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SUPER-BROWNIAN MOTIONS IN HIGHER DIMENSIONS
WITH ABSOLUTELY CONTINUOUS MEASURE STATES

By Donald A. Dawson” and Klaus Fleischmann

Carleton University and [Institute of Applied Analysis and Stochastics

Abstract. Continuous super-Brownian motions in two and higher dimensions are
known to have singular measure states. However, by weakening the branching
mechanism in an irregular way they can be forced to have absolutely
continuous states. The sufficient conditions we impose are identified in a

couple of examples with irregularities in only one coordinate. This includes

the case of branching restricted to some densely situated ensemble of

hyperplanes.
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1. INTRODUCTION

1.1. Motivation

Consider a D-dimensional eupen-Brownian mation X = {xt;tZO} with
constant &ranching nate p>0, related (via Laplace transition functionals) to
the equation
(1.1.1) (8/at)y = Av - p¥* on R +><rRD.
It is well-known that in dimensions D>2, the states X of X are oingulan
measures (Dawson and Hochberg (1979)), whereas in the one-dimensional case
they are absolutely continuous, and a corresponding density field can even be
chosen is such a way that it is jointly continuous and satisfies a stochastic
equation (see Konno and Shiga (1988) or Reimers (1989)).

The punpose of this papen is to show that, by changing to a sufficiently |
invnegulan branching rate p, even in higher dimensions super-Brownian motions
can be forced to have aksolutely continuous states.

The idea is to restrict the branching effect to a fractal set of space
points (fractal catalytic medium). Then the heat flow can more. effectively
smear out the population mass possibly resulting in absolutely continuous
measure states. From this point of view, the only problem is to guarantee
that the catalytic set is nth too diffuse, i.e. that it can be hit by the
"underlying" motion (think of an approximating particle branching Brownian
motion), in other words, that the motion component "will feel" the catalytic

set.

1.2. Some Review of the One-dimensional Case

It might be useful to discuss at this point what is known in the one-
dunen/uonae cane D=1. Here Brownian particles have a positive occupation
density (Brawnian focal time) on a single point set, say’{ c}. Hence, it is

actually possible to restrict the branching effect to this "extremely thin"
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set {c}, more precisely, to describe the branching rate p by the Dirac
d-function SC. Consequently, kbranching is allowed only at ¢ and there with an
unbounded intensity, whereas outside ¢ only the heat flow acts. |

The resulting oupen-Brownian motion with a aingle point catalyst is
actually non-degenerate and even lives (excluding the initial time point) on
the set of absolutely continuous states. Moreover, it has a series of
interesting properties around the catalyst, significantly different from the
ones in the case of a regular branching rate; see Dawson and Fleischmann
(1993), Dawson et al. (1993), or the recent survey Fleischmann (1993).

More generally, to any finite kmea‘sure p(dy) on the real line R there
exists a (one-dimensional) super-Brownian motion with branching rate fowmally
described by the genenaliged Radon-Nikodym derivative ﬁ%’)—) with respect to
the Lebesgue measure dy. Moreover, p may even be time-dependent, that is, a
fairly general kennel p(t,dy) from the half line R " into the set of all
tempered measures on R; see Dawson and Fleischmann (1991, 1992).

Nevertheless, under not too restrictive conditions, the resulting super-
Brownian motion x:{irt;tZO} with &nanchumg‘nate kennel p, or even (one-
dimensional) superprocesses with a more general motion law and branching

mechanism, may have absolutely continuous states; see Dawson et al. (1991).

1.3. Additive Functional Approach
If p be a branching rate kernel as just discussed, and W = {Wt;tZO}
a one-dimensional (continuous) Brawnian mation, then by
(1.3.1) | Afdr) o= de fp(t,dy) 8,(W)
we can formally associate a continuous additive (non-negative) functional A

, ‘ p
of W, interpreted as the collinicn Lacal time L{w,p] of W with the

deterministic path p ("accupatian denoity of W at p"). For instance, if p:—:8c

as in the single point-catalytic super-Brownian motion above, then A 0 is
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nothing else than the Brawnian Lacal time Ldy) = BC( Wt) dt at' the point
C. |

In general, the additive functional A p(dz‘) provides a more sophisticated
way to think of the branching rate in the model. In fact, A p(dz‘) can be
interpreted as the rate of branching at time ¢ at W, the (random) position
of an "infinitely small particle hidden in the cloud" ‘xt.

In contrast to the other papers [Hf Eq,At,Va,Li] mentioned above, in
this note Dynkin's additine functional approach to SUpEIprocesses is
followed. That is, for the description of the D-dimensional super-Brownian
motion X we use ‘a continuous additine functional A of thé D-dimensional
Brownian motion W instead of a (deterministic) branching rate kernel p. As
above, A(d¢) is interpretéd as the nate of &/Lanoiwng at time ¢ at Wt, thé
location of an infinitesimal small particle hidden in the cloud X

Our approach in the present paper devoted to the hig‘her-dimensional case
is to impose sufficiently strong technical conditicna on the functional A
(see the Definitions 2.6.1 and 2.4.7 below), which guarantee that a
super-Brownian motion with A as branching rate functional has absolutely
continuous states. |

That such conditions are meaningful at all will be demonstrated by
discussing a couple of examples with the formal structure (1.3.1) (but now in
D dimensions), see Section 4 below. To mention at this point only one of
them, think of a branching rate kernel p of the form

p(tdy) = p(ty)dy, p(dy). ¥y =Dyy] e R5R =R,
where p d is a bounded measurable function whereas p 1(dyl) is a realization of
a ataue nandom meaoune ZT; . ociESx o OMR of sufficiently small index. In
other words, the brénching effect is restricted to a denoely oituated

callection of nandomly oelected hypenplanes; see Example 4.4.4 below. In
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particular, if ,pdE] , given p ’ the corresponding time-homogeneous branching
rate functional A 0 is just the Brownian local time at this weighted ensemble
of hyperplanes. |

To be honest, we emphasize at this point that all of our examples have
viequbanities in at most one coondinate. From a technical point of view,
this is a type of reduction to the one-dimensional case. Examples concerning
truly higher-dimensional irregularities would involve a more general class
of higher-dimensional collision local times which is a more delicate problem
(we refer to Barlow et al. (1991)). Consequently, the present note is only a
- first step in the study of higher,—dimensional superprocesses with absolutely
continuous states. Examples with hTégularitics in more than one dimension
and a deeper understanding of conditions which guarantee absolutely
continuous states seem to need tools which are beyond the scope of the
present note.

Concerning the construct‘ionv of a super-Brownian motion X, we completely
rely on Dynkin (1991). There some moament conditione on the additive
functional A are imposed which guarantee the existence of X. Applied to the
special case D=1, A=A 0 as in (1.3.1), such conditions are stronger than those
used in [Hf,Va]. On the other hand, the additional assumptions imposed in the
present paper to guarantee absolutely continuous states when specialized to
D=1 and A=A o cover the results of [Va] (applied to a Brownian mqtion law and
a branching mechanism with finite second moment).

As in [Va], the absolute continuity of the states of & is shown via the
construction of fundamental aclutions of the related non-linear integral
equation (cumubant equation) by a regularization procedure. In [Va] purely
analytic methods were used (contraction principle related to an Ll-space) for

the construction of fundamental solutions. In contrast, in this note we
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exploit some Gromnwall inequality type techniques which are adapted to the

additive functional approach.

1.4. Outline

The structure of the paper is as follows. In Section 2 we state the
results, the main point is Theorem 2.6.2. Proofs concerning the fundamental
solutions of the cumulant equation and the absolute continuity of the measure
states follow in Section 3. The final section is devoted to examples.

We assume that the reader is familiar with the basic notion and

properties of super-Brownian motions; see Dawson (1992) for a recent survey.

2. RESULTS
2.1. Preliminaries: Some Terminology

Start by intrbducing some terminology. We call € = {8n;n21 } a gena
sequence if 0<enSI , n=I, and € =2 0, whereas we ;ét e=0 if enso'.‘ To
avoid double indices, sometimes we write also g(n) instead of €, for
instance. Integrals {v(dx) f{x) are often written as (vf) A lower index +
on a symbol of a set will always refer to the subset of all of its non-
negative members.

Fix a dimension D>I. Let I be a (non-empty) finite subinterval of R L
[0,0), and write [L,T] for the amafleat claved interilal which covers 1.
Denote by & and @' the set of all bounded mea,uma&ﬂe functions @: R’ >R and
u: IXR® SR, respectively. We endow @ and @' with the topoldgy of ounded |
paintwice cormengence. We will use the symbol PP, to denote this
convergence. (Recall that functions converge boundedly pointwise if they are
uniformly bounded and converge pointwise.) Then @ and <I)I are Banach algebras
with respect to the pointwise product of functions.

Write M, for the set of all finite measures defined on R, endowed with
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the topology of weak convergence.

Let [WH s>0 acRr ] denote the canonical (continuous) Brownian
motion in R with generator KA, where the diffusion conostant x>0 is fixed
once and for all. Write

p(ty) := (4nxty™? expl-|y|%4xd], 0, yer®,
for the corresponding Brawnian thansition density function, and let {Sl;tZO}
denote the related Brownian contraction aemi-group on O. Set
(S'o)s.a) := S_ o(a) = I oW,), ¢ed, sel, ae R°,
for the heat flow on / with "teaminal condition” ¢. Note that S'is a

(linear) contnaction openaton of ® into @

2.2. Branching Rate Functionals

Let A(dt) always denote a (non-negative) continuous addx,tuwe unctional
of the Brownian motion W. Consequently, given W, the measure A(dz) on R + is
locally finite and does not carry mass at any single point set. On the other
hand, if (s,¢) is an open subinterval of R " then A(s,t) .= A((s,t)) is
assumed to be measurable with respect to the uhiversal completion of the
o-field generated by {W ;s<r<i}.

Superprocesses where the branching is governed by certain additive
functionals A of the underlying motion Markov process had been introduced by
Dynkin (1991). The conditions on A imposed there are stronger than needed.
Howéver the construction of superprocesses with much more general additive
functionals A will be provided in Dynkin (1993). For our purpose, we leave

open the problem how such conditions should look like, but to be on a firm

base, we introduce the following definition.

Definition 2.2.1 (branching rate functionals). A (non-negative) continuous

additive functional A of W is called a &ranching nate {iwwtwnae if there
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exists a time-inhomogeneous measure-valued Markov process X = -

u,sZO,p,e Mf]\ with faplace thansition functional
(2.2.2) P

[OC,IPS
uCXP(xt"(p) = exp(u, -u(p(s,O,t)), 0<s<t, ue o 9€ o +
where u(PZO is (uniquely) determined as (bounded) solution of the cumulant

equation
223)  wsar) =S, 9@ - 10 [ A(dr) W), 0<s<h, aeR”.
In this case, X is called a oupen-Brownian motion with branching nate

functional A. |

2.3. Existence of Super-Brownian Motions
In this subsection we review the existence of super-Brownian motions
under the following (exponential) moment assumptions taken from condition

1.2.C in Dynkin (1991).

Definition 2.3.1 (exponential moment assumptioné). Let :%II denote the set of
all those continuous additive functionals A of the Brownian motion W
satisfying the following moment conditions:

(2.3.2) Hs’aexp[M(s,T)] < o, sel, aeR°, A>0,

(2.3.3) , Sup{Hs'aA(s,T); sel, ae RD} < oo,

Write Ae g if A belongs to g’ for all (finite) intervals /. |

Baamples of such branching rate functionals will be discussed in
Subsection 4.2 below.

The existence of superprocesses with branching fate functional in & is
due to Dynkin (1991), Theorem 1.1; we apply it tor Brownian motion and

continuous branching mechanism:

Lemma 2.3.4 (existence of super-Brownian motions with branching rate

functionals in g). Ja each functicnal A in A thene exiote a ocupen-Brownian
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mation X with A as branching nate functional. X has the follawing expectation
and variance expressions: Fon 0Ss<t, Le M o ond Q@ _,

(2.3.5) rPs,u(DCt,(p) = Iu(da) S_o(a),

(2.3.6) wars’u(frt,(p) =2 ju(da) m ﬁ A(dr) (S_@)(W ).

Note that for non-vanishing A,u,¢ and s<t, the variance is strictly

positive, i.e. that X is really random.

2.4. 9-Regular Branching Rate Functionals

In this subsection we introduce the technical conditions on a branching
rate functional A which we will later show guarantee the existence of
fundamental solutions needed for our approach to ébsolute continuity.

From now on assume that / is a halfopen interval [L,T), OSL<T. Write
(2.4.1) (Slﬁe)(r,y) = Jﬁ(dz) p(e+T-r,y-z), Ve My e>0, rel, ye [RD,
for the heat flow Slﬁe on / terminated at time T by the nequlariyed measune

(2.4.2) O, = 05, Ve, e>0,

with density function (denoted by thé same symbol ﬁe by an abuse of notation):
(243) 8.(y) = Jﬁ(dz) pley-z) =: O*p(e)(y), OeM, e>0, yer".

Set SO := Slﬁo ~in the formal boundary case €=0 in (2.4.1). Note that

(2.4.4) §',(x,) .E_i% S'D(r,e), Ve, rel,

by bounded convergence.

Notation 2.4.5. Recalling our convention in the beginning of Subsection 2.1,
let € be a zero sequence or €=0. Moreover, let A be a branching rate |
functional, Qe Mf, sel=[L,T], and ae R’ For k20, te[s,T], and m,n=1, set

@46 H =1 [T Ay [0, Frowy U" A(dry [s's, Jorw l)]“. B

m,n

Definition 2.4.7 (0-regular branching rate functionals). Recall that /=[L,T),

0<L<T, is fixed. Let ¥ belong to M, and A be a brahching rate functional. A
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is called 9-neqgulan, if there is a zero sequence € (depending on /,0,A),
called ¥-admissible sequence, with the following properties. For each fixed
sel and ae er,

(2.48)  limgyp IT_ U‘ A(dr) Slﬁe(n)(r,Wr)]k <o, s<t<T, k2,

. k,t
(2.4.9) hmsupm_m Hm,n %—T> 0, k=0,
(2.4.10) (WIK!) limsup  H'' s 0, >0,

If Ais Sa-regular for some 3e R, then we say that A is negulan at 3. |

Formally speaking, a branching rate functional A is ¥-regular, if some
higher moment conditions concerning certain functionals of A are fulfilled.
To clarify these conditions, in Subsection 4.3 below we will exhibit a couple
of examples of branching rate functionals A which are regular at 3. But let
us sketch it at this point.

All these examples have the formal structure
2.4.11) Ag(dr) = dr J&(r,dy) 8,(W)
where € is a kennel. As above we interpret A&, as callision Local time of the
D-dimensional Brownian motion W and the deterministic path & An enriched
version of A& is the random measure L/W,E] on the product space R +><[RD defined
by
(2.4.12) ﬂAEJ(dr) firw) = H LW El(drdy) firy), fed!.
“(For a rigorous development of collision local times we again refer to Barlow
et al. (1991) or to Evans and Perkins (1993).)

Speciaﬁzed to the single point measure 6=83 (aiming at a fundamental
solution with terminal condition 53, 3€ IRD) the requirements in Definition
2.4.7 are then some higher moment conditions (concerning the law of W) on
functionals of the form

(2.4.13) ﬁ LW E](drdy) p(T-r,5-y),
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or even worse with p2 instead of p (note that the integrand becomes singular -

as [yl > [T3]).

Recall that the expected total mass - HO‘aA(lR +) of an additive functional
A which in the present case equals HO’aL[W,ﬁj([R +><|RD), as a function of a, is
usually called the potential of the additive functional A (see, for instance,
Blumenthal and Getoor (1968), Chapter V). In contrast to this, we interpret
the double integral expression in (2.4.13) as the rnandam [s,T]-patential
density of the colbician Local time LIW.E] at 3. (See also the discussion of
a special case after condition (4.3.2) below.) Roughly speaking, a
branching rate functional A& of the formal structure (2.4.11) is regular at 3
if the random potential density at 3 of the related collision local time
L/W.E] has sufficiently good higher moment properties. By the way,
supy, Hs,bA(S’T) < oo 1is sufficient for (2.4.8) (but is not always fulfilled

in the examples below).

Remark 2.4.14. Note that for a O-regular A the assertions (2.4.8)-(2.4.10) also

hold for g =0 or & =0. In fact, simply apply (2.4.4) and Fatou’s lemma. [

Remark 1.4.15. If A is O-regular with ¥-admissible sequence g, where ¥ has
the form Z:(:l Ki53 ® then, for any othér choice 7»;,...,7»1’(20 of the weights
Xl,...,lkZO the branching rate functional A is ¥ -regular, where ¥ :=

Zli(:l 7»;536), and the same zero sequence € may serve as 9 -admissible °

sequence. Consequently, € only depends on the finite support of ¥. |

2.5. Fundamental Solutions of the Cumulant Equation
Now we are dealing with the question of existence of and convergence to
fundamental soluticns of the cumulant equation (2.2.3) with branching rate

functional A, i.e. solutions with degenerate "terminal conditions" as u(T-,e)

11
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= 83 (instead of wu(T,e) = ¢ € @ +). These fundamental solutions ‘will be
needed later for the construction of the random density of the measure X, at
seR° (for Lebesgue almost all seRD).

To be more precise, as in the previous subsection set [=[L,T), 0<L<T,
and for e M . consider the cumulant equation in the form |
@51 usa) = SV(sa) - T J" A(dr) ¥(rW), sel, ac®,
that is, now with meaoune-valued tenminal condition u(T-,#) = . For all

U-regular branching rate functionals A this is a well-posed problem:

Theorem 2.5.2 (fundamental solutions). Zet O belong ta M. and A ke O-nequlan
(necall the Delinition 2.4.7). Thene is exactly one measunable non-negative
function U'[A;8] defined an IxR® which sabses equation (2.5.1). Moneosen,
(2.5.3) AU AN (s,9) TE% S(s,e),  sel,

(Linnt deninsatinve with nespect ta a amall panameten \). The solution U[A,0]
i continuous with nespect ta the aopenation of regularization of O (necall
(24.2)) in the following cence: # € := {e n2I} is a O-admicaible

sequence (acconding to the Definition 2.4.7) then

(2.5.4) UIAD, I(s,2) =B U[AD®)(se),  sel.

The proof of this key theorem will be provided in Subsection 3.1 below.

2.6. Main Result: Absolutely Continuous States

Consider a super-Brownian motion X with branching rate functional A
which starts off at time s=0 with any initial state u in M. (We do not
necessarily impose that A€ @.) The purpose of this subsection is to formulate
our main result which states that to a fixed time T>s the random measure X,
is a.s. akoolutely continuoua, providethhat for I=[L,T) with s<L<T (i.e. in

a lower neighborhood of T) the branching rate functional A satisfies
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~ conditions as in Definition 2.4.7 but with ﬁ=83, for Lebesgue almost all

3€ R°. To be more precise, we introduce the following definition:

Definition 2.6.1 (a.e.-regular branching rate functionals). Fix a halfopen
interval [:=[L,T), OSL<T. A branching rate functional A is séid to be
a.e.-nequlan if there exists a Borel subset N of R of Lebesgue measure 0,
called an exceptional set, such that A is U-regular (Definition 2.4.7) for

all point measures & on R® with finite support contained in RPW. B

Roughly speaking, an a.e.-regular branching rate functional is regular
at Lebeogue almast eneny 3. In the case of a branching rate functional A=A§
related to the collision local time L{W.,E] as discussed after Definition
2.4.7, the present definition requires, loosely speéking, that for Lebesgue
almost all 3e R the [-potential density of L/W,E] at 3 has well-behaved
higher moments. &xamples of such a.e.-regular branching rate functionals will
be discussed in Subsection 4.4 below.

Now we are in a position to state our main nesult:

Theorem 2.6.2 (absolutely continuous states). fet X = [fJC,rPs 520, Mf] be

awm-@wmwwmnwtbanuﬂth&nmchinqnatewwtwnaﬁAu(necaMom
Definition 2.2.1). dooume that A io a.e.-nequlan concenning the interwsal
[=[L,T) (necalt @eﬁmm‘z.m ). Then fon ficed OSSSLET and pe i, thene
mmammmmauemmmemDmm |

IPS’u{frT(dz) - a:T(z)dz} - 1.
Honeasen, fan each finite callection 3., of points in RN (whene N io
a febesgue feno oet as in Definitian 2.6.1), the Laplace function of the
nandom wmecton [a:T(sl),...,mT(sk)] with neopect ta P, io glsen by
(2.6.3) lPSvuexp[ - Z‘;l ?uiacT( 3i)] = exp(u,~u(s,0)), ' }”1"”1?‘;( >0, |
wmuwmmmdnogmammmmﬁm,ﬁ] (accanding to
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Theonem 2.‘5.2) to the intewal [s,T], and O := 2‘;1 7%630)' #n panticuban,
(2.6.4) P, &l3) = Ju(da} D(T-5,5-a),
| (2.6.5) var, @ (3) = 2 ju(da) I J* A(dr) p(TrsW).

2.7. A Basic Lemma

The previous theorem is heavily based on Theorem 2.5.2 in conjunction
with the following lemma, taken from [Va]. Actually, there d-measures are
approximated by uniform distributions on small intervals, but our change to
Gaussian densities p(s) = p(e,e) with small variance can easily be
justified by a modification of Qe&a»que; o dennity theonem. Moreove;, the
vector assertions in the end of the lemma follow from a simple modification

of the proof of the other statements given in [Va].

Lemma 2.7.1 (basic lemma). ﬁeetv&eanandame!&emmtmtheopaoe/rlfog
finite meaounes aven a probability opace [QFP] satisfying the faltowing two
(i) - Therne is a Bonel suboet N of R° of Lebesgue measune 0 such that fon

each 3éRDW thene ia a gena sequence € auch that V*p(t-:?,n)(a)

consenges in faw to a nandom wmi,a!bﬂei‘](g) in R_ aa neo,
(i) The expectation of N(3), aay €(3), dependa on 32N in a measunable uway,

io lacatly integnable and :

P(v,9) = sz 0(z) e(z), QedD,.

Then, (aven the same prokability space) thene existe a nandam measuncble
function f on R® auch that P{v(dz) = f{z)dz} = I, and fon each 32N the
nandom nsaniables f(3) and N(3) hase the same dictribution. #n panticulan, v
is an absolutely continuous measune with P-probakility one.

Moneonen, if (i) ensen halds fon msectons, i.e. thene ia an exceptional
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mNmmmmmongmwmgl,...,gkaD\N
thene is a yeno sequence € (depending on 3 ,...,3 ) auch that

[vip(e )3, vip(e J3)] =z some [n(3)n(3)] in taw,
then [f(3)..f03)] = In3)..m(3)] in taw.

Roughly speaking, if the "local densities” g;i = (V,83) =:mn(3) of v at

3 exist in law for Lebesgue almost all 4 and their expectations "create" the
full locally finite intensity measure Pv, than v is a.s. absolutely
continuous and the density function is in law given by 1.

The completion of proof of Theorem 2.6.2 is postponed to Subsection 3.2.

3. PROOFS OF THE THEOREMS

3.1. Fundamental Solutions: Proof of Theorem 2.5.2

The purposé of this subsection is to prove Theorem 2.5.2. Fix [I=[L,T),
0<L<T, e M o a O-regular branching rate functional A, aﬁd let E_:‘be a related
¥-admissible zero sequence according to the Definition 2.4.7. In accordance
with Definition 2.2.1, assume that . is a (non-negative) solution of the
cumulant equation (2.5.1) with ¥ replaced by & where ¢ := ﬂE(n), nzl,
(recall the definition (2.4.3); note that each terminal function ﬁn is
bounded). We want to show that {un(s,O); n2l} is a Gauchy cequence in the
Banach space @, for each fixed sel.

First of all, for n>/ and sel, we have the following domination:
(3.1.1) 0 < u(se) < S (s,9) < 1D ple +T-5,0),
where 1191l denotes the total mass of . Moreover, for the D-dimensional
Brownian density function we have
(3.1.2)  ple+t0) < p(t0) = p(1,0) %, £20, 1>0.
Using |a2-b'2| = |a+b| |a-b|, for mn2I, sel and aeR" we get

ju - |(50) < |58 -5'0, |(s.0) + T[T A@nIS'S, +8'0 )rW)|u - |(rW).
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Jtenating this inequality K=/ times yields
(3.1.3) lu_-u |(s,a) < ||(Slﬁm-SI19n)'(s,-)]|oo + E+ F,
where llell  denotes the supremum norm, and we set
, R
E:= X M ﬂA(drI)...ﬂ&_l) A(dr)
(M, [s',+s's Jorw, )
I, f’ A(drl)...JTr(K) Adr, )

K+l [l 1 I 1
[ﬂ i=l1 [S ‘ﬁm+S ﬁn](ri’Wr(i)) ] [S 1Q}m-"S ﬁn](rl<;+1’Wr(1<;+1)

S‘ﬂm-slﬁn

(r.Ww r(k))
and

"y
I

).

For each rel, ‘

B.14) g (r) := |(SD_-S0)re)], < 10U [p(e_+T-re) - ple +T-r,9)] .
Therefore, '

(3.1.5) limm’n_m SUp, < . 'qm,n(r) =0, sel,

by the uniform continuity of the Brownian transition density function p on
[c,oo)x{Rd, for c>0 fixed. In particular, the first term on the r.h.s. of |
(3.1.3) is negligible as m,n-»o (for fixed s). ‘

Concerning the two other terms E,F in (3.1.3), first rearrange the order
of integration in all integrals to the reversed order.

In the k-th summand of E we introduce the additional indicator l{rkSt},
for fixed te/s,T). Estimate the absolute value expression from above by
qmm(rk) defined in (3.1.4), which by (3.1.5) is uniformly small as m,n-ee.
The remaining expectation can be estimated by

< const IT_ U‘ A(dv) [SIﬁm+Slﬁn](*c,WT)] K
Use the simple inequality |
(3.1.6) |ty l* < 2904, xy20, k21,
and (2.4.8) to get a finite limit superior as m,n-co. Summarizing, the k-th
summand of E restricted to {rkSt} with a fixed ¢ is negligible as m,n-oo.
Now we turn our attention to the reverse restriction {t<rk}. Recalling

that we rearranged the order of integration and passing from the difference
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sign to the addition sign, we can turn to the upper estimate

< const IT_ ﬂ A(dr) [s'd +5' Pow) U‘ A(dr) [S‘ﬁm+s‘ﬁn]]"'1.
Apply again (3.1.6) and use (2.4.9) to see that the limit superior as m,n-eo
of this term can be made arbitrarily small by choosing ¢ sufficiently close
to T. Consequently, we are able to handle E, and we are left with F.

Write the inner K integrals concerning the variables r e in a
symmetric way getting out a factor I/K/ . Apply again (3.1.6) and then
(2.4.10) to see that the limit superior of F as m,n-co cén be made srﬁall by
choosing K sufficiently large.

Summarizing, in view of the domination (3.1.1), we established the
existence of a non-negative measurable function u on IxR® such that

un(s,O) n%i—) u(s,e), sel.

Repeating the procedure from the beginning with this u instead of "
(relating. u to em‘='0 but keeping en), and taking into account Remark 2.4.14 we
conclude that u solves equation (2.5.1). That is, we conatructed a sclution u
with measure-valued terminal condition 0.

By even simpler arguments (take emEOEen) we conclude that u is uniquely
determined by the equation. Summarizing, we now have existence, uniqueness
and the continuity statement (2.5.4). |

It remains to verify the asymptotic propenty (2.5.3). First note that
the branching functional A is AO-regular for all A>0 (by Remark 1.4.15)). Fix
sel. By the equation (2.5.1) and the domination (3.1.1) (both with O replaced
by A®), |
(3.1.7) UTANS] - AS'8|(s.a) < WP TI, JT A(dr) [S'o(r, W)

The latter expectation is finite. In fact, take a point te/[s,T) and split the
domain of integration at ¢. For the lower part, estimate one factor of the

integrand by a constant and use (2.4.8) with enEO and k=1. For the other
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part, apply (2.4.9) with emEOE€n and k=0.

From (3.1.7) we conclude that the fuﬁctions XIUI[A,?\ﬂ](s,O) pointwise
converge to Slﬁ(s,O) as AY0. But they are all dominated by the bounded
function S[ﬁ(s,O). Thus the convergence statement (2.5.3) follows.

This finishes the proof of Theorem 2.5.2. =

3.2. Absolutely Continuous States: Proof of Thedi‘em 2.6.2

Fix a branching rate functional A which is a.e.-regular on the interval
I=[L,T) with O<L<T. Let N bé a related exceptidnal set according to the
Definition 2.6.1. Fix a finite Sequence 3.3 ¢ N, and let‘t:: be a
Ziﬁa(i)-admissible sequence according to the Definition 2.4.7. Finally,
choose a starting time point s€[0,L] and an initial measure [e M In order to
show that X T fulfills the requirements with respect to 'Ps,p, stated in the
theorem, by the Markov property, without loss of generality we may assume

that s=L. The main step in the proof will be to verify the conditions (i) and

(ii) of the basic lemma 2.7.1.

1° (asoumption (i) of the basic temma 2.7.1, genenalied to wectons). Let
)‘1"°"7”k20 and set O = Zili53(i). Note that A is O-regular and that the

zero sequence € is also ¥-admissible (Remark 1.4.15). According to the
convergence statement (2.5.4),

(3.2.1) UI[A,f}e ol (L®) .[’TOE:) U'A,B](L,e).

Hence, we may integrate these functions against the finite measure W, and by
bounded convergence we get:

(32.2) (b, UIAD, I(L2) o (b UIADILe)).

Now use the domination (3.1.1) to obtain:

2. , UTABI(L,e) < (u, S(T-L)) < T-L,
(3.2.3) (n, U'A,B](L,e)) < (F‘ S'(T-L)) < |\| nui p(T-L,0) WO

where |A] = max, ?»i. But by assumption (via the Laplace functional (2.2.2)
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and the cumulant equation (2.2.3)), the Lh.s. of (3.2.2) determines the

1.8, ol ))]

with respect to P w Therefore, combined with the continuity property

Laplace transform of the random vector [( - 3(1)*p(8 )) (

(3.2.3), also the r.h.s. of (3.2.2) determines the Laplace transform of a

random vector, we denote by [ﬂ(3 ),...,n(a )]. Consequently,

624 (.8, %pte) (x5, 70 )] I3 )ems)]

in law, where

(3.2.5) Pexp|- ¢, A1(3)| = expll, -UYABI(Le).

T 3(k)

2" (asoumption (i) of the basic femma 2.7.1). Set k=I and write 3 instead of
3 We want to show that the expectation e(3) of m(3) is measurable in 3e RAW
and satisfies
u 7,0) sz 0(2) e(z), e,

But by the expectation formula (2.3.5), the Lh.s. coincides with (uST_L,cp).
Thus it suffices to show that ‘
(3.2.6) (u, Bs*p(T-L)) = e(3), 3eROW.
Recall that by (3.2.5),

Pexp[-An(3)] = exp(u, -UI[A,KS 5](L,0)), A20, 3¢ N.
But according to (2.5.3) the difference quotient K'IUI[A,?»63](L,0) is
bounded pointwise convergent to Sa*p(T-L) as 7»10 . Hence (3.2.6) follows by
bounded convergence. In particular, {e(3),3e IRD\N} is integrable and the
~ absolute continuity proof is finished.
3 (campletion of the Proof of Thearem 2.6.2). With (3.2.5), (3.2.6) and the
coincidence in law as stated in the basic lemma 2.7.1, we already have
(2.6.3) and (2.6.4). Finally, the variance formula (2.6.5) can be proved in

the same way as the expectation formula, we leave the details to the reader.

19



20 D.A.DAWSON AND K.FLEISCHMANN

4, EXAMPLES

4.1. Preliminary Remarks

Recall that all of our examples of branching rate functionals A have the
formal structure (2.4.11), that is
4.1.1) Ag(dr) = dr f&(r,dy) 8 (W)
and that via (2.4.12)~A& is formally related to the collicion Local time
L/W.E] of the D-dimensional Brownian motion W and the (deterministic)
branching rate kernel &. |

Our point of view in this section is that the formal d-function setting
can be justified in each of the following examples. In particular, we assume
that for the kernels £ under consideration the continuous additive
functionals AE’; which are formally defined by (4.1.1), really exist and
moreover their moments can be estimated from above by the corresponding
formal 8-function setting expressions. Of course, here we take advantage of
the fact that our examples have irregularities in at most one coordinate.

Recall that to each time-hamogeneous continuous additive functional A of
the Brownian motion W the so-called Rewwy measune E;,A on R is associated. It
can be defined via

(€,0) = [da T [{Ads) o(x),  ge®,.
If E,A is finite and has finite potential in Bm(O), m=1, where Br(y) denotes
“the open ball in R® with center y and radius r>0, then

@12)  sup|A(0s) - [; dr [&,(dy) [By)|" HWeB )} &3 0

s<t

in Ho’a-probability, aeR”, where |B| denotes the volume of B; see Theorem
3.12 in Bass (1984). Roughly speaking, the weighted occupation density of W
in thve vicinity of the support of the Revuz measure £ A approaches the
additive functional A. In other words, A is in fact the collision local time

LIW,E J(exR) (recall (2.4.12)), and with (4.1.2) we get a justification for
A
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the formal expression (4.1.1) (for time-homogeneous A).

Oof éourse, in the one-dimensional case the matter drastically simplifies
by the existence of the well-behaved family {Ly(dr);ye R} of Brownian local
times. Indeed, here we have

L{WE Jd[ry]) = &, (dy) L’(dr)
(see, for instance, [RY], Theorem 10.2.9),
I, LIWE,J(d[ry]) = &,(dy) p(r.y-a) dr,
and analogous formulas hold for higher moment measures (see also Proposition
13.2.1 in [RY]).

As in Subsection 2.2, let I denote a finite non-empty subinterval of R .
with right boundary point 7. During the discussion of examples, for conve-
nience we will often indicate the dimension D of the D-dimensional Brownian

transition density function by a lower index: p =:p .

4.2. Examples of Branching Rate Functionals A in 7'

To warm up, let us consider a few examples of functionals A& satisfying

the exponential moment assumptions of Definition 2.3.1.

Example 4.2.1 (bounded regular branching rate). First of all, the case of a
bounded regular branching rate £ is covered. In fact, assume

(4.2.2) E(rdy) = E(ry)dy, rel, with Ee®, ,
(recall Subsection 2.1). Then by (4.1.1), Ag(s,T) < llE_,ll<>° |I | sel, (where
|7] denotes the length of the interval I). Indeed,

(4.2.3) de 8,(2) = de () =1, zr.

Consequently, the requirements (2.3.2) and (2.3.3) are certainly fulfilled,

i.e. all functionals Aﬁ with a bounded regular & belong to a. | |

Example 4.2.4 (one-dimensional uniformly finite branching rate kernels &).

Next, in the case D=1, a variety of branching rate functionals A& obey the

21
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Definition 2.3.1. In fact, assume that & is a kernel satisfying
(4.2.5) |i|} = sup__, E(r,R) < oo
Then, for sel, acR, A>0, we have
42.6) T exp[Ag(sD] < T, exp [Mill; LO(S,D] <0, exp [Mq] L0(0,T)] < oo,
where L° denotes the Brawnian Local time at 0. Indeed, expand the left hand
side in a Taylor series and, for >/, rewrite
kK _ 1) 2k
4.2.7) Hs’a[?uAg(s,T)] = K AT J’T Ag(dr) .. F o Aeldr).
Use the Markov property at time T and, by (4.1.1),
M, ., JT(H) Agldr) < Jfﬂ(_l) dr, J&(rk,dy) p(ror yb), beR
(with r,=s and b=Wr(k-1))’ But the Gaussian densities p(t,e), t>0, are
maximal at 0, and by applying the assumption (4.2.5) we find the upper bound

0
151 JT(k-I) dr p,(rr 00 =15} Mo JT(k-l) L (dr).

Continuing -7 times we arrive at the bound

GOSN 19 M W R LTI 1 BN NS IO Y 19 np NI SC¥ )y
for (4.2.7). Here we used that at all the times r "selected by" L° the
Brownian paths are at 0, and then the Markov property. Conséquently, the
first inequality in the claim (4.2.6) is true. By time-homogeneity of the
Brownian motion law and the monotonicity of the local time, we may even pass
to s=0. But all these exponential moments are finite, since the law of
LO(O,T) with respect to Ho,o has Gaussian tails. Hence, the A& under
discussion satisfy the conditions (2.3.2) and (2.3.3). Consequently, all
branching rate functionals A& attached to uniformly fiqite branching rate

kernels & belong to &' |

Example 4.2.8 (factored branching rate kernels £). To discuss also an
irregular & in higher dimensions, we consider the following factorization
example. Write the dimension D as D=d+1, dzI, that is we split up an extra

caondinate. Assume that
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4.2.9) E(rdy) = E(ry )y, & (rdy ). rel, y=ly y JeRR,
where &1 is a one-dimensional uniformly finite kernel as in the previous
example (satisfying (4.2.5)), whereas &d is a measurable and bounded function
on IxR’, as in Example 4.2.1 above. In particular, & is inregulan in at maot
one coondinate. To see that a branching rate functional A& with such &
belongs to a‘, we use that 6y(Wr) in (4.1.1) also factorizes, namely to
1 _ 1 o :
5 (d)(W‘:) 5 (W) where W=[W'W'] and again y=[y y]. Then we can bound
€, by a constant and may apply (4.2.3) to arrive at
1
<
Ag(dr) < const dr J € (rdy) 8 (W).

Then continue as in Example 4.2.4 above. [

4.3. Examples of 9-Regular Branching Rate Functionals

Here we want to discuss the requirements in the Definition 2.4.7 of
O-regular branching rate functionals in the case A=A§ as indicated in
(4.1.1) (regardless whether AE& belongs to @' or not). We pay attention only

to the most important case ¥ = 21= for some fixed 3(1),...,5(1) € R’

b
=1 30)
(related to the fundamental solution with terminal condition ). To this end,

fix I=[L,T), L<T.

Example 4.3.1 (one-dimensional kernels E). First of all, for a variety of
one-dimensional kernels &, the corresponding branching rate functionals A&
fulfill the conditions in Definition 2.4.7. In fact, suppose D=/ and that
(432 timsup ., sup_, [E(rdy) p e +T-ry4(i) < o, Isig]
for some zero sequence € (cf. the condition (3.8) in {Va]). Of course, each
bounded regular & as in (4.2.2) satisfies (4.3.2), and also each single
atomic &, that is &(r,e) = 80, provided that ¢ # 3(1),...,3(1). The
condition says, roughly speaking, that, as r approaches T, the measure &(7,-)

should have a finite density of mass "at" the 3(1). By the_Way, this then
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implies (in the present one-dimensional case) that the super-Brownian motion
with branching rate kernel & has at time T a finite (random) density of mass
at 4(1),...,3(1). |

To verify the requirements in Definition 2.4.7, start by looking at the
expectation expression in the definition 2.4.6 of H:l; with & = ZJ_S3 o
Write the k-th power of the second integral as k-fold iterated integrals and

interchange the order of all integrations to arrive at

433) KT [7 Agdr). [T Acdr) TS E ple +T-r, W -47)

1 112
v Agl@v ‘:Zj=l p(8m+_T-t,W,c-a(J))] :
Taking into account the Markov property at time Fo the interior integral can
be estimated from above by
1 .12

@34 [ du [emay preryw ) 3 ple, +T-oy-40)]
By (3.1.2),

prry-w ) z}zl ple_+T-vy-5(j)) < const (t-r )" (T-1)*~.
This leads to remaining / integrals as in (4.3.2). Pass to their suprema on
T € (rk,T), bring them out of all of the integrals, and note that they have
finite limit superiors as m-eo by assumption (4.3.2). For (4.3.4) the term

57/ R
(4.3.5) const ﬂv w© 4t (wr) " (1Y)
remains. Denote this integral by I( rot). Proceeding step by step similarly
with the other integrals in (4.3.3), we obtain the upper estimate
K pt k -

436 K [Tarn [T dn TS p(rn 0) Iy
for H:l;, where again we set r=s, and C is a constant. But I(rk,t) is
uniformly bounded (to see this, switch from the variable T to ¢ by the
substitution (‘c-rk) = (T-rk)o'). Moreover, I(fk,t) converges to 0 as T,
for each fixed Fe By dominated convergence, for all three properties in

Definition 2.4.7 it remains to check that

e K b (r-
4.3.7) k[T drafl an TS pi(rr, 0)
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is finite and of order o(k//A“) as k-oeo, for each A>0. But (4.3.7) is simply -
I'Is 0 [LO(S,T)]k with L’ the Brownian local time at 0, and the statement
follows from the existence of all its exponential moments, recall (4.2.6).

Summarizing, branching rate functionals A& corresponding to one-

dimensional kernels £ with (4.3.2) are ¥-regular where O = 2583 o |

Example 4.3.8 (factored branching rate kernels £). Again write the
dimension D as D=d+I, d=I. Assume the factorization & = &dxﬁl of (4.2.9)
with a bounded regular function & g on IxR® and a one-dimensional kernel &1
but now satisfying the condition
(4.3.9) 1,},111050@ sup (em+T-r)*3 I&l(r,dyl) p1(8m+T—r,y1-3l(i)) < oo 1<i<],
for some zero sequence €. Consequently;' roughly speaking, for r close to T,
the ;rleasurc &l(r,f) should approach a "potentially omall' denoity of mass at
all 31( j). (Compare with the weaker condition (4.3.2) where the sipgular
factor in front of the integral is missing.) Of course, this condition is
fulfilled, for instance, for &l(r,O) =38, with ¢ # 3(1)...3(]), but
it fails to hold if F,l(r,O) is identical to a uniform distribution around
some 31(j). Consequently, opposed to the one-dimensional case (4.3.2), the
random medium & has to be "oufficiently thin" at those s(j). (Again, this
implies for the super-Brownian motion X with that branching kernel & that X,
has a finite density of mass at 3(/),...,5(1).)

To check that in the present case the requirements in Definition 2.4.7
are fulfilled we have only to modify the arguments concerning the previous
example. In fact, proceed up to (4.3.4). The latter can now be written as

[iun 0% [e(®a0, [ mar) pyfer s, ) [5 pole +T-ors0)]

Pass to a bound of F,d, and factorize the (d+I)-dimensional Brownian motion

and transition density function as follows:

— 1 _ ' _ d
W= [WW], p, (ty) =pty) py) >0, y=lyy JeR>R
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Then estimaté :
pl('t-rk,yl-Wik) ple +T-vy 50) ple_+T-ty50) p (e +T-y -3 ())
< const (T-r)"* (e +T-) (T-t)"", 1<jj'<l,
and integrate the density function p d(’c-rk,O-W‘:(k)) with respect to dy .
Extract Vterms as in condition (4.3.9). It remains an expression as in
formula line (4.3.5). |
In the next integral we use
T W) PeATry 3. () p(e +T-ry -3,(7)
< const pl(rk-rk_l,O) (en+T-rk)'d/2 pl(en+T-rk,y1-31(j)).
We continue now as in the previous example, where the present case is even
sirﬁpler since here we have only to hanglle the singular factor (ssn+T-rk)'d’2
instead of (8n+T-rk)'d. |
Summarizing, branching rate functionals A& with factored ‘branchin‘g rate
kernels & = €, where the one-dimensional kernels &1 are sufficiently

irregular at 3(/),...,50 in the sense of (4.3.9), are ¥-regular with ¢ =

20, 1

4.4. Examples of a.e.-Regular Branching Rate Functionals
The aim of this subsection is to deal with examples of a.e.-regular
branching rate functionals Aﬁ according to Definition 2.6.1. For this
purpose, fix [I:=[L,T), 0<L<T, set D=d+I, d=20, and restrict the attention
to a factoned branching nate kennel & = ng&l as in (4.2.9) with a bounded
regular &;i (with the obvious interpretations in the boundary case d=0 we
include at this place; for instance, read dyd as 50 if d=0). The remaining
one-dimensional kernely € . is, for simplicity, assumed to be constant in time.
E;I(L,O) will be sampled from some probability space [Q,%,P] as described
in the two examples below (nandam mediwn). In both cases, the realization of -

the measure il(L,O) is supported by a countable set {xi;izl }. Hence we may



SBM WITH ABSOLUTELY CONTINUOUS STATES 27

interpret the super-Brownian motion with such (randomly selected) branching
rate functional & as a model in which branching is allowed only at a

mnia&feoo%ecﬁmwoﬁm;pmpﬂanm.

Example 4.4.1 (branching restricted to infinitely many isolated hyperplanes).
Suppqse that & 1(L,O) is sampled froi'n a homogeneous atachastic paoint process T
on R of finite intensity. That is, ® is a random lbcally finite counting
measure on R whose law is shift invariant, and whose intensity measure
7971:(dyl ) is a finite multiple of the Lebesgu¢ measure dyl. |
We neéd to show that for almost all realizations ® of thé point process
there is a Lebesgue zero set N (depending on the realization m), such that
for each choice of 4(1),...5(I) € N there is a zero-sequence € such that
the "kernel" 7;1 satisfies the condition (4.3.9) with this €. In fact, by the
arguments in the discussion of the examples in Subsection 4.3, then the
corresponding branching rate functional A§ is a.e.-regular. But in the
present time-homogeneous case El(r,')sél(L,O)mt the Lh.s. in (4.3.9) can be
estimated from above by
SUP < <Lt r '[n(dy 1) p 1(t’y 1'31(” )

Therefore it suffices to demonstrate that for all K>1

?Idz1 I{SUPOQSK £ n(dyl) pl(t, yl-zl) = oo} =0
holds. By Fubini’s theorem, it is even enough to show that

-d _
fP{supMSK t n(dyl) pl(t, yl-zl) < oo} =1, zZ €R,
Moreover, by the homogeneity of the point process, we may focus at the case
Z1=0’ Actually, we will even verify that for each constant K>1 with
P-probability one
-4
(4.4.2) Jn(dyl) SUp,_ < ¢ pl(t,yl) < oo,

To this end, distinguish between ly | |2] and the complement. In the first
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case, take the expectation and note that

(4.4.3) ' pl(t,yl) < const 412 exp[-I/Zt] exp[-yf/ZK] < const exp[-yf/ZK],
which is integrable with respect to the Lebesgue measure dyl. Concerning the
second case |yl | <I, we have only to note that the integrand in (4.4.2) is
finite as long as yl¢0, and, on the other‘hand, that, with probability one, ®

has only finitely many points .in {ly1 | <1}, and they are different from 0. J

Example 4.4.4 (branching restricted to densely situated hyperplanes). We
modify the previous example as follows. Replace m by a otable nandam meaoune
r= Zi:l ai8x(i)
on R with index v e (0, 1/(2D-1)), characterized by its Laplace functional

(4.4.5) ?cxp(f‘,-f) = exp [ J.dy1 fY(y1 )], f20 measurable.

Note that the positions {xi;izo} of the atoms of I' are denoely situated
in R. We stress also the fact that for D>I by assumption the index 7y cannot
be arbitrarily close to /. This, of course is only a sufficieﬁt condition. On
the other hand, for growing y the random measure I becomes more and more
small atoms, that is, it comes closer and closer to the Lebesgue measure
(boundary case y=1). But under D>I and regular branching kernels & the super-
Brownian motion has singular states. Summarizing, in the case D>] we
presupposed that & 1(L,O) is not "too close" to the Lebesgue measure.

~To see that a branching rate functional Ai with such a € is a.e.-
regular, follow the constructions and arguments in Example 4.4.1 up to
(4.4.2), that is, up to the statement “

(4.4.6) : J.I“(dyl) SUP,_ < £ pl(t,yl) < oo P-a.s.
To verify this, it suffices to show that the Laplace transform of this random
variablc is 1 at 0. But applying the Laplace functional (4.4.5), this will

follow if we verify that

4.4.7) | Idyl [Sup0<tSK e Px(t’yx )]7 < oo,
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Under the additional restriction |y1 IZ] , We use (4.4.3). But if lyl I <l note
that by elementary calculus |
(4.4.8) 12 exp[-yf/t] < const | yl|‘d“D, >0, y1¢0.

The latter function of y | is y-fold integrable around 0 if and only if

Y(d+D) < I which we assumed. Consequently, (4.4.7) is true and we are done. [§
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