. (1.1) and Hypothesis H3 it follows that

jwt(x; t)j � C2 (1 + �(x; t)) a. e. ; (4.2)

and Hypothesis H4 yields that

jF1[w]t(x; t)j � C3 (1 + �(x; t)) a. e. (4.3)

Theorem 3.1 enables us to conclude that

�(x; t) � C4

jwt(x; t)j � C5

)
a. e. (4.4)

Estimate 2.

Put �(x; t) := log �(x; t) . Then for a. e. (x; t) 2 
� ]0;1[ we have

�t ��� =
1

�
(�t �� �) +

�����r��
�����
2

; (4.5)
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where

�t �� � = �F1[w]t � � f1[w] g[w]t = �(�)wt g[w]t + � f2[w] g[w]t (4.6)

� �(�)wt g[w]t + � F2[w]t ;

hence

�t ��� � F2[w]t +
�(�)

�
wt g[w]t +

�����r��
�����
2

(4.7)

a.e. in 
� ]0;1[ . Integrating Ineq. (4.7) with respect to x and t , we obtain for every

t > 0 that

Z t

0

Z



0
@�(�)

�
wt g[w]t +

�����r��
�����
2
1
A (x; � ) dx d� (4.8)

�
Z



�
log �(x; t)� log �0(x) + F2[w](x; 0)

�
dx � C6 ;

and from (4.4) it follows that Z t

0
E(� ) d� � C7 (4.9)

for every t > 0 .

Estimate 3.

Test Eq. (1.2) with �t . This yields for a. e. t that

j�t(t)j22 +
1

2

d

dt
jr�(t)j22 � C8 (1 + j�t(t)j1) �

1

2

�
j�t(t)j22 + C9

�
; (4.10)

hence

j�t(t)j22 +
d

dt
jr�(t)j22 � C9 a. e. (4.11)

Thus, combining (4.11) with (4.9) and applying Lemma 3.1 of [ShZ1] yields that E1(t) =R

 jr�j

2(x; t) dx! 0 as t!1 .

Estimate 4.

We di�erentiate the equation

wt +
1

�(�)
f1[w] +

�

�(�)
f2[w] = 0 (4.12)

with respect to t and test with g[w]t . This yields

(wtt g[w]t)(x; t) � C10 (1 + j�t(x; t)j) a. e. ; (4.13)

hence Z


(wtt g[w]t)(x; t) dx �

1

2

�
j�t(t)j22 + C11

�
(4.14)

for a. e. t > 0 . Combining (4.11) with (4.14) we obtain

Z


(wtt g[w]t)(x; t) dx +

1

2

d

dt
jr�(t)j22 � C12 a. e. (4.15)

8



For t > 0 put

q(t) := C12t � E(t) : (4.16)

We claim that for every T > 0 and every � 2
�

W
1;1(0; T ) such that �(t) � 0 for every

t 2 [0; T ] we have Z
T

0
q(t)�t(t) dt � 0 : (4.17)

Indeed, let T > 0 and � 2
�

W
1;1(0; T ) such that �(t) � 0 for every t 2 [0; T ] be given.

Then Ineq. (4.15) together with the Fubini theorem yield

Z T

0
q(t)�t(t) dt = �

Z T

0
(C12 �(t) + E(t)�t(t)) dt (4.18)

� �
Z T

0

 
d

dt

�
1

2
�(t)

Z


jr�(x; t)j2 dx

�

+ �(t)
Z


(wtt g[w]t)(x; t) dx+

1

2
�t(t)

Z


(wt g[w]t)(x; t) dx

�
dt

= �
Z



Z T

0

�
�(t) (wtt g[w]t)(x; t) +

1

2
�t(t) (wt g[w]t)(x; t)

�
dt dx :

By Proposition 5.2 we have for a. e. x 2 
 that

Z T

0

�
�(t) (wtt g[w]t)(x; t) +

1

2
�t(t) (wt g[w]t)(x; t)

�
dt � 0 ; (4.19)

and Ineq. (4.17) follows. From Lemma 5.1 we conclude that there exists a nondecreasing

function q� : [0;1[! IR such that q(t) = q�(t) a. e. For t � 0 it now su�ces to put

E�(t) := C12t� q�(t) . Proposition 5.4 with y = E� , Y = C7 , h � 0 , f(u) � C12 entails

that the function (E�)2 has bounded variation in [0;1[ and limt!1 E�(t) = 0 . It now
su�ces to put E�

2 := E� � E1 and the assertion follows from Ineqs. (4.4) and (4.9).

5 Monotonicity and convexity

The easy Lemma 5.1 below plays a crucial role in our analysis. For the reader's conve-

nience, we give here the proof taken from [K], Lemma II.4.16.

Lemma 5.1 Let [a; b] � IR be a compact interval and let u 2 L
1(a; b) be a given

function. Then the following two conditions are equivalent.

(i) There exists a nondecreasing function u� : [a; b]! IR such that u(t) = u�(t) a. e.

(ii) For every function � 2
�

W
1;1(a; b) such that �(t) � 0 for every t 2 [a; b] we have

Z b

a

u(t)�t(t) dt � 0 : (5.1)

9



Proof.

(i) ) (ii): Let � with the above properties be given. For an arbitrary partition a =
t0 < t1 < : : : < tn = b we de�ne the piecewise linear approximation

û(t) := u�(tj�1) +
t� tj�1

tj � tj�1

(u�(tj)� u�(tj�1)) for t 2 [tj�1; tj[ ; j = 1; : : : ; n :

Obviously, Ineq. (5.1) holds for û(t) , and re�ning the partition we pass to the limit.

(ii) ) (i): Let (5.1) hold and let r; s 2 ]a; b[ , r < s be arbitrary Lebesgue points of u .

For 0 < " < minf(s� r)=2; b� s; r � ag put

�t(t) :=

8>><
>>:

1
2"

for t 2 ]r � "; r + "[ ;
�1
2"

for t 2 ]s� "; s+ "[ ;

0 otherwise :

Then Ineq. (5.1) yields

1

2"

Z r+"

r�"

u(t) dt �
1

2"

Z s+"

s�"

u(t) dt ;

hence u(r) � u(s) . The set �(u) of Lebesgue points of u has full measure, hence we may

put u�(t) := u(t) for t 2 �(u) , u�(t) := supfu(s) ; s 2 ]a; t[\�(u)g for t 2 ]a; b] n �(u) ,
continuously extended to t = a , and the proof is complete.

The `energy inequality' (2.9) is stated in the following form.

Proposition 5.2 Let g : Cloc ! Cloc be a clockwise convex rate-independent operator,

and let w 2 W 2;1
loc be a given function such that g[w] 2 W 1;1

loc . Then for every T > 0 and

every � 2
�

W
1;1(0; T ) such that �(t) � 0 for every t 2 [0; T ] we have

Z T

0

�
�(t)wtt(t) g[w]t(t) +

1

2
�t(t)wt(t) g[w]t(t)

�
dt � 0 : (5.2)

According to Lemma 5.1, Proposition 5.2 says that the function

P (t) :=
Z t

0
wtt(� ) g[w]t(� ) d� �

1

2
wt(t) g[w]t(t) (5.3)

is equal to a nondecreasing function a. e. in ]0;1[ .

Proof. Let T > 0 and � 2
�

W
1;1(0; T ) such that �(t) � 0 for every t 2 [0; T ] be given,

and put A0 := ft 2 [0; T ] ; wt(t) = 0g , A1 := ]0; T [ nA0 . Then g[w]t(t) = 0 for a. e.

t 2 A0 . By hypothesis, the function wt is continuous, hence the set A1 is open and can

be written as a countable union of disjoint open intervals, that is,

A1 =
1X
k=1

]ak; bk[ ; ]ak; bk[\ ]a`; b`[ = ; for k 6= ` : (5.4)

Let K � IN be the set of all indices k such that the interval ]ak; bk[ is nonempty. For

each k 2 K , the function w is strictly monotone in [ak; bk] ; let �k denote the shape

10



function of g in the interval [ak; bk] . We then have

Z T

0

�
�(t)wtt(t) g[w]t(t) +

1

2
�t(t)wt(t) g[w]t(t)

�
dt (5.5)

=
X
k2K

Z bk

ak

�0k(w(t))
d

dt

�
1

2
�(t)w2

t (t)
�
dt :

For each k 2 K , we evaluate the above integral over [ak; bk] by substituting s := w(t) .
This yields

Z bk

ak

�0k(w(t))
d

dt

�
1

2
�(t)w2

t (t)
�
dt (5.6)

=

8>>>><
>>>>:

Z w(bk)

w(ak)
�0k(s)

d

ds

�
1

2
�(w�1(s))w2

t (w
�1(s))

�
ds if w is increasing in [ak; bk] ;

�
Z w(ak)

w(bk)
�0k(s)

d

ds

�
1

2
�(w�1(s))w2

t (w
�1(s))

�
ds if w is decreasing in [ak; bk] :

Put �k(s) := (1=2)�(w�1(s))w2
t (w

�1(s)) for s 2 Ik := Conv fw(ak); w(bk)g . We have

wt(ak) = wt(bk) = 0 for every ak > 0 , bk < T , and �(0) = �(T ) = 0 , hence �k 2
�

W
1;1(Ik)

for every k 2 K , �k(s) � 0 for every s 2 Ik .
At this point, we make use of the convexity of the operator g : the function �0k is nonin-

creasing in Ik if w is increasing and nondecreasing if w is decreasing. We can therefore

apply Lemma 5.1 to each of the integrals on the right-hand side of Eq. (5.6) and conclude

that Z bk

ak

�0k(w(t))
d

dt

�
1

2
�(t)w2

t (t)
�
dt � 0 (5.7)

for every k 2 K . The assertion now follows from Eq. (5.5). Proposition 5.2 is proved.

The rest of this section is devoted to a generalization of Lemma 3.1 of [ShZ1] and Theorem

9 of [KS4] which have been stated in the framework of continuous functions. Proposition

5.4 below extends them to the discontinuous case which is needed here. Its proof is based

on the following auxiliary result.

Lemma 5.3 Let T > 0 , g 2 Cloc , p 2 L1(0; T ) and y 2 BV (0; T ) be given such that

(i) g(u) � 0 , p(t) � 0 , y(t) � 0 for every u � 0 and (almost) every t 2 [0; T ] ,

(ii) the function q(t) :=
R t
0 p(� ) d� � y(t) is nondecreasing in [0; T ] .

For v � 0 put G(u) :=
R u
0 g(v) dv . Then the function

Q(t) :=
Z t

0
g(y(� )) p(� ) d� � G(y(t)) (5.8)

is nondecreasing in [0; T ] .

11



Proof. For any n 2 IN we construct the equidistant partition 0 = s0 < s1 < : : : < sn =
T of the interval [0; T ] , sk := Tk=n for k = 0; 1; : : : ; n . We approximate the functions

p , y by piecewise constant and piecewise linear interpolates, respectively, that is,

pn(t) :=
n

T

Z sk

sk�1

p(� ) d� ;

yn(t) := y(sk�1) +
n

T
(t� sk�1) (y(sk)� y(sk�1))

for t 2 [sk�1; sk[ , k = 1; : : : ; n , continuously extended to t = T . Let Qn : [0; T ]! IR be

the function

Qn(t) :=
Z t

0
g(yn(� )) pn(� ) d� � G(yn(t)) :

By hypothesis (ii), we have for t 2 ]sk�1; sk[

_yn(t) =
n

T
(y(sk)� y(sk�1)) �

n

T

Z sk

sk�1

p(� ) d� = pn(t) ;

hence _Qn(t) = g(yn(t)) (pn(t) � _yn(t)) � 0 . We have pn ! p strongly in L
1(0; T ) as

n ! 1 , yn(t) ! y(t) a. e., hence Qn(t) ! Q(t) a. e. Since Qn are nondecreasing for

every n , the function Q is also nondecreasing and Lemma 5.3 is proved.

Proposition 5.4 Let f 2 Cloc , h 2 L1(0;1) and y 2 BVloc (0;1) \ L1(0;1) be given
such that

(i) f(u) � 0 , h(t) � 0 , y(t) � 0 for every u � 0 and (almost) every t � 0 ,

(ii)
R
1

0 h(t) dt =: H ,
R
1

0 y(t) dt =: Y ,

(iii) the function q1(t) :=
R t
0(f(y(� )) + h(� )) d� � y(t) is nondecreasing in [0;1[ .

Then we have

lim
t!1

y(t) = 0 : (5.9)

If moreover the function F (u) :=
R u
0 (maxf1; f(v)=vg)�1 dv for u � 0 satis�es the condi-

tion
lim
u!1

F (u) = 1 ; (5.10)

then

y(t) � �Y := F
�1(F (y(0)) + Y +H) 8t � 0 ; (5.11)

y(t) � F
�1(2Y +H) 8t � 1 ; (5.12)

Var
[0;1[

(y2) � y
2(0) + 4

�
Y kfk[0;�Y ] +H �Y

�
: (5.13)

Remark. If we drop the condition (5.10), then we have no a priori bound for y(t)
anymore. It su�ces to consider any continuous function f(u) � maxf1; ug such that

F1 :=
R
1

0 v=f(v) dv <1 , and to put �(u) :=
R u
0 1=f(v) dv . We then have

�1 :=
Z
1

0
1=f(v) dv �

Z 1

0
1=f(v) dv +

Z
1

1
v=f(v) dv � 1 + F1 � F (1) :

12



For an arbitrary " 2 ]0;�1[ we can �nd some R" > 0 such that �1 � �(R") =R
1

R"
1=f(v) dv = " and de�ne the function

y"(t) :=

(
��1(t) for t 2 [0;�1 � "] ;

0 for t > �1 � " :

Then y"(�1 � ") = R" and _y"(t) = f(y"(t)) for t 2 ]0;�1 � "[ , hence
R
1

0 y"(t) dt =R �
1
�"

0 _y"(t) y"(t)=f(y"(t)) dt = F (R") � F1 and

Z t

0
f(y"(� )) d� � y"(t) =

(
0 for t 2 [0;�1 � "] ;

R" + t f(0) for t > �1 � " :

Hence, the hypotheses (i) � (iii) of Proposition 5.4 hold with h � 0 and Y = F1

independently of " , while y"(�1 � ")!1 as "! 0 .

Proof of Proposition 5.4. Assume �rst that condition (5.10) holds, and for t > 0 put

p(t) := f(y(t)) + h(t) . The hypotheses of Lemma 5.3 are satis�ed for every T > 0 , and
we can conclude that the function

Q1(t) :=
Z t

0

y(� ) (f(y(� )) + h(� ))

maxfy(� ); f(y(� ))g
d� � F (y(t)) (5.14)

is nondecreasing in [0;1[ . In particular, we have for every t � s � 0

F (y(t))� F (y(s)) �
Z t

s

y(� ) f(y(� )) + y(� )h(� )

maxfy(� ); f(y(� ))g
d�

�
Z t

s

(y(� ) + h(� )) d� � Y +H ;

and Ineq. (5.11) follows for s = 0 . Assuming t � 1 , we integrate
R t
t�1 ds the inequality

F (y(t)) � F (y(s)) + Y +H � y(s) + Y +H ;

and we obtain precisely Ineq. (5.12).

We further put

q2(t) :=
Z t

0
(kfk[0;�Y ] + h(� )) d� � y(t) : (5.15)

By assumption (iii) and Ineq. (5.11), the function q2 is nondecreasing, and Lemma 5.3

for g(u) = u and arbitrary T > 0 implies that the function

Q2(t) :=
Z t

0
y(� )(kfk

[0;�Y ]
+ h(� )) d� �

1

2
y
2(t) (5.16)

is nondecreasing in [0;1[ .

Let S := ftjgnj=0 ; 0 = t0 < t1 < : : : < tn be an arbitrary sequence, and put

V (S) :=
nX

j=1

���y2(tj)� y
2(tj�1)

��� : (5.17)

In the above de�nition of V (S) , we �rst eliminate monotone parts of the sequence

fy2(tj)g . We put j0 := 0 , and for k � 1 we de�ne by induction the sets Mk of all indices
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i � jk�1 such that the sequence fy2(tj)gij=jk�1 is monotone. We then put jk := maxMk

until jk = n for some k = n
0 . Then the sequence fy2(tjk)g

n0

k=0 is alternating, that is,

�
y
2(tjk+1) � y

2(tjk)
� �
y
2(tjk)� y

2(tjk�1)
�
< 0 8 k = 1; : : : ; n0 � 1 ; (5.18)

and the identity

V (S) =
n0X
k=1

���y2(tjk)� y
2(tjk�1)

��� (5.19)

holds. We now have for every k = 1; : : : ; n0 either (�1)k(y2(tjk)� y
2(tjk�1)) > 0 and

V (S) = y
2(0) � y

2(tn) + 2
k0X
i=1

�
y
2(tj2i)� y

2(tj2i�1)
�
; k

0 =

"
n
0

2

#
;

or (�1)k(y2(tjk)� y
2(tjk�1)) < 0 and

V (S) = y
2(0) � y

2(tn) + 2
k00X
i=0

�
y
2(tj2i+1)� y

2(tj2i)
�
; k

00 =

"
n
0 � 1

2

#
:

Using the fact that the function (5.16) is nondecreasing, we obtain in both cases

V (S) � y
2(0) + 4

Z tn

0
y(� )(kfk[0;�Y ]+h(� )) d� � y

2(0) + 4
�
Y kfk[0;�Y ] +H �Y

�
: (5.20)

Since the sequence S was arbitrary, the estimate (5.13) follows. Especially, the function

y
2(t) tends to a �nite limit as t!1 . Since y is integrable, this limit must be zero.

Let now f be an arbitrary nonnegative continuous function. For u � 0 put

g(u) := maxf0; minf1; 2� ugg ; G(u) :=
Z u

0
g(v) dv :

By Lemma 5.3, the function

Q(t) :=
Z t

0
g(y(� )) (f(y(� )) + h(� )) d� � G(y(t))

is nondecreasing in [0;1[ . For t � 0 put y�(t) := G(y(t)) � y(t) , q�1(t) :=
R t
0(F

� +
h(� )) d� � y

�(t) , where F � := kfk[0;2] . Then for every t > s > 0 we have q�1(t)� q�1(s) �
Q(t)�Q(s) � 0 , hence q�1 is nondecreasing.

We are now in the previous situation, with y�(t) , q�1(t) , f
�(u) � F

� instead of y(t) , q1(t) ,
f(u) , respectively. This enables us to conclude that limt!1 y

�(t) = 0 . In particular, there
exists T > 0 such that y�(t) � 1 for t � T , hence y(t) = y

�(t) for t � T and Proposition

5.4 is proved.
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