
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Extreme Value Behavior in the Hop�eld Model

Anton Bovier 1 , David M. Mason2

submitted: 13 Sep 1999

1 Weierstrass-Institut für

Angewandte Analysis und Stochastik

Mohrenstrasse 39

D-10117 Berlin

E-Mail: bovier@wias-berlin.de

2 Department of Mathematical Sciences

University of Delaware

Newark, DE 19716, USA

E-Mail: david@freedom.math.udel.edu

Preprint No. 518

Berlin 1999

WIAS

1991 Mathematics Subject Classi�cation. 82B44, 60G70, 60K35.

Key words and phrases. Hop�eld model, extreme values, order statistics, metastates, chaotic

size-dependence.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



1

Abstract. We study a Hop�eld model whose number of patterns M grows to

in�nity with the system size N , in such a way that M(N)2 logM(N)=N tends to

zero. In this model the unbiased Gibbs state in volume N can essentially be de-

composed into M(N) pairs of disjoint measures. We investigate the distributions

of the corresponding weights, and show, in particular, that these weights concen-

trate for any given N very closely to one of the pairs, with probability tending to

one. Our analysis is based upon a new result on the asymptotic distribution of

order statistics of certain correlated exchangeable random variables.

1. Introduction and statements of main results.

In recent work, initiated mainly by Newman and Stein [21, 24, 22, 23, 20, 25], it has

emerged that in the analysis of disordered systems in statistical mechanics an im-

portant aspect is the probabilistic nature of the convergence of �nite volume Gibbs

states to the in�nite volume limit. Most of the previous work in the �eld has tended

to treat a disordered system, for a �xed realization of the disorder, like a particular

deterministic system, ignoring the fact that the Gibbs states are actually measure

valued random variables. In simple situations (dilute Ising model, random �eld

Ising model, etc.) with only a few in�nite volume Gibbs states, this approach was

su�cient, since by �xing suitable boundary conditions, deterministic sequences of

in�nite volume Gibbs states could be constructed that converge almost surely to

some in�nite volume state. Newman and Stein have pointed out, however, that this

naive approach could be inadequate to understand the basic features in systems with

a highly complex phase structure, such as spin glasses. In particular, they argued

that a suitable probabilistic description in terms of random measures (�metastates�

in their terminology) could be helpful in obtaining some a priori information from

basic principles, such as symmetries, to classify possible scenarios in di�erent situ-

ations. On this basis they argued against the direct applicability of the mean-�eld

picture in the Sherrington-Kirkpatrick model [26] to short-range lattice spin glasses

and proposed alternative pictures.

Whenever there is some new conceptual framework, it is always important to have

some concrete examples at hand that have been worked out in detail. This has been

done in a number of examples, typically taken from mean �eld models [16, 17, 5, 7],

over the last two years. They cover models with �nitely many [16, 17] and in�nitely

many [5, 7] pure states. In the present paper we will consider the case of the

standard Hop�eld-model with a (not too rapidly) growing number of patterns, that

is we will deal with a model with countably many pure states. The construction of

the pure states, using symmetry breaking magnetic �elds has been achieved some

years ago in [1, 2] and many more re�ned results have been obtained in recent years

[5, 3, 6, 4, 12, 13, 28, 29]. However, the question of the convergence of the Gibbs

state without a symmetry breaking �eld has remained unanswered so far. As we

will see, this issue is tied to the study of the order statistics of a class of dependent

exchangeable random variables whose asymptotic distribution is not covered by

known results in extreme value theory. The main technical tool of this paper is a

powerful Gaussian distributional approximation result of Zaitsev [30, 31].



2We shall begin by brie�y describing the model we study (for more details and motiva-

tion, see e.g. [3]). Let SN := f�1; 1gN denote the set of functions � : f1; : : : ; Ng !
f�1; 1g. We call � a spin con�guration and denote by �i the value of � at i. Let

(
; F; P ) be an abstract probability space and let �
�
i , i; � 2 IN, denote a family of in-

dependent identically distributed random variables on this space. For the purposes

of this paper we will assume that the �
�
i are Rademacher random variables, namely,

P f��i = �1g = 1
2
.

We de�ne random maps m
�
N : SN ! [�1; 1] through

m
�
N (�) :=

1

N

NX
i=1

�
�
i �i:(1.1)

Naturally, these maps `compare' the con�guration � globally to the random con�g-

uration

�� := (��1 ; :::; �
�
N):(1.2)

A Hamiltonian is now de�ned as the simple negative function of these variables given

by

HN(�) := �N
2

M(N)X
�=1

(m�
N (�))

2 =: �N
2
jmN(�)j22;(1.3)

where M(N) is some, generally increasing, function that will be seen to in�uence

crucially the properties of the model. We let j � j2 denote the Euclidean norm in IRM ,

and the vector mN (�) is always understood to be theM(N)-dimensional vector with

components m
�
N(�). We will always use the abbreviation

� := �(N) :=
M(N)

N
:(1.4)

Through this Hamiltonian we de�ne in a natural way �nite volume Gibbs measures

on SN via

d�N;�(�) :=
e��HN (�)

ZN;�

dP�;(1.5)

where P� = (1
2
��1 +

1
2
�1)


N and the probability distribution on IRM of the overlap

parameters given by

QN;� := �N;� �m�1
N ;(1.6)

where the normalizing factor ZN;�, given by

ZN;� := 2�N
X
�2SN

e��HN (�) := E�e
��HN (�)(1.7)

is called the partition function. We are interested in the large N behavior of these

measures. Note that all the objects de�ned above are random objects. It has been

shown �rst in [1], and later in [3, 28], with more precise estimates, that the measure

QN;� is concentrated on the union of 2M disjoint balls of radius � p
�. More

precisely, set

B�(x) := fy 2 IRM : jx� yj2 � �g;



3denote by e
�
M the � � th unit-vector in IRM and let m� := m�(�) be the largest

solution of the equation m = tanh(�m). In [3] the following result was obtained:

Fact 1.1. There exist 0 < c0; C; 
a < 1 such that for all � > 1,
p
� < 
a(m

�)2,

and all � satisfying c0(
p
�

m� ^N�1=4) < � < m�=
p
2, we have, with probability one, for

all but a �nite number of indices N ,

QN;�

�[M�=1 [s=�1 B�(sm
�e

�
M )
� � 1� e�C(M^N1=2):(1.8)

Since the balls B�(sm
�e

�
M) are disjoint, this result implies that the measure Q�;N

has the asymptotic decomposition

QN;� =

MX
�=1

QN;�

�
B�(m

�e
�
M))(Q

+;�
N;�;� +Q

�;�
N;�;�

�
+O(e�C(M^N1=2));(1.9)

where Qs;�
N;�;�; s = �1; denote the conditional measures

Q
s;�
N;�;�(�) = QN;�(�jx 2 B�(sm

�e
�
M)):

What we want to control are the relative weights of these measures, i.e. QN;�(B�(m
�e�M)).

In [2, 3] upper bounds on the relative �uctuations of these weights were proven us-

ing concentration of measures techniques which show that the relative weights di�er

by no more than a factor of order exp(
p
N). However, this method gives no lower

bounds on the �uctuations. Thus we must try to get some more explicit control

on the form of these weights. This was done, for instance, by Gentz [12, 13] in the

course of the proof of a central limit theorem. The following theorem follows easily

from the estimates in Section 4.2 of [3] and is also implicit in the proof of Theorem

2.6 of [12], resp. Theorem 2.5 in [13]

Fact 1.2. With the notation and assumptions of Fact 1.1, for some C(�) > 0 we

have, with probability one, for all but a �nite number of indices N , for any � =

1; : : : ;M(N),

j log(ZN;�QN;�(B�(m
�e�)))� �N�(m�)� h(m�; �)

X
� 6=�

(
1p
N

NX
i=1

��i �
�
i )

2j(1.10)

� C(�)

r
M3

N
; :

where

�(m) := m2=2� ��1 log cosh(�m)

and

h(m; �) = �
m2

2[1� �(1�m2)]
:

(Note that the condition M3=N ! 0 in the statement of the theorems in [12, 13]

is necessary only to assure that the right-hand side in (1.10) vanishes, which we do

not require here).



4Fact 1.2 tells us that the �uctuations of the weights are governed by the explicitly

given random variables (we normalize the variables appearing in (1.10) to have mean

zero and variance 1)

B�(N;M) :=
1p
2M

X
� 6=�

 
1p
N

NX
i=1

��i �
�
i

!2

� M � 1p
2M

;(1.11)

provided that their relative �uctuations are large compared to M2

N
. We will in fact

establish that the spacing of the largest (smallest) of the B�(N;M) is actually on

the scale 1=
p
logM , provided M !1.

To state our �rst main result, let us denote the standard normal distribution function

by

�(u) :=
1p
2�

Z u

1
e�x

2=2dx(1.12)

and its upper tail by

�(u) := 1� �(u):(1.13)

De�ne for x 2 IR and M � 1

uM(x) := � (exp(�x)=M) :(1.14)

It is well known that ([18], page 15)

uM(x) = euM(x) + o

�
1p

logM

�
;(1.15)

where

euM(x) :=
xp

2 logM
+ (2 logM)1=2 � log logM + log(4�)

2
p
2 logM

:(1.16)

In fact, all the results we state based upon uM(x), also hold with uM(x) replaced
by euM(x):

De�ne the point process on IR by

�N :=

M(N)X
�=1

�u�1
M (B�(N;M)):

Theorem 1.1. Whenever M(N) � N satis�es M(N) ! 1, the sequence of point

processes f�NgN�1 converges weakly with respect to the vague topology to the Poisson

point process � on IR with intensity measure e�xdx.

Set for x 2 IR

mM (x) = #fB1(N;M); : : : ; BM(N;M) > uM(x)g:(1.17)

Corollary 1.1. Whenever M(N) � N satis�es M(N)!1, we have for all real x
and k � 0

PfmM(N)(x) = kg ! exp(�kx)
k!

exp(� exp(�x)) as N " 1:(1.18)



5Also, as more or less a corollary of Theorem 1.1 we obtain the next result, which

asserts that the weights in the decomposition (1.9) are indeed concentrated on a

single (random) value of � with probability tending to one.

Theorem 1.2. Assume M(N) � N satis�es M(N)!1 and

M(N)2 logM(N)

N
! 0:(1.19)

Then with � as in Fact 1.1

lim
N!1

P

�
9� : QN;�(B�(m

�e
�
M)) � 1

2
� e

�
p
M

logM

�
= 1:(1.20)

Remark Note that it will not be true, with positive probability, that concentration

on a single pair will hold for all N large enough. Rather, occasionally there will be

random values of N for which the decomposition (1.9) will give positive weight to

several pairs of balls.

Moreover, the estimates used in the proof of Corollary 1.1 together with a law of

the iterated logarithm for B�(N;M(N)) will allow us to derive (at least for M(N)

growing fast enough) that the sequence of indices �N of the pairs of balls on which

the measure QN;� concentrates is transient. This is our next result.

Theorem 1.3. Assume that M(N) � N satis�es (1.19);

M(N) � (logN)16+� ;(1.21)

for some � > 0;

M(2N) � 2M(N)(1.22)

for all large N ; and

M(N)�M(N � 1) � A; N � 2;(1.23)

for some A > 0: Then for all � > 1 there is a d(�) > 0 such that for any �xed

� � 1,

PfQN;�(B�(�m�e�M)) � e��d(�)
p
M2 logM

i.o.g = 0:(1.24)

Remark This result might at �rst sight look puzzling. Obviously, for any value of

N , the probability that the pair of balls with index � has maximal weight is 1=M(N).

Thus one might be tempted to believe that the maximum-process is recurrent if the

sequence 1=M(N) is not summable. But note that the weights for di�erent N are

far from independent, which invalidates this argument. Indeed what happens is that

the weight of a given ball changes very slowly with N , while the �fresh� patterns

that are added as M increases produce almost independent weights which have a

good chance to be larger than all previous ones. This explains heuristically the

phenomenon described by Theorem 1.3.

Finally we observe that Theorem 1.1 gives a simple corollary on the �uctuations of

the free energy, which, as will not come as a surprise, are governed by the Gumbel

distribution.



6Corollary 1.2. Under the assumptions of Theorem 1.2, with

an =

r
logM

M

and

bn =
M � 1p
logM

p
M + 2 logM � log logM

2
� log(4�)

2
;

the sequence of random variables

an

�
logZN;� �N��(m�)

h(m�; �)

�
� bn !d Y;(1.25)

where Y is a Gumbel random variable with distribution function G(x) = exp(� exp(�x));
x 2 IR.

The remainder of the paper is organized as follows. In the next section we provide

the analogues of Theorem 1.1 and Corollary 1.1 in an abstract setting for dependent

random variables with permutation invariant joint distributions under certain as-

ymptotic assumptions. In Section 3 we apply these results to the random variables

B�(N;M): The main task is to show that the appropriate factorization assumptions

hold in this case. This is done using some distributional estimates due to Zaitsev

[30, 31]. In Section 3.3 we prepare for the proof of Theorem 1.3 by proving a law

of the iterated logarithm for the sequence of random variables B�(N;M); as well as
an almost sure upper bound on the max�B�(N;M). In the �nal Section 4 we show

that these results imply Theorems 1.2, 1.3 and Corollary 1.2.

2. Some useful convergence to Poisson process results

We consider the following setting. Let fXN
i gi=1;:::;N be a family of random variables

de�ned on an abstract probability space such that for any �xed N the distribution of

the random variables XN
1 ; : : : ; X

N
N is invariant under the action of the permutation

group acting on the lower indices. Our aim in this section is to establish a number

of Poisson convergence results which we need to prove the results stated in the

Introduction. Towards this end, consider the following sequence of point processes

de�ned on IR

�N :=

NX
i=1

�t�1
N (XN

i ); N � 1;

where tN is a sequence of strictly increasing measurable functions from IR onto IR.

Theorem 2.1. Assume that for any integer k � 1 and any (x1; : : : ; xk) 2 IRk
,

NkP
�
XN

1 > tN (x1); : : : ; X
N
k > tN (xk)

	! exp

 
�

kX
i=1

xi

!
; as N !1:(2.1)

Then the sequence of points processes �N converges weakly to the Poisson-point

process � on IR with intensity measure e�xdx.

Let mN (u) denote the number of the variables X
N
i that are greater than u.



7Theorem 2.2. Assume that for all x 2 IR and positive integers k � 1

NkP
�
XN

1 > tN (x); : : : ; X
N
k > tN(x)

	! exp(�xk); as N !1:(2.2)

Then for all x 2 IR and k � 0,

lim
N!1

P fmN(tN (x)) = kg = e�xk

k!
exp(�e�x):

Remark. This theorem is completely analogous to standard theorems on order

statistics in the case of stationary sequences. Assumption 2.2 replaces the usual

mixing conditions. For closely related results see [11].

2.1. Proof of Theorems 2.1 and 2.2. The proof of Theorem 2.1 will follow

from Kallenberg's theorem [15] (see also [18]) on the weak convergence of a point

process �N to the Poisson process �: Applying his theorem in our situation, weak

convergence holds whenever

(i) for all intervals (c; d] � IR

E[�N ((c; d])]! E[�((c; d])] = e�c � e�d; as N !1;

and

(ii) for all B � IR that are �nite unions of disjoint (half-open) intervals,

P f�N(B) = 0g ! P f�(B) = 0g = exp

�
�
Z
B

e�xdx

�
; as N !1:

To verify (i), observe, trivially, that by (2.1), as N !1;

E[�N((c; d])] =

NX
i=1

P ftN(Xi) 2 (c; d]g = NP fX1 2 (tN (c); tN(d)]g

= NP fX1 > tN (c)g �NP fX1 > tN(d)g ! e�c � e�d:

To prove (ii), consider �rst the case when B is a single interval, B = (c; d]; c < d:
Clearly, then, for any integer p � 1 and all N > p

P f�N(B) = 0g = P fmN (c) = mN(d)g

=

pX
k=0

P fmN (c) = mN(d) = kg+ P fmN (c) = mN(d) > pg :(2.3)

But using the permutation invariance,

P fmN(c) = mN (d) = kg

=

�
N
k

�
P
�
XN

1 > tN(d); : : : ; X
N
k > tN (d); X

N
k+1 � tN(c); : : : ; X

N
N � tN(c)

	
:



8The Bonferroni-inequalities (or the inclusion-exclusion principle)[10] provide the fol-

lowing sequence of alternating upper and lower bounds on this probability, namely

for any n � 1;

2nX
l=0

(�1)l
�
N � k
l

�
P
�
XN

1 > tN (d); : : : ; X
N
k > tN (d); X

N
k+1 > tN(c); : : : ; X

N
k+l > tN (c)

	
� P

�
XN

1 > tN (d); : : : ; X
N
k > tN (d); X

N
k+1 � tN(c); : : : ; X

N
N � tN (c)

	 �
2n+1X
l=0

(�1)l
�
N � k
l

�
P
�
XN

1 > tN(d); : : : ; X
N
k > tN(d); X

N
k+1 > tN (c); : : : ; X

N
k+l > tN(c)

	
Now by (2.1) for each �xed l�
N
k

��
N � k
l

�
P
�
XN

1 > tN(d); : : : ; X
N
k > tN (d); X

N
k+1 > tN (c); : : : ; X

N
k+l > tN (c)

	
=

�
N
k

��
N � k
l

�
e�dk�clN�k�l(1 + o(1));

which as N !1 converges to

1

k!l!
e�dk�cl:

Since n can be chosen arbitrarily large we readily argue that for each �xed k�
N
k

�
P
�
XN

1 > tN(d); : : : ; X
N
k > tN(d); X

N
k+1 � tN(c); : : : ; X

N
N � tN(c)

	
! e�dk

k!
exp(�e�c); as N !1:(2.4)

Furthermore, notice that for each �xed p � 1

P fmN (c) = mN(d) > pg � P fmN (d) > pg

�
�
N
p

�
P
�
XN

1 > tN(d); : : : ; X
N
p > tN (d)

	
;

which by (2.1) converges to

e�pd

p!
; as N !1:(2.5)

Thus we readily conclude from (2.3) (2.4) and (2.5) (letting p!1) that

lim
N!1

P f�N(B) = 0g = exp(e�d � e�c) = exp(�
Z d

c

e�xdx):

The general case where B is a �nite union of disjoint intervals is treated in much the

same way and presents, apart from notational complexity, no further di�culties and

requires no further conditions. We therefore leave the details to the reader. This

completes the proof of Theorem 2.1. Theorem 2.2 has also been proved.



93. Order statistics for B�(N;M):

It is easy to see that the random variables B�(N;M) de�ned in (1.11) converge

individually and even with respect to the product topology to independent normal

variables, provided that M(N) ! 1. However, this is not su�cient to derive the

asymptotic distribution of their extremes. One of the main problems is that to study

the extreme value behavior one requires control of the convergence in the tails of

the distribution, which conventional central limit theorems, and even Berry-Esséen

theorems do not provide. The main tool that will give us the required uniform

control on the convergence is a Gaussian distributional approximation result that

we now describe.

3.1. Gaussian distributional approximation under Bernstein conditions.

For probability measures P and Q on the Borel subsets of IRk; k � 1; and � > 0, let

�(P;Q; �) := supfP (A)�Q(A�); Q(A)� P (A�) : A � IRk; Borelg;(3.1)

where A� denotes the closed ��neighborhood of A,

A� := fx 2 IRk : inf
y2A

jx� yj2 � �g

with j � j2 as above being the Euclidean norm on IRk. We shall denote (s; t) to be

the usual inner product for vectors s; t 2 IRk: Further, let X1; : : : ; XM ;M � 1, be

independent mean zero random k�vectors satisfying for some � > 0

jE(s;Xi)
2(t; Xi)

m�2j � 2�1m!�m�2jtjm�2
2 E(s;Xi)

2; 1 � i �M;(3.2)

for every m = 3; 4; :::; and for all s; t 2 IRk:

Denote the distribution of X1 + : : :+XM by PM and let QM be the k�dimensional

normal distribution with mean zero and covariance matrix

cov(X1) + : : :+ cov(XM):

The following inequality is contained in Theorem 1.1 of Zaitsev [30] as improved in

[31].

Fact 3.1. For all integers M � 1 and � � 0

�(PM ; QM ; �) � c1;k exp(��=(c2;k�));(3.3)

where ci;k � cik
2
with c1; c2 being universal �nite positive constants.

3.2. Application to B�(N;M). We want to use Fact 3.1 for random vectors con-

structed from a �nite collection of the variables B�(N;M). Let us �x I � N with

cardinality K (and assume that M is so large that I � f1; : : : ;Mg). Then let us

write, for � 2 I,

B�(N;M) = ~B�(N;M) + ��(K;N);(3.4)



10where

~B�(N;M) :=
1p
2M

MX
� 62I

24 1p
N

NX
i=1

�
�
i �

�
i

!2

� 1

35(3.5)

and

��(K;N) :=
1p
2M

X
�2I;� 6=�

24 1p
N

NX
i=1

�
�
i �

�
i

!2

� 1

35 :(3.6)

We will denote by BI(N;M); ~BI(N;M), and �I(N;M); the K-dimensional vectors,

whose components are given in (3.4) to (3.6), respectively.

First we shall control the contribution of �I(K;N). To do this we will need here as

well as elsewhere the following special case of Hoe�ding's inequality [14] applied to

sums of i.i.d. Rademacher random variables: for all z � 0

P

(
1p
N

NX
i=1

�i � z

)
� exp(�z2=2);(3.7)

where �1; :::; �N are i.i.d. Rademacher random variables:

Lemma 3.1.

P fj�I(K;N)j2 > �g � 4e�1=2K2 exp

 
��

p
2M

2K3=2

!
:(3.8)

Proof. Without loss of generality we may assume that I = f1; : : : ; Kg. Note that

P fj�I(K;N)j2 > �g = P

(X
�2I

(��(K;N))2 > �2

)

� 2KP

8<: 1p
2M

KX
k=2

������
 

1p
N

NX
i=1

�ki �
1
i

!2

� 1

������ > �=
p
K

9=;
� 2K2P

8<:
 

1p
N

NX
i=1

�ki �
1
i

!2

>
�
p
2M

K3=2
+ 1

9=;
� 4K2P

8<: 1p
N

X
i

�ki >

s
�
p
2M

K3=2
+ 1

9=; � 4e�1=2K exp

 
��

p
2M

2K3=2

!
;(3.9)

where we use (3.7) to get the last inequality.

We will see that we can use Lemma 3.1 with � = M�1=4 to reduce the veri�cation

of the hypothesis of Theorem 2.1 to probabilities involving eBI(N;M) only. We will

now show that the random variables eBI(N;M) are suitable for the application of

Fact 3.1. In particular, conditioned on the variables �ki , i 2 f1; :::; Ng; k 2 I, the



11summands indexed by � =2 I, in (3.5) are independent. It remains to establish that

they satisfy the Bernstein conditions (3.2).

To simplify the notations we introduce i.i.d. Rademacher random variables �i and
�ki , i 2 f1; : : : ; Ng and k 2 f1; : : : ; Kg, and the K-dimensional random vectors X(�)
with components

Xk(�) := (2M)�1=2

24 1p
N

NX
i=1

�ki �i

!2

� 1

35 :(3.10)

We denote by P �, E� the conditional law and expectation given the random variables

�ki . Note that the random vectors X(�) have the same distribution as the vector

summands in (3.5), i.e.0@ 1p
2M

24 1p
N

NX
i=1

�1i �
�
i

!2

� 1

35 ; :::; 1p
2M

24 1p
N

NX
i=1

�Ki �
�
i

!2

� 1

351A :(3.11)

Lemma 3.2. For any t; s 2 IRK
and positive integer m � 2,

E�(s;X(�))2(t; X(�))m�2 � m!(2e)m
�
K

2M

�m=2

jsj22jtjm�2
2 :(3.12)

Proof. Obviously for any vector x, (s; x)2(t; x)m�2 � jsj22jtjm�2
2 jxjm2 , so that

E�(s;X(�))2(t; X(�))m�2 � jsj22jtjm�2
2 E�jX(�)jm2 :(3.13)

Let us de�ne

VN :=
1p
2M

 
1

N

NX
i=1

�i

!2

:

Observe that under P �, each of the K components of Xk(�) has the same marginal

distribution as VN � 1=(2M)1=2. Therefore, using Jensen's inequality, we see that

for m � 2

E�jX(�)jm2 � Km=2E�jX1(�)jm � Km=22m=2�1(EV m
N + (2M)�m=2):(3.14)

Now by Khintchine's inequality (see Theorem 1 on page 254 of [8]) and Stirling's

formula, we have for any positive integer m � 2

EV m
N � (2M)�m=2mm � (2M)�m=2m!em:(3.15)

Notice also that by a trivial computation

EV 2
N = (2M)�1(3� 2=N):(3.16)

Combining these estimates gives (3.12).

Next we need a lower bound for E�(s;X(�))2.

Lemma 3.3. De�ne for integers K � 1 and N � 1; the event

CK;N :=

8<: sup
1�k 6=k0�K

 
1

N

NX
i=1

�ki �
k0

i

!2

� 1p
N

9=; ;(3.17)
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then

PfCK;Ng � 1� 2K2e�
p
N
2(3.18)

and conditioned on the event CK;N , for all s 2 IRK
,

E�(s;X(�))2 � 1

M
jsj22(1�K=

p
N):(3.19)

Proof. By a simple computation

2ME�(s;X(�))2 = 2
X
k

s2k + 2
X
k 6=k0

sksk0

 
1

N

NX
i=1

�ki �
k0

i

!2

:(3.20)

But on CK;N we have������
X
k 6=k0

sksk0

 
1

N

NX
i=1

�ki �
k0

i

!2
������ � 1p

N

X
k;k0

jskjjs0kj �
1p
N
Kjsj22;(3.21)

from which we get (3.19).

To prove (3.18), just note that

P

8<:
 

1

N

NX
i=1

�ki �
k0

i

!2

> 1=
p
N

9=; = 2P

(
1p
N

NX
i=1

�i > N1=4

)
� 2e�

p
N=2;(3.22)

where we used (3.7) for the last step, from which (3.18) follows easily.

Putting everything together, from (3.12) and (3.19) we get:

Proposition 3.1. Whenever
Kp
N
� 1

2
, conditioned on the event CK;N , the random

variables X(�) satisfy the Bernstein conditions, i.e. for all m � 3

jE�(s;X(�))2(t; X(�))m�2j � m!

�
2e2K

M

�m�2
2

jtjm�2
2 4e2KE�(s;X(�))2

� m!

2
�m�2jtjm�2

2 E�(s;X(�))2;(3.23)

with

� =

r
128e6K3

M
:(3.24)

Let G� denote the Gaussian probability distribution on IRK; with mean zero and

covariance matrix

cov(ZI)k;k0 :=
M �K

M

"
1

N

NX
i=1

�ki �
k0

i

#2
:(3.25)

Combining Proposition 3.1 with Fact 3.1, and computing the conditional covariance

matrix of X(�), we get by setting I = f�1; : : : ; �Kg and identifying �ki = ��ki the

following corollary.



13Corollary 3.1. Whenever
Kp
N
� 1

2
, on the event CK;N ; for the Gaussian probability

distribution G�
on IRk

as above, Borel set A � IRK; and � � 0,

G�(A�) + c1K
2 exp(��

p
M

c2K2
) � P �

n
~BI(N;M) 2 A

o
(3.26)

and

P �
n
~BI(N;M) 2 A�

o
� G�(A)� c1K

2 exp(��
p
M

c2K2
);(3.27)

where c1; c2 are �nite constants.

Proof. Under the conditional distributution P �; the random variable ~BI(N;M) has

the same distribution as

M�KX
i=1

X(i)(�);

whereX(1)(�); :::; X(M�K)(�) are i.i.d. randomK�vectors with the same distribution

as X(�). Thus Proposition 3.1 allows us to apply Fact 3.1 to construct M �K inde-

pendent Gaussian K�vectors Wl, l 2 f1; : : : ;Mg n I with mean zero and covariance

cov(Wl) equal to the covariance of X(�) under the law P �. A simple computation

shows that the matrix elements of this covariance matrix are given by

1

M

"
1

N

NX
i=1

�ki �
k0

i

#2
Now by setting

ZI :=
X

l2f1;:::;Mg�I

Wl

and using Fact 3.1 with the Bernstein conditions from Proposition 3.1, we readily

obtain (3.26) and (3.27).

We want to apply this result to Borel sets A(�!u ) of the form

A(�!u ) := fx 2 IRK : xi > ui; for x = 1; ::; Kg;
where �!u := (u1; :::; uK): Notice that A(

�!u )� � A(�!u � �) and A(�!u + �) � A(�!u )�:
Hence we get from (3.26) and (3.27) that

G�(A(�!u � �)) + c1K
2 exp

 
��

p
M

c2K2

!
� P �

n
~BI(N;M) 2 A(�!u )

o

� G�(A(�!u + �))� c1K
2 exp(��

p
M

c2K2
);(3.28)

where �!u + a := (u1 + a; :::; uK + a) for any a 2 R:



14It will be convenient to approximate the correlated Gaussian K�vector ZI by an

uncorrelated Gaussian K�vector YI. In fact, for any 0 � 
 < 1 such that 
2I +
(cov(ZI)� I) is positive de�nite, we can write

ZI =D YI +�ZI(3.29)

where YI and �ZI are independent Gaussian K�vectors with covariances

cov(YI) = (1� 
2)I; cov(�ZI) = 
2I + (cov(ZI)� I):(3.30)

Since on CK;N ,

jjcov(ZI)� Ijj � Kp
N

+
K

M
;(3.31)

we may choose 
2 := 2Kp
N
+ K

M
.

We recall the tail bound for a standard normal random variable Z : for all z � 0;

PfjZj � zg � 2 exp(�z2=2)(3.32)

and the elementary inequalities

PfXi + Yi > u for all i 2 Ig

� PfXi � u� � for all i 2 Ig+
X
i2I

PfjYij � �g(3.33)

and

PfXi + Yi > u for all i 2 Ig

� PfXi � u+ � for all i 2 Ig �
X
i2I

PfjYij � �g:(3.34)

Thus using (3.29), (3.32), (3.33), (3.34) we easily get that for any �!u and � � 0;

G0

�
A((�!u � �)=

p
1� 
2)

�
+ 2K exp(� �2

2
2
) � G�(A(�!u ))

� G0

�
A((�!u + �)=

p
1� 
2)

�
� 2K exp(� �2

2
2
);(3.35)

where G0 denotes the K�dimensional standard normal distribution.

Combining these bounds with (3.18), (3.26) and (3.27), we have of course that

P
n
~BI(N;M) 2 A(�!u )

o
� G0

�
A(�!u � �)=

p
1� 
2)

�
+2K exp(� �2

2
2
) + c1K

2 exp(��
p
M

c2K2
) + 2K2 exp(�

p
N=2)(3.36)

and

P
n
~BI(N;M) 2 A(�!u )�

o
� G0

�
A(�!u + �)=

p
1� 
2)

�
�2K exp(� �2

2
2
)� c1K

2 exp(��
p
M

c2K2
)� 2K2 exp(�

p
N=2);(3.37)



15where 
2 := 2Kp
N
+ K

M
. Furthermore, we obtain from (3.9), (3.33) and (3.34)

P fBI(N;M) 2 A(�!u )g � P
n
~BI(N;M) 2 A(�!u � �)

o
+ 4e�1=2K2e

� �
p
2M

2K3=2(3.38)

and

P fBI(N;M) 2 A(�!u )g � P
n
~BI(N;M) 2 A(�!u + �)

o
� 4e�1=2K2e

� �
p
2M

2K3=2 :(3.39)

Now write

pN;M(
2; �) = 2K exp(� �2

2
2
) + c1K

2 exp(��
p
M

c2K2
) +(3.40)

2K2 exp(�
p
N=2) + 4e�1=2K2e

� �
p
2M

2K3=2 :

Collecting the estimates (3.36), (3.37), (3.38) and (3.39), (3.40), we get the following

proposition.

Proposition 3.2. For all integers 1 � K;M � N; satisfying K=
p
N � 1=2; �!u 2

IRK
and � > 0

P fBI(N;M) 2 A(�!u )g � G0

�
A(�!u � 2�)=

p
1� 
2)

�
+ pN;M(
2; �)(3.41)

and

P fBI(N;M) 2 A(�!u )g � G0

�
A(�!u + 2�)=

p
1� 
2)

�
� pN;M(
2; �);(3.42)

where 
2 := 2Kp
N
+ K

M
.

Of course we have

G0(A(
�!u )) = (1� �(u1)):::(1� �(uK)):(3.43)

The following elementary lemma allows us to �nally do away with the di�erent

arguments in the upper and lower bounds �!u � 2� in (3.41) and (3.42).

Lemma 3.4. Let Z be a standard normal variable. There exists a �nite positive

constant c such that for all 
 > 0; � > 0 and u > 0 satisfying
p
1� 
2 � 1=2;���P np1� 
2Z > u+ �

o
� P fZ > ug

��� � c(� + u
2)e�u
2=2(3.44)

and whenever u� � > 0 and u� � 1���P np1� 
2Z > u� �
o
� P fZ > ug

��� � c(� + u
2)e�u
2=2:(3.45)

Proof. We have ���P np1� 
2Z > u+ �
o
� P fZ > ug

���
=

���P nZ > u+ (u(1�
p
1� 
2) + �)=

p
1� 
2

o
� PfZ > ug

���(3.46)

Now since
p
1� 
2 � 1=2 and 1�

p
1� 
2 � 
2,

(u(1�
p
1� 
2) + �)=

p
1� 
2 � 2u
2 + 2�:(3.47)



16Thus (3.46) is

� 1p
2�

Z u+2u
2+2�

u

e�x
2=2dx �

r
2

�
(� + u
2)e�u

2=2:(3.48)

Similarly we can argue that

jP
np

1� 
2Z > u� �
o
� P fZ > ug j � 1p

2�

Z u+2u
2

u��
e�x

2=2dx

� (� + 2u
2)
1p
2�

e�(u��)2=2

�
r

2

�
(� + u
2)e�(u��)2=2:(3.49)

Next observe that by u� � 1 we have

�(u� �)2

2
= �u

2

2
+ u� � �2

2
< �u

2

2
+ 1:(3.50)

Therefore r
2

�
(� + u
2)e�(u��)2=2 < e

r
2

�
(� + u
2)e�u

2=2:(3.51)

Setting c = e
q

2
�
completes the proof of the lemma.

Recalling that the random variables Yk are mean zero Gaussian random variables

with variance 1� 
2, we have under the conditions in Lemma 3.4,

jP fYk > u+ �g � �(u)j � c(� + u
2)e�u
2=2(3.52)

and

jP fYk > u� �g � �(u)j � c(� + u
2)e�u
2=2;(3.53)

where �(u) is as in (1.13).

Recall from (1.14) the de�nition of uM(x). By (1.15) and (1.16), we get for some

C > 0;

uM(x) = O(
p
logM), for jxj � C

p
logM:(3.54)

Lemma 3.4 allows us to conclude that with uM(�!x ) := (uM(x1); :::; uM(xK));

G0

�
A(uM(�!x )� �)=

p
1� 
2)

�

=

KY
i=1

�
e�xi

M
+O

��
� +

�
2Kp
N

+
K

M

�
uM(xi)

�
e�u

2
M (xi)=2

��
:(3.55)

Now it is well-known that for u > 0;

e�u
2=2

u
p
2�

�
1� u�2

� � 1� �(u) � e�u
2=2

u
p
2�

;(3.56)



17and thus for all large M

e�u
2
M (xi)=2 � 2uM(xi)e

�xi=M:(3.57)

Inserting this bound into (3.55), taking into account the estimate in (3.54), and

choosing � = M�1=4; we get that for some D > 0;�����MKP �
n
~BI(N;M) 2 A(uM(�!x ))

o
�

KY
i=1

e�xi

����� �MKpN;M(�!u ; �)

+

KX
i=1

e�xi
�
D

�
M�1=4 +

p
logM(

1p
N

+
K

M
)

�p
logM

�
;(3.58)

which after a little analysis is easily shown to converge to zero as M(N) ! 1,

where we use the inequality�����
KY
i=1

ai �
KY
i=1

bi

����� �
KX
i=1

jai � bij

holding for all 0 � ai; bi � 1:

Clearly this shows that the hypotheses of Theorem 2.1 are satis�ed for any �!x 2 IRK:
Thus Theorem 1.1 follows immediately.

Theorem 1.1 permits us derive the asymptotic distribution of the gap between the

largest and second largest order statistic of the B�(N;M): LetbB1(N;M) � bB2(N;M) � ::: �(3.59)

denote the order statistics of the variables B�(N;M):

Proposition 3.3. Under the hypotheses of Theorem 1.1, for any � � 0;

lim
N!1

P
n bB1(N;M)� bB2(N;M) � uM(�)

o
! 1� e��:(3.60)

Proof. This is a corollary of Theorem 1.1. Namely, the weak convergence of the

point process implies, in particular, that for any x; y 2 IR;

lim
N!1

P
n bB1(N;M) � uM(x); bB2(N;M) � uM(y)

o
= P f�((x;1)) = 0;�((y; x]) � 1g ;(3.61)

and a simple computation shows that for any x � y;

P f�((x;1)) = 0;�((y; x]) � 1g = e�e
�y
(e�y � e�x + 1):(3.62)

In particular, the joint distribution of u�1
M
bB1(N;M) and u�1

M
bB2(N;M) converges to

that of a random 2-vector with joint density

p(x; y) = e�e
�y
e�x�y

and therefore

lim
N!1

P
n bB1(N;M)� bB2(N;M) > uM(�)

o
=

Z 1

�1
dx

Z x��

�1
dye�e

�y
e�x�y = e��;



18which proves the proposition.

3.3. Some almost sure behavior of B�(N;M(N)). We shall show that for each

�xed �, the sequence of random variables B�(N;M(N)) satis�es a law of the iterated

logarithm (LIL), more precisely,

Proposition 3.4. Assume M(N) � N is monotone increasing satisfying

(logN)2+� �M(N);(3.63)

for some � > 0 and all large N , and (1.22),and (1.23) hold. Then for any �xed

index �

lim sup
N!1

� B�(N;M)p
2 log logN2M(N)

= 1; a.s.(3.64)

Proof. The proof is based upon a martingale version of the Kolmogorov LIL due

to Stout [27] (see also [9]). It states that if f(Xi; Fi)gi�0 is a martingale di�erence

sequence satisfying

(i)

s2n :=

nX
i=1

E[X2
i jFi�1]!1 a.s.;

and

(ii)

jXnj � �nsn=
p
log log s2n a.s.;

for �n > 0, with �n ! 0; as n!1, then

lim sup
n!1

�
Pn

i=1Xip
s2n log log s

2
n

= 1; a.s.(3.65)

We will apply this result to the following sequence of random variables, which we

will soon prove to be a martingale. De�ne (for a �xed nonincreasing functionM(N))

SN :=

M(N)X
�=2

24 NX
i=1

��i

!2

�N

35(3.66)

where ��i are i.i.d. Rademacher r.v.'s. (Set S0 = 0 and SN = 0 ifM(N) < 2:) Clearly

fSNgN�1 =D

np
2M(N)N2B�(N;M(N))

o
N�1

:(3.67)

We will �rst show that fSNgN�0 is a martingale with respect to the �ltration

fFNgN�0 where FN ; N � 1; denotes the sigma algebra generated by the random

variables

f��i : 1 � i � N; 1 � � �M(N)g



19and F0 = f;
g: A straightforward computation shows that

SN+1 � SN

=
X

M(N)<��M(N+1)

24 NX
i=1

��i

!2

�N

35 + 2

M(N)X
�=2

��N+1

NX
i=1

��i =: IN+1:(3.68)

(Empty sums are de�ned to be 0:) From this one readily checks that E[IN+1jFN ] = 0,

implying that SN is a martingale.

Next

s2N :=

NX
n=1

E[I2njFn�1]

=

NX
n=1

242n2(1� 1=n)(M(n)�M(n� 1)) + 4

M(n�1)X
�=2

 
n�1X
i=1

��i

!2
35 ;(3.69)

from which one sees immediately that condition (i) holds. To show that condition

(ii) is also satis�ed, we will �rst show that as N !1;

s2N
2M(N)N2

! 1; a.s.(3.70)

Now it is obvious that Es2N = ES2
N = 2M(N)N2. Thus (3.70) will follow, if we can

show that as N !1;

s2N � EsN

2M(N)N2
! 0; a.s.(3.71)

This is the content of the next lemma.

Lemma 3.5. Let fM(N)gN�1 be a nondecreasing positive sequence satisfying (1.22)

and (3.63) for some 
 > 0: Then (3.71) holds.

Proof. Write

Es2N � s2N
M(N)N2

=
4
PN

n=2

PM(n�1)

�=2 [(
Pn�1

i=1 �
�
i )

2 � (n� 1)]

M(N)N2

=
4
PN�1

n=1 Sn

M(N)N2
(3.72)

We claim that with probability 1

jSN j
NM(N)

! 0, as N !1:(3.73)



20Set Nk = 2k; for k = 1; 2; :::; and choose any � > 0. Now M(N) nondecreasing and

assumption (1.22)

P

�
max

Nk�1<N�Nk
jSN j=(NM(N)) > 4�

�
� P

�
max

Nk�1<N�Nk
jSN j > �NkM(Nk)

�
;

(3.74)

which by Doob's inequality and (3.63) is

� ES2
Nk

�2N2
kM

2(Nk)
� 2

�2M(Nk)
� 2

�2k2+� (log 2)2+�
:(3.75)

Since
1X
k=1

2

�2k2+
(log 2)2+

<1;(3.76)

we conclude (3.73) by the Borel-Cantelli lemma and the arbitrary choice of � > 0:

Now set

YN =
SN

NM(N)
; aN = 4NM(N) and AN = N2M(N):(3.77)

We see that expression (3.72) has the form

A�1
N

N�1X
n=1

anYn;(3.78)

where

0 � A�1
N

N�1X
n=1

an � 2:(3.79)

Since by (3.73), the YN converge almost surely to zero, and for each �xed N0 � 1;

A�1
N

N0X
n=1

anYn ! 0, as N !1;(3.80)

it is easy now to conclude (3.71).

Clearly now, condition (ii) will be veri�ed if we can show that for any " > 0; almost

surely, for all large enough N;

jIN j � "
p
M(N)N2=

p
log log (M(N)N2) =: "LN :

By assumption (1.23), it su�cient to prove that almost surely, as N !1;������
 

NX
i=1

��i

!2

�N

������ =LN ! 0(3.81)

and �����
MX
�=2

��n+1

 
NX
i=1

��i

!����� =LN ! 0:(3.82)



21Clearly we can apply inequality (3.7) to show that for some c1 > 0 and c2 > 0;

P

8<:
������
 

NX
i=1

��i

!2

�N

������ � �LN

9=; � c2e
��c1

p
M= log log(MN2):(3.83)

Further, since

MX
�=2

��n+1

 
NX
i=1

��i

!
=D

N(M�1)X
i=1

�i;

we can also apply inequality (3.7) to get for some c3 > 0;

P

(�����
MX
�=2

��n+1

 
nX
i=1

��i

!����� � �LN

)
� 2e��

2c3N= log log(MN2):(3.84)

Since we are assuming that M(N) > (logM)2+
 ; clearly now, using these bounds,

we can �nd � = �n # 0 such that both probabilities are summable in N; which
implies that condition (ii) holds. Therefore we get that with probability 1

lim sup
N!1

� SNp
4M(N)N2 log logN2M(N)

= 1:

The proposition now follows from (3.67).

Now Corollary 1.1 certainly suggests that max�B�(N;M(N)) >
p
logM , for all

large N , almost surely. We can, however, only prove the following, somewhat weaker

result.

Proposition 3.5. Assume that for some � > 0, M(N) � N satis�es (3.63). Then

there exists a � > 0 such that

P

�
max

1���M
B�(N;M) <

p
� logM; i.o.

�
= 0:(3.85)

Proof. By the Borelli-Cantelli lemma, it su�ces to show that

1X
N=1

P

�
max

1���M
B�(N;M) <

p
� logM

�
<1:(3.86)

Now, for any function K(N) � (M(N) ^pN)=8, we have

P

�
max

1���M
B�(N;M) <

p
� logM

�
� P

�
max

1���K
B�(N;M) <

p
� logM

�
:(3.87)

Let Z1; :::; ZK be i.i.d. standard normal random variables. Arguing just as in the

proof of Proposition 3.2, we can show for any 0 < � < 1=4, with 
2 = 2K=
p
N +

K=M;

P

�
max

1���K
B�(N;M) <

p
� logM

�
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� P

(
max

1���K
Z� �

p
� logM + 2�p

1� 
2

)
+ pN;M(
2; �)

=

 
P

(
Z �

p
� logM + 2�p

1� 
2

)!K(N)

+ pN;M(
2; �):(3.88)

Notice that for all large enough M; using 1� 
2 � 1=2;

P

(
Z �

p
� logM + 2�p

1� 
2

)
� P

n
Z �

p
4� logM

o
:

Next using the simple inequality holding for all large enough z

PfZ > zg � (2�z)�1 exp(�z2=2);
we obtain �

P
n
Z �

p
4� logM

o�K(N)

�
�
1� exp(�2� logM)

2�
p
4� logM

�K(N)

;

which for all large M is

� (1� exp(�4� logM))K(N) � exp(�K(N)M�4�):

Putting everything together we get that for all large M

P

�
max

1���K
B�(N;M) <

p
� logM

�

� exp(�K(N)M�4�) + pN;M(
2; �):(3.89)

Choosing 0 < 4� < 1=16 and letting K(N) = M(N)1=16+4�; we see after some

analysis that the right hand side of (3.89) is for all large M

� 2 exp(�M(N)1=16):

Since our assumption on M(N) implies that

1X
N=1

exp(�M(N)1=16) <1;

we have shown (3.86) and thus (3.85).

4. Applications to the Hop�eld model

In this last section we apply the results obtained for the random variables B�(N;M)

to prove, with the help of Facts 1.1 and 1.2, Theorems 1.2, 1.3 and Corollary 1.2.



234.1. Proof of Theorem 1.2. Let us denote �� := ��N to be any index for which

B��
N
(N;M) = bB1(N;M):

Fact 1.2 implies that, with probability one, for all N large enough, uniformly in

1 � � �M(N);

logQN;� (B�(m
�e

�
M))� logQN;�

�
B�(m

�e
��

M )
�

= c(�)
p
M [B�(N;M)�B��(N;M)] +O

�p
M3=N

�
;

where h(�) = h(m�; �): But by (1.8) and (1.9), we get that

MX
�=1

QN;� (B�(m
�e

�
M)) =

1

2
+O

�
e�C(M^N1=2)

�
;

which implies

QN;�

�
B�(m

�e�
�

M )
�
=

1
2
+O

�
e�C(M^N1=2)

�
1 +

P
�6=��

QN;�(B�(m
�e�M ))

QN;�(B�(m�e�
�

M ))

�
1
2

1 +Me
�h(�)

p
M [ bB1(N;M)� bB2(N;M)]+O

�p
M3=N

� +O
�
e�C(M^N1=2)

�
:

Now if

u�1
N ( bB1(N;M))� u�1

N ( bB2(N;M)) > �;

then bB1(N;M)� bB2(N;M) >
� � o(1)p
2 logM

:

Therefore, by Proposition 3.3, the probability that

QN;�

�
B�(m

�e�
�

M )
�
�

1
2

1 +Me
��
q

M
2 logM

h(�)+O
�p

M3=N
� +O

�
e�C(M^N1=2)

�
is greater than or equal to e��, as N !1. Further, by the assumption,M2 logM �
N , it follows that for any � > 0,

lim inf
N!1

P

�
QN;�

�
B�(m

�e�
�

M )
�
� 1

2
� M

2
e
��
q

M
2 logM

h(�)=2

�
� e��:

Now, since for any arbitrary � > 0,

M

2
e
��
q

M
2 logM

h(�)=2 � e�
p
M

logM ;

for all su�ciently large M , this, in turn, implies that

lim inf
N!1

P

�
QN;�

�
B�(m

�e
��

M )
�
� 1

2
� e�

p
M

logM

�
� e��;

for all � > 0, which yields (1.20).



244.2. Proof of Theorem 1.3. As above, letting �� := ��N to be any index for

which B��
N
(N;M) = bB1(N;M); we have, almost surely for all large enough N , for

any � � 1 �xed,

logQN;� (B�(m
�e

�
M))� logQN;�

�
B�(m

�e
��

M )
�

= h(�)
p
M [B�(N;M)� B��(N;M)] +O

 r
M3

N

!
:

Now by Propositions 3.4 and 3.5, almost surely, the inequality for any " > 0

B�(N;M)� B��(N;M) �
p
(2 + ") log log(N2M)�

p
� logM

is violated only for �nitely many values of N . But since

logN �M and M2= logM � N;

we have for all large N the bound

logQN;� (B�(m
�e�M))� logQN;�

�
B�(m

�e�
�

M )
�
� �

p
�h(�)

2

p
M logM:

Exponentiating gives

QN;� (B�(m
�e�M)) e

�h(�)

2

p
M logM � QN;�

�
B�(m

�e�
�

M )
�
� 1;

which �nishes the proof of Theorem 1.3.

4.3. Proof of Corollary 1.2. Finally we prove Corollary 1.2. By (1.9) we have

that

ZN;� =

MX
�=1

2ZN;�QN;� (B�(m
�e�M)) + ZN;�O(e�C(M^N1=2)):(4.1)

Bounding the sum over � by its maximal term from below and M times its maximal

term from above, and using the monotonicity of the logarithm, this implies

1p
M

logZN;� � 1p
M

max
1���M

log (ZN;�QN;� (B�(m
�e�M ))) +

logMp
M

+
1p
M

log

 
1 +

O(e�C(M^N1=2))

2M max1���M QN;� (B�(m�e�M))

!
(4.2)

and
1p
M

logZN;� � 1p
M

max
1���M

log (ZN;�QN;� (B�(m
�e�M)))

+
1p
M

log

 
1 +

O(e�C(M^N1=2))

2max1���M QN;� (B�(m�e�M))

!
:(4.3)

On the other hand, (1.9) also implies that

2 max
1���M

QN;� (B�(m
�e

�
M)) � 1

M

h
1� O(e�C(M^N1=2))

i
;(4.4)



25so that in fact

1p
M

logZN;� =

max
1���M

1p
M

log (ZN;�QN;� (B�(m
�e

�
M))) +O

�
log 2Mp

M
_
p
Me�C(M^N1=2)

�
:(4.5)

By Fact 1.2 and de�nition (1.11),

log (ZN;�QN;� (B�(m
�e

�
M )))

= �N�(m�) + h(m�; �)
h
M � 1 +

p
2MB�(N;M)

i
+O

 r
M3

N

!
:(4.6)

Combining this with (4.5) gives

1p
M

logZN;�

=

�
�

Np
M
�(m�) + h(m�; �)

M � 1p
M

�
+ h(m�; �)

p
2 max
1���M

B�(N;M)

+O

 r
M2

N
_ logMp

M
_
p
Me�C(M^N1=2)

!
:(4.7)

Next by (1.19), we have

an

�
logZN;� �N��(m�)

h(m�; �)

�
� bn =

eu�1
M max

1���M
B�(N;M) +O

 r
M2 logM

N
_ (logM)3=2p

M
_
p
M logMe�C(M^N1=2)

!

= eu�1
M max

1���M
B�(N;M) + o(1):

Now (1.18) of Corollary 1.1 with k = 0 and uM(x) replaced by euM(x) implies for all

x

lim
N!1

P

�eu�1
M max

1���M
B�(N;M) � x

�
= e�e

�x
:(4.8)

(Refer to the comment following (1.16).) This proves Corollary 1.2.
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