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Abstract

In this paper a mathematical model for the dynamical behavior of multisec-

tion DFB (distributed feedback) semiconductor lasers in the case of arbitrarily

space depending carrier densities is investigated. We introduce a suitable weak

formulation of the initial boundary value problem and prove existence, unique-

ness and some regularity properties of the solution. The assumptions on the

data are quite general, in particular, the physically relevant case of piecewise

smooth, but discontinuous coe�cients is included.

1 Introduction

This paper is concerned with the following system of �rst order di�erential equations

@tn(t; z) = I(t; z)� �(z)n(t; z) �G(z; n(t; z); jw(t; z)j2); (1.1)

@tw(t; z) =
�
� @zw1(t; z); @zw2(t; z)

�
+ S(z; n(t; z); jw(t; z)j2)w(t; z); (1.2)

supplemented by the boundary conditions

w1(t; 0) = r0w2(t; 0) and w2(t; 1) = r1w1(t; 1) + a(t) (1.3)

and the initial conditions

n(0; z) = n0(z) and w(0; z) = w0(z): (1.4)

The unknown real valued function n and C 2�valued function w = (w1; w2) depend
on time t � 0 and space variable z 2 (0; 1). From the mathematical point of

view, the system (1.1), (1.2) consits of an ordinary di�erential equation for n (which

depends parametrically on the space variable z) coupled with a hyperbolic system

of two �rst order partial di�erential equations for the vector �eld w. System (1.1)�

(1.4) is a (suitably normalized) mathematical model for the dynamical behavior of

multisection DFB (distributed feedback) semiconductor lasers (cf, e.g., [7, 10, 12,

13]). The real valued function n is the carrier density of the device, whereas the

complex valued functions w1 and w2 denote the complex amplitudes of the forward

and backward traveling light waves (after averaging over the transverse plane and

separating terms varying rapidly in space and time), and z is the space variable in

the longitudinal direction.

The real valued functions I and � describe the injection current and the inverse

of the life time of the carriers, respectively, and G is the gain function, which is
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assumed to be nonnegative if n is large and nonpositive if n is small. Further,

jwj2
def
= jw1j

2 + jw2j
2 is the power of the optical �eld w = (w1; w2).

The function S takes values in the space of complex 2�2�matrices, and it describes

the propagation, coupling and spatial hole burning properties of the laser. Finally,

the complex numbers r0 and r1 are the amplitude facet re�ectivities, and the complex

valued function a describes an external optical signal injected to the right facet of

the laser.

Multsection lasers are distinguished by the property that they consist of several

sections with considerably di�erent electrical and optical properties. Hence, the

coe�cient functions for such lasers are discontinuous with respect to the space vari-

able. Up to now only for multisection lasers with homogeneous sections and, hence,

for models with piecewise constant coe�cients, results are known concerning well-

posedness of the corresponding initial boundary value problems. Moreover, in that

cases simpli�ed models are used, which describe the dynamics of the averaged (over

the homogeneous sections of the laser) carrier densities (see, e.g., [4, 6, 11]). Note

that in these papers the functions I and a are supposed to be di�erentiable with

respect to time.

In this paper we consider arbitrarily space depending coe�cient functions. Thus,

the so-called chirping of the DFB grating in the sections is included, for example.

Moreover, we consider models which describe the space dependence of the carrier

densities within the sections, including the so-called hole burning e�ect. We intro-

duce a suitable weak formulation of the initial boundary value problem (1.1)�(1.4)

and show that it is well posed. The assumptions concerning the functions I, �, G,

S and a are quite general. In particular, the physically relevant case of piecewise

smooth, but discontinuous dependence on t and z is included. Note that, even if the

injected current I and the injected light signal a are smooth with respect to time,

in most of the applications they are close to discontinuous one's (on and o� switch-

ing of the signals), and, hence, a theory of existence, uniqueness and continuous

dependence on the data for such discontinuous data is needed.

This paper is organized as follows. In Section 2 we introduce the assumptions

concerning the data in (1.1)�(1.4), the appropriate notion of weak solution to (1.1)-

-(1.4) and the main result concerning existence and uniqueness of weak solutions.

Moreover, a regularity theorem describes the regularity properties of the semi�ow

corresponding to (1.1)�(1.4) in the autonomous case (a = 0 and I independent of

time). This regularity theorem will be proved using results in [2] and [3, 5].

Section 3 is concerned with weak solutions to abstract linear inhomogeneous evolu-

tion equations with nonsmooth data.

For the proof of existence of weak solutions to (1.1)�(1.4) in Section 4 an initial

boundary value problem with suitably truncated functions will be introduced, which

can be solved by the contraction mapping principle using the results of section

3. A priori estimates for the carrier density will be be proved for the solution of

this truncated problem. With these estimates it can be shown that the solution
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of the truncated problem actually solves (1.1)�(1.4) provided that the truncation

parameters are chosen suitablely.

2 Notation, Assumptions and Results

In what follows we denote by h�; �i the Hermitean scalar product in C 2 , i.e.

hu; vi = u1v1 + u2v2 for all u = (u1; u2); v = (v1; v2) 2 C
2 ;

and j � j denotes the corresponding norm in C 2 as well as the Hermitean norm in the

space M (2� 2; C ) of all complex 2� 2�matrices. Further, T > 0 is arbitrarily �xed.

We will work with the usual notation concerning Lebesgue and Sobolev spaces and

their norms. If U a Banach space, then BV ((0; T ); U) denotes the space of all

� 2 L1((0; T ); U) such that there exists a constant c� with


Z T

0

'0(t)�(t)dt

U

� c�k'kL1(0;T ) for all ' 2 C
1

0 (0; T ): (2.1)

This is the space of all functions � : (0; T )! U of bounded variation, which includes

the piecewise smooth functions. We endow it with the norm

k�kBV ((0;T );U)
def
= k�kL1((0;T );U) + ~c�;

where ~c� is the smallest constant in (2.1).

Let us formulate our assumptions concerning the data in (1.1)�(1.4).

We suppose

I 2 L1 ((0; T )� (0; 1)) ; (2.2)

� 2 L1(0; 1) with ess inf � > 0; (2.3)

a 2 BV ((0; T ); C ); (2.4)

r0; r1 2 C with jr0r1j < 1: (2.5)

n0 2 L
1(0; 1) with ess infn0 > 0: (2.6)

w0 2 L
1((0; 1); C 2): (2.7)

The functions G : (0; 1)� (0;1)� [0;1) ! R and S : (0; 1)� (0;1)� [0;1) !
M (2 � 2; C ) are supposed to satisfy the following assumptions:

G(�; n; r) 2 L1(0; 1)
S(�; n; r) 2 L1((0; 1); M (2 � 2; C ))

�
for all n 2 (0;1) and r 2 [0;1) (2.8)

and

G(z; �; �) 2 C1((0;1)� [0;1))
S(z; �; �) 2 C1((0;1)� [0;1); M (2 � 2; C )))

�
for almost all z 2 (0; 1): (2.9)
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Moreover, we suppose that for arbitrary positive � andM there exists some L�;M > 0
such that for almost all z 2 (0; 1), all n 2 [�;M ] and all r 2 [0;M ] we have

jG(z; n; r)j+ j@nG(z; n; r)j+ j@rG(z; n; r)j

+jS(z; n; r)j+ j@nS(z; n; r)j+ j@rS(z; n; r)j � L�;M : (2.10)

Finally, it is assumed that there exist positve numbers n � n such that for almost

all z 2 (0; 1) and all r 2 [0;1) we have

G(z; n; r) � 0 if n > n and G(z; n; r) � 0 if n � n: (2.11)

Now the notion of weak solutions to (1.1)�(1.4) is given.

De�nition 1 A pair of functions (n; w) 2 L1 ((0; T )� (0; 1);R � C 2) is called a

weak solution to (1.1)�(1.4), if ess inf n > 0 and if

n(t; z) = n0(z)

+

Z t

0

�
I(s; z)� �(z)n(s; z)�G(z; n(s; z); jw(t; z)j2)

�
ds (2.12)

for almost all z 2 (0; 1) and

Z 1

0

h'(z); w(t; z)� w0(z)idz =

Z t

0

�Z 1

0

(@z'1(z)w1(s; z)� @z'2(z)w2(s; z)

+h'(z); S(z; n(s; z); jw(s; z)j2)w(s; z)i)dz + '2(1)a(s)
�
ds (2.13)

for all t 2 (0; T ) and ' = ('1; '2) 2 W
1;2((0; 1); C 2) with '2(0) = r0'1(0) and

'1(1) = r1'2(1):

The following lemma explains in which sense a weak solution to (1.1)�(1.4) satis�es

the system of di�erential equations (1.1)�(1.2), the boundary conditions (1.3) and

the initial conditions (1.4). In its formulation we identify, as usual, the functions

n : (0; T )� (0; 1)! R and w : (0; T )� (0; 1)! C 2 and the corresponding function

space valued maps t 2 (0; T ) 7! n(t; �) and t 2 (0; T ) 7! w(t; �).

Lemma 1 Let (n; w) be a weak solution to (1.1)�(1.4). Then the following holds:

(i) n 2 W 1;1 ((0; T ); L1(0; 1)), (1.1) is satis�ed for all t 2 (0; T ) and almost all

z 2 (0; 1), and n(0; z) = n0(z) for almost all z 2 (0; 1).
(ii) System (1.2) is satis�ed in the sense of distributions, i.e.

Z T

0

Z 1

0

�
h@t'(t; z); w(t; z)i+ @z'1(t; z)w1(t; z)� @z'2(t; z)w2(t; z)

+h'(t; z); S(z; n(t; z); jw(t; z)j2)w(t; z)i
�
dzdt = 0
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for all ' 2 C10 ((0; T )� (0; 1); C 2).
(iii) For all t 2 (0; T ) we have

u(t)
def
=

Z t

0

w(s)ds 2 W 1;2((0; 1); C 2)

and

u1(t; 0) = r0u2(t; 0) and u2(t; 1) = r1u1(t; 1) +

Z t

0

a(s)ds: (2.14)

(iv) The function w is weakly continuous as a map from (0; T ) into L2 ((0; 1); C 2),
and we have w(0; z) = w0(z) for almost all z 2 (0; 1).

Now we formulate our main result:

Theorem 1 There exists a unique weak solution (n; w) to (1.1)�(1.4). Moreover,

the estimates

e��(z)t ess infn0 � n(t; z) �

e��(z)t n0(z) + maxfn; k��1IkL1((0;T )�(0;1))g (2.15)

hold for all t 2 (0; T ) and almost all z 2 (0; 1).

Of course, if the external signal a in (1.3) vanishes, the injection current I is inde-

pendent of time and the initial function w0 satis�es the corresponding homogeneous

boundary conditions, then the weak solution to (1.1)�(1.4) has more regularity. This

is described in the next theorem:

Theorem 2 Suppose a = 0 , w0 = (w01; w02) 2 W 1;2((0; 1); C 2), w01(0) = r0w02(0)
and w02(0) = r1w01(1). Then the weak solution (n; w) to (1.1)�(1.4) satis�es

w 2 C1
�
[0; T ]; L2((0; 1); C 2)

�
\ C

�
[0; T ];W 1;2((0; 1); C 2)

�
;

and w1(t; 0) = r0w2(t; 0), w2(t; 1) = r1w1(t; 1) for all t 2 (0; T ). If, moreover, I is

independent of time, then

n 2 C1 ([0; T ]; L1(0; 1)) :

3 Linear inhomogeneous evolution equations with

discontinuous data

In this section a general concept of weak solutions to abstract linear inhomogeneous

evolution equations is given, which is suitable for linear inhomogeneous �rst order

initial boundary value problems, where the boundary data may be discontinuous in
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time . These solutions are �very weak�, because they do not satisfy the variation of

constants formula, in general.

Througout this section let X be an arbitrary Hilbert space with scalar product

h�; �iX , and B : D(B) � X ! X is the generator of a strongly continuous semigroup

exp (tB) (t � 0) in X . By B� we denote the dual operator to B, and D(B�) is the
domain of de�nition of B�, i.e. v 2 D(B�) i� there exists a constant cB > 0 such

that

jhBu; viX j � cBkukX for all u 2 D(B):

The space Y
def
= D(B�) is endowed with the norm

kuk2
Y

def
= kuk2

X
+ kB

�uk2
X
for all u 2 Y:

We denote by [�; �]Y the dual pairing between Y and Y�.

In this section we consider the abstract linear inhomogeneous initial value problem

_w = Bw + f + �; w(0) = w0: (3.1)

(Note that X can be imbedded into Y� = (D(B�))�.)

De�nition 2 Let w0 2 X , f 2 L1 ((0; T );X ) and � 2 BV ((0; T );Y�). Then

w 2 L1 ((0; T );X ) is called a weak solution to (3.1) i� for all t 2 (0; T ) and ' 2 Y

one has

h';w(t)� w0iX =

Z t

0

�
hB

�';w(s)iX + h'; f(s)iX + [�(s); '(s)]Y
�
ds:

Lemma 2 Let w0 2 X , f 2 L1 ((0; T );X ) and � 2 BV ((0; T );Y�), and let w be a

weak solution to (3.1). Then w is weakly continuous as a map from [0; T ] into X ,

and w(0) = w0.

Proof Take ' 2 X arbitrary. Since B is densely de�ned and closed on a Hilbert

space, Y = D(B�) is dense in X . Hence there exists a sequence 'n 2 Y with

k'n � 'kX
n!1
�! 0: (3.2)

For all n we have

un
def
= h'n; w(�)iX 2 C([0; T ];R) and un(0) = h'n; w0iX : (3.3)

By (3.2) it follows that

un(t)
n!1
�! u(t)

def
= h';w(t)iX

uniformly with respect ot t. Hence, we get from (3.3) that h';w(�)iX 2 C([0; T ];R)
and h';w(0)iX = h';w0iX .
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Theorem 3 Let w0 2 X , f 2 L1 ((0; T );X ) and � 2 BV ((0; T );Y�). Then there

exists a unique weak solution w to (3.1). Moreover,

kw(t)kX � cT

�
kw0kX + kfkL1((0;T );X ) + k�kBV ((0;T );Y�)

�
;

for all t 2 [0; T ], where the constant cT does not depend on u0, f and �.

Proof First uniqueness is shown. For this purpose it su�ces to consider the

homogeneous case, i.e. w0 = 0, f = 0 and � = 0. Suppose w 2 L1((0; T );X) solves

the corresponding homogeneous problem. Then u(t)
def
=
R t
0
w(s)ds obeys

d

dt
h'; u(t)iX = h';w(t)iX = hB

�'; u(t)iX ;

i.e. u 2 C([0; T ];X ) is a weak solution of @tu(t) = Bu(t) in the sense of [2], and

hence u(t) = exp (tB)(w(0)) = 0, which completes the proof of uniqueness.

Now we prove existence. The idea is approximate � by functions which are smooth

with respect to time, apply the variation of constants formula and pass to the limit.

Let !n 2 C10 (�1=n; 0), n 2 N be a molli�er with the property
R
R
!n(t)dt = 1 and

de�ne �n 2 C
1([0; T ];Y�) by

�n(t)
def
=

Z T

0

!n(t� s)�(s)ds

By Riesz' lemma applied to Y there exists a unique Gn 2 C
1([0; T ];Y) with

[�n(t); ']Y = h';Gn(t)iX + hB
�';B�Gn(t)iX for all ' 2 Y and t 2 (0; T ): (3.4)

Now, let

wn(t)
def
= exp (tB)(w0 + B

�Gn(0))

+

Z t

0

exp ((t� s)B) [f(s) +Gn(s) + B
�@tGn(s)] ds� B

�Gn(t) (3.5)

Because of (3.4) and (3.5) one has for all ' 2 Y

d

dt
h';wn(t)iX

= hB
�'; exp (tB)(w0 + B

�Gn(0))iX + h'; f(t) +Gn(t)iX

+

Z t

0

hB
�'; exp ((t� s)B) (f(s) +Gn(s) + B

�@tGn(s))iXds

= hB
�';wn(t) + B

�Gn(t)iX + h'; f(t) +Gn(t)iX

= hB
�';wn(t)iX + h'; f(t)iX + [�n(t); ']Y :

Since wn(0) = w0, this yields

h';wn(t)� w0iX =

Z t

0

�
hB

�';wn(s)iX + h'; f(s)iX + [�n(s); ']Y
�
ds: (3.6)
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Next, an L1-bound on @t� is given. Suppose ' 2 C10 ((0; 1); C 2). Then


Z T

0

'(t)@t�n(t)dt

Y
�

=

Z T

0

@t(' � !n)(t)�(t)dt

Y
�

� k�kBV ((0;T );Y)k' � !nkL1((0;T );C 2 ) � k�kBV ((0;T );Y)k'kL1((0;T );C 2 ):

Hence

k@t�nkL1((0;T );Y�) � k�kBV (0;T;Y�): (3.7)

Now it is shown that wn is uniformly bounded in L1((0; T );X ). From (3.7) follows

kGnkW 1;1((0;T );Y) � k@t�nkL1((0;T );Y�) + k�nkL1((0;T );Y�) � C1;Tk�kBV (0;T;Y�)

With (3.5) this implies

kwnkL1((0;T );X ) � kw0kX + kGnkW 1;1((0;T );D(B�)) + kfkL1((0;T );X )

� C2;T

�
k�kBV ((0;T );Y�) + kw0kX + kfkL1((0;T );X )

�
:

By this estimate there exists some w 2 L1((0; T );X ) and a subsequence still labeled
by wn; n 2 N, such that

wn
n!1
�! w in L1((0; T );X ) weak- � : (3.8)

Since �n

n!1
�! � in L1((0; T );Y�)-weak�, it follows easily from (3.6) and (3.8) that

h';w(t)� w0iX =

Z t

0

�
hB

�';w(s)iX + h'; f(s)iX + [�(s); ']
Y

�
ds; (3.9)

Hence w is a weak solution to (3.1).

4 Proof of Existence and Regularity

In this section we prove the Lemma 1 and the Theorems 1 and 2.

In order to use the results of Section 3 let us introduce the Hilbert space

X
def
= L2

�
(0; 1); C 2

�

with its usual scalar product h�; �iX. Further, we de�ne the unbounded linear oper-

ator B on X by

Bw
def
= (�w01; w

0

2) (di�erentiation with respect to z 2 (0; 1)) (4.1)

with domain of de�nition

D(B)
def
= f(w1; w2) 2 W

1;2
�
(0; 1); C 2

�
: w1(0) = r0w2(0); w2(1) = r1w1(0)g:
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By means of assumption (2.5) it is easy to show (cf., e.g., [9, 1, 8] that B is the

generator of a strongly continuous contraction semigroup exp (tB) (t � 0) in X.

Moreover, exp (tB) maps L1 ((0; 1); C 2) into L1((0; 1); C 2), and there exists an

� > 0 such that

k exp (tB)wkL1((0;1);C 2 ) � exp (��t)kwkL1((0;1);C 2 ): (4.2)

The adjoint operator B� is de�ned on the domain

Y
def
= f(w1; w2) 2 W

1;2
�
(0; 1); C 2

�
: w2(0) = r0w1(0); w1(1) = r1w2(0)g: (4.3)

The space Y is a Hilbert space with respect to the scalar product

hu; viX + hB�u;B�viX for u; v 2 Y:

In order to take into account the inhomogeneous boundary condition (1.3), we de�ne

the functional � 2 BV ((0; T )); Y �) by

[�(t); ']
Y

def
= '2(1)a(t) for all ' 2 Y; (4.4)

where [�; �]
Y
denotes the dual pairing between Y � and Y .

Using this notation we get the following: If (n; w) is a weak solution to (1.1)�(1.4)

(in the sense of De�nition 1), then

h';w(t)� w0iX =

Z t

0

�
hB�';w(t)iX + h'; S(n(s); jw(s)j2)w(s)iX + [�(s); ']Y

�
ds

for all ' 2 Y and all t 2 [0; T ]. Here we use the same symbol S for the Nemycki

operator as for the function (introduced in (2.8) and (2.9)) generating this Nemycki

operator.

Proof of Lemma 1 Let (n; w) be a weak solution to (1.1)�(1.4). Because of

(2.2), (2.3), (2.8) and (2.10), the integrand in (2.12) belongs to L1 ((0; T )� (0; 1)).
Therefore n 2 W 1;1 ((0; T ); L1(0; 1)), in particular

n 2 C ([0; T ]; L1(0; 1)). Using (2.12) again, we get n(0; z) = n0(z) for almost all

z 2 (0; 1). Thus, assertion (i) is proved.

Assertion (ii) follows easily from (2.13): Insert for the test function ' a test function

@t with  2 C10 ((0; T )� (0; 1); C 2) and integrate over t 2 (0; T ).

Now, let us prove assertion (iv). Denote

f(t) = (f1(t); f2(t))
def
= S(n(t); jw(t)j2)w(t) for t 2 (0; T ):

Then we have f 2 L1((0; T ); X), and w is a weak solution (in the sense of De�nition

2) to _w = Bw+f+�; w(0) = w0: Hence, Lemma 2 yields that w is weakly continuous

as a map from [0; T ] into X, and w(0) = w0.
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Finally, in order to prove (iii), denote u(t)
def
=
R t
0
w(s)ds for t � 0: Then (2.13) yields

Z 1

0

�
'01u1(t; z)� '02u2(t; z)

�
dz

=
D
';w(s)� w0 �

Z t

0

f(s)ds
E
X

for all t > 0 and ' 2 C10 ((0; T ); X):

Hence, for all t > 0 we get u(t) 2 W 1;2((0; 1); C 2) and

�@zu1(t) = w1(t)� w01 �

R t
0
f1(s)ds;

@zu2(t) = w2(t)� w02 �

R t
0
f2(s)ds:

Using this, it follows from (2.13) that

Z 1

0

�
'01u1(t; z)� '02u2(t; z)

�
dz

=

Z 1

0

�
� '1@zu1(t; z) + '2@zu2(t; z)

�
dz + '2(1)a(t) for all t > 0 and ' 2 Y:

Because of (4.3) this yields (2.14) for all t 2 (0; T ).

Lemma 3 Let w0
2 L1([0; T ]; X) be the weak solution of

@tw = Bw + �; w(0) = w0

in the sense of De�nition 2. Then w0
2 L1 ((0; T ); L1((0; 1); C 2)).

Proof Let �n, Gn and wnbe de�ned as in the proof of Theorem 3. By the de�nition

(3.4) of Gn one has

h';Gn(t)iX + hB�';B�Gn(t)iX = 0 for all ' 2 C10 ((0; 1); C 2) and t 2 (0; T ):

Therefor from (4.1) it follows that B�Gn(t) 2 W 1;2 ((0; 1); C 2) and
(B�Gn(t))

0 = diag(1;�1)Gn(t) and hence,

kB�Gn(t)k
2
W 1;2((0;1);C 2 ) = kGn(t)k

2
L2((0;1);C 2 ) + kB�Gn(t)k

2
L2((0;1);C 2 ):

By the continuous embedding W 1;2((0; 1); C 2) ,! L1((0; 1); C 2 it follows

kGn(t)kL1((0;1);C 2 ) + kB�Gn(t)kL1((0;1);C 2 )

� c1
�
kGn(t)kL2((0;1);C 2 ) + kB�Gn(t)kL2((0;1);C 2 )

�
� c2k�n(t)kY �

and analogously

k@tGn(t)kL1((0;1);C 2 ) + kB�@tGn(t)kL1((0;1);C 2 ) � c2k@t�n(t)kY �:
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Now, it follows from (3.5), (3.7), and property (4.2) of B that

kwnkL1((0;T );L1((0;1);C 2 )) � c3:

By (3.8) this completes the proof.

Now the existence of solutions to a suitablely truncated problem will be proved, and

it will be shown that its solution is actually a weak solution to (1.1)�(1.4) using

suitable a prori estimates. Let � and M be positive constants. Then the truncated

equations read as

@tn(t; z) = I(t; z)� �(z)n(t; z)�G�;M (z; n(t; z); jHM(w(t; z))j2) ;
@tw(t; z) = Bw(t; z) + S�;M (z; n(t; z); jHM(w(t; z))j2)HM(w(t; z)):

(4.5)

Here

G�;M(z; y; r)
def
=

8<
:

G(z; y; r) if y 2 [�;M ];
G(z; �; r) if y 2 (�1; �];
G(z;M; r) if y 2 [M;1):

(4.6)

The de�nition of S�;M is analogous. The functionHM : C 2
! C 2 is globally Lipschitz

continuous and bounded with the property that

jHM(u)j � min fjuj;Mg for all u 2 C
2 and HM(u) = u if juj �M: (4.7)

The notion of weak solutions to (4.5), (1.3), (1.4) is analogous to De�nition 1.

Lemma 4 There exists a unique weak solution to (4.5), (1.3), (1.4).

Proof: Let w0
2 Cw([0; T ]; X) be the solution of @tw = Bw + �; w(0) = w(0)

as in lemma 3 in the sense of De�nition 2. First n 2 L1((0; T ); L1(0; 1)) and

w 2 L1((0; T ); L1((0; 1); C 2)) solve (4.5), (1.3), (1.4) if and only if n and u
def
= w�w0

satisfy

n(t) = n0 +

Z t

0

�
I(s)� �n(s)�G�;M

�
z; n(s); jHM(u(s) + w0(s))j2

��
ds

and

h'; u(t)iX =

Z t

0

�
hB�'; u(t)iX + h'; S(n(s); jHM(u(s) + w0(s))j2)w(s)iX

�
ds (4.8)

for all ' 2 Y . By the result in [2] it follows that (4.8) is ful�lled if and only the

variation of constants formula

u(t) =

Z t

0

exp ((t� s)B)

�
S�;M

�
z; n(s); jHM(u(s) + w0(s))j2

�
HM(u(s) + w0(s))

�
ds

holds.

11



This means that (n; u) 2 S
def
= L1 ((0; T ); L1((0; 1);R � C

2)) = L1((0; T )�(0; 1);R�
C 2) has to be a �xed-point of the operator A : S ! S de�ned by

A(n; u)
def
= (~n; ~u)

with

~n(t)
def
= n0 +

Z t

0

�
I(s)� �n(s)�G�;M

�
z; n(s); jHM(u(s) + w0(s))j2

��
ds

and

~u(t)
def
=

Z t

0

exp ((t� s)B)

�
S�;M

�
z; n(s); jHM(u(s) + w0(s))j2

�
HM(u(s) + w0(s))

�
ds:

Due to the truncation the nonlinear functions occurring in A are globally Lipschitz

continuous with respect to u. Therefore it follows easily from (4.2) that A is a

contraction in S with respect to the norm

j(n; u)jL
def
= sup

t2(0;T )

�
exp (�tL)k(n(t); u(t))kL1((0;1);R�C 2 )

�
for L 2 (0;1)

provided that L > 0 is chosen large enough. Hence A has a unique �xed point

(n; u) 2 S. Finally, (n; u + w0) solves the truncated problem. This completes the

proof.

The aim of the following considerations is to show that the weak solution (n; w) of
(4.5), (1.3), (1.4) is actually a solution of (1.1)-(1.4) provided that � is su�cently

small and M su�ciently large. This completes the proof of Theorem 1.

Theorem 4 For all � > 0 and M > 0 the weak solution (n; w) of (4.5), (1.3), (1.4)
satis�es the estimates

n(t; z) � max fn; k��1IkL1((0;T )�(0;1))g+ exp (�t�(z))n0(z); (4.9)

n(t; z) � ess infn0 exp(��(z)t) (4.10)

and

jw(t; x)j �M0(T; n0; w0)

for all t 2 (0; T ) and almost all z 2 (0; 1). Here the constant M0(T; n0; w0) is

independent of � and M .

Proof Suppose � > 0, M > 0 and that (n; w) 2 L1((0; T ); L1(0; 1)) solves (4.5),

(1.3), (1.4). Let m
def
= max fn; k��1IkL1((0;T )�(0;1))g and h(y)

def
= [y � m]+ for

y 2 R. It follows from the property (2.11) of G that G�;M(z; n(t; z)) � 0 for all

(t; z) 2 (0; T )� (0; 1) with n(t; z) > m. Hence (4.5) yields

@th(n) = h0(n)
�
I � �n�G�;M

�
z; n; jHM(w)j2

��

12



� ��h0(n)[n� ��1I] � ��h(n):

This implies the upper a priori bound h(n(t; z)) � exp (�t�(z))h(n0(z)), and hence

n(t; z) � m+ h(n(t; z)) � m + exp (�t�(z))[n0(z)�m]+;

whence (4.9).

Next a lower bound is proved. Let n as in assumption (2.10). De�ne g" : R ! R by

g"(u)
def
= n�1 if u � n, g"(u)

def
= u�1 if " � u � n, and g"(u)

def
= "�1 if u � " for " > 0.

Since g0 � 0, I � 0 and G�;M(y) � 0 if y � n, it follows from (4.5) that

@tg"(n) = g0"(n)
�
I � �n�G�;M

�
z; n; jHM(w)j2

��

� ��g0"(n)n � �g"(n):

Hence,

g"(n(t; z)) � (inf n0)
�1 exp (t�(z))

provided that " � inf n0. Letting "! 0 we obtain estimate (4.10).

It remains to show the upper bound for the �eld w. By assumption (2.10), (4.9)

and (4.10) one has

jS�;M
�
z; n(t; z); jHM(w(t; z))j2

�
j � C1 for all t 2 (0; T ); x 2 (0; 1) (4.11)

with some C1 2 (0;1) independent of �;M . Recall that

w(t) = w0(t) +

Z t

0

exp ((t� s)B)
�
S�;M

�
z; n(s); jHM(w(s))j2

�
HM(w(s))

�
ds :

Now it follows from (4.2), Lemma 3 and (4.11) that

kw(t)kL1((0;1);C 2 ) � C2 + C2

Z t

0

kS�;M
�
z; n(s); jHM(w(s))j2

�
HM(w(s))kL1((0;1);C 2 )ds

� C3

�
1 +

Z t

0

kw(s)kL1((0;1);C 2 )ds

�
:

This implies by Gronwall's lemma that

kw(t)kL1((0;1);C 2 ) � C4 for all t 2 (0; T ): (4.12)

with some C4 independent of �;M . Note that the constants may depend on n0; w0

and T . Since (4.9), (4.10) and (4.12) are independent of �;M , this completes the

proof of Theorem 4.

This section is closed by the proof of Theorem 2 concerning the regularity of the

solution in the case of no input-signal.
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Proof of Theorem 2 In the case a = 0 (and hence � = 0) the function
w 2 C([0;1); X) is a weak solution of the evolution problem

@tw = Bw + S(z; n; jwj2)w; w(0) = w0

in the sense of [2].

Since n 2 L1((0; T )� (0; 1)), w 2 L1((0; T )� (0; 1)) and n�1 2 L1((0; T )� (0; 1))
one can introduce by truncation a globally bounded function

F : (0; 1) � R � C 2
! C 2 , which is globally Lipschitz continuous with respect to

(n; w) uniformly in z, such that

S(z; n(t; z); jw(t; z)j2)w(t; z) = F (z; n(t; z); w(t; z)) for all t 2 (0; T ); z 2 (0; 1):

Now let f : (0; T )�X ! X be de�ned by

(f(t; u))(z)
def
= F (z; n(t; z); u(t; z)) for t 2 (0; T ); z 2 (0; 1):

Then w satis�es the variation of constants formula, see [2]

w(t) = exp (tB)w0 +

Z t

0

exp ((t� s)B)f(s; w(s))ds: (4.13)

Recall that

n 2 W 1;1((0; T ); L1(0; 1)): (4.14)

Since F is globally Lipschitz continuous with respect to (n; w), it follows easily that
f : (0; T )�X ! X is Lipschitz continuous in both variables. Therefore we obtain

from [5, Theorem 1.6, sect. 6] that w is a strong solution, i.e. @tw 2 L1((0; T ); X).
By (4.14) this implies f(�; w(�)) 2 W 1;1((0; T ); X).
Finally the assertion follows from the regularity theorem [3, Proposition 4.1.6].
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