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Abstract

We consider the problem of adaptive spatial smoothing for a time series of im-

ages. This type of data typically occurs in functional and dynamic Magnet Resonance

Imaging (MRI). We propose a new method based on spatial smoothing with adaptively

chosen weights. We show how this procedure can be used for e�cient image estimation

and classi�cation in functional and dynamic MRI experiments. The performance of

the procedure is illustrated by applications to simulated and real data.

1 Introduction

Polzehl and Spokoiny (1998) introduced a new locally adaptive method for two and three

dimensional image processing which we refer to as adaptive weights smoothing (AWS).

This method is especially fruitful in situations when the underlying image contains large

homogeneous regions with sharp edges. We now generalize this idea to more complicated

problems. We especially consider experiments in which an image of the same object is

recorded several times. This is e.g. the case if time series of images are recorded or

if images are observed with di�erent multispectral characteristics. Below in this section

we present a detailed description of two classes of such problems arising in the Magnet

Resonance Imaging (MRI): functional and dynamic MRI. Other examples are delivered by

multispectral satellite imaging or for multichannel MRI. Section 2 discusses one extension

of the original AWS procedure which is referred to as the vector AWS and which allows for

multi-image data. In Section 3 we show how this vector AWS procedure can be adapted

for signal detection and signal identi�cation in functional MRI (fMRI). We �rst test the

performance of the vector AWS on simulated data and compare it with some other methods.

Then we present an analysis of a real fMRI dataset. Section 4 gives an application vector

AWS to classi�cation in dynamic MRI.

1.1 Signal identi�cation in functional MRI

Functional Magnet Resonance Imaging (fMRI) is a relatively new non-invasive technique

used to study human brain function. The experiments conducted in this context have

usually the following design. A time series of two or three dimensional MR images is

recorded while a patient is exposed to some activating signal. This may be a series of

visual or acoustic stimulations depending on the problem studied. This stimulation causes

neural activity in some regions of the brain. Identi�cation of these 'activated' regions is

the main interest of the experiment. For an excellent introduction into fMRI see Lange

(1996) or Turner and Friston (1997).

The fMRI methodology is based on the following physical phenomenon. Neural activity
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is expected to increase the blood �ow in blood vessels in the activated regions of the cortex.

This causes a relative decrease in the concentration of paramagnetic deoxyhaemoglobin in

this regions. This change can be observed as an increase of the MR signal providing

the necessary contrast in the experiment. The e�ect is called 'Blood Oxygenation Level

Dependent Contrast' (BOLD). See again Turner and Friston (1997) for details. Due to the

indirect method of measurement we can expect the observed signal to be related to the

activation by some transformation involving smooth changes in shape (convolution with

the Hemodynamic response function) and a delay in time, see e.g. Rajapakse et al. (1998).

Typical experiments give series of 60 - 1000 images with a spatial resolution of 2�4 mm.

Simple designs involve periodic activation with about 8-20 images in one period and several

periods observed. Images are recorded at equidistant times, with typical time di�erences

between images of some seconds. The data, for one slice of the brain, therefore have the

following structure: for every voxel i with coordinate Xi , we observe the gray value Yi;t

which can be represented as a sum of the induced signal ft(Xi) and the random error "i;t ,

that is,

Yi;t = ft(Xi) + "i;t t = 1; : : : ; T

with E"i;t = 0 and E"2i;t = �2i . Often random errors are assumed to be independent

and approximately Gaussian. Short time correlation of errors are to be expected in case

of short time intervals. Error variances can be assumed homogeneous over time, but seem

to be inhomogeneous in space due to the underlying anatomic structure, blood �ow or

properties of the MR device.

1.2 Traditional approaches

Traditional approaches to analyze functional neuroimaging data involve three steps. The

�rst consists of several preprocessing tasks, including e.g. correction for body movement

and artifact detection and removal. In a second step a Statistical Parametric Map (SMP)

is constructed. This simply means that at each voxel an appropriate general linear model,

corresponding to the experimental design, is applied providing a value of an F-statistic,

indicating the signi�cance of the observed signal, see e.g. Holmes and Friston (1997)

for details. In a third step the theory of Gaussian random �elds is used to determine

signi�cant signals, see e.g. Poline et.al. (1997). The simplest procedure of this sort is

to test the hypothesis of no signal at each voxel independently. This corresponds to a

multiple comparison problem and requires high thresholds which leads to a low sensitivity

in detecting the activated regions. More subtle techniques use the fact that the spatial
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extend of the regions of interest is signi�cantly larger than the spatial resolution. This

is used by either spatially smoothing, using e.g. a Gaussian kernel, of the images or by

testing for the spatial extend of an activation. See again Poline et.al. (1997) or Worsley

et.al. (1992) for the �rst and Poline and Mazoyer (1993) for the second approach. Both

methods while increasing the power of signal detection su�er from loss of information about

the exact location of the activated region. Another method using Markov Random Fields

(MRF) to model spatial connectivity is proposed e.g. in Descombes et.al. (1998).

Taking into account that both the high sensitivity to the activated signal and the precise

location of the activated regions are important for further analysis, the application of the

AWS procedure (which is specially designed for such situations) seems to be reasonable.

1.3 Dynamic MRI

Dynamic MRI is used to study tissue perfusion within di�erent organs of the body. A

contrast agent (CA) is given to the patient and a temporal series of images is acquired using

fast MR imaging techniques. The images are recorded over a suitable time interval starting

with the injection of the CA and covering the expected impact of the CA. Each image is

obtained using the same MR parameters and focusing on the same object (location). We

therefore have at each voxel a time series of MR intensities re�ecting the e�ect of the CA

over time at the given location. See e.g. Sebastiani (1997) or Sebastiani et. al. (1996)

for a more detailed presentation. Due to the short acquisition times of some hundreds of

milliseconds spatial resolution is low and the observed noise level is high.

Standard techniques focus on voxel by voxel analysis of the time series. This includes

computation of characteristics of the time series based on parametric regression, see e.g.

Rosen et.al. (1990), or the analysis of temporal correlation to an expected time series, see

e.g. Rogowska and Wolf (1992). Sebastiani et. al. (1996) propose to use nonparametric

smoothing in time to estimate characteristics of the series like location of the minimum or

extend of the minimum which then can be used for voxel classi�cation. Here we meet the

same problem as in functional MRI: multiple testing approaches require high thresholds

which leads to a poor quality of image classi�cation. Sebastiani et. al. (1996) suggested

to use spatial �ltering of the single images in a preprocessing step for an additional noise

reduction. The AWS method described in the next section exploits the same idea allowing

simultaneously for preserving the shape of homogeneous regions within the underlying

image.
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2 Vector AWS smoothing

Polzehl and Spokoiny (1998) o�ered a new locally adaptive smoothing procedure which is

especially designed for estimation of a regression function allowing a reasonable approxi-

mation by piecewise constant models. We now generalize this approach to more complex

situations and problems.

2.1 Basic idea

In what follows we consider the model which can be described as

Yi = f(Xi) + "i ; i = 1; : : : ; n; Xi 2 IRd; Yi 2 IRT : (1)

Here X1; : : : ; Xn are design points which are usually assumed to be equispaced in the unit

cube [0; 1]d . At each point Xi we observe the IRT -valued regression function f(Xi) with

some additive error "i 2 IRT . We suppose the errors "i to be independent zero mean

random vectors with unknown distribution which may depend on location:

E"i = 0 2 IRT ; Var "i = diagf�2i;t ; t = 1; : : : ; Tg;

with E and Var denoting expectation and variance, respectively.

In the applications we have in mind the data Yi;t , i = 1; : : : ; n , for �xed t , correspond

to the recorded image at time t and Yi;t , t = 1; : : : ; T is the series of observed values at

Xi during the observation time.

Our basic assumption is that the regression function f is supposed piecewise constant,

possessing the same structure in each component. This means that the unit cube [0; 1]d

can be split into disjoint regions A1; : : : ; AM and

f(x) =
MX

m=1

am1(x 2 Am) (2)

where a1; : : : ; aM 2 IRT are some vectors and 1 stands for the indicator function. Ob-

viously the image vectors f(x) are constant within each region Am . The regions Am ,

the vectors am and even the total number of regions M are unknown. Clearly this as-

sumption is valid for an arbitrary series of T images, since each region Am may consist of

one point. We however assume that M is essentially smaller than n that means that the

regions Am are su�ciently large. Such kind of modelling is reasonable if, e.g., the target of

the statistical analysis is a vector (curve) classi�cation. Typical examples are: 'activated

/ non-activated' in functional MRI applications or 'pathologic / normal' in dynamic MRI.
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We �rst recall the basic idea of the adaptive weights smoothing (AWS) introduced in

Polzehl and Spokoiny (1998). The problem of estimating the function f of the form (2)

can be treated as follows: to recover the values a1; : : : ; aM and to decide for each point

Xi in which region Am it is. To explain the idea of the method, we imagine for a moment

that the regions A1; : : : ; AM are known and only the vectors am are to be estimated.

This leads to obvious estimates

bam =
1

NAm

X
Xi2Am

Yi

where NAm
denotes the number of design points in Am , m = 1; : : : ;M . Then we simply

set bf(Xi) equal to the mean bam of Yj 's over the region Am containing Xi . Therefore,

given a partition A1; : : : ; AM , we can easily estimate the underlying function f .

Next we consider the inverse situation when the partition A1; : : : ; AM is unknown

but we are given a pilot estimate bf (0) of the p-variate regression function f . It is nat-

ural to use this estimate to recover for every point Xi the corresponding region Am .

Namely, for each pair of points Xi and Xj , we may decide on the basis of the estimatesbf (0)(Xi) and bf (0)(Xj) whether they are in the same region. If the estimate bf (0)(Xi) is

signi�cantly di�erent from the estimate bf (0)(Xj) these two points are almost de�nitely in

di�erent regions. Signi�cance can be measured by performing a test for the hypothesis thatbf (0)(Xi) = bf (0)(Xj) based on some test statistic Ti;j . Let � be an appropriate quantile

of the distribution of T . For each design point Xi , the set bA(Xi) with

bA(Xi) = fXj : Ti;j � �g

estimates the region Am containing Xi . Using these estimated regions, we may de�ne

the new estimate bf (1) by

bf (1)(Xi) =

P
Xj2 bA(Xi)

Yj

N
bA(Xi)

=

P
j

w
(1)

i;j YjP
j

w
(1)
i;j

with

w
(1)
i;j = 1 (Ti;j � �) (3)

and NS being the cardinality of the set S . Then we can repeat this calculation usingbf (1) in place of bf (0) and so on.

Our adaptive procedure mostly realizes this idea with two modi�cations. First of all,

at each iteration k , we restrict the estimated region bA(Xi) to some local neighborhood
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U (k)(Xi) of the point Xi such that the size of U (k)(Xi) grows with k . This means that

we calculate the initial pilot estimate bf (0)(Xi) by averaging observations from a small

neighborhood U (0)(Xi) of the point Xi (in many situations it can be the observation

Yi itself). Then we recalculate this estimate by averaging over a larger neighborhood

U (1)(Xi) but now using only data points where there are no essential di�erences between

values of the initial estimates. We continue in this way, increasing each time the considered

neighborhood U (k)(Xi) , that is, for each k � 1 ,

bf (k)(Xi) =

P
Xj2U (k)(Xi)

w
(k)
i;j YjP

Xj2U (k)(Xi)

w
(k)
i;j

(4)

where the weights w
(k)
i;j are computed by comparison of the preceding estimates bf (k�1)(Xi)

and bf (k�1)(Xj) . Secondly we use continuous weights w
(k)
i;j instead of zero-one weights in

(3).

2.2 Assessing signi�cant di�erences of vectors

The essential element of the AWS procedure is a testing step: for two di�erent points Xi

and Xj we decide whether they belong to the same homogeneous region on the base of

information obtained in previous iterations. Before going into details, it is worth noting

that at each iteration k this procedure is carried over many times (for every pair Xi; Xj

from U (k)(Xi) ) which makes the problem di�erent from the classical testing problem with

a single testing. The �rst type error for our testing procedure means that some point

Xj from U (k)(Xi) with f(Xj) = f(Xi) is classi�ed as not belonging to bA(k)(Xi) . This

might lead to random segmenting small subregions within a large homogeneous region. To

avoid such kind of �undersmoothing�, the joint error of the �rst kind for all tests together

should be su�ciently small. This particularly means that each single test should be rather

conservative. On the other side, an application of a too conservative testing procedure

will include points Xj from other regions into the estimated region bA(k)(Xi) , which may

produce some bias in the �nal estimate especially near the boundary between two neighbor

regions.

The original AWS procedure from Polzehl and Spokoiny (1998) was designed for the

case when we observe a single image, that is, T = 1 and bf (k�1)(Xi) is an estimate of

the value f(Xi) obtained after k � 1 iterations. With the use of the estimated variance
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bv(k�1)i of bf (k�1)(Xi) , the test statistics T
(k)
i;j can be taken in the form

T
(k)
i;j =

j bf (k�1)(Xi)� bf (k�1)(Xj)j2bv(k�1)i

:

Simulated results and practical applications show an excellent performance of the procedure

with the critical value � about 9 which corresponds to the well know �rule of 3 sigma�.

A natural generalization of this method corresponding to Hotelling's T 2 , can be based

on the L2 distance of vectors, e.g.

T
(k)
i;j =

TX
t=1

j bf (k�1)t (Xi)� bf (k�1)t (Xj)j2

Var bf (k�1)t (Xi)
:

Although this approach seems appropriate it has several drawbacks. It turns out being

highly ine�cient in high dimensional situations (large T ), see e.g. Fan and Lin (1998).

If additional information is available like smoothness of the curves or periodicity this in-

formation can be used to increase the power of the test. One way to achieve this is to

base the test on aggregated data like wavelet or Fourier coe�cients for each curve. Which

aggregation method or which coe�cients of an orthogonal series expansion to use mainly

depends on the properties of the curves. Heuristically the method has to be chosen to

reduce the dimensionality of the problem while preserving the main information about the

characteristics of the curves.

Let g` = g`(t) , ` = 1; : : : ; L , be an orthonormal set of functions satisfying

1

T

TX
t=1

g`(t) g`0(t) = �``0 : (5)

A speci�c example is produced by a set of Fourier or wavelet basis functions. The cor-

responding wavelet or Fourier coe�cients for every curve ft(Xi) with t = 1; : : : ; T are

de�ned by

�i;` =
1

T

nX
t=1

ft(Xi) g`(t):

Using the observations Yi;t , following the model (1), these values can be estimated by the

empirical coe�cients

Bi;` =
1

T

nX
t=1

Yi;t g`(t):

A more e�cient test for the hypothesis that two curves (vectors) f(Xi) and f(Xj) co-

incide, can be based on these empirical coe�cients. Assuming independent and time

homogeneous noise "i;t in (1), one obviously has

Var Bi;` =
1

T 2

nX
t=1

�2i jg`(t)j2 =
1

T
�2i



8 J. Polzehl and V. Spokoiny

so that, if an estimate b�i of �i is available, this value can be estimated by b�2i =T . Now

a reasonable test statistic, which is usually referred to as Neyman smooth test, Neyman

(1937), can be de�ned as

Ti;j = T

LX
`=1

jBi;` �Bj;`j2b�2i :

Our approach combines this idea with the adaptive spatial smoothing approach of the AWS

procedure. Namely, at every k -th step of the procedure we compare two curves (vectors)

f(Xi) and f(Xj) on the basis of the previous step estimates bf (k�1)(Xi) and bf (k�1)(Xj) .

For this we again calculate the corresponding estimates of the coe�cients �i;`

b�(k�1)i;` =
1

T

nX
t=1

bf (k�1)t (Xi) g`(t)

and apply the test statistics of the form

T
(k)
i;j = T

LX
`=1

���b�(k�1)i;` � b�(k�1)j;`

���2
bv(k�1)i

where bv(k�1)i is the estimate for Var b�(k�1)i;` (which does not depend on ` ).

This approach allows for the following simple interpretation: the original data (set of

curves) are transformed into the set of the corresponding empirical coe�cients Bi;` and

further the AWS procedure is carried over using these coe�cients in place of the original

data.

The choice of the set of basis functions g` is very important for the quality of the

procedures. For some speci�c examples some prior information is available which helps

to select this set in a reasonable way, see e.g. Section 3 below. For other situations, a

data-driven methods can be recommended, see e.g. Ledwina (1994), Fan (1996), Spokoiny

(1996), Ledwina and Kallenberg (1997) or Hart (1997). The idea is to consider simulta-

neously a collection of di�erent basis sets fg`g . For each of them, one can construct the

corresponding test statistics and the resulting test rejects the hypothesis of similarity of

two curves (vectors) if one of them does. Spokoiny (1996) showed that this adaptive test

should be applied with slightly increased critical value (by a log logn -factor) then for each

single test.

We will continue this discussion using several examples from dynamic and functional

MRI in the following sections.
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3 Applications to fMRI

The problem of signal detection or signal recovery in fMRI can be successfully attacked

using the basic ideas of AWS. The goal of statistical analysis in fMRI is typically to identify

the regions of activation and to obtain a description of the induced signal. Speci�c features

of the problem which make it really complicated are:

� low image resolution,

� low intensity of the activated signal compared to the noise level,

� spatial noise heterogeneity,

� very indirect association between the, often periodic, activation and the induced

(observed) signal, resulting in a change of the shape and a delay in time,

� presence of an underlying anatomic structure and of a slowly changing trend compo-

nent which is typically spatially irregular.

The �rst three features motivate an application of methods based on spatial smoothing

which allow to reduce the noise level while preserving the shape of the activated regions,

so that the AWS procedure seems to be reasonable here. In addition, it should be designed

sensitive to the activated (periodic) signal and insensitive to the slowly varying trend.

3.1 Elimination of the anatomic structure and slow time-dependent

trends

In periodic fMRI often a special preprocessing step is used to remove slow time-dependent

trends in each voxel. This roughly means, in each voxel separately, to subtract a non-

parametric estimate of the time-dependent trend from each time series. As a result the

anatomic structure is also eliminated. Kruggel et. al. (1998) propose to remove an moving

average estimate of the baseline with a window of length 3p + 1 from the time series in

each voxel (here p is the periodicity of the activating signal). The window length of 3p+1

is chosen to avoid loss of the periodic structure. As a result one gets data

Zi;t = Yi;t �
1

3p+ 1

3p=2X
k=�3p=2

Yi;t+k : (6)

This approach seems to be very useful for practical applications although it introduces

some time correlation in the data Zi . Another possible approach avoids this step by

selecting an appropriate Fourier or wavelet transform which automatically produces trend

elimination.
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We discuss shortly the last proposal for the case of applying the Fourier transform

with the set of basic functions g2`(t) =
p
2 cos(2�`t

p
) and g2`�1(t) =

p
2 sin(2�`t

p
) for

l = 1; : : : ; L=2. Namely we utilize a well known fact that high order Fourier coe�cients

are almost insensitive to the slowly varying trend component of the signal.

To simplify our notation, we consider an imaginary situation when a function f(t)

is observed with noise and it can be represented as a sum of a periodic function h(t)

of periodicity p and an additional slowly varying component s(t) , 1; : : : ; T , where p is

small compared to T . It is useful to introduce a continuous parameter u = t=T with

0 � u � 1 . Then the mentioned property of the function s(�) can be reformulated as

follows: the function s1(u) = s(uT ) is smooth, e.g., in the sense that its second derivative

is bounded: js001j � M . This implies that the corresponding Fourier coe�cients ck =R 1
0
s1(u) cos(2�ku)du decrease at rate k�2 , that is, ck �Mk�2 . This, in turn, yields

1

T

TX
t=1

s(t) cos(2�t=p) �
Z 1

0

s1(u) cos(2�uT=p)du �M(p=T )2:

For sine basic functions, the coe�cients dk =
R 1
0
s1(u) sin(2�ku)du decrease slowly, at rate

k�1 , because of the boundary e�ect, unless the trend function s1 satis�es the boundary

condition s1(0) = s1(1) . The similar e�ect arises if the function s1 is not smooth but

only piecewise smooth with a �nite number of jumps. In general, one may ensure that

for all considered basic functions g` , the corresponding Fourier coe�cients are at most of

order p=T . Since the standard deviation of each empirical Fourier coe�cient is of order

T�1=2 , this leads to the following conclusion (see, e.g. Spokoiny, 1999): if the periodicity

of the activated signal is small compared with the time of observation, that is, if pT�1=2

is small , then the impact of the slowly varying trend component in the corresponding

Fourier coe�cients is negligible.

Of course, other basic functions, e.g. wavelets, can be used in place of the Fourier basis.

The only requirement is that all basic functions are nearly orthogonal to a slowly varying

time-dependent component.

After the transformation of the original data Yi;t into the set of corresponding empirical

Fourier coe�cients Bi;` is done, under ideal conditions, we now have homogeneity in

regions without an induced signal. For activated regions we expect to see some local

homogeneity of the induced signal in terms of the corresponding Fourier coe�cients �i;` =

T�1
PT

t=1 ft(Xi)g`(t) . This can be used to identify both regions without activation as well

as the signal in activated regions by adaptive spatial smoothing.
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3.2 fMRI procedure

We describe the steps of the analysis for a fMRI experiment with a periodic activation

signal. We assume here that the induced (BOLD) signal is of same periodicity, lets say of

p time intervals, but may be shifted and of di�erent shape. We do not assume any prior

information about delay and shape of the induced signal, although such kind of information

could be naturally incorporated into our approach.

The whole analysis can be split into several preliminary steps, the AWS procedure and

signal identi�cation on the base of the AWS results.

3.2.1 Preliminary steps.

The presence of multiple data Yi;t at each voxel Xi with time homogeneous noise "i;t

allows for a voxelwise estimation of noise variance.

The noise variance at each voxel can easily be estimated from the corresponding time

series fYi;tgt21;:::;T as

b�2i =
1

6(T � 2)

T�1X
t=2

[2Yi;t � Yi;t�1 � Yi;t+1]
2: (7)

Using a robusti�ed variance estimate or spatial smoothing of the variance estimates may

be useful.

The next step transforms the data into the set of empirical Fourier coe�cients.

Let fg`g be a set of orthonormal functions, ` = 1; : : : ; L ful�lling (5). For periodic

signals with a periodicity p a natural choice is g2`�1(t) =
p
2 sin(2�`tp ) and g2`(t) =

p
2 cos(2�`tp ) for l = 1; : : : ; L=2.

For every voxel Xi , we next calculate the empirical coe�cients Bi;` as

Bi;` =
1

T

TX
t=1

Yi;t g`(t) (8)

and use them instead of the original data.

3.2.2 Vector AWS for fMRI

We now apply the AWS procedure as discussed in Section 2. The procedure consists of

successive iterations. At each step k and at every voxel Xi , for estimating the Fourier

coe�cients �i;` , the empirical coe�cients Bi;` are averaged over the growing neighborhood

U (k)(Xi) with weights w
(k)
i;j computed on the base of the result of previous iterations. The

procedure reads as follows.
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Initialization: For each voxel Xi , we calculate initial estimates of �i;` and Var �i;` as

b�(0)i;` =
1

N (0)(Xi)

X
Xj2U (0)(Xi)

Bj;`

bv(0)i =
1

T jN (0)(Xi)j2
X

Xj2U (0)(Xi)

b�2j
and set k = 1.

Adaptation: Compute weights w
(k)
i;j as

w
(k)
i;j = K

0B@ 1

�

LX
`=1

�b�(k�1)i;` � b�(k�1)j;`

�2
bv(k�1)i

1CA (9)

for all points Xj in U (k)(Xi) and compute new estimates of �i;` and Var �i;` as

b�(k)i;` =

P
Xj2U (k)(Xi)

w
(k)
i;j Bj;`P

Xj2U (k)(Xi)

w
(k)
i;j

(10)

bv(k)i =

P
Xj2U (k)(Xi)

���w(k)
i;j

���2 b�2j
T

 P
Xj2U (k)(Xi)

w
(k)
i;j

!2
(11)

for all Xi.

Control: Under the condition that b�(k)i;` is unbiased we can compute a L -dimensional

con�dence region that contains �i with probability 1� � as

CI
(k)
` =

�b�(k)i;` � �

qbv(k)i;` ;
b�(k)i;` + �

qbv(k)i;`

�
=
�
CL

(k)
` ; CU

(k)
`

�
(12)

where �2 is an appropriate quantile of the distribution of the maximum of L �21 random

variables.

The new estimate b�(k)i is accepted if, for each m with m < k and every ` � L , the

` -th estimate b�(k)i;` belongs to the interval (CL
(m)

` ; CU
(m)

` ) , that is,

jb�(k)i;` � b�(m)

i;` j � �

qbv(m)

i;` (13)

keeping the previous estimates otherwise.

Stopping: Stop if k = k� or if b�(k)i = b�(k�1)i for all i , otherwise increase k by 1 and

continue with the adaptation step.

The parameters of the procedure are chosen using the same considerations as for the

original AWS. The set of neighborhoods U (k)(Xi) should contain an exponentially (in k)



Vector AWS with applications to MRI 13

growing number of voxel, see Polzehl and Spokoiny (1998) or Section 3.3 below for a

proposal. The parameter � controlling the probability to reject the hypothesis of two voxel

to belong to the same region, can be chosen as a quantile of a �2L distribution. These tests

have to be performed at a very high signi�cance level, our experience suggesting to use

a 0:995-quantile or an even larger value. A suitable value for �2 is the 0:999-quantile of

the distribution of a maximum of L �21-distributed random variables. For a comprehensive

discussion about the choice of the parameters � and � see Polzehl and Spokoiny (1998).

3.2.3 Signal detection

It is natural to base the signal detection and identi�cation on the results of the previously

described AWS procedure, namely, on the estimates b�i;` = b�(k�)i;` obtained at the last

iteration of the AWS.

One possibility is to compare the estimates b�i;` with the corresponding standard de-

viation bv1=2i;` which leads to the test statistic

Ti =
LX
l=1

b�2i;`bvi;` : (14)

The AWS procedure often provides a signi�cant noise reduction so that even very small

activations are detected. Sometimes it would be reasonable to show only regions where the

activated signal is su�ciently large. For that purpose, we calculate the values

Si =
LX
l=1

b�2i;`:
A signal will be detected in voxel i if Ti exceeds a given threshold � and if Si is larger than

some constant C.

The parameter � has the same meaning as the parameter � in the AWS procedure but

we recommend to take it a bit smaller than � . When carrying over the AWS procedure, we

perform the test with the critical value � many times, which requires a very conservative

choice. The �nal classi�cation is to be done one time, and the choice � as the usual 0:95

quantile of the �2L distribution leads to reasonable signal identi�cation.

3.2.4 Estimation of the activated signal

In some applications, it is of interest to recover the shape of the induced signal at every

point where we detect an activation. This can be done using the spatial smoothing with

adaptive weights wi;j = w
(k�)
i;j applied in the last step of the AWS procedure. Namely,

we �rst eliminate the trend component from the data using the proposal of Kruggel et al.
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Figure 1: Simulation experiment, periodic signals (left plot) and their location (right image)

(1998), see (6). Then we calculate an estimate bft(Xi) of the periodic signal by averaging

over all periods and over design points Xj with weights wi;j :

bft(Xi) =

P
j

wi;j

 
p
T

T=pP
m=1

Zi;t+(m�1)p

!
P
j

wi;j
: (15)

3.3 Simulations

We conducted a small simulation study to illustrate the superiority of our approach in

idealized i.i.d. situations. The simulation setup is as follows. We generated a time series

of T = 64 images, with each image containing 50� 50 voxel. We arranged periodic signals

in 9 regions of varying shape and size. The signal is of the form

ft(Xi) = ci

�
0:45 sin

�2�t
p

�
� 0:6 cos

�2�t
p

��
t = 1; : : : ; 64

with period p = 8 and ci being 1, 2=3 and 4=9 for the di�erent regions and equal to zero

for voxel outside these regions.

Figure 1 illustrates the form of the signals (one period) as well as their location, with

the magnitude of signals decreasing from top to bottom and the size of regions increasing

from left to right in the displayed image. We then added standard Gaussian white noise

in each voxel.
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We apply our vector AWS algorithm with the following speci�cations. We use two

Fourier coe�cients, i.e. basis functions g1(t) =
p
2 sin(2�t

p
) and g2(t) =

p
2 cos(2�t

p
) ,

which

is appropriate in this situation. AWS is performed with � = 10:6 corresponding to a

0:995-quantile of �22, � = 3:5 and the sequence of neighborhoods Uk speci�ed as cir-

cles with radii f0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4; 4:4; 5; 6; 7; 8g ( k� = 13 ). Error variances were

assumed to be known.

We conducted 200 simulation experiments to estimate the pointwise probability of

signal detection using our AWS approach. A signal is detected if Ti > �22;:95 � 6 and

Si > CAWS . The threshold CAWS is chosen to give a mean voxelwise detection error of

0:01 for voxel with a distance of more than 2� from activated regions, with � being the

distance between neighboring points.

For a comparison we give the results for three alternative approaches. The �rst alterna-

tive is based on the raw data, i.e. a signal is detected in voxel i if
PL

l=1B
2
i;l exceeds a thresh-

old C1, with C1 again selected to provide P (signal detected in Xijno signal in Xi) � 0:01.

The second and third alternative involve a preliminary spatial smoothing of the Bi;l using

a bivariate Gaussian Kernel with bandwidths h = 0:5� and h = 1�, respectively. Signal

detection is performed as before with thresholds C2 and C3 chosen in analogy to CAWS .

Table 1: Mean probability of signal detection in activated regions

Method T �C left central right

top central bottom top central bottom top central bottom

AWS .120 .986 .897 .659 .984 .905 .670 .979 .888 .758

Raw data 9.21 .915 .492 .168 .914 .492 .162 .915 .485 .177

smoothed (0:5�) 3.80 .994 .815 .354 .996 .816 .362 .994 .810 .398

smoothed (1�) .767 1.00 .990 .766 1.00 .984 .774 .999 .969 .832

Table 2: Mean probability of signal detection in a neighborhood U4(S)=S of the activated

regions (no signal).

Method T �C left central right

top central bottom top central bottom top central bottom

AWS .120 .008 .022 .058 .008 .029 .089 .018 .043 .079

Raw data 9.21 .012 .011 .009 .011 .011 .009 .008 .009 .009

smoothed (0:5�) 3.80 .023 .017 .011 .023 .015 .012 .024 .018 .011

smoothed (1�) .767 .498 .220 .069 .571 .297 .112 .513 .284 .118

Tables 1 to 3 provide mean values of P (signal detected in Xi) for the di�erent ap-

proaches and regions. The results clearly show a better overall behaviour of AWS. Signal

detection without spatial smoothing su�ers from high threshold values, resulting in prob-
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AWS, P(signal / noise)=.01
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Figure 2: Pointwise signal detection probabilities obtained from 200 simulations.

Table 3: Mean probability of false detection for subimages of 12x12 voxel including one

activated region

Method T � C left central right over

top central bottom top central bottom top central bottom all

AWS .120 .007 .017 .045 .006 .022 .063 .014 .030 .055 .028

Raw data 9.21 .016 .044 .068 .017 .064 .095 .019 .079 .123 .058

smoothed (0:5�) 3.80 .012 .024 .055 .011 .030 .075 .011 .037 .093 .038

smoothed (1�) .767 .070 .037 .033 .104 .059 .048 .110 .068 .053 .065

lems to detect weak signals. Non-adaptive spatial smoothing improves signal detection

within the activated regions but reduces regional speci�city, see also Poline et.al. (1997).

Figure 2 illustrates the pointwise probabilities of signal detection obtained from 200

simulation runs. Figure 3 provides the detection results for a typical time series of images,
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AWS Raw data

Gaussian h=.5 Gaussian h=1

Figure 3: Detected signals for a typical dataset from the simulation study using AWS

(upper left), raw data (upper right) and spatial smoothing (lower row) using comparable

thresholds.

i.e. with medium number of detection errors for all approaches, from our simulations.

3.4 A real life example

The example we present here is based on a data set kindly provided by F. Kruggel from

the Max-Plank-Institute of Cognitive Neuroscience at Leipzig, Germany. The data consist

of time series of 912 Magnetic Resonance images of four slices of the brain recorded every

two seconds. Data are given as integer gray values ranging from 0 to 255. The fMRI series

are already corrected for artifacts and body movement. Additionally high resolution MRI

of the same slices are given. The upper plot in Figure 4 shows the 100th image of the time

series from the third slice. Spatial resolution is about 2mm�4mm. The patient is exposed
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Figure 4: Functional MRI data

to a periodic signal, with no activation for the �rst 48 time intervals, see second plot from

top. The lower part of Figure 4 shows characteristic observed time series for voxel from

both activated and non-activated regions.

The data are generated using simple periodic experimental conditions suggesting a

periodic induced (BOLD) signal of same periodicity p = 12. We �rst aggregate the data

using a two term Fourier approximation with basis functions g1(t) =
p
2 sin(2�t

p
) and

g2(t) =
p
2 cos(2�t

p
) leading to Fourier coe�cients Bi;l; l = 1; 2 for each voxel i. Mean

periodic signals bft(Xi) are computed according to equation (15). We then start our AWS

procedure as described in Section 3.2.

Signal detection is based on the statistics Ti and Si introduced in Section 3.2. Figure 5

illustrates the output of our detection procedure. The central plot shows the intensity of
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Figure 5: Signal detection with AWS. Central plot: intensity map of detected signals. Left

plot: Position of selected signals in the corresponding high resolution image. Right plot:

mean periodic signals in selected voxel.

all signals detected using the threshold � = �22;0:95 � 6 and meeting Si > C = 0:08. This

choice excludes signals with amplitude smaller than 0:4 . Our tools allow to select a signal

interactively from the intensity map. The left plot shows all detected signals, possessing

a correlation larger than 0:6 with a signal selected in the central plot, mapped into the

high resolution anatomical image. The right plot contains the graphs of Si(t) for all voxel

marked in the left plot. An e�ect often observed in fMRI experiments with many observed

periods of activation is a change in the shape and size of the induced (BOLD) signal over

time. This can be explained e.g. by learning or by getting accustomed to the stimulation.

Our approach easily allows to incorporate this by selecting an appropriate aggregation of

the time series. In order to test for time inhomogeneity in our example we divide the time

series into tree segments of length 288 and compute Fourier coe�cients for each part as

Bil = 1=288
48+l�288X

t=49+(l�1)�288
Yi;tg1(t) and Bi(l+3) = 1=288

48+l�288X
t=49+(l�1)�288

Yi;tg2(t): (16)

We now carry out the adaptive weights smoothing based on six Fourier coe�cients. Signal

detection based on Ti and Si with threshold � = �26;:95 � 12:6 and C = 0:24 gives the

results shown in Figure 6. The curves bft(Xi) displayed in the right plot of Figure 6 are

now generated stringing the mean periodic curves from the three segments together. The

�ndings are essentially the same as in the previous setting indicating no time inhomogeneity

here.
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Figure 6: Signal detection with AWS for possibly inhomogeneous situations. Central plot:

intensity map of detected signals. Left plot: Position of selected signals in the correspond-

ing high resolution image. Right plot: mean periodic signals (from three segments) in

selected voxel.

4 An application to dynamic MRI

The same approach can be used to analyze data from dynamic MRI (dMRI) experiments,

see also Section 1.3.

We illustrate the use of AWS in this context using the same example as Sebastiani

et. al. (1996). The data consist of 30 images of a slice of the brain of a rat recorded in

intervals of 0:6 seconds. A part of the brain is known to be damaged. The e�ect of the

contrast agent can be observed starting with the 7th image.

Figure 7 displays the central part of the �rst image (top) together with characteristic

time series from both pathologic (dotted) areas and normal (dashed) tissue. In regions

with full functionality the observed time series are expected to show a sharp decrease in

MR intensity from image 7 to 10 and to nearly return to the initial values at the end of

the observation period, i.e. possessing a distinguished minimum. In pathologic areas the

minimum, or peak, is either inferior or not observed. This means that both peak delay,

i.e. the location of the minimum, and peak intensity, i.e. the di�erence between the size

of the minimum and the end value of the time series, can be used to discriminate between

pathologic and normal tissue.

Let Yi;t = ft(Xi) + �i;t be the observed time series of MR intensities for voxel i. In

a preliminary transformation step we remove the e�ect of the anatomic structure sub-

tracting a baseline estimate obtained from the �rst 6 images. Recall that these images

do not re�ect any e�ect from the contrast agent. This provides transformed time series

Zi;t = Yi;t � 1=6
P6

s=1 Yi;s.
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Figure 7: Central part of �rst image from a dMRI series of the brain of a rat (upper plot)

and characteristic time series from both normal and pathologic areas (lower plot)

We now show how vector AWS can be used in this context. We again start with a data

aggregation step. An appropriate set of orthonormal basis functions gl(t) can be chosen

recalling the expected form of the time series and keeping in mind the di�erent behavior

within pathologic areas. We use the following elementary set of basic functions,

g1(t) � 1p
3
It2(6;9]; g2(t) =

1p
3
It2(9;12];

g3(t) =
1p
6
It2(12;18]; g4(t) =

1p
6
It2(18;24]; g5(t) =

1p
6
It2(24;30];

(17)

with IA denoting the indicator function on set A. This simply means aggregation is done

averaging observations from certain time intervals, giving coe�cients

Bi;j =
30X
t=7

Zi;tgl(t): (18)

The �rst two intervals are chosen to be smaller to re�ect the expected higher variation

of the curves at times 6 � 12. The minimum of the curves is expected within the second

interval for normal tissue, while for pathologic areas the peak will be in one of the the last

intervals. Peak intensity can be easily estimated from the aggregated data.
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Raw data: Peak Delay AWS: Peak Delay

Raw data: Peak Intensity AWS: Peak Intensity

Figure 8: Peak delay (upper row) and peak intensity (lower row) maps obtained from the

original time series (left column) and the AWS estimates (right column).

Variance estimates are again obtained using second order di�erences of the Yi;t. The

variance estimates show no signi�cant spatial inhomogeneity. We therefore use a mean

(homogeneous) variance estimate.

We perform a spatial smoothing using Vector AWS as described in Section 3. We then,

for each voxel, calculate estimates of the peak delay D and peak intensity � as

bDi = argmin
l

b�i;l
cl

and b�i = min
l

b�i;l
cl

�
b�i;5
c5

; (19)

with cl =
p
3 for l = 1; 2, and cl =

p
6 for l = 3; 4 and 5, respectively.

Figure 8 illustrates the results. The upper left image shows a peak delay map calculated

from the original data. In the upper right we display the corresponding map bD obtained
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from the AWS estimates b�i;l. The bottom row gives the corresponding peak intensity maps.

Voxel outside the region of interest are masked (white).

Note that adaptive spatial smoothing using AWS clearly improves the interpretability of

the peak delay map, allowing for a discrimination between pathologic and normal tissue.

The peak intensity maps also show the e�ect of spatial smoothing by AWS. See also

Sebastiani et. al. (1996) for classi�cation results using other approaches.

5 Conclusions

The present paper o�ers a data driven approach to some statistical problems in functional

and dynamic MRI like signal detection, identi�cation of activated regions and classi�cation

of curves. Large homogeneous regions with similar curves are in favor of the procedure. We

show how, for functional and dynamic MRI, the original problem can be transformed to

meet such an assumption. The simulated results and the examples demonstrate the capa-

bilities of the proposed procedure allowing both for detecting small signals and for precise

estimation of its location. All these issues are in agreement with theoretical properties

of the AWS procedure introduced in Polzehl and Spokoiny (1998). Theoretical properties

of the method especially for applications to multiple datasets will be subject of further

investigations. Application is not restricted to MRI. We expect the method to be use-

ful whenever series of spatially registered images occur, one example being multispectral

satellite imaging.
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