
Institut fiir Angewandte Analysis 
und Stochastik 
im Forschungsverbund Berlin e.V. 

Super-Brownian motions in higher dimensions with 
absolutely continuous measure states 

D.A. Dawson1 and K. Fleischmann2 

submitted: 22nd June 1993 

1 Carleton University Ottawa 
Department of Mathematics 
and Statistics 
Ottawa, Canada KlS 5B6 

2 Institute for Applied Analysis 
and Stochastics 
MohrenstraBe 39 
D - 10117 Berlin 
Germany 

Preprint No. 52 
Berlin 1993 

1991 Mathematics Sub:ject Classification. Primary 60 J 80, secondary 60 J 65, 60 G 57. 
Key words and phrases. Absolutely continuous states, fractal catalytic medium, fundamental solu-
tions, super-Brownian motion, superprocess, branching rate functional, measure-valued branch-
ing, additive functional approach, critical branching, collision local time. 



Herausgegeben vorn 
Institut fiir Angewandte Analysis und Stochastik 
Mohrenstrafie 39 
D - 10117 Berlin 

Fax: + 49 30 2004975, 
e-Mail (X.400): c=de;a=dbp;p=iaas-berlin;s=preprint 
e-Mail (Internet): preprint@iaas-berlin.dbp.de 



hlO.chi June 17, 1993 

SUPER·BROWNIAN MOTIONS IN HIGHER DIMENSIONS 

WITH ABSOLUTELY CONTINUOUS MEASURE STATES 

By Donald A. Dawson1
) and Klaus Fleischmann 

Carleton University and Institute of Applied Analysis and Stochastics 

Abstract. Continuous super-Brownian motions in two and higher dimensions are 

known to have singular measure states. However, by weakening the branching 

mechanism in an irregular way they can be forced to have absolutely 

continuous states. The sufficient conditions we impose are identi~ied in a 

couple of examples with irregularities in only one coordinate. This includes 

the case of branching restricted to some densely situated ensemble of 

hyperplanes. 
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2 D.A.DA WSON AND K.FLEISCHMANN 

1. INTRODUCTION 

1.1. Motivation 

Consider a D-dimensional l.1Uf1€!t-13riaumlan matlan X = {x ;t2::0} with 
t 

constant &rzanc.hlnq, riate p>O, related (via Laplace transition functionals) to 

the equation 

(1.1.1) (a/at)v = L\v - pv2 
It is well-known that in dimensions D"?:.2, the states X of X are ~ 

t 

measures (Dawson and Hochberg (1979)), whereas in the one-dimensional case 

they are absolutely continuous, and a corresponding density field can even be 

chosen is such a way that it is jointly continuous and satisfies a stochastic 

equation (see Konno and Shiga (1988) or Reimers (1989)). 

The p,urtp,ao,e af, t/U.,{), pap,efL is to show that, by changing to a sufficiently 

Vvie.qu&vi branching rate p, even in higher dimensions super-Brownian motions 

can be forced to have ~ cantlru.law.1 states. 

The idea is to restrict the branching effect to a fractal set of space 

points ( f!w,ctaf, cai.aiA.Jtlc medlum). Then the heat flow can more. effectively 

smear out the population mass possibly resulting in absolutely continuous 

measure states. From this point of view, the only problem is to guarantee 

that the catalytic set is not too diffuse, i.e. that it can be hit by the 

"underlying" motion (think of an approximating particle branching Brownian 

motion), in other words, that the motion component "will feel" the catalytic 

set. 

1.2. Some Review of the One-dimensional Case 

It might be useful to discuss at this point what is known in the ane-

dlmeruUanai caa,e D=l. Here Brownian particles have a positive occupation 

density (13fUll19.ftlan tacat tune) on a single point set, say { c}: Hence, it is 

actually possible to restrict the branching effect to this "extremely thin" 
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set { c}, more precisely, to describe the branching rate p by the Dirac 

8-function 8 . Consequently, branching is allowed only at c and there with an c 

unbounded intensity, whereas outside c only the heat flow acts. 

The resulting ~-13rw,w.n,i.,an, maUan with a ~ pAlln1 ~ is 

actually non-degenerate and even lives (excluding the initial time point) on 

the set of absolutely continuous states. Moreover, it has a series of 

interesting properties around the catalyst, significantly different from the 

ones in the case of a regular branching rate; see Dawson and Fleischmann 

(1993), Dawson et al. (1993), or the recent survey Fleischmann (1993). 

More generally, to aru; finite measure p( dy) on the real line IR -there 

exists a (one-dimensional) super-Brownian motion with branching rate faruna11ij 

described by the ~ Radon-Nikodym derivative P ( g~) with respect to 

the Lebesgue measure dy. Moreover, p may even be tune-dependent, that is, a 

fairly general kelLnel!, p(t,dy) from the half line IR+ into the set of all 

tempered measures on IR; see Dawso~ and Fleischmann (1991, 1992). 

Nevertheless, under not too restrictive conditions, the resulting super-

Brownian motion X={X ;t~O} with &rianchlnq rwte kelLnel!, p, or even (one-
t 

dimensional) superprocesses with a more general motion law and branching 

mechanism, may have absolutely continuous states; see Dawson et al. (1991). 

1.3. Additive Functional Approach 

If p be a branching rate kernel as just discussed, and W = { W ;t~O} 
t 

a one-dimensional (continuous) 13rw,w.n,i.,an, maUan, then by 

(1.3.1) 

we can formally associate a continuous additive (non-negative) functional AP 

of W, interpreted as the ~ fucaJ!. tune L[w,p] of W with the 

deterministic path p (".accup,atlan deruJ1Aj a& W a1 p"). For instance, if p=8 

as in the single point-catalytic super-Brownian motion above, then AP is 

c 

3 
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nothing else than the 13ruwmlan fucat tlme L c ( dt) = 8 (W) dt at the point c t 

c. 

In general, the additive functional Ap(dt) provides a more sophisticated 

way to think of the branching rate in the model. In fact, Ap(dt) can be 

interpreted as the rate of branching at time t at W, the (random) position 
t 

of an "infinitely small particle hidden in the cloud" X. 
t 

In contrast to the other papers [Hf,Eq,At,Va,Li] mentioned above, in 

this note V{jnkln' ,(}, addWA9e ~ apprwach to superprocesses is 

followed. That is, for the description of the D-dimensional super-Brownian 

motion X we use a cantlru.Lau;.), addWA9e ~ A of the D-dimensional 

Brownian motion W instead of a (deterministic) branching rate kernel p. As 

above, A( dt) is interpreted as the riate a& &!tanchlnq, at time t at W, the 
t 

location of an infinitesimal small particle hidden in the cloud X . 
t 

Our approach in the present paper devoted to the higher-dimensional case 

is to impose sufficiently strong tecJuilca1 candUlaru1 on the functional A 

(see the Definitions 2.6.1 and 2.4.7 below), which guarantee that a 

super-Brownian motion with A as branching rate functional has absolutely 

continuous states. 

That such conditions are meaningful at all will be demonstrated by 

discussing a couple of ea:.o.mpleo, with the formal structure (1.3.1) (but now in 

D dimensions), see Section 4 below. To mention at this point .only one of 

them, think of a branching rate kernel p of the form 

p(t,dy) = Pit,yd)dyd P/dY/ y = [yd,y1] E !RdXlR = !R
0

, 

where p is a bounded measurable function whereas p ( dy ) is a realization of 
d 1 1 

a -Ota&le IWfl,(j,am ~ I 00 a 8 on !R of sufficiently small index. In 
i =l i x(i) 

other words, the branching effect is restricted to a ~ ~ 

caUecUan a& rumdarnhJ, ~ lujpe!lp1anea,; see Example 4.4.4 below. In 
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particular, if p /=l, given p 
1
, the corresponding time-homogeneous branching 

rate . functional A p is just the Brownian local time at this weighted ensemble 

of hyperplanes. 

To be honest, we emphasize at this point that all of our examples have 

~ ln al l1Ul&, arie caaruJ,lnate. From a technical point of view, 

this is a type of reduction to the one-dimensional case. Examples concerning 

truly higher-dimensional irregularities would involve a more general class 

of higher-dimensional collision local times which is a more delicate problem 

(we refer to Barlow et al. (1991)). Consequently, the present note is only a 

first step in the study of higher.-dimensional superprocesses with absolutely 

continuous states. Examples with irregul~ities in more than one dimension 

and ~a deeper understanding of conditions which guarantee absolutely 

continuous states seem to need tools which are beyond the scope of the 

present note. 

Concer11:ing the construc~ion of a super-Brownian motion X, we completely 

rely on Dynkin (1991). There some rnament candltlarul on the additive 

functional A are imposed which guarantee the existence of X. Applied to the 

special case D=l, A=Ap as in (1.3.1), such conditions are stronger than those 

used in [Hf,Va]. On the other hand, the additional assumptions imposed in the 

present paper to guarantee absolutely continuous states when specialized to 

5 

D=l and A=Ap' cover the results of [Va] (applied to a Brownian m~tion law and 

a branching mechanism with finite second moment). 

As in [Va], the absolute continuity of the states of X is shown via the 

construction of~~ of the related non-linear integral 

equation ( CUl1Ul,f,ant eqµati,an) by a regularization procedure. In [Va] purely 

analytic methods were used (contraction principle related to an L 1-space) for 

the construction of fundamental solutions. In contrast, in this note we 
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exploit some ~rionwal!l UiequaJ!)hJ tA.Jµe techrUque<1 which are adapted to the 

additive functional approach. 

1.4. Outline 

The structure of the paper is as follows. In Section 2 we state the 

results, the main point is Theorem 2.6.2. Proofs concerning the fundamental 

solutions of the cumulant equation and the absolute continuity of the measure 

states follow in Section 3. The final section is devoted to examples. 

We assume that the reader is familiar with the basic notion and 

properties of super-Brownian motions; see Dawson (1992) for a recent survey. 

2. RESULTS 

2.1. Preliminaries: Some Terminology 

Start by introducing some terminology. We call e = {e ;n~J} a o/Y1-0 
- n 

.oequence if D<e -5:1, n~l, and e -~ 0, whereas we set e=O if e =O. To 
n n n'oo - n 

avoid double indices, sometimes we write also E(n) instead of £ , for 
n 

instance. Integrals Jv(dx) f(x) are often written as (vJ). A lower index + 

on a symbol of a set will always refer to the subset of all of its non-

negative members. 

Fix a dimension D~l. Let I be a (non-empty) f,lnlte subinterval of IR+ 

[O,oo ), and write [L,T] for the ~ da<1ed interval which covers /. 

Denote by <I> and <I>1 the set of all &aunded ~ functions <p: IRD l-7IR and 

u: /X!RD 1-71R, respectively. We endow <I> and <P1 with the topology of &aunded 

~ ~ We will use the symbol ~ to denote this 

convergence. (Recall that fonctions converge boundedly pointwise if they are 

uniformly bounded and converge pointwise.) Then <I> and <I>1 are 'Banach ~ 

with respect to the pointwise product of functions. 

Write .Mr for the set of all f,lnlte measures defined on !RD, endowed with 
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the topology of weak convergence. 

Let W := [W,IT ,s~O,aE RD] denote the canonical (continuous) B~ 
s,a 

motlan in RD with generator cl, where the ~ COJ1.,(};lan1, K>O is fixed 

once and for all. Write 

p(t,y) := (4nKtFD!2 exp[- I y I 2!4Kt], t>O, YE RD, 

for the corresponding BIUU.lmi.an ~ den!.UhJ f,unctlan, and let {S ;t~O} 
t 

denote the related BIUU.lmi.art cantriactlo.n .o,em.L-q;wup on <l>. Set 

(S
1cp)( s,a) := ST-scp( a) = Ils,a cp(WT), cpE <l>, SE/, aE RD, 

for the heat flow on I with "terunlnae candltlan" cp. Note that S1 is a 

(linear) canirtactlan ap,e;iato;i of <l> into <1>1
• 

2.2. Branching Rate Functionals 

Let A(dt) always denote a (non-negative) canti.Ju.uuu1 acidltiA9e &unctlana1 

of the Brownian motion W. Consequently, given W, the measure A( dt) on R + is 

locally finite and does not carry mass at any single point set. On the other 

hand, if (s,t) is an open subinterval of R+' then A(s,t) := A((s,t)) is 

assumed to be measurable with respect to the universal completion of the 

a-field generated by { W ;s<r<t}. 
r 

Superprocesses where the branching is governed by certain additive 

functionals A of the underlying motion Markov process had been introduced by 

Dynkin (1991). The conditions on A imposed there are stronger than needed. 

However the construction of superprocesses with much more general additive 

functionals A will be provided in Dynkin (1993). For our purpose, we leave 

open the problem how such conditions should look like, but to be on a firm 

base, we introduce the following definition. 

Definition 2.2.1 (branching rate functionals). A (non-negative) continuous 

additive functional A of W is called a &rianchlnq, riate &unctlana1 if there 

7 
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exists a time-inhomogeneous measure-valued Markov process X = · 
(X,IP µ's~O,µE M] - with !£apfuce ~ f,uncUana£ 

s, f 

(2.2.2) !Ps,µexp(Xt,-cp) = exp(µ, -U<p(s,•,t)), Q~~t, µE .Mf' <pE <l> +· 

where u<p~O is (uniquely) determined as (bounded) solution of the cumufant 

~ 

(2.2.3) 

In this case, X is called a .c,upert-13rwumlart matlan with ~ riate 

~A. I 

2.3. Existence of Super-Brownian Motions 

In this subsection we review the existence of super-Brownian motions 

under the following (exponential) moment assumptions taken from condition 

1.2.C in Dynkin (1991). 

Definition 2.3.1 (exponential moment assumptions). Let a1 denote the set of 

all those continuous additive functionals A of the Brownian motion W 

satisfying the following moment conditions: 

(2.3.2) 

(2.3.3) 

IT exp[M(s,T)] < oo-, sE/, aE IRD, 'A>O, 
s,a 

sup{II A(s,T); SE!, aE IRD} < oo. 
s,a 

Write AE 9 if A belongs to 91 for all (finite) intervals /. I 

Baxunpi,e,a, of such branching rate functionals will be discussed in 

Subsection 4.2 below. 

The existence of superprocesses with branching rate functional in 9 is 

due to Dynkin (1991), Theorem 1.1; we apply it to Brownian motion and 

continuous branching mechanism: 

Lemma 2.3.4 (existence of super-Brownian motions with branching rate 

functionals in 9). ':Ia each CuncUana£ A ln 9 therie ~ a .c,upert-13rwumlan 
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matlan :r w.Uh A Wl &nanchlnq riate ~· :r hao. the ~ expectation 

and variance ~.' 'fFOfl, O~~t, µe Jftf, and <j)E cl>+' 

(2.3.5) [ps,µ(:rt,<p) = f µ(da) st-s<p(a), 

(2.3.6) wars,µ (:rt,<p) = 2 I µ(da) ns,a J: A(dr) (St-r<p)
2(W/ 

Note that for non-vanishing A,µ,<p and s<t, the variance is strictly 

positive, i.e. that X is really random. 

2.4. t}-Regular Branching Rate Functionals 

In this subsection we introduce the technical conditions on a branching 

rate functional A which we will later show guarantee the existence of 

fundamental solutions needed for our approach to absolute continuity. 

From now on assume that I is a ha£&apen interval [L,T), og__,<T. Write 

(2.4.1) (S1t} e,)(r,y) := J t}( dz) p(E+ T-r,y-z), t}e Atf' £>0, re I, ye rR0
, 

for the heat flow S1t} £ on I terminated at time T by the ~ rneao,urie 

(2.4.2) t}e, := t}Se,, t}e Atf' £>0, 

with density function (denoted by the same symbol t}E by an abuse of notation): 

(2.4.3) t} e,<Y) = ft}( dz) p(E,y-z) =: t}*p(e,)(y ), t}e .Mr' £>0, ye rR0
. 

Set S1t} := S1t}
0 

in the formal boundary case £=0 in (2.4.1). Note that 

(2.4.4) S1t}E(r,•) £ b~) S1t}(r,•), t}e Mr' rel, 
..j, 

by bounded convergence. 

Notation 2.4.5. Recalling our convention in the beginning of Subsection 2.1, 

let ~ be a .zero sequence or ~=0. Moreover, let A be a branching rate 

functional, t}e Atf' sel=[L,T], and ae fRd. For k"?:.0, te [s,T], and m,n"?:.l, set 

(2.4.6) H:; := rr •.• f. A(d't) [S1~e ]2('t,W't) (f. A(dr) [S1~e ](r,W) t- I 
m n 

Definition 2.4.7 (t}-regular branching rate functionals). Recall that l=[L,T), 

og__,<T, is fixed. Let t} belong to Mr and A be a branching rate functional. A 
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is called t}-riequ£a;i, if there is a zero sequence § (depending on I,tJ.,A), 

called t}-~ sequence, with the following properties. For each fixed 

SE/ and GE !Rd, 

(2.4.8) lims un IT [J1 A(dr) S1t}c (r,W >]k < oo, s ::;; t < T, k'?.l, 
n -+oor s,a s c(n) r 

(2.4.9) limsup Hk,t ----7 0, k'?.O, 
m,n -+oo m,n t1' T 

(2.4.10) ()hk!) limsup Hk,s k~oo 0, 'A>O. 
m,n-+oo m,n ...., 

If A is 8 -regular for some 7E !RD, then we say that A is riequ£a;i at 7. I 
~ 

Formally speaking, a branching rate functional A is t}-regular, if some 

higher moment conditions concerning certain functi~nals of A are fulfilled. 

To clarify these conditions, in Subsection 4.3 below we will exhibit a couple 

of eaxunpteo, of branching rate functionals A which are regular at ~· But let 

us sketch it at this point. 

All these examples have the formal structure 

(2.4.11) 

where ~ is a kefutel. As above we interpret A~ as ~ lacal tune of ·the 

D-dimep.sional Brownian motion W and the deterministic path ~· An enriched 

version of A~ is the random measure L[W,~] on the product space IR+ XIRD defined 

by 

(2.4.12) Js A~(dr) f(r,W) = f J L[W,~](dr,dy) f(r,y), 

(For a rigorous development of collision local times we again refer to Barlow 

et al. (1991) or to Evans and Perkins (1993).) 

Specialized to the single point measure t}=8 (aiming at a fundamental 
~ 

solution with terminal condition 8 , ~E !RD) the requirements in Definition 
7 

2.4. 7 are then some higher moment conditions (concerning the law of W) on 

functionals of the form 

(2.4.13) fs'J L[W,~](dr,dy) p(T-r,~-y), 
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or even worse with p2 instead of p (note that the integrand becomes singular 

as [r,y] ~ [T,7]). 

Recall that the expected total mass II
0
./(1R+) of an additive functional 

A which in the present case equals II L[W,~](IR+XIR0 ), as a function of a, is 
O,a 

usually called the potentlaf, of the additive functional A (see, for instance, 

Blumenthal and Getoor (1968), Chapter V). In contrast to this, we interpret 

the double integral expression in (2.4.13) as the riandam [ s,T}-potentlaf, 

~ a& the caUlolan Weal tune L[W,~] at 7. (See also the discussion of 

a special case after condition (4.3.2) below.) Roughly speaking, a 

branching rate functional A~ of the formal structure (2.4.11) is regular at 7 

if the random potential density at 7 of the related collision local time 

L[W,~] has sufficiently good higher moment properties. By the way, 

supb IIs,bA(s,T) < 00 is sufficient for (2.4.8) (but is not always fulfilled 

in the examples below). 

Remark 2.4.14. Note that for a i}-regular A the assertions (2.4.8)-(2.4.10) also 

hold for c =IJ or c =IJ. In fact, simply apply (2.4.4) and Fatou's lemma. I 
m n 

Remark 1.4.15. If A is i}-regular with i}-admissible sequence ~' where t} has 

the form :L~ A..8 . then, for MU/ other choice A.' , ... ,A.'~O of the weights 
1=1 1 7(1) 1 k 

A. , ... ,A ~O the branching rate functional A is t}' -regular, where t}' := 
1 k 

L~ A.~ 8 . , and the -0ame zero sequence c may serve as t}' -admissible · 
1=1 1 7(1) • 

sequence. Consequently, ~ only depends on the finite support of i}. I 

2.5. Fundamental Solutions of the Cumulant Equation 

Now we are dealing with the question of existence of and convergence to 

£,undamen1a1 ~ of the cumulant equation (2.2.3) with branching rate 

functional A, i.e. solutions with degenerate "terminal conditions" as u(T-,•) 

11 
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= 8 
3 

(instead of u(T, •) = cp E <I>+). These fundamental solutions -will be 

needed later for the construction of the random density of the measure X at 
T 

3E IRD (for Lebesgue almost all 3E IRD). 

To be more precise, as in the previous subsection set l=[L,T), 05:L<T, 

and for i>E .Mf consider the curru.dant eqµatlan in the form 

(2.5.1) u(s,a) = S i>(s,a) - TI A(dr) u (r,W ), sE/, aE IR , I I's 2 D 
s,a s r 

that is, now with meaa,u;ie-A.9-0lued terunlnae candUlan u(T-,•) = i>. For all 

i>-regular branching rate functionals A this is a well-posed problem: 

Theorem 2.5.2 (fundamental solutions). :£.et i} &efunq w .Mf and A &e i>-riequl!,ari 

( riecall the 'D.ef,lnW.,an 2.4. 7). r:J helie l<1 ~ one ~ nan-neq,atl!\9-e 

CuncUan U1
[ A, i}] def.lned an /XIRD whlch ~ eqµatlan (2.5.1). .MarieoA9e1t, 

(2.5.3) A.-1U1[A,A.i>](s,•) ~ S1i>(s,•), sE/, 
A-1.-0 

(f).IU1t ~ wUh riel.lp€ct w a Mnai1 pariameteri A). r:Jhe ~ U1[A,~J 

u cantlru.1,aua, wLth riel.lp€ct w the ap,eriatian a& regularization a& ~ ( riecaee 

(2.4.2)) ln the ~ ~: JC E := {c ;n"2:.J} u a i>-~ 
- n 

MqUenCe ( accoJUilnq, w the 'De£UUUan 2.4. 7) then 

(2.5.4) I b p I U [A,i>c ](s,•) ~ U [A,i>](s,•), 
~ n~OO 

sE/. 
n 

The proof of this key theorem will be provided in Subsection 3.1 below. 

2.6. Main Result: Absolutely Continuous States 

Consider a super-Brownian motion X with branching rate functional A 

which starts off at time s"2:.0 with any initial state µ in .M( (We do not 

necessarily impose that AES.) The purpose of this subsection is to formulate 

our main result which states that to a fixed time T>s the random measure XT 

is a.s. ~ cantlru.uuul, provided that for l=[L,T) with s5:L<T (i.e. in 

a lower neighborhood of T) the branching rate functional A satisfies 
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conditions as in Definition 2.4. 7 but with 1'.}=8 , for Lebesgue almost all 
? 

?E !R0• To be more precise, we introduce the following definition: 

Definition 2.6.1 (a.e.-regular branching rate functionals). Fix a halfopen 

interval I:= [L,1), O~<T. A branching rate functional A is said to be 

a.e.-rz,equ1ari if there exists a Borel subset N of !Ro of Lebesgue measure 0, 

called an .ea:ceptlanat set, such that A is t}-regular (Definition 2.4.7) for 

all point measures t} on !R0 with finite support contained in !R0 W. I 

Roughly speaking, an a.e.-regular branching rate functional is regular 

at !£,e&ec.que a1mao1 OOeJUJ ?· In the case of a branching rate functional A=A~ 

related to the collision local time L[W,~] as discussed after Definition 

2.4.7, the present definition requires, loosely speaking, that for Lebesgue 

almost all ?E !Ro the I-potential density of L[W,~] at ? has well-behaved 

higher moments. g~ of such a.e.-regular branching rate functionals will 

be discussed in Subsection 4.4 below. 

Now we are in a position to state our maln rieo,ul!,t: 

Theorem 2.6.2 (absolutely continuous states). !£,et X = [X,[f' µ's~O,µe .M] &e 
s, f 

a ~-13rw.m.niart matlan w.Uh &rianchlnq, rw.te ~A (riecaf£ auri 

'D~ 2.2.1 ). ~ that A le, a.e. -rz,equ1ari carLC€IU11nq, the lriterlA901 

l=[L,T) (rieca1£ 'D~ 2.6.1). 'Yhen f,OJi &u.ceci 0'5::.s~~T and µe Mf' then,e 

~ a rumdom ~ tunctUm a:T an !RD -OA.LCh that 

[f' µ{x (dz) = a: (z)dz} = 1. s, T T 

.MarieoA9.e!t, f,OJi each tuUie caUectlan ?1, ... , ?k a& paiJ1i;.1 ill IR°w ( wherie N lo. 

a !£,e&ec.que ~ ~ a<1 ill 'Definillan 2.6.1), the !f_api,ace tunctlan ae the 

rumdom ~ [a: (? ) ' ... ,a: (? ) ] w.Uh rieopect ta [p µ le, qW.en &lJ T 1 T k S, 

(2.6.3) IF',,µexp [ - L~=I ;\a:/~)] = exp(µ,-u(s,•J), A.1, ... ~\ ;;:: 0, 

13 

wJierie u u the canUnuatWn ae the f-undamenta1 1.101utWn u1rA,t}1 ( aCCOIUi1ruJ ta 
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'flheoltem 2.5.2) ta the lnte!vt9a1 [s,TJ, and t} := Li~ A-.8 . . Jn ~, 
t=l 1 ?Ct) 

the ~ ea:pedatlon and ~ ~ hohi: 

(2.6.4) 

(2.6.5) 

!Ps,µxi ?) = I µ(da) p(T-S,?-a), 

war µx (?) = 2 fµ(da) I1 f'T A(dr) p(T-r,?-W ). s, T s,a J s r 

2. 7. A Basic Lemma 

The previous theorem is heavily based on Theorem 2.5.2 in conjunction 

with the following lemma, taken from [Va]. Actually, there 8-measures are 

approximated by uniform distributions on small intervals, but our change to 

Gaussian densities p(e) = p(e,•) with small variance can easily be 

justified by a modification of !£e&eo,que' ,(}, ~ theo!iem. Moreover, the 

vector assertions in the end of the lemma follow from a simple modification 

of the proof of the other statements given in [Va]. 

Lemma 2.7.1 (basic lemma). !£et v &e a riandam element w the -0,pace .M a& 
f 

f,lrUte ~ (M9.€ft a pria&a&iJ!).hJ -apace [Q,r:;,P] ~ the ~ tw.a 

~ .. 

(i) · 'Jherie lo, a 130/tel ~ N a& [RD aC !£e&eo,que meao,urie 0 wffi that COIL 

each ?E[R°w therie u a~~ E wffi that v*p(e )(?) . ·? ?~ 

~ ln law. ta a riandam ~Tl(?) ln [R+ U-6, n~oo. 

(ii) 'J he ea:pedatlon a& Tl (?), l.l.alJ e( 3), deperuM. an 3e N w a meaowia&te U9-<UJ, 

lo, ~ lnteqrul&k and 

P(v,cp) = f dz cp(z) e(z), cpe <I>+· 

<J" hen, ( (M9.€ft the Mme pria&a&iJ!).hJ -apace) therie ~ a riandam meaowia&te 

f,un,ctlan fan [RD wffi that P{v(dz) = f(z)dz} = 1, and COIL each 1eN the 

riandam ~ f( ?) and Tl(?) haue the Mme dU:dlil&utlan. Jn ~' V 

u an absolutely continuous meao,urie wUh P-pria&a&iJ!).hj ane . 

.MarteQA9.elt, l& (i) e\9elt ~ COIL ~, i.e. therie lo, an e;xcep;tlo.nat 
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l,J,ci N ~ that Co;i each choLce a& ~ maruJ palnto, ?1, ... , ?k ln [RDW 

therie u a ~ ,o,equence E ( depencLlnq an ? , ... , ? ) ~ that 
- 1 k 

[v*p(c)( ?1), ... ,v*p(e){?k)] n-7~ Mlme [11( ?1), ... ,11( ?kJ] ln row, 

then [f( ?/···!< \)] = [11< ?1), ... ,11( ?kJ] ln row. 

Roughly speaking, if the "local densities" ~ = (v,8) =: 11(?) of v at 
u? ? 

? exist in law for Lebesgue almost all ? and their expectations "create" the 

&ul!£ locally finite intensity measure Pv, than v is a.s. absolutely 

continuous and the density function is in law given by 11 · 

The completion of proof of Theorem 2.6.2 is postponed to Subsection 3.2. 

3. PROOFS OF THE THEOREMS 

3.1. ~Fundamental Solutions: Proof of Theorem 2.5.2 

The purpose of this subsection is to prove Theorem 2.5.2. Fix I= [L,n, 

Og_,<T, t}E M, a '{}-regular branching rate functional A, and let e be a related 
f -

'{}-admissible zero sequence according to the Definition 2.4. 7. In accordance 

with Definition 2.2.1, assume that u is a (non-negative) solution of the 
n 

cumulant equation (2.5.1) with t} replaced by t} where t} := t}c )' n~J, n n c(n 

(recall the definition (2.4.3); note that each terminal function t} is 
n 

bounded). We want to show that {u (s,•); n~l} is a f5aucluj ,o,equence in the 
n 

Banach space <t>, for each fixed sEl. 

First of all, for n~l and SE/, we have the following damlnatlan: 

(3.1.1) 0 ::;;; u (s,•) ::;;; S11} (s,•) ::;;; 111}11 p(E +T-s,0), 
n n n 

where 111}11 denotes the total mass of t}. Moreover, for the D-dimensional 

Brownian density function we have 

(3.1.2) p(E+t,0) ::;;; p(t,0) = p(l,0) (on, c,~0, t>O. 

Using I a2-b2 I = I a+b 11 a-b I, for m,n~l, SE I and aE [Ro we get 

I u m-un I ( s,a) ::;;; I S1
1} m-S

1
1'.}n I ( s,a) + ns,ar. A(dr)[S

1
1} m +S

1
t}J(r, w) I u m-un I (r, W/ 

15 
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Jterui:Unq, this inequality Kc.I times yields 

(3.1.3) I I -lu -u l(s,a) :s; ll(St} -St} )(s,•Jll + E + F, m n m n oo 

where II• II 
00 

denotes the supremum norm, and we set 

E := LK II rr A(dr ) ... rr A(dr) 
k=l s,a J s· 1 J r(k-1) k 

(nk [S1t} +S1t} ](r., w . >] I S1i} -S1i} I (r 'w ) 1=1 m n 1 r(1) m n k r(k) 
and 

F := IT rr A(dr ) ... rr K A(drK ) 
s,a J s 1 J r( ) +1 

For each re/, 

(3.1.4) qm;n(r) .- ll(S1t}m-S1i})(r,•J11
00 

:s; 11t}11 llP(Em+T-r,•) - p(E
0
+T-r,•Jll

00
• 

Therefore, 

(3.1.5) lim sup < < · q (r) = 0, 
m,n 400 L~-s m;n 

SE/, 

-
by the uniform continuity of the Brownian transition density function p on 

[c,oo)X!Rd, for c>O fixed. In particular, the first term on the r.h.s. of 

(3.1.3) is negligible as m,n'oo (for fixed s). 

Concerning the two other terms E,F in (3.1.3), first rearrange the order 

of integration in all integrals to the reversed order. 

In the k-th summand of E we introduce the additional indicator l {rk :s;t}, 

for fixed te [ s,T). Estimate the absolute value expression from above by 

q (r ) defined in (3.1.4), wbich by (3.1.5) is uniformly small as m,n,oo. 
m;n k 

The remaining expectation can be estimated by 

::;; const rr,,.u: A(dt) (S1t}m +S1t}Jft,Wt)t 

Use the simple inequality 

(3.1.6) x,y'20, k'21, 

and (2.4.8) to get a finite limit superior as m,n-+oo. Summarizing, the k-th 

summand of E restricted to {rkg} with a fixed t is negligible as m,n400 • 

Now we turn our attention to the reverse restriction {t<rk}. Recalling 

that we rearranged the order of integration and passing from the difference 
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sign to the addition sign, we can turn to the upper estimate 

'.'> canst n,,. j; A(d't) [S11'} m +S11'}J2(-r, w 't) (D A(dr) [S11'} m +S11'}J) k-l. 

Apply again (3.1.6) and use (2.4.9) to see that the limit superior as m,n"'oo 

of this term can be made arbitrarily small by choosing t sufficiently close 

to T. Consequently, we are able to handle E, and we are left with F. 

Write the inner K integrals concerning the variables r , ... ,r in a 
K 1 

symmetric way getting out a factor 1 !Kl . Apply again (3.1.6) and then 

(2.4.10) to see that the limit superior of F as m,n"'oo can be made small by 

choosing K .sufficiently large. 

Summarizing, in view of the domination (3.1.1), we established the 

existence of a non-negative measurable function u on /xrR0 such that 

u (s,•) ~ u(s,•), se/. 
n n~oo 

Repeating the procedure from the beginning with this u instead of u 
m 

(relating u to e =O but keeping e ), and taking into account Remark 2.4.14 we 
m n 

conclude that u solves equation (2.5.1). That is, we caruWtucted a ~ u 

with measure-valued terminal condition t1. 

By even simpler arguments (take e =O=e) we conclude that u is unlqµel!Aj 
m n 

determined by the equation. Summarizing, we now have existence, uniqueness 

and the continuity statement (2.5.4). 

It remains to verify the ~ prw.p,erzhJ (2.5.3). First note that 

the branching functional A is A.t1-regular for all A.~O (by Remark 1.4.15)). Fix 

se/. By the equation (2.5.1) and the domination (3.1.1) (both with t} replaced 

by /i.,f}), 

(3.1.7) 

The latter expectation is finite. In fact, take a point te [s,T) and split the 

domain of integration at t. For the lower part, estimate one factor of the 

integrand by a constant and use (2.4.8) with e =O and k=l. For the other 
n 

17 
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part, apply (2.4.9) with c: ~=e and k=O. 
m n 

From (3.1.7) we conclude that the functions 'A-1U1[A,'Af}](s,•) pointwise 

converge to S1f}(s,•) as 'A,-!-0. But they are all dominated by the bounded 

function S1f}(s,•). Thus the convergence statement (2.5.3) follows. 

This finishes the proof of Theorem 2.5.2. 11 

3.2. Absolutely Continuous States: Proof of Theorem 2.6.2 

Fix a branching rate functional A which is a.e.-regular on the interval 

l=[L,T) with 0'.5:1.<T. Let N be a related exceptional set according to the 

Definition 2.6.1. Fix a finite sequence 3 , ... ,3 E!: N, and let c: be a 
1 k -

I}i ?(i)-admissible sequence according to the Definition 2.4.7. Finally, 

choose a starting time point SE [0,L] and an initial measure µe Mr' In order to 

show that X fulfills the requirements with respect to IP µ stated in the 
T s, 

theorem, by the Markov property, without loss of generality we may assume 

that s=L. The main step in the proof will be to verify the conditions (i) and 

(ii) of the basic lemma 2.7.1. 

0 

1 (~ (i) a& the~ lemma 2.7.1, ~ ta ~). Let 

\, ... ,\ ;;:::o and set f} = Iii\8 W). Note that A is f}-regular and that the 

zero sequence ~ is also f}-admissible (Remark 1.4.15). According to the 

convergence statement (2.5.4), 

(3.2.1) bp 
--=---? 
n-+OO 

U1[A, f}j(L,. ). 

Hence, we may integrate these functions against the finite measure µ, and by 

bounded convergence we get: 

(3.2.2) --7 
n-+OO 

Now use the domination (3.1.1) to obtain: 

(µ, U1[A,f}](L,•)). 

(3.2.3) (µ, u1fA,f}](L,•J) ~ (µ, S1f}(T-LJ) ~ l'AI 11µ11 p(T-L,o; 1x1-!-3 o 

where l'AI := max. 'A.. But by assumption (via the Laplace functional (2.2.2) 
1 1 
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and the cumulant equation (2.2.3)), the l.h.s. of (3.2.2) determines the 

Laplace transform of the random vector [(x ,8 *p(e J), ... ,(x ,8 *p(e J)] 
T W) n T ~(k) n 

with respect to IP µ· Therefore, combined with the continuity property 
L, 

(3.2.3), also the r.h.s. of (3.2.2) determines the Laplace transform of a 

random vector, we denote by ht<? ), ... ,11( ~ )]. Consequently, 
1 k 

(3.2.4) [(:xii wi*P(E
0

) ), ••• ,(:rT'8 ?(kl*p(e))] n-+.t, (T\( 11), ••• ,'f\( >kJ] 
in law, where 

(3.2.5) 

0 

2 (~ (ii) a& the~ lemma 2.7.1). Set k=l and write ? instead of 

~( We want to show that the expectation e( ?) of t)(?) is measurable in ?E rR°'N 

and satisfies 

IPL,µ ( XT,cp) = J dz <p( z) e( z), cpe <I\. 

But by the expectation formula (2.3.5), the l.h.s. coincides with (µS ,cp ). 
· T-L 

Thus it suffices to show that 

(3.2.6) (µ, 8 *p(T-L)) = e(~), ~erR°w. 
? 

Recall that by (3.2.5), 

Pexp[-A.11(?J] = exp(µ, -U1[A,A.8/(L,•)), A.-C.0, ~tf.N. 

But according to (2.5.3) the difference quotient A.-l U1[A,A.8 ](L,•) is 
? 

bounded pointwise convergent to 8 *p(T-L) as A.lo . Hence (3.2.6) follows by 
~ 

bounded convergence. In particular, { e(7),?E rRI\N} is integrable and the 

absolute continuity proof is finished. 
0 

3 ( campi,etlan a& the 1'riao,f, a& ':I heoJuzm 2.6.2). With (3.2.5), (3.2.6) and the 

coincidence in law as stated in the basic lemma 2. 7 .1, we already have 

(2.6.3) and (2.6.4). Finally, the variance formula (2.6.5) can be proved in 

the same way as the expectation formula, we leave the details to the reader. 1111 

19 
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4. EXAMPLES 

4.1. Preliminary Remarks 

Recall that all of our examples of branching rate functionals A have the 

formal structure (2.4.11 ), that is 

(4.1.1) 

and that via (2.4.12) A~ is formally related to the coJ!llo1an lacat tlrne 

L[W,~] of the D-dimensional Brownian motion W and the (deterministic) 

branching rate kernel ~· 

Our point of view ih this section is that the formal 8-function setting 

can be justified in each of the following examples .. In particular, we assume 

that for the kernels ~ under consideration the continuous additive 

functionals A~ which are formally defined by (4.1.1), really exist and 

moreover their moments can be estimated from above by the corresponding 

formal 8-function ·setting expressions. Of course, here we take advantage of 

the fact that our examples have irregularities in at most one coordinate. 

Recall that to each tlrne-~ continuous additive functional A of 

the Brownian motion W the so-called 'R..oo.LJ4 rnea<1U1ie ~ on 1R
0 is associated. It 

A 

can be defined via 

If ~ is finite and has finite potential in B (0), m"?.l, where B (y) denotes 
A m r 

the open ball in 1R0 with center y and radius r>O, then 

(4.1.2.) s~p IA(O,s) - f ~ dr f SA(dy) IBe(y) 1 ·
1 l{W,eBE(y)} I E-i,il 0 

s_t 

in IT -probability, ae 1R0
, where jB I denotes the volume of B; see Theorem 

O,a 

3.12 in Bass (1984). Roughly speaking, the weighted occupation density of W 

in the vicinity of the support of the Revuz measure ~A approaches the 

additive functional A. In other words, A is in fact the collision local time 

L[W,~ ](•x1R0
) (recall (2.4.12)), and with (4.1.2) we get a justification for 

A 
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the formal expression ( 4.1.1) (for time-homogeneous A). 

Of course, in the one-~ caa,e the matter drastically simplifies 

by the existence of the well-behaved family {LY ( dr );ye !R} of Brownian local 

times. Indeed, here we have 

L[W,~A](d[r,y]) = ~A(dy) Ly(dr) 

(see, for instance, [RY], Theorem 10.2.9), 

I1
0 
L[W,~ ](d[r,y]) = ~A(dy) p(r,y-a) dr, 

,a A 

and analogous formulas hold for higher moment measures (see also Proposition 

13.2.1 in [RY]). 

As in Subsection 2.2, let I denote a finite non-empty subinterval of IR+ 

with right boundary point T. During the discussion of examples, for conve-

nience we will often indicate the dimension D of the D-dimensional Brownian 

transition density function by a lower index: p =: p
0

. 

4.20 Examples of Branching Rate Functionals A in S1 

To warm up, let us consider a few examples of functionals A~ satisfying 

the exponential moment assumptions of Definition 2.3.1. 

Example 4.2.1 (bounded regular branching rate). First of all, the case of a 

bounded regular branching rate ~ is covered. In fact, assume 

(4.2.2) ~(r,dy) = ~(r,y)dy, rel, with ~e<P~ 

(recall Subsection 2.1). Then by (4.1.1), A~(s,T) ~ 11~11 00 Iii, se/, (where 

I I I denotes the length of the interval /). Indeed, 

(4.2.3) Jdy 8/z) = Jdy 8/y) = ], ZEIRD. 

Consequently, the requirements (2.3.2) and (2.3.3) are certainly fulfilled, 

i.e. all functionals A~ with a bounded regular ~ belong to S1
• I 

Example 4.2.4 (one-dimensional uniformly finite branching rate kernels ~). 

Next, in the case D=l, a variety of branching rate functionals A~ obey the 

21 
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Definition 2.3.1. In fact, assume that ~ is a kernel satisfying 

(4.2.5) 

Then, for se /, ae !R, 'A>O, we have 

(4.2.6) rr,,.exp[M~(s,T)] s; rr,.0exp [Al q L0(s,T)] s; IT0•0exp [Al~~ L0(0,T)] < 00, 

where L 0 denotes the 13f'UlllWUan £acat tune at 0. Indeed, expand the left hand 

side in a Taylor series and, for k~J, rewrite 

(4.2.7) TI [AAJ:(s,1)]k = kl A,k TI fr AJ:(dr) ... fr AJ:(dr ). s,a "':> s,a J s "':> 1 J r(k-1) "':> k 
Use the Markov property at time rk-l and, by (4.1.1), 

n rr A (dr ) < rr dr IJ:(r dy) p (r -r y-b) be !R, r(k-1),b J r(k-1) ~ k - J r(k-1) k "'=> k' 1 k k-1' ' 

(with r
0
:=s and b= W r(k-l)). But the Gaussian densities p(t,• ), t>O, are 

maximal at 0, and by applying the assumption (4.2.5) we find the upper bound 

I~ l fr(k-1) drk p /rk-rk-1'0) = I~ l n r(k-1),0 f (k-1) L 
0
(drk). 

Continuing k-1 times we arrive at the bound 

k! A,k I~ t ns,O I's Lo(drl) ... nr(k-1),0 fr(k-1) Lo(d\) = A,~ I~ t ns.JLO(s,T)]k 

for (4.2.7). Here we used that at all the times r. "selected by" L0 the 
1 

Brownian paths are at 0, and then the Markov property. Consequently, the 

first inequality in the claim ( 4.2.6) is true. By time-homogeneity of the 

Brownian motion law and the monotonicity of the local time, we may even pass 

to s=O. But all these exponential moments are finite, since the law of 

L 0(0,1) with respect to TI has Gaussian tails. Hence, the AJ: under 0,0 "':> 

discussion satisfy the conditions (2.3.2) and (2.3.3). Consequently, all 

branching rate functionals A~ attached to uniformly finite branching rate 

kernels ~ belong to S:1• I 

Example 4.2.8 (factored branching rate kernels ~). To discuss also an 

irregular ~ in higher dimensions, we consider the following factorization 

example. Write the dimension D as D=d+l, ~l, that is we split up an eaiJw, 

caoruilnate. Assume that 
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(4.2.9) 

where ~ is a one-dimensional uniformly finite kernel as in the previous 
1 

example (satisfying (4.2.5)), whereas ~d is a measurable and bounded function 

on /xrRd, as in Example 4.2.1 above. In particular, ~ lo. Wiequf,art ln a1 rn,o,ot 

ane caoJUii.Jiate. To see that a branching rate functional A~ with such ~ 

belongs to s:1, we use that 8 (W) in (4.1.1) also factorizes, namely to 
y r 

8 (~) 8 (W1
) where W=[~,W1] and again y=[y ,y ]. Then we can bound 

y(d) r y(l) r d 1 

~d by a constant and may apply ( 4.2.3) to arrive at 

A~(dr) ::; const dr f~ (r,dy ) 8 (W1
). 

~ 1 1 y(l) r 

Then continue as in Example 4.2.4 above. I 

4.3. Examples of ~-Regular Branching Rate Functionals 

Here we want to discuss the requirements in the Definition 2.4. 7 of 

~-regular branching rate functionals in the case A=A~ as indicate~ in 

(4.1.1) (regardless whether A~ belongs to S:1 or not). We pay attention only 

to the most important case ~ = L~= 1 8 ~(j) for some fixed ~(1), ... , ~(!) e rR
0 

(related to the fundamental solution with terminal condition ~). To this end, 

fix l=[L,n, L<T. 

Example 4.3.1 (one-dimensional kernels ~). First of all, for a variety of 

one-dimensional kernels ~' the corresponding branching rate functionals A~ 

fulfill the conditions in Definition 2.4.7. In fact, suppose D=l and that 

(4.3.2) limsup sup f~(r,dy) p (e +T-r,y-~(i)) < oo, J::;i::;f, 
m-+oo rE I 1 m 

for some zero sequence ~ (cf. the condition (3.8) in [Va]). Of course, each 

bounded regular ~ as in ( 4.2.2) satisfies ( 4.3.2), and also each single 

atomic ~' that is ~( r, •) = 8 , provided that c -:/= ~( 1), ... , ~(!). The c 
condition says, roughly speaking, that, as r approaches T, the measure ~(r,) 

should have a £lrUle ~ a& ma/.10, "al" the ~(i). By the. way, this then 

23 
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implies (in the present one-dimensional case) that the super-Brownian motion 

with branching rate kernel ~ has at time T a finite (random) density of mass 

at 1(1 ), ... ,7(1). 

To verify the requirements in Definition 2.4.7, start by looking at the 

expectation expression in the definition 2.4.6 of Hk,t with t} = .L.8 .. 
m,n J ?U) 

Write the k-th power of the second integral as k-fold iterated integrals and 

interchange the order of all integrations to arrive at 

(4.3.3) kl IIs,a J: A~(dr/ .. fr(k-l) A~(drk) ni:1 L~=l p(en +T-ri,Wr(i)-7(j)) 

rr A~(d't) [:L~ p(c. +T-'t,W-r-1UJ)] 2
• J tVr(k) ~ J=l m w 

Taking into account the Markov property at time r , the interior integral can 
. k 

be estimated from above by 

( 4.3.4) f. V<(k) dt I l;(t,dy) p( 't-r k,y-W <(k)) [ I'.=l p( em+ T-'t,y-1(j))] 2• 

By (3.1.2), 

p('t-r ,y-W ) L~ p(e + T-'t,y-7(j)) :::;; canst ('t-r r 112 (T-'tF1
(2. 

k r(k) J=l m k 

This leads to remaining l integrals as in ( 4.3.2). Pass to their suprema on 

r; e (r ,T), bring them out of all of the integrals, and note that they have 
k 

finite limit superiors as m'oo by assumption (4.3.2). For (4.3.4) the term 

(4.3.5) canst f vr(k) d't (t-r/1
f2 (T-'tF1

f2 

remains. Denote this integral by l(rk,t). Proceeding step by step similarly 

with the other integrals in ( 4.3.3), we obtain the upper estimate 

(4.3.6) ck kl rr dr ... rr dr nk p (r.-r. ,0) l(r ,t) J s 1 J r(k-1) k t=l 1 1 i-1 k 

for Hk,t' where again we set r =s, and C is a constant. But l(r ,t) is 
m,n 0 k 

uniformly bounded (to see this, switch from the variable 't to q by the 

substitution ('t-r ) = (T-r )a). Moreover, l(r ,t) converges to 0 as t1'T, 
k k k 

for each fixed r . By dominated convergence, for all three properties in 
k 

Definition 2.4. 7 it remains to check that 

(4.3.7) kl rr dr .:. rr dr nk p (r~r ,0) j s 1 j r(k-1) k i=l 1 i i-1 
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is finite and of order o(k!/A,k) as k-+oo, for each /i.,>0. But (4.3.7) is simply 

TI [L0(s,n]k with L 0 the Brownian local time at 0, and the statement 
s,O 

follows from the existence of all its exponential moments, recall ( 4.2.6). 

Summarizing, branching rate functionals A~ corresponding to one-

dimensional kernels J: with (4.3.2) are i}-regular where i} = I 8 . I 
"' j ~(j) 

Example 4.3.8 (factored branching rate kernels ~). Again write the 

dimension D as D=d+l, cP-1. Assume the factorization ~ = ~dx~ 1 of (4.2.9) 

with a bounded regular function ~ on /xrRd and a one-dimensional kernel ~ 
d 1 

but now satisfying the condition 

(4.3.9) limsup sup (e +T-r/1 f~ (r,dy) p (e +T-r,y -? (i)) < oo, l-5:i~l, 
m-+oo r m 1 1 1 m 1 1 

o• 

for some zero sequence ~· Consequently, roughly speaking, for r close to T, 

the measure ~/r,•) should approach a "~ -Ol1Uli1" ~ a& rnao1.1 at 

all ~ (j). (Compare with the weaker condition (4.3.2) where the singular 
1 . 

factor in front of the integral is missing.) Of course, this condition is 

fulfilled, for instance, for ~ (r,•) = 8 with c -:f::. ? (1 ), ... ,? (l), but 
1 c 1 1 

it fails to hold if ~ ( r, •) is identical to a uniform distribution around 
1 

some ?/j). Consequently, opposed to the one-dimensional case ( 4.3.2), the 

random medium ~ has to be "~ thin" at those ~(j). (Again, this 

implies for the super-Brownian motion X with that branching kernel ~ that XT 

has a finite density of mass at ?0 ), ... ,?(/).) 

To check that in the present case the requirements in Definition 2.4.7 

are fulfilled we have only to modify the arguments concerning the previous 

example. In fact, proceed up to (4.3.4). The latter can now be written as 

f.vr/t f S/t,yd)dyd JS/t,dy1J p0 ('t-rk,y-Wr/ [Li p0 (E m + T-'t,y-1UJ)]2. 
Pass to a bound of ~d' and factorize the ( d+ 1 )-dimensional Brownian motion 

and transition density function as follows: 

25 
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Then estimate 

P/t-rk,y1-W~) p/cm +T-r,,yd-?ijJ) p/cm +T-r,,yd-?// J) p/cm +T-r,,y1-?/j) 
k 

::;; Const ('t-r r 1
{2 (E + T-r,rd (T-r,F 1

{2, 
k m 

and integrate the density function p (r,-r ,•-w1 ) with respect to dy . 
. · d k r(k:) d 

Extract terms as in condition (4.3.9). It remains an expression as in 

formula line ( 4.3.5). 

In the next integral we use 

pi (rk-rk-1 'YI -W~(k:-t)) p <l(c n + T-rk,y <l-?<lUJ) p 1 (c n + T-rk,y 1-?1UJ) 
::;; const p (r -r ,0) (E + T-r F<lf2 p (c, + T-r ,y -~ (j) ). 

. 1 k k-1 n k 1 n k 1 1 

1 ::;j ,j' :s;[, 

We continue now as in the preyious example, where the present case is even 

simpler since here we have only to handle the singular factor (c + T-r F<lf2 
· n k 

instead of (E + T-r Fd. 
n k 

Summarizing, branching rate functionals Al; with factored branching rate 

kernels l; = l;dxl;1 where the one-dimensional kernels l;1 ar~ sufficiently 

irregular at ?0 ), ... ,?(!) in the ~ense of (4.3.9), are i}-regular with i} = 

2./>?G). I 

4.4. Examples of a.e.-Regular Branching Rate Functionals 

The aim of this subsection is to deal with examples of a.e.-regular 

branching rate functionals Al; according to Definition 2.6.1. For this 

purpose, fix l:=[L,T), O~<T, set D=d+ 1, c:P-0, and restrict the attention 

to a &actaried &rtanchlnq rw.te kerutel ~ = ~dx~ 1 as in (4.2.9) with a bounded 

regular ~d (with the obvious interpretations in the boundary case d=O we 

include at this place; for instance, read dyd as 8
0 

if d=O). The remaining 

one-dimensional kernel ~ is, for simplicity, assumed to be constant in time. 
1 . 

~ (L,•) will be sampled from some probability space [Q,?f,1>] as described 
1 

in the two examples below ( ruutdam medlum). In both cases, the realization of 

the measure l;/L,•) is supported by a countable set {x/i~l}. Hence we may 
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interpret the super-Brownian motion with such (randomly selected) branching 

rate functional ~ as a model in which branching is allowed only at a 

27 

Example 4.4.1 (branching restricted to infinitely many isolated hyperplanes). 

Suppose that ~/L,•) is sampled from a homogeneous ~paint priaceo,a, 7t 

on !R of finite intensity. That is, 7t is a random locally finite counting 

measure on !R whose law is shift invariant, and whose intensity measure 

~1t( dy 
1
) is a finite multiple of the Lebesgue measure dy !' 

We need to show that for almost all realizations 7t of the point process 

there is a Lebesgue zero set N (depending on the realization 7t), such that 

for each choice of ~(l ), ... ,~(/) e: N there is a zero-sequence ~ such that 

the "kernel" ~ satisfies the condition (4.3.9) with this c. In fact, by the 
1 -

arguments in the discussion of the examples in Subsection 4.3, then the 

corresponding branching rate functional A~ is a.e.-regular. But in the 

present time-homogeneous case ~ (r,•)=~ (L,•)=1t the l.h.s. in (4.3.9) can be 
I I 

estimated from above by 

supo~t~T-L+I t1 f 1t(dy1) p1(t,y1-~JiJ). 
Therefore it suffices to demonstrate that for all K> 1 

~fdz t{sup < {d J1t(dy) p (t, y -z) = oo} = 0 I O<tSK I I 11 . 

holds. By Fubini's theorem~ it is even enough to show that 

1'{sup0<6K ('1 fit(dy
1
) p/t. y

1
-z

1
) < oo} = ], z

1
EIR, 

Moreover, by the homogeneity of the point process, we may focus at the case 

z
1
=0. Actually, we will even verify that for each constant K>l with 

~-probability one 

(4.4.2) f 1t(dy1) sup0<t~ {d P/t,y1) < 00• 

To this end, distinguish between I y I "C.J and the complement. In the first 
1 
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case, take the expectation and note that 

(4.4.3) fd p (t,y) ::; canst fd-lf2 exp[-1!2t] exp[-y212K] ::; canst exp[-y212K], 
l l l l 

which is integrable with respect to the Lebesgue measure dy i- Concerning the 

second case I y
1 
I <1, we have only to note that the integrand in (4.4.2) is 

finite as long as y 
1 
-:tO, and, on the other hand, that, with probability one, 1t 

has only finitely many points .in { I y 
1 
I <1}, and they are different from 0. I 

Example 4.4.4 (branching restricted to densely situated hyperplanes). We 

modify the previous example as follows. Replace 1t by a l.1ta&te ruuuiam meao,uri,e 

r = 1:00 a8 
i =l i x(i) 

on !R with index y E (0, 1!(2D-l)), characterized by its Laplace functional 

(4.4.5) 1'exp(r,-J) = exp [- f dy
1 
/(y

1
)]. f?.O measurable. 

Note that the positions {x.;i~O} of the atoms of r are ~ situated 
1 

in !R. We stress also the fact that for D > 1 by assumption the index y cannot 

be arbitrarily close to 1. This, of course is only a sufficient condition. On 

the other hand, for growing y the random measure r becomes more and more 

small atoms, that is, it comes closer and closer to the Lebesgue measure 

(boundary case y=l). But under D>l and regular branching kernels ~ the super-

Brownian motion has singular states. Summarizing, in the case D>l we 

presupposed that ~/L,•) is not "too close" to the Lebesgue measure . 

. To see that a branching rate functional A~ with such a ~ is a.e.-

regular, follow . the constructions and arguments in Example 4.4.1 up to 

(4.4.2), that is, up to the statement 

(4.4.6) fr(dy) sup < {d p (t,y) < oo ~-a.s. 
l O<t~ 1 1 

To verify this, it suffices to show that the Laplace transform of this random 

variable is 1 at 0. But applying the Laplace functional ( 4.4.5), this will 

follow if we verify that 

(4.4.7) 
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Under the additional restriction I y I >J we use (4 4 3) But if I y I <l note 1 - ' • • • 1 

that by elementary calculus 

(4.4.8) 

The latter function of y 
1 

is y-fold integrable around 0 if and only if 

y(d+D) < 1 which we assumed. Consequently, (4.4.7) is true and we are done. I 
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