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Abstract

We present a survey of numerical methods (based on piecewise polynomial ap-

proximation) for integral equations of Mellin type, including examples arising

in boundary integral methods for partial di�erential equations on polygonal

domains.

1 Introduction

In the last 30 years or so a great deal of interest has focused on the numeri-

cal analysis of boundary integral equations arising from PDEs on non-smooth

domains (see [49] for one of the pioneering papers in this �eld). Here the chief

di�culties are not only the loss of smoothness of the solution near non-smooth

boundary points, but also (and more crucially) the singularity induced in the

integral operator itself. The development of a proper understanding of these

singularities has a huge practical motivation due to the large range of applica-

tions - particularly in engineering - and even the geometrically simple case of

a polygonal domain still contains open problems of considerable mathemati-

cal subtlety. This survey concentrates on the numerical analysis of a class of

equations which arises generically in such problems, namely the equations of

Mellin type. The simplest case of such an equation contains the operator

Kv(s) =

1Z
0

�

�
s

�

�
v(�)

d�

�
; s 2 [0; 1] ; (1.1)

where the kernel � is a given function on R
+ := [0;1). Often � is a smooth

function on (0;1) satisfying certain asymptotic estimates at 0 and 1, in

which case �(s=�)��1 is smooth at s = � > 0 but blows up with O(��1) when
s = � ! 0 (i.e. the operator (1.1) has a �xed singularity at the origin). Note

that the upper limit of integration in (1.1) is to some extent arbitrary, since

the operator K�v(s) :=
R
�

0 �(s=�)v(�)d�=�; s 2 [0; �] can easily be reduced to

(1.1) via the transformation � ! ��.

The operator K (or more generally K�, for � > 0) can be considered as a

localised version of the operator: Kv(s) :=
R
1

0 �(s=�)d�=�; s 2 R
+ , which is

normally treated using the Mellin transform: ~v(z) =
R
1

0 sz�1v(s)ds, for z 2 C .

The convolution theorem then states that (for suitably well-behaved � and

v) we have gKv = ~�~v, and from this it is easily shown that kKk2 � kKk2 =
supRe(z)=1=2 j~�(z)j. (Here k � k2 denotes the operator norm on the space L2

of square-integrable functions.) Moreover, K is also bounded on L
1

and on
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C (the continuous functions on [0; 1]), with kKk
1

=
R
1

0 j�(s)jds=s < 1

(provided this integral exists), in which case

lim
s!0

Kv(s) = ~�(0)v(0) for v 2 C : (1.2)

Using (1.2) the following simple argument ([3]) shows that K is non-compact

in C: For each n 2 N := f1; 2; : : :g, let vn : [0; 1] ! R denote a continuous

function with vn(0) = 1 = kvnk1 and supp vn � [0; 1=n]. IfK were compact on

C then the sequence fKvng would contain a convergent subsequence,
n
Kvnj

o
in C. However, (1.2) implies that Kvnj

(0) = ~�(0) for all j. Moreover for

s > 0 we can employ the change of variable x = s=� to obtain jKvnj
(s)j �R

1

njs
j�(x)jdx=x ! 0 as j ! 1, demonstrating that

n
Kvnj

o
cannot have a

continuous limit when ~�(0) 6= 0 . In fact the spectrum of K contains all the

values of ~�(z) for Re(z) = 0, and K is not compact on any Lp space either

(see �3 for a discussion of this).

All the problems which we shall consider in this paper have as their heart the

solution of second-kind equations of the form

(I �K)u = f (1.3)

withK as de�ned in (1.1). An important rôle in the theory of these equations is

played by the �nite section operator KT � , where T � is the truncation operator

satisfying T �v(s) = 0, for s < � and T �v(s) = v(s) for s � � . Then, for

� 2 (0; 1], we have KT �v(s) =
R 1
�
�(s=�)v(�)d�=�. At various points in this

review we will require assumptions on (i) the well-posedness of (1.3) and (ii)

the stability of the corresponding �nite section operators, i.e.

(i) k(I �K)�1k � C ; and (ii) k(I �KT � )�1k � C as � ! 0; (1.4)

for some norm k � k. Throughout the paper we let C;C1; C2; : : : denote generic

constants in the usual way.

To analyse (1.3), we introduce for � 2 R and r 2 N , the space Cr;� comprising

the completion of the in�nitely smooth functions on (0; 1] with respect to the

norm kvkr;� := sup
s2(0;1];l=0;:::r js

[l��]Dlv(s)j , where [�] = � for � � 0 and

[�] = 0 for � < 0. In general the solution u of (1.3) (or perhaps the higher

derivatives of u) will have a singularity at s = 0, and thus will lie in Cr;� with

the size of � depending on the zeros of the symbol 1 � ~�(z), for z 2 C (see,

for example, [12] or [38, p.172-174]).

To approximate (1.3), we introduce piecewise polynomial spaces on [0; 1] as
follows. For any integer n � 1, introduce a mesh 0 = x0 < x1 < : : : < xn = 1.
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Then for r > d+1 � 0, Sr;d

n
denotes the functions which reduce to polynomials

of degree r�1 on each interval Ii = (xi�1; xi) and have d continuous derivatives
globally on [0; 1]. Thus, for r > 0, Sr;�1

n
denotes the piecewise polynomials

of degree r � 1 which may be discontinuous at each xi; i = 1; : : : ; n � 1,
whereas Sr;r�2

n
denotes the smoothest splines on [0; 1] (without any end-point

conditions). We shall also need the 2�-periodic smoothest splines of degree

r � 1 (and Cr�2 continuity), which we denote Sr

n;p
. There is a well-worked

literature on approximation in these spaces (see, e.g. [46,38,18]).

To deal with the singularity in u, one approach is to consider graded meshes

constructed (either analytically or adaptively) to satisfy the inequalities

hi � C1(1=n)(i=n)
q�1 and xi � C2(i=n)

q ; i = 1; : : : ; n ; (1.5)

for some grading exponent q � 1, where hi = xi � xi�1. These inequalities

imply that near x = 0 mesh subintervals are of length O((1=n)q) whereas

near x = 1 they are of length O(1=n) as n ! 1. We call meshes which

satisfy (1.5) �q-graded at 0�. A standard example of such a mesh is ([42])

xi := (i=n)q; i = 0; : : : ; n, which satis�es (1.5) with C1 = q and C2 = 1.

To illustrate the properties of such meshes, consider approximating a function

u 2 Cr;� by Sr;�1
n

(where r � 1), and suppose for convenience that � 2 (0; 1].
Then standard Taylor series estimates show that there exists a function �n 2

Sr;�1
n

such that ku� �nk1;Ii
� hr

i
kDruk

1;Ii
, provided the norm on the right-

hand side is �nite. Thus, for i � 2 making use of (1.5), we have ku��nk1;Ii
�

Chr
i
x��ri�1 kukr;� � C(1=n)r((i � 1)=n)q��rkukr;� � C(1=n)rkukr;� , where the

�nal inequality requires that the grading exponent q should be su�ciently

large, namely q � r=�. On the other hand, for s 2 I1, elementary arguments

show that ju(s)�u(0)j � Cs�kukr;� � C(1=n)rkukr;�, again provided q � r=�.

So, setting �n � u(0) on I1 we see that ku��nk1 is of optimal order O(1=n)r.
In some examples the solution u of (1.3) is not continuous but instead has

an in�nite singularity of order s��1 (as s ! 0) for some � 2 (1=2; 1). Then
analogous arguments to those given above (but in the L2 context) [17] show

that there exists �n 2 Sr;�1
n

with �n � 0 on I1 such that ku� �nk2 = O(n�r)
provided q > r=(�� 1=2). Both the L2 and uniform estimates also extend to

the case of approximation by splines of arbitrary smoothness [18].

An alternative way of dealing with a singularity in the solution u(s) of (1.3) at
s = 0 (and a method which we shall consider in more detail below) involves a

change of variable s = 
(x), where 
 : [0; 1]! [0; 1] is an increasing function,

with 
(0) = 0, 
(1) = 1 and 
(x) having a zero of an appropriately high

order at x = 0. For example if u 2 Cr;� where � 2 (0; 1] and if 
 has r

continuous derivatives on [0; 1] with (Dj
)(x) = O(xq�j) for j = 0; : : : ; r, then
it is easily shown that the function u�
 has r continuous derivatives, provided

q � r=�. This function can then be approximated by a piecewise polynomial
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�n of desired smoothness with respect to the uniform mesh xi = i=n, yielding

(after inverse transformation) an optimal order approximation �n(

�1(s)) to

u(s). If (1.3) has a solution which blows up at s = 0 (for example the function

u(s) = s��1 with � 2 (1=2; 1)), then the straight substitution s = 
(x) with

(x) given above makes it worse rather than better-behaved. This di�culty can

be circumvented by considering instead the function w(x) = (u � 
)(x)j
0(x)j,
with 
 as above, which arises naturally when u appears inside an integral. Then

it is easily shown that w(s) has r continuous derivatives provided q � (r+1)=�
(see, e.g. [21]). Such nonlinear change of variables techniques can be found for

example in [37,32,5,16,41,36],

A third method of obtaining optimal convergence for singular solutions (which

we shall not discuss at length here) is to augment the approximating spaces

with some of the singular terms occurring in the expansion of the solution

(e.g. [51,12,33,34]).

However the chief di�culty in solving (1.3) is not the approximation of the

singular solution u but rather proving the stability of the chosen numerical

method, with the main theoretical barrier being the non-compactness of the

operator K. This was emphasised in [10], where it was shown that there exist

piecewise polynomial collocation methods which converge optimally when K

is compact but which actually diverge for (1.3) when K is given by (1.1). In

[10] a way around this barrier was found by considering a modi�ed method

(which excluded the counterexample but which was nevertheless very close to

a standard collocation method) and proving stability and convergence for it.

Subsequently this modi�cation technique has been applied to a great variety

of approximation methods for (1.3) (see [38] for an extensive review), and as

far as we are aware it is still the standard way of proving stability and conver-

gence for practical methods for integral equations of Mellin type. Examples

of results which use this modi�cation technique to prove stability (in con-

junction with mesh grading) are [9,10,27,17,39,19,20,11,29,15,24], whereas the

same technique is used in conjunction with a nonlinear change of parametrisa-

tion in [32,30,21,22,26,23,25,31,47,35]. The modi�cation technique for proving

stability later found a more practical use as a parameter for accelerating the

convergence of multigrid-type algorithms ([4,40]).

It is important to point out that in the case of classical Galerkin methods

for boundary integral equations on corner domains (where a variational for-

mulation of the underlying integral equation is exploited and errors due to

quadrature are not taken in to account), the stability analysis is not di�cult

provided one restricts to the energy norm. The numerical analysis then re-

duces to �nding e�cient ways of approximating the singular solution. In this

context the literature is older and includes, for example, [51,12]. The papers

[6,7] also concern the Galerkin method but analyse errors in the uniform norm

and therefore require a more sophisticated stability analysis.
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We begin this survey in �2 by illustrating the use of the modi�cation tech-

nique in the (relatively simple) context of discontinuous piecewise polynomial

collocation methods for (1.3). The modi�ed method can be thought of as the

discretization of the �nite section approximation of K, and then a pertur-

bation argument is the key to proving stability. In �3 we explain how this

idea can be extended to a uni�ed convergence theory of spline approximation

methods for equation (1.3). �4 is devoted to some examples of second and �rst

kind boundary integral equations for elliptic PDEs on corner domains leading

to the model equation (1.3) (more precisely systems of such equations), with

emphasis on Laplace's equation. In �5 we give a survey of results on Symm's

integral equation and related �rst kind equations.

2 Introduction to Modi�cation Techniques

To illustrate the technique of modi�cation (mentioned in �1) in a simple set-

ting, consider equation (1.3) and suppose that assumption (1.4) holds in the

essential supremum norm. Assume also that � satis�es the estimates

1Z
0

skjDk�(s)jds=s <1; for all integers k � 0: (2.1)

To solve (1.3), we consider classical piecewise polynomial collocation methods

in Sr;�1
n

. To de�ne the collocation procedure, choose r points 0 � �1 � : : : �

�r � 1 in the reference domain [0; 1] and map these to each Ii with the formula:

xij = xi�1+�jhi, i = 1; : : : n, j = 1; : : : r. De�ning the interpolatory projection
Pn onto Sr;�1

n
by requiring that Pnv(xij) = v(xij) for all i; j it follows that

Pn converges pointwise to the identity on C and has uniform norm bounded

as n ! 1. The classical collocation method for (1.3) seeks an approximate

solution un 2 S
r;�1
n

such that

(I � PnK)un = Pnf : (2.2)

To focus on the di�culty in analysing (2.2), recall that if K : L
1
! C

were compact, then k(I � K) � (I � PnK)k
1

= k(I � Pn)Kk1 ! 0 as

n ! 1 (since pointwise convergence is uniform on compact sets). Hence,

by the Banach perturbation lemma (applied in L
1
) and the well-posedness

assumption (1.4)(i), (I�PnK)�1 exists for n su�ciently large and has uniform

norm bounded as n!1. In this case a unique collocation solution un exists,

and u � un = (I � PnK)�1(u � Pnu), from which we obtain the usual error

estimate ku� unk1 � Cku� Pnuk1.
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As mentioned in �1, this argument fails for the non-compact operator K in

(1.1), an observation which led in [10] to the introduction of the (slightly more

general)modi�ed collocation method. Here for simplicity we shall introduce this

technique in the special case where the solution u of (1.3) satis�es u(0) = 0,
although - as we indicate in �3 - the principle can be applied in the general

case also. In its simplest form the modi�cation technique involves choosing an

integer i� � 0 and seeking un 2 S
r;�1
n

satisfying un � 0 on [0; xi�] and (instead

of (2.2)) the modi�ed collocation equations:

(I �K)un(xij) = f(xij); j = 1; : : : r; i = i �+1; : : : ; n :

In operator form this can be written

un 2 S
r;�1
n

: (I � PnT
xi�K)un = PnT

xi�f ; (2.3)

which is clearly equivalent to (1.3) when i� = 0.

To analyse (2.3), the �rst step is to recall the formal identity: (I�T xi�K)�1 =
I+T xi�(I�KT xi�)�1K. Using this, together with the assumption (1.4)(ii) and

the identity kT �k
1

= 1, it follows that, for �xed i� � 0, k(I � T xi�K)�1k
1

is

uniformly bounded as n !1. Then, attempting to mimick the argument in

the compact case, we can show that (2.3) is well-posed provided we show that

k(I � T xi�K) � (I � PnT
xi�K)k

1
= k(I � Pn)T

xi�Kk
1

is su�ciently small.

Although this quantity does not approach zero as n ! 1, we shall see in

the next lemma that it can be made arbitrarily small independent of n by an

appropriate choice of parameter i�.

Lemma 2.1 There exists a constant C independent of n and i� such that

k(I � Pn)T
xi�Kk

1
� C(1=i�)r.

Proof Let v 2 L
1
. For i > i�, we have, using (1.5),

k(I � Pn)Kvk1;Ii
� Chr

i
kDrKvk

1;Ii
� Chr

i
x�r
i�1ks

r(DrKv)(s)k
1;Ii

� C(1=i�)rksr(DrKv)(s)k
1;Ii

: (2.4)

Now, by assumption (2.1) the Mellin convolution operator srDrK (with kernel

srDr�) is bounded on L
1
, and (2.4) proves the lemma. 2

From this we can prove the stability of (2.3) using the Banach lemma by taking

i� su�ciently large:

Theorem 2.2 There exists i� � 0 such that for all n su�ciently large, the

modi�ed collocation equations (2.3) have a unique solution un and satisfy the

error estimate ku� unk1 � Cku� PnT
xi�uk

1
. 2
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If u 2 Cr;� with 0 < � � 1 and u(0) = 0 then, as described in �1, the

above error estimate implies convergence with optimal order O(n�r) provided
q � r=�. Note the philosophy of the argument: Lemma 2.1 shows that there

exists a modi�cation parameter i� (�xed with respect to n) which ensures sta-

bility. Then Theorem 2.2 shows that the resulting modi�ed method converges

optimally provided the mesh is appropriately graded. The choice of any �xed

i� for stability does not a�ect the rate of convergence as n!1, although it

does a�ect the asymptotic constant in the error estimate.

3 Further Results for Second-kind Equations

We now give a survey of results on piecewise polynomial collocation methods

and their iterated and discrete versions for equation (1.3). Using graded meshes

and modi�ed spline spaces as described in the previous section, it is possible

to obtain stability (provided (I � K) is well-posed) and the same optimal

orders of convergence as in the case of second-kind equations with smooth

kernels. We present here general convergence results in the space Lp = Lp(0; 1),
1 � p � 1, for which we need the following assumptions:

(A1) For all k � 0,
R
1

0 s1=p+kjDk�(s)jds=s <1.

(A2) The symbol 1� ~�(z) does not vanish on Re(z) = 1=p, and the winding

number of this function with respect to the origin is equal to 0.

(A3) For some 1 � � > �1=p, u 2 Ck;� for all k.

Note that (A1) (with k = 0) ensures that K is bounded on Lp and ~�(z) is

a continuous function on Re(z) = 1=p vanishing at in�nity. It turns out that

(A2) is then equivalent to each of the conditions (i) and (ii) in (1.4) for the Lp

norm. This follows from known results on Wiener-Hopf integral equations (see

[38]). The assumption (A3) holds if the right-hand side f of (1.3) is (in�nitely)

smooth on [0; 1] and (1� ~�(z))�1 is analytic in the strip �� � Re(z) � 1=p;
see [20] for precise regularity results. We �rst consider the modi�ed collocation

method (2.3) again and extend Theorem 2.2 to the Lp case [19].

Theorem 3.1 Assume the mesh fxig is q-graded at 0, and suppose i� is suf-

�ciently large. Then the collocation method (2.3) is stable in Lp. It converges

in Lp with optimal order O(n�r) provided q > r=(� + 1=p) (although when

� 2 [0; 1], the additional assumption u(0) = 0 is required for convergence).

The proof is analogous to that of Theorem 2.2. Note that the crucial estimate

(2.4) (for the Lp norm) follows from the boundedness of the operators srDrK

(ensured by (A1)) and the standard local approximation property of Sr;�1
n

, i.e.

k(I � Pn)vkp;Ii � Chr
i
kDrvkp;Ii, with C independent of i; n and v (see, e.g.

7



[46]). To obtain consistency of the method in the case � 2 [0; 1]; u(0) 6= 0,
more general modi�cations of the spline spaces instead of the simple cut-o�

by zero on [0; xi�] should be used; see [10] for a version including the piecewise

constants on the �rst i� subintervals and [20] for a method based on splines

from Sr;0
n

which reduce to a (global) constant on [0; xi�]. However, in general

the stability of these methods cannot be obtained from (1.4) (ii) by small

perturbation. To get around this problem, either an additional condition on

the norm of K should be imposed ([10]) or another approach based on Wiener-

Hopf factorization can be employed ([20]).

As mentioned in the introduction, in several important classical second kind

boundary integral equations on corner domains (which have localisation of

form (1.3) - see �4), the operator to be approximated turns out to be strongly

elliptic and the Galerkin method is stable without modi�cation in the energy

norm. If one wants to prove convergence in other norms (e.g. the uniform norm)

more delicate analyses are needed (e.g. [6,7,9]). More generally, for problem

(1.3) under the assumptions (A1) - (A3) above, we must again consider modi-

�cations in order to prove stability even for the Galerkin method (see [18,20]).

Indeed the unmodi�ed method is in general unstable for operators satisfying

only (A2) ([20]).

The collocation method is of practical interest because its implementation re-

quires less numerical integration than the Galerkin method. However even the

collocation method generally requires quadrature for its implementation, and

this should be included in an error anaylsis. Thus we now discuss a fully dis-

crete version of the collocation method (2.3), which also turns out to be closely

related to the classical Nyström method. To de�ne this method, introduce an r

point interpolatory quadrature rule on [0; 1] :
R 1
0 v

�=
P

r

j=1 !jv(�j) with weights
!j and points 0 � �1 < : : : < �r � 1. Let R be the order of this rule so that

R � r and R = 2r if and only if �j are the r Gauss-Legendre points on [0; 1].
De�ne xij as in �2 and set Q = f(i; j) : i = i �+1; : : : ; n; j = 1; : : : ; rg. Then
the (modi�ed) composite quadrature rule obtained by shifting the above rule

on [0; 1] to each Ii, and summing over i > i�, is
R 1
0 v

�=
P

Q !jv(xij)hi. The
integral operator K in (1.3) will be approximated by

Knv(s) =
X
Q

!j�(s=xij)v(xij)hi=xij : (3.1)

The (modi�ed) discrete collocation method for (1.3) seeks an approximate so-

lution un 2 S
r;�1
n

satisfying un � 0 on [0; xi�] such that

(I � PnT
xi�Kn)un = PnT

xi�f ; (3.2)

where Pn is the interpolatory projection de�ned in �2. The Nyström (or discrete

iterated collocation) solution u�
n
(s) to (1.3) is then de�ned by u�

n
= f +Knun,

8



and it satis�es

(I �Kn)u
�

n
= f ; (3.3)

note that PnT
xi�u�

n
= un. By collocation at s = xij, (i; j) 2 Q, (3.3) is reduced

to the linear system (3.2) for u�
n
(xij) = un(xij), the solution of which in turn

gives u�
n
(s) for all s 2 [0; 1]. The following result extends Theorem 3.1 to

the discrete collocation method (3.2) and establishes superconvergence for the

Nyström method (3.3).

Theorem 3.2 Under the assumptions of the preceding theorem, the method

(3.2) is stable and optimally convergent in Lp. Moreover, if the grading ex-

ponent satis�es the (possibly stronger) requirement q > R=(� + 1=p), then

the Nyström solution converges with the error bound ku� u�
n
kp = O(n�R) as

n!1.

For details of the proof of Theorem 3.2, we refer to [19,27]. To give a brief

overview of the proof, we remark that the stability of (3.2) can be obtained

from that of the collocation method by small perturbation in the operator

norm, as described in [19]. It is also possible to approach (3.3) directly in

the case p = 1. In [27] it is shown that the operator Kn de�ned in (3.1)

is uniformly bounded on C. This allows a more straightforward approach to

stability by regarding I � Kn as a small perturbation of the �nite section

operator I � KT xi�. The error bound for the Nyström solution follows from

the estimate ku � u�
n
kp � Ck(K � Kn)ukp, where the last term is of order

O(n�R), provided that u 2 CR;�, for 0 � � � 1, u(0) = 0, and the grading

exponent satis�es q � R=�.

For the model problem (1.3) it is simple to extend all the above methods to

the case when u(0) 6= 0. Using (1.3) together with (1.2), it follows that (1 �
~�(0))u(0) = f(0). Then it is easy to see that the function v := u�u(0) satis�es
v(0) = 0 and can be computed by solving (1.3) with the modi�ed right-hand

side f(s)�f(0)(1�K1(s))=(1�~�(0)) (where 1 is the unit function on [0; 1]). In
more general situations (such as the second-kind boundary integral equations

described in �4), equation (1.3) appears only as a localised model problem

in a coupled system and in this context it is not possible to compute u(0)
explicitly. Nevertheless, stable and consistent methods can be constructed by

considering appropriate extended systems [27].

All the results mentioned in this section can be generalised to systems of

equations of the form (1.3). In particular, the stability of the methods can

be again obtained from the stability of the �nite section operators by small

perturbation. However, for matrix operators, condition (1.4)(ii) is no longer

equivalent to the well�posedness of (I � K) and requires the invertibility of

an additional Mellin convolution operator; see [38] for a discussion of this in
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the case of Wiener�Hopf operators. Fortunately, there is an important special

case where (1.4) (ii) is always satis�ed in the L2 norm, namely the case of a

strongly elliptic (matrix) symbol, i.e. Re(I�~�(z)) is uniformly positive de�nite

for Re(z) = 1=2. Together with (A1) and (A3) (for p = 2), this implies stability

and optimal convergence for the modi�ed collocation and quadrature methods,

whereas Galerkin's method is of course stable with i� = 0. We indicate an

important application of this technique in �5.

Finally we want to emphasise that the simple perturbation argument pre-

sented in Lemma 2.1 is restricted to the case of continuous symbols. The

stability analysis of more general classes of convolution operators (containing

singular integral operators of Cauchy type for example) requires more sophis-

ticated methods combining Mellin and local Banach algebra techniques; see,

e.g. [39,38,14,29].

4 Boundary Integral Equations on Corner Domains

Boundary value problems for linear elliptic PDE's can be reduced to boundary

integral equations through the use of a fundamental solution. For Laplace's

equation in 2D this is the function G(x;y) = (2�)�1 log jx�yj�1. If U satis�es

Laplace's equation in a bounded polygonal domain 
 with boundary � then

the Cauchy data u := U j� and v := @nU j� satisfy Green's identity

Vv(x)�Wu(x) = �(1=2)u(x); x 2 � ;

for all smooth points x of �, where Vv(x) =
R
�G(x;y)v(y)d�(y) is the single

layer potential, Wu(x) =
R
� @n(y)G(x;y)u(y)d�(y) is the double layer poten-

tial, and @n denotes di�erentiation in the outward normal direction from 
.
This identity can be extended to all x 2 � by taking appropriate limits. An

analogous relation holds for exterior problems. For the Neumann problem,

with v given, we have to solve the second-kind equation

u(x)� 2Wu(x) = g(x) := �2Vu(x) ; (4.1)

for the Dirichlet data u. For the Dirichlet problem with u given, we have to

solve the �rst-kind equation

2Vv(x) = g(x) := �u(x) + 2Wu(x) (4.2)

for the Neumann data, and for mixed Dirichlet-Neumann conditions a �rst-

second kind system arises. Analogous equations arise from the classical indirect

10



boundary integral method [2]. A rigorous justi�cation of the underlying po-

tential theory in non-smooth domains can be found in [12]. The method is of

course applicable to much more general PDEs (e.g. [50]).

To see how the model problem (1.3) arises from these applications, consider

the case that � is (in�nitely) smooth with the exception of a corner, without

loss of generality situated at the origin 0. We further assume that � in the

neighbourhood of 0 consists of two straight lines intersecting with an interior

angle (1 � �)�, 0 < j�j < 1. Consider a parametrisation 
(s) : [��; �] ! �,
j
 0(s)j > 0 for s 2 [�; �], which near s = 0 may be given by


(s) =

8><>:
(� cos��; sin��)jsj ; s 2 [��; 0]

(1; 0)jsj ; s 2 [0; �]:
(4.3)

Considering �rst of all the relatively straightforward case (4.1), let  be a

smooth function on � with  (x) � 1 when jxj � �=2 and  (x) � 0 when

jxj > � and observe that 2W� 2W is an operator with smooth kernel. The

behaviour of (4.1) is thus dominated by the localised operator, I �  2W . A
short calculation shows that

( 2W )u(
(s)) =

8>>>>>><>>>>>>:

�Z
0

�(
s

�
)u(
(�))

d�

�
; s 2 [��; 0]

�

0Z
��

�(
s

�
)u(
(�))

d�

�
; s 2 [0; �] ;

where

�(s) :=
sin��

�

(
s

1� 2s cos�� + s2

)
:

Thus  2W corresponds to a matrix of operators of form (1.1) and the analysis

of (1.3) is the key to understanding (4.1). The above argument can be extended

to the case of many corners in an obvious way.

Now let us turn to the �rst-kind equation (4.2). The connection to (1.3) here

is much less obvious. With the parametrisation 
 : [��; �] ! � introduced

above, we can write

(2Vu)(
(s)) =
1

�

�Z
��

log
1

j
(s)� 
(�)j
w(�)d� =: V w(s) ; (4.4)

where w(�) = u(
(�))j
0(�)j. (Note that here we take the Jacobian into the

unknown. As indicated in �1, this is useful when nonlinear parametrisations

11



are used to treat corner singularities.) In the theory of V a special role is

played by the operator

Aw(s) :=
1

�

�Z
��

log
1

j2 sin(s� �)=2j
w(�)d� + Jw ; (4.5)

where Jw = (1=2�)
R
�

��
w(�)d� : The �rst term in the expression for A is

simply the operator V restricted to the unit circle 
(s) = (cos s; sin s). The
additional compact perturbation J is added to make A invertible with the

result that A is an isometry from Hk onto Hk+1 for all k (where Hk denotes

the usual 2�� periodic Sobolev space of order k). It is a special feature of V

that it can in some sense be conveniently regularised by the operator A�1.

More precisely we can write

A�1V w = A�1(A+ (V � A))v =: (I +M)v ; (4.6)

where M = A�1(V � A) and

(V � A)w(s) =
1

�

Z
�

log
j2 sin(s� �)=2j

j
(s)� 
(�)j
w(�)d� � Jw :

When � is smooth (e.g. C1), the kernel of the �rst term in V � A has a

removable singularity and it can be shown that the operator (V � A) maps

L2 to Hk for all k � 0 and hence that M is compact from L2 to Hk for all

k. Thus in the smooth case the �rst kind equation (4.2) is equivalent to the

nonstandard second kind equation

(I +M)w = f := A�1g : (4.7)

When � is polygonal the regularization (4.6) can still be carried out, but the

resulting operator M is no longer compact. In fact local to each corner of �,
M turns out to be composed of Mellin convolution operators of the form (1.1).

To see this we need some more detail about the operator A. We have the well�

known relations (see e.g. [38]) DA = H and A�1 = �HD+ J ; where H is

the 2�-periodic Hilbert transformHv(s) = �(2�)�1
R
�

��
cot ((s� �)=2) v(�)d�

(with the integral to be interpreted in the Cauchy Principle Value sense) and

D is the 2�-periodic di�erentiation operator. Hence the essential behaviour of

M near each corner can be found by studying HD(V � A). To compute this,

we observe that

DV w(s) = �
1

�

�Z
��

(
(s)� 
(�)) � 
 0(s)

j
(s)� 
(�)j2
w(�)d� :

12



For w locally supported near 0, i.e. supp w � [��; �], we have the representa-
tion

DV w(s) =

8>>>>>>><>>>>>>>:

�
1

�

0Z
��

w(�)

s� �
d� +

�Z
0

�1

�
s

�

�
w(�)

d�

�
; s 2 [��; 0]

0Z
��

�1

�
s

�

�
w(�)

d�

�
�

1

�

�Z
0

w(�)

s� �
d� ; s 2 [0; �]

where

�1(s) =
1

�

(
cos�� � s

1� 2s cos�� + s2

)
:

This calculation, which shows that D(V � A) = DV �H can be represented

as a matrix of operators of the form (1.1), was �rst given in [53] and shows

that A�1(V �A) is represented (local to each corner) as a product of H with

operators of the form (1.1). From this a numerical analysis of collocation meth-

ods followed [52,28]. However this analysis was somewhat restricted, mainly

because M = A�1(V � A) = �HD(V � A) (modulo compact operators) and

although the operator D(V � A) was well-understood (as above) the impor-

tant product HD(V � A) was not. In [21] this product was computed using

the symbolic calculus for Mellin operators. This is possible since (local to the

corner 0) we can write (modulo a compact operator)

Hv(s) =

�Z
��

1

s� �
v(�)d� =

�Z
��

(s=� � 1)�1v(�)
d�

�
; s 2 [��; �]

which can be also treated using the Mellin transform. In fact in [21] more gen-

eral results than this were obtained. Following the �parametrisation� method

for handling singularities outlined in �1, [21] considered parametrisations of �
which varied more slowly than arc length near each corner. An example is to

parametrise � near 0 by replacing jsj with jsjq in (4.3). The above calculation

�rst of V in (4.4) (which now depends on q) and of A�1(V �A) can again be

performed and yields again a representation of M near each corner involving

operators of the form (1.1).

In this section we have shown that model problem (1.3) arises in both stan-

dard and non-standard ways from localisations of boundary integral equations

on non-smooth domains. (Here we have restricted to the Laplace equation but

similar local problems arise, for example, from the Helmholtz equation [11]

and in linear elasticity [24].) For the classical second-kind boundary integral

equations (such as (4.1)) on polygonal domains it is possible to give a com-

plete error analysis of (modi�ed) methods, using the knowledge of numerical

methods for the local model problem (1.3) outlined in �2, 3 - see, for example
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[27]. However for �rst kind equations such as (4.2) which are connected to the

model problem (1.3) in less standard way, the numerical analysis is more com-

plicated. In the �nal section we give a brief survey of this area with pointers

to the literature where the reader can �nd more details.

5 Results for First-kind Equations

We �rst discuss the numerical solution of Symm's integral equation (4.2) on

polygonal domains by high order spline collocation methods. To approximate

the singularities of solutions at the corner points, the �rst idea that comes to

one's mind is to attack this equation directly by using splines on graded meshes

as in the case of the double layer potential equation (4.1). This approach was

taken in [13] where stability and optimal convergence rates for piecewise linear

break�point collocation were proved with respect to a weighted Sobolev norm.

So far these results have not been generalized to higher order splines.

On the other hand, if � is smooth then the operator in (4.2) is a classical

periodic pseudodi�erential operator, and thus the full force of the general con-

vergence theory developed in [1,44,45] for collocation methods with smooth

splines (mostly) on uniform grids becomes available; see also the review in [48]

for these and related methods and the detailed presentation in [38]. Although

the piecewise constant mid�point collocation method was shown to converge

for quite general meshes in [8], this analysis is restricted to smooth bound-

aries and there is still no general convergence analysis for (4.2) for general

boundaries and general piecewise polynomial approximation schemes.

This situation essentially motivated the approach in [21] where the use of a

nonlinear parametrisation (or mesh grading transformation) of the boundary

curve together with a uniform mesh has allowed a �rst stability and conver-

gence analysis of high order collocation methods in the presence of corners.

To illustrate this type of result, we retain the notation of the preceding section

and parametrise the boundary � with one corner at 0 by 
 : [��; �] ! � such

that 
(0) = 0, and, near s = 0,


(s) =

8><>:
(� cos��; sin��)jsjq ; s 2 [��; 0]

(1; 0)jsjq ; s 2 [0; �] :
(5.1)

Here the grading exponent q is an integer � 1. The equation (4.2) transforms

to

V w(s) = g(s) ; s 2 [��; �] ; (5.2)
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where V and w are de�ned as in (4.4) (but using the nonlinear parametrisation

(5.1)), and g(s) := g(
(s)). By appropriate choice of q, the solution w of (5.2)

can be made smooth local to the corner (provided g is smooth), and hence

w can be optimally approximated using splines from Sr

n;p
(the 2�-periodic

smoothest splines of degree r � 1 on the uniform mesh xi = ih, i = 0; : : : ; n,
with meshsize h = 2�=n). To discretise (5.2), introduce the interpolant Qnv 2

Sr

n;p
by requiring

(a) when r is odd Qnv(ti) = v(ti), i = 1; : : : ; n;
(b) when r is even Qnv(xi) = v(xi), i = 0; : : : ; n� 1,

where ti are the mid-points of subintervals. Then the collocation method for

(5.2) seeks wn 2 S
r

n;p
such that

QnV wn = Qng : (5.3)

The approach to the analysis of (5.3) is analogous to that used in �4 where (4.2)

is transformed to the non�standard second kind equation (4.7). In fact (5.3)

can be rewritten as a non�standard projection method for (4.7) as follows. For

any v 2 H0, let Pnv 2 S
r

n;p
solve the collocation equations QnA(Pnv) = QnAv

for the circle operator A de�ned in (4.5). It is well�known (see [38, pp. 492-493]

and the references listed at the beginning of this section) that this prescription

de�nes a (uniformly) bounded projection operator Pn : H0 ! Sr

n;p
. It is then

straightforward to see that (5.3) is equivalent to

(I + PnM)wn = Pnf ; with M = A�1(V � A) ; f = A�1g : (5.4)

To overcome the di�culty in the stability analysis of (5.3), or equivalently

(5.4), one may introduce an analogous cut-o� procedure in the vicinity of the

corner as in the case of the model second kind equation (1.3). To describe the

modi�cation, introduce the truncation T �v as T �v(s) = 0, for jsj < � , and

T �v(s) = v(s) for � < jsj < �. Then, for any �xed i� � 0, consider the method

Qn(A+ (V � A)T i�h)wn = Qng ; (5.5)

which coincides with (5.3) when i� = 0. By mimicking the derivation of (5.4)

from (5.3), it is easily seen that (5.5) is equivalent to

(I + PnMT i�h)wn = Pnf : (5.6)

Applying the technique outlined in �2,3 to the projection method (5.6) and

employing the (non�trivial) Mellin analysis of the operatorM discussed in the

previous section, one then can prove the following convergence result for the

modi�ed collocation method [21].
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Theorem 5.1 Suppose the grading exponent satis�es q > (r + 1=2)(1 + j�j),
where (1 � �)� is the interior angle at the corner. Then there exists i� such

that (5.5) has a unique solution for all n su�ciently large and is optimally

convergent in the L2 norm, i.e. kw � wnk2 = O(n�r) as n!1.

A crucial prerequisite for this result is the strong ellipticity of the second

kind operator I +M , i.e. Re(I +M) is positive de�nite in H0 = L2, modulo

compact operators. Together with a uniqueness result for the transformed

integral equation (5.2), this implies the analogue of (1.4) in this setting, i.e.

the well�posedness of I +M and the stability of the �nite section operators

I +MT i�h (as h! 0) in H0. The �nal step in the stability proof for (5.6) is

again a perturbation argument similar to that of Lemma 2.1, which however

requires a thorough study of the Mellin convolution kerenel of the operatorM

localised to the corner (see [21], with improvements given in [23]). The optimal

error estimate then follows from standard spline approximation results since,

as it was also shown in [21], the solution of (5.2) satis�es w 2 Hr and has

appropriate decay as s ! 0 provided the grading exponent q is su�ciently

large.

The above stability and convergence results may be extended to various re-

lated parametrisation methods and to other �rst kind equations on polygonal

boundaries. In [23] it was shown that Theorem 5.1 remains true when the collo-

cation integrals are approximated using singularity subtraction and a suitable

composite quadrature rule. A fully discrete trigonometric collocation method

is given in [26]. This method is based on the trapezoidal rule and is easier

to implement than the quadrature�collocation scheme of [23]. More general

results on discrete qualocation methods can be found in [31]. Parametrisation

methods based on global algebraic polynomials have recently been applied

to Symm's equation [35] and to the generalized airfoil equation for an airfoil

with a �ap [36,47]. [25] presents a convergence analysis of the trigonomet-

ric collocation method applied to mixed boundary value problems on corner

domains.

In conclusion we remark that the numerical analysis of these 2D corner prob-

lems is still not as satisfactory as in the case of smooth boundaries where even

fully discrete high order methods of almost linear computational complex-

ity are known. However, fast solution methods for classical �rst kind integral

equations on open arcs have recently been obtained applying the cosine trans-

form and discrete trigonometric collocation (see [43] and the references there).

The development of analogous methods for more general problems on corner

domains remains a challenge for the future.
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