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Abstract

Let n-dimensional Gaussian random vector x = � + v be observed where

� is a standard n-dimensional Gaussian vector and v 2 R
n
is the unknown

mean. In the papers [3, 5] there were studied minimax hypothesis testing

problems: to test null - hypothesisH0 : v = 0 against two types of alternatives

H1 = H1(�n) : v 2 Vn(�n). The �rst one corresponds to multi-channels signal

detection problem for given value b of a signal and number k of channels

containing a signal, �n = (b; k). The second one corresponds to l
n
q -ball of

radius R1;n with the l
n
p
-ball of radius R2;n removed, �n = (R1;n; R2;n; p; q) 2

R
4
+. It was shown in [3, 5] that often there are essential dependences of

the structure of asymptotically minimax tests and of the asymptotics of the

minimax second kind errors on parameters �n. These imply the problem:

to construct adaptive tests having good minimax property for large enough

regions �n of parameters �n.

This problem is studied here. We describe the sets �n such that adap-

tation is possible without loss of e�ciency. For other sets we present wide

enough class of asymptotically exact bounds of adaptive e�ciency and con-

struct asymptotically minimax test procedures.

1 Statement of the problems

Let n-dimensional Gaussian random vector x = � + v be observed where � is a

standard n-dimensional Gaussian vector with zero mean and identity covariance

matrix and v 2 R
n is the unknown mean. In the papers [3, 5] the asymptotically

minimax hypothesis testing problems have been studied: to test null-hypothesis

H0 : v = 0 against two type of alternatives H1 = H1(�n) : v 2 Vn(�n) � Rn:

The �rst type we call as multi-channels problem (MCP). Here the set Vn(�n) is

�nite collection of vectors

v = (v1; :::; vn) : vi = 0 or vi = �b;
X
i

jvij = kb; k = kn; b = bn; �n = (b; k):

The component vi is an signal in i-th channel, the case vi = �b corresponds to a

signal of level b, the value k; 1 � k � n is the number of channels containing a

signal. Denote

��
n
= f(b; k) : 0 < b; 1 � k � n; k is an integerg:
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The second type we call as balls-problem (BP). Here the set Vn(�n) is the l
n

q
-ball

of radius R1;n with the ln
p
-ball of radius R2;n removed:

Vn(�n) = fv = (v1; : : : ; vn) 2 Rn :
nX
i=1

jvijp � R
p

1;n;

nX
i=1

jvijq � R
q

2;ng;

where �n = (R1;n; R2;n; p; q); the values p; q are de�ne a �shape� of the balls, values

R1;n > 0; R2;n > 0 are the radii. It is assumed

R1;n � R2;n for p > q; R1;nn
�1=p � R2;nn

�1=q for p � q; (1.1)

which imply that the sets Vn are nonempty. Sometimes it is more convenient to

assume some stronger constraints: for some c 2 (0; 1)

R1;n=R2;n � c for p > q; R1;n=R2;n � cn
1=p�1=q for p � q: (1.2)

Denote as ��
n
the set �n 2 R4

+ satisfying to (1.1) or (1.2). 1

There are some points that motivate our interest in BP.

1. There are many practical problems, where data and unknown parameters are

of large dimension. The problem under consideration seems to be the most natural

minimax hypothesis testing problem of increasing dimension.

2. This problem is related to in�nite-dimensional hypothesis testing prob-

lems about a signal in a white Gaussian noise or about the mean of an in�nite-

dimensional Gaussian random vector.

We deal with asymptotically minimax hypothesis testing problem. Let 	n;� be

the set of level � tests, � 2 (0; 1), i.e. the set of measurable functions  : Rn !
[0; 1] such that �( ) � �, where �( ) = En;0 is the �rst kind error. Here and

below En;v means the expectation with respect to the Gaussian measure Pn;v with

mean v and identity covariance matrix.

Let �n( ; v) = En;v(1 �  ) be the second kind error and let �n( ; Vn) =

supv2Vn �n( ; v) be its maximum value for test  . Let

�n(�) = �n(�; Vn) = inf
 2	n;�

�n( ; Vn) (1.3)

be the minimax second kind error. It is clear that 0 � �n(�) � 1� �:

The problem is to study sharp asymptotics of �n(�; Vn(�n)) on �n
2 for any

� 2 (0; 1) and the structure of asymptotically minimax tests  n;�n;� such that

�n( n;�n;�) � � + o(1); �n( n;�n;�) � �n(�; Vn(�n)) + o(1):

1We use the same notations for both problems. Below it will be clear from context what

problem is considered.
2It was assumed in [5] that p; q are �xed. However the results of [5] are uniform on any

compacts. K = f(p; q)g � R
2
+ In fact, the main point using any speci�c relationship between p; q

is the proofs of Lemmas 5.2, 6.1 � 6.3 where p > q is assumed. However small modi�cation of the

proofs given in the proof of Lemmas 3.1 and 5.3 below provides estimations which are uniform

on 0 < q < p � pn for any pn = o(log n).
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Also it is of interest to study distinguishability conditions: �n(�; Vn(�n))! 1� �

or �n(�; Vn(�n)) ! 0; n ! 1 and to construct minimax consistent tests  n;�n;�
such that �n( n;�n;�)! 0, if it is possible.

These problems were studied in [3, 5]. Following to [3] consider Bayesian hy-

pothesis testing problem H0 : P = P0 versus H�n : P = P�n on a distribution P of

observed random vector x 2 R
n. Let �n(�; P�n) is minimum second kind error in

Bayesian problem. Consider product-priors �n = �
n(b; h) on (Rn

;B):

�
n = �

n(dv; b; h) =
nY
i=1

�(dvi; b; h): (1.4)

Here

�(b; h) = �(dt; b; h) = (1� h)�0(dt) +
h

2
(�b(dt) + ��b(dt)) (1.5)

where �t is Dirac mass at the point t 2 R
1. These priors correspond to random

binomially distributed number k of channels containing a signal in MCP.

It was shown in [3] that the priors �n(b; h); h = k=n are asymptotically least

favorable in MCP with k !1:

�n(�; Vn(�n)) = �n(�; P�n) + o(1) (1.6)

Moreover, it was shown in [5] that by the special choose of the sequences b =

bn = bn(�n) > 0; h = hn = hn(�n) we obtain the priors of the type (1.4), (1.5) which

are asymptotically least favorable for BP (it means that (1.6) holds as hn ! 0).

The choose is the following. De�ne the sequences

� = �n = �n(�n) = Rn;1=n
1=p
; � = �n = �n(�n) = Rn;2=n

1=q

and the sequences b = bn = bn(�n) > 0; h = hn = hn(�n). In view of (1.1) we have:

either � � � or p > q. There are three possible equalities:

(i) h = 1; b = �;

(ii) h = (�=b(p))p; b = b(p) (for p > 2);

(iii) hb
p = �

p
; hb

q = �
q
:

Here b(p) > 0 for p > 2 is the root of equation: p tanh(b2=2) = b
2
: The value

b(p) minimizes the function b�p sinh(b2=2).

The relations between p; q; �; � and (i), (ii), (iii) are described by the following.

Lemma 1.1 ([10] ).

1. Let p � 2 and p � q. Then the relation (i) holds.

2. Let p � 2 and p > q . Then (i) holds if � < � and (iii) holds if � � �.
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3. Let 1 > p > 2 and p � q. Then (i) holds if � > b(p), (ii) holds if � � b(p) �
(�q=�p)1=(q�p) for p < q or � � b(p) for p = q, and (iii) holds if � � b(p); p < q,

(�q=�p)1=(q�p) � b(p).

4. Let 1 > p > 2 and p > q. Then (i) holds if b(p) < � < �, (ii) holds if � � �

and (�=b(p))p � (�=b(p))q or � > � and � < b(p), and (iii) holds if � � � and

(�=b(p))p > (�=b(p))q.

The asymptotics of the values �n(�; P�n) have been studied in [3]. Particularly,

if bn are bounded or b�
n
� bn ! 1 (here and below we denote b�

n
=
q
(logn)=2 ),

then the log-likelihood ratio are asymptotically Gaussian: log(dP�n(bn;hn)=dPn;0)!
N(�u2

n
=2; u2

n
) under Pn;0-probability, and log(dP�n(bn;hn)=dPn;0) ! N(u2

n
=2; u2

n
)

under P�n-probability; here the function un = un(bn; hn) is de�ned by

u
2
n
= nE1;0

 
dP�(bn;hn)

dP1;0

� 1

!2

= 2nh2
n
sinh2(b2

n
=2): (1.7)

These yield the asymptotics

�n(�; P�n) = �(t� � un) + o(1): (1.8)

Here and below � stands for the standard normal distribution function and t� for

its (1� �)-quantile. The relations (1.6) and (1.8) imply the rates:

�n(�; Vn(�n))! 1� � i� un ! 0; �n(�; Vn(�n))! 0 i� un !1: (1.9)

However if bn are closed to b�
n
or more than b�

n
, then either we have Gaussian

asymptotics, but with di�er un, or we have asymptotics of di�er types de�ned by

special functions cn = cn(bn; hn) or �n = �n(bn; hn) (see the next section). The

asymptotically minimax tests were constructed in [5] for BP. Usually these depend

on �.

The object of interest in the paper is unknown �n in the problems. In fact, often

the number of channels containing a signal and a level of signal are unknown in

MCP. It is prefer to have tests which are good for wide enough sets of these values.

Also in many practical problems an statistician can not choose justi�ed enough

constraints on an alternatives. He would like to have test procedures which have

good properties for wide enough collections of constraints.

From mathematical point of view it means that we need to study an alternatives

type

Vn(�n) =
[

�n2�n

Vn(�n)

for wide enough sets �n = f�ng � ��
n
.

Following to Spokoiny [8] we call this problem as adaptive. We will consider

�sharp� and �rate� adaptive problems. Sharp problem is to study sharp asymptotics

of the values �n(�; Vn(�n)) and to construct asymptotically minimax tests. Rate
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problem is to study distinguishability conditions in the problem and to construct

minimax consistent tests.

The �rst question in adaptive problem is following: is it possible to construct

tests without loss of asymptotic e�ciency (with the same asymptotics of second

kind errors of with the same distinguishability conditions)? It was shown in [8] that

it is impossible for some in�nite-dimensional adaptive hypothesis testing problems:

the losses are of log log-type. For wide class of in�nite-dimensional adaptive hy-

pothesis testing problems analogous results were obtain in [4, 6, 9]; the rate and

sharp adaptive asymptotics have been studied in these papers.

In problems under consideration here we show that adaptation without loss of

e�ciency is possible for �small� or �large� enough b by using simple enough tests.

In the most interesting cases we obtain rate and sharp adaptive asymptotics under

general enough conditions. More di�cult test procedures are required in these

cases.

In the section 2 we remind the main results of [3, 5] which are the basis to study

adaptive problems. In the section 3 we formulate main results. In the section

3.4 we consider the example BP with Rn;2 = An
a
; a > 0 and we are interesting:

what is Rn;1 to obtain distinguishability ? The results show that distinguishability

conditions may be very accurate for p > q; aq < 1=2.

The proofs and test procedures are given Sections 4 � 5. Adaptive lower bounds

are proved in Section 4. Adaptive test procedures are constructed and proved in

Section 5. The most technical elements of proofs are replaced in Appendix.

We denote as B positive values which do not depend on n and, may be, di�erent.

2 Previous results

Denote

�(t; b) = exp(�b2=2) cosh bt� 1; t 2 R1
:

The likelihood ratio Ln = dP�n=dPn;0 and log-likelihood ratios ln = logLn are

of the form:

Ln(x) =
nY
i=1

(1 + Zn(xi)); ln(x) = ln(x; bn; hn) =
nX
i=1

Wn(xi) (2.1)

where

Zn(x) = hn�(x; bn); Wn(x) =Wn(x; bn; hn) = log(1+Zn(x)); x = (x1; :::; xn) 2 Rn
:

It was shown in [3], that there are three di�erent types of asymptotics of the

second kind error probabilities �n(�; P�n) = �n(�; Vn) + o(1). They are de�ned by

di�erent types of limit distributions of log-likelihood ratio (2.1). To describe these

types de�ne the following sequences.
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If bn !1 and hn ! 0, let Tn = Tn(bn; hn) > 0 be such that

hn�(Tn; bn) = 1: (2.2)

Note that

Tn !1; hn � 2 exp

 
b
2
n

2
� Tnbn

!
= ~hn (2.3)

(more exactly, hn = ~hn(1 +O(~hn)) and

Tn =
bn

2
+

log 2h�1
n

bn
+O(hnb

�1
n
):

Put

�n = �n(�n) =
Tn

bn
=

1

2
+

log 2h�1
n

b2
n

+O(hnb
�2
n
)

and assume without loss of generality that �n ! � 2 [1=2;1]: If bn = O(1) or

hn � 1, then put � =1.

Let ~ln be the sum of Tn-truncated items:

~Zn = Zn1Zn<1 = Zn1jxj<Tn;
~Wn(x) = log(1 + ~Zn); (2.4)

~ln(x) = ~ln(x; bn; hn) =
nX
i=1

~Wn(xi): (2.5)

Di�erent types of asymptotics correspond to the intervals: � 2 [2;1] (Gaussian

type), � 2 (1; 2) (in�nitely-divisible type) and � 2 [1=2; 1] (degenerate type).

2.1 Gaussian case: � 2 [2;1]

Put

u
2
n
(�n) = u

2
n
(bn; hn) = nE1;0

~Z2
n
: (2.6)

Denote dn = 2bn � Tn and observe (see [3, 5] and sec. 6.2 below) that

u
2
n
= 2nh2

n
(sinh(b2

n
=2))2�(�dn) + o(1) �

8>>>>>><
>>>>>>:

nh
2
n
b
4
n
=2; if bn ! 0 ,

2nh2
n
(sinh(b2

n
=2))2; if � 2 (2;1] ,

1
2
nh

2
n
e
b2
n�(�dn); if bn !1 .

(2.7)

Then (1.6), (1.8) hold with un de�ned by (2.7). Asymptotically minimax se-

quence of tests is of the form

 
(hn;bn)
n;�

= 1fln>Tn;�g[fmaxi jxij>Hng: (2.8)
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Here Hn is a sequence such that n�(�Hn) ! 0, Tn;� = t�un � u
2
n
=2 ; ln are

statistics of the form (2.1) with, possible, small modi�cation of parameters bn; hn.

It follows from the proof in [5] that one can replace test procedures (2.8) onto

 n;�(bn; hn) = 1f�n(bn;hn)>t�g[fmaxi jxij>Hng

which is based on the statistics

�n(bn; hn) =
hn

un

nX
i=1

�(xi; bn) = (2n�(Tn � 2bn) sinh
2(b2

n
=2))�1=2

nX
i=1

�(xi; bn): (2.9)

These test procedures do not depend on hn for � > 2.

Moreover, for BP, if p � 2; p � q, then we can replace the values u2
n
onto

~u2
n
= nb

4
n
=2 and distinguishability are de�ned by bn:

�n(�; Vn(�n))! 1� � i� bnn
1=4 ! 0;

�n(�; Vn(�n))! 0 i� bnn
1=4 !1:

In this case we can construct asymptotically minimax tests which are based on �2

statistics:

 
(2)
n;�

= 1f�n;2>t�g; where �n;2 = (2n)�1=2
nX
i=1

(x2
i
� 1): (2.10)

In BP denote �n = (R2;n; p; q); �n = (R1;n; �n). Analogously with [1], we can

de�ne critical radii R�
1;n = R

�
1;n(�n) by the relation: un(R

�
1;n; �n) � 1.

Example 1: bounded bn (see [5].)

Let Rn;2 = An
a
; a > 0; A > 0. Assume (1.1) and let (1.2) holds if p > q or

2 < p � q. Note that �n(�)! 0 for a < 1=q � 1=4; p � q; p � 2 or a < 1=2q; 2 <

p � q. Therefore assume a � 1=q � 1=4 if p < q and a � 1=2q if p > q. Denote

� = (p; q; a; A; C) and de�ne the sets

�1 = f� : p � 2; a >
1

q
� 1

4
or q � p; p � 2 or q < p � 2; a =

1

q
� 1

4
; A > Cg;

�2 = f� : p > 2; a >
1

2q
or p > 2; a =

1

2q
; C

p � A
q
b(p)p�qg;

�3 = f� : q > p > 2;
1

q
� 1

4
< a <

1

2q
or 2 � p > q;

1

2q
� a <

1

q
� 1

4

or q > p > 2; a =
1

2q
; C

p
> A

q
b(p)p�q or 2 � p > q; a =

1

q
� 1

4
; A � Cg:

Let Rn;1 = Cnn
d
; Cn ! C 2 (0;1), where

d =

8><
>:
1=p� 1=4; if � 2 �1,

1=2p; if � 2 �2,

(p� q + 2aq(2� p))=2p(2� q); if � 2 �3.
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Then, using the Lemma 1.1 we obtain8><
>:
bn = Cnn

�1=4
; hn = 1; if � 2 �1

bn = b(p); hn = (Cn=b(p))
p
n
�1=2

; if � 2 �2

bn = n
��(Cp

n
=A

q)1=(p�q); hn = n
�1(A=Cn)

pq=(p�q)
; if � 2 �3

where for � 2 �3

 =
q(4a� 1)

2(2� q)
2 [0; 1] ; � =

2aq � 1

2(2� q)
� 0;

and we get the asymptotics (1.8) with

u
2
n
�

8>>><
>>>:
C

4
=2; if � 2 �1,

2(C=b(p))2p sinh2(b(p)2=2); if � 2 �2,

C
2p(2�q)=(p�q)

A
�2q(2�p)=(p�q)

=2; if � 2 �3 ; a 6= 1=2q,

2(A=C)2pq=(p�q) sinh2(Cp
=A

q)2=(p�q)=2) if � 2 �3 ; a = 1=2q.

Here critical radii are of the form R
�
1;n = n

d. Furthermore, we get the distinguisha-

bility conditions of the rate form:

�n(�)! 1� � i� R1;n=R
�
1;n = Cn ! 0; �n(�)! 0 i� R1;n=R

�
1;n = Cn !1:

Example 2: � > 2 3

Let Rn;2 = An
a and p > q; 1=4 < aq < 1=2. More exactly, denote �n =

1� 2aq; �n = 1� 4aq and assume Vn = �n logn!1; Un = �n

p
logn! �1: We

would like to obtain Rn;1 such that un(�n) = Hn + o(1). We are interesting in the

case Hn � 1, however for examples below we assume Hn is bounded away from 0

and Hn = o(Vn= logVn); logHn < cU
2
n
; 0 < c < 1=4.

Take a sequence b2
n
!1; b

2
n
= O(logn), which is concreted below and put

Rn;1 = A
q=p
b
1�q=p
n

n
aq=p

: (2.11)

Then b = bn corresponds to the relation (iii) and

hn = n
aq�1

A
q
b
�q
n
; (2.12)

Let bn satisfy

b
2
n
= Vn +Xn =

1

2
(logn + Un

q
logn) +Xn; (2.13)

where

Xn = x+ y; x = q log b2
n
� 2q logA; y = log(2H2

n
) + o(H�1

n
); (2.14)

which corresponds to the relation

nh
2
n
e
b2
n = 2H2

n
+ o(Hn):

3Examples 2 - 3 contain in [5] for �xed a or Un. Uniform versions presented here have been

studied by I. Suslina.
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Assume below 2q logA = o(logVn), as Vn ! 1. Then the solution of (2.13) is of

the form

b
2
n
= Vn + ~Xn =

1
2
(logn + Un

p
logn) + ~Xn; (2.15)

~Xn = ~x+ y + o(H�1
n
); ~x = q logVn � 2q logA (2.16)

and

Tn � 2bn = � Un + Yn=
p
logn

(2 + 2Un=
p
logn+ 4Xn= logn)1=2

� Zn=

p
2!1 (2.17)

where Yn = 2x + 3y � log 4 + o(1); Zn = �Un � Yn=
p
logn: These imply

�(Tn � 2bn) = 1� o(exp(�Z2
n
=4)) = 1� o(H�1

n
);

by Un ! �1; Xn; Yn = o(
p
logn); Z2

n
� U

2
n
> (logHn)=c. Here and below we use

the well known relations: as x!1; � = o(1)

�(�x) = exp(�x2=2)
x
p
2�

(1 +O(x�2)); �(�x + �) = �(�x)ex�(1 +O((x�1 + �)2)):

(2.18)

Therefore we get:

2u2
n
= nh

2
n
e
b
2
n�(Tn � 2bn) + o(1) = 2H2

n
+ o(Hn); (2.19)

Let Hn � 1. Then we obtain the critical radii of the form (2.11) with

b
2
n
= �n logn + q(log log n + log �n � 2 logA) +Bn; Bn = O(1): (2.20)

If Bn ! �1, then �n(�)! 1� �, if Bn !1, then �n(�)! 0.

Example 3: � = 2. .

Consider the case a is close to 1=4q; p > q. More exactly, assume �n = 1�4aq =

o((log log n)�2); Hn = o(log log n). Denote, as above, Un = �n

p
logn: Take a

sequence bn; 2b
2
n
� logn which is concreted below and put

Rn;2 = An
a = An

1=4q�Un=4q
p

log n
; Rn;1 = A

q=p
b
1�q=p
n

n
1=4p�Un=4p

p
log n

; (2.21)

which correspond to (2.11) and imply (2.12).

Assume Un = o((logn)1=6): Let bn is de�ned by (2.13), (2.14) with

x = q(log log n� log 2A2)� log�(�Un=
p
2) + o(1=Hn): (2.22)

Then, using (2.17) with ~Yn = Yn � log�(�Un=
p
2) in place of Yn and (2.18), we

get

Tn � 2bn = �Un=
p
2 + "n; Un"n = o(1=Hn) (2.23)

which imply (2.19).
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Assume Un �
p
log log n: To choose bn such that (2.19) hold we obtain the

equation:

logn+ log h2
n
+ b

2
n
+ log�(Tn � 2bn) = log(2H2

n
) + o(H�1

n
): (2.24)

By using (2.18) and in view of relation

Tn � 2bn = �3

2
bn + b

�1
n

log(2b�1
n
) = �Un=

p
2 +O(Un�n)

we obtain bi-quadratic equation on bn:

b
4
n
� 2Pb2

n
+Q = 0;

where

P = 4 logn+ log h2
n
� 4 logUn � 4 log 2H2

n
� 2 log(�=8) + o(H�1

n
);

Q = (1� 4 log 2) logh2
n
+ (log 4)2 +O(hn logn):

Therefore

b
2
n

=
1

2
(5� �n � 4

q
1� �n) logn+ q log logn� 2q logA

+ logUn + log(2H2
n
) +

1

2
log � � q log 2 + o(H�1

n
): (2.25)

Let Hn � 1. Then we obtain critical radii of the form (2.11), where if U2
n
=

O((logn)1=6, then:

b
2
n
=

1

2
(1 + �n) logn+ q log log n� 2q logA� log�(�Un=

p
2) +Bn; (2.26)

and if Un !1; log log n� U
2
n
= o(logn(log log n)�4), then

b
2
n
=

1

2
(5��n�4

q
1� �n) logn+(q+1=2) log log n�2q logA+log �n+Bn: (2.27)

Here Bn = O(1). If Bn ! �1, then �n(�)! 1� �, if Bn !1, then �n(�)! 0.

2.2 In�nitely divisible case: � 2 (1; 2)

Put cn = cn(�n) = 2n�(�Tn). It was shown in [3, 5] that

�n(�; Vn(�n)) = �n(�; P�n) + o(1):

If cn(�n) ! c 2 (0;1), then the sharp asymptotics of these values are de�ned

by special in�nitely divisible distributions which depend on the (�; c), see [3, 5].

However the rate are simple enough:

�n(�; Vn(�n)) ! 1� � i� cn ! 0;

�n(�; Vn(�n)) ! 0 i� cn !1:
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Moreover if cn(�n)!1, then there exist minimax consistent test procedure which

does not depend on �n and on �n ! � 2 (1; 2). This is based on thresholding:

 
(1)
n;Hn;�

= 1fmaxi jxij>Hn;�g; (2.28)

here Hn;� =
p
2 logn + o(1) is such that (1 � 2�(�Hn;�))

n = 1 � � (this implies

�( n;�) = �).

Remark 2.1 Distinguishability conditions are de�ned by the asymptotics of the

values un not only for � � 2 but for � > 1 also.

In fact, if 1 < � < 2, then Tn � 2bn = bn(�n � 2) ! �1 and by (2.3), (2.18) we

get:

u
2
n
� �ncn=(2� �n) � cn:

Example 4: � 2 (1; 2) (see [5].)

As in Example 2, put Rn;2 = An
a
: Consider 0 < a < 1=4q and let Rn;1 are

de�ned by (2.11) with b2
n
= Cn logn. Denote x = (aq)1=2; C = C(x) = 2(1� x)2,

Cn = C + y
log logn

logn
+

Hn

logn
; y =

(1� x)2 + q(1� x)

x
:

Then we get (2.12) and

Tn = Dn

q
logn+

q(log logn+ log(Cn=A
2)) + log 4

2
p
Cn logn

+ o

 
1p
logn

!
(2.29)

where

Dn = D(Cn; aq) =

 
C

1=2
n

2
+

1� aq

C
1=2
n

!
: (2.30)

If Hn = o(logn); then using (2.29), (2.30) we get:

�n = Tn=bn ! � = (1� x)�1 2 (1; 2):

If Hn = O(1); then we obtain critical radii (2.11) and

cn = 2n�(�Tn) �
q
2=�(A�)q�2��(1+q=2) exp(Hn�(� � 1)=2);

If Hn ! �1, then �n(�)! 1� �, if Hn !1, then �n(�)! 0.

2.3 Degenerate case: � 2 [1=2; 1]

Let k = nhn !1; � = 1. Put �n = �n(�n) = nhn�(bn � Tn): Then (see [3, 5])

�n(�; Vn(�n)) = �n(�; P�n) + o(1) = (1� �) exp(��n(�n)):
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Let k = nhn = O(1); � = 1 and k is an integer. Then

�n(�; Vn(�n)) = (1� �)(�(
q
2 logn� bn))

nhn + o(1):

Let � < 1. Then �n(�; Vn(�n)) ! 0: Asymptotically minimax test procedure are

based on the thresholding (2.28).

Example 5: � = 1 (see [5].)

Consider the case of small a = d= logn. Let Rn;2 = A(logn)d. Put

Rn;1 = A
q=p
C

1=2�q=2p
n

(logn)1=2�q=2p+dq=p: (2.31)

which correspond to (2.11). We get

b
2
n

= Cn logn; hn =
1

n
(logn)q(d�1=2)(A2

=Cn)
q=2
; �n =

1

2
+

1

Cn
+ o(1);(2.32)

Tn =

 p
Cn

2
+

1p
Cn

!q
logn +O

 
log lognp

logn

!
: (2.33)

Assume d > 1=2 + 1=2q (this implies nhn=
p
logn log logn!1). Put

Cn = 2� 2z

s
log logn

logn
+

2 log log logn

z
p
logn log logn

+
Hnp

logn log logn
;

where z =
q
2q(2d� 1). Let Hn = o(

p
logn log logn). Then � = 1: Let Hn = O(1).

Then we obtain critical radii (2.31) and

�n(�) = (1� �)e��n + o(1); �n �
A
q

z
p
�2q=2

exp (zHn=4) :

If Hn ! �1, then �n(�)! 1� �, if Hn !1, then �n(�)! 0.

Remark 2.2 First, observe that if Tn� bn !1, then cn � (�n� 1)�n=�n which

implies cn � �n for � > 1 and u
2
n
� �n for 2 > � > 1. Next, put

b
�
n
=
q
(logn)=2; ��

n
= �

�
n
(�n) = nhn�(bn �Hn);

where Hn = 2b�
n
+o(1) be such values that n�(�Hn) � 1. We can replace the values

�n onto �
�
n
in the asymptotics of �n(�; Vn(�n)) for the case �n ! 1.

In fact, it was noted in [5], Lemma 5.4, that if �n � 1, then ��
n
= �n + o(1) and if

� <1 and �n !1, then ��
n
!1. Analogously one can check that if �n = o(1),

then ��
n
= o(1).

Using Remarks 2.1, 2.2 we can express distinguishability conditions in the terms

not of the values �n = �n(�n) and un = un(�n); cn = cn(�n); �n = �n(�n) but in the

terms of the values bn = bn(�n) and un = un(�n).
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Proposition 2.1 For any � 2 (0; 1):

1) If bn � 2b�
n
!1, then �n(�; Vn(�n))! 0; if bn � 2b�

n
; nhn !1, then

�n(�; Vn(�n)) = (1� �) exp(���
n
) + o(1):

The tests (2.28) are asymptotically minimax in these cases.

2) Let lim inf bn(�n)=b
�
n
< 2; nhn !1. If un(�n)!1, then �n(�; Vn(�n))! 0.

If un(�n)! 0, then �n(�; Vn(�n))! 1� �.

Proof. The statement 1) follows the properties of supremum-tests (2.28), see

[5], Lemma 5.3. Consider the statement 2). If �n ! � � 2, then it follows from the

results for Gaussian case. If �n ! � < 2, then u2
n
� cn = 2n�(�Tn). If un ! 0,

then cn ! 0 which implies Tn > 2b�
n
+ o(1) and �n ! � > 1; therefore it follows

from the results for in�nite-divisible case. Let un ! 1. If �n ! � 6= 1, then the

statement is evident. If �n ! � = 1, then either �n � cn ! 1 for Tn � bn !1,

or, evidently, �n !1 for Tn � bn 6! 1.

3 Main results

To study adaptive setting observe evident inequality

�n(�; Vn(�n)) � inf
�n2�n

�n(�; Vn(�n)) (3.1)

In view of (3.1) necessary condition for adaptive distinguishability is uniform dis-

tinguishability on �n 2 �n:

inf
�n2�n

�n(�; Vn(�n))! 0: (3.2)

The �rst problem is the following: what are sets �n such that asymptotic equality

in (3.1) or the relation (3.2) are su�cient for adaptive distinguishability ?

The results above and the considerations below show that these hold for the sets

�n with small enough or with large enough values bn.

3.1 The case of small bn

For BP denote �0
n
= f�n : p � 2; p � qg, in usual case put

�a

n
= f�n : bn(�n) < ag; a > 0: (3.3)

For subset �n � ��
n
put un(�n) = inf�n2�n

un(�n): The results above show that

for any �n � �0
n

�n(�; Vn(�n)) = �(t� � un(�n)) + o(1)
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and test procedures (2.10) are asymptotically minimax in BP:

�n( 
(2)
n;�
; Vn(�n)) = �(t� � un(�n)) + o(1):

This result is extended on the sets �n � �an
n

with an = o(1) and an = O(1) for

MCP and BP.

Theorem 3.1 1) Let an = o(1). Then

�n(�; Vn(�
an

n
)) = �(t� � un(�

an

n
)) + o(1):

Asymptotically minimax tests  n;�(an) are of the form:

 n;�(an) = 1f�n;2>t�g[f�n(an)>t�g; �n(an) = 21=2n�1=2a�2
n

nX
i=1

�(xi; an): (3.4)

2) Let an = O(1). If un(�
an
n
)!1, then �n(�; Vn(�

an
n
))! 0, and if un(�

an
n
)!

0, then �n(�; Vn(�
an
n
))! 1��. Minimax consistence tests  n(an) =  n;�n(an) are

of the form (3.4) with some sequences �n ! 0.

The lower bound of the Theorem 3.1 follow directly from the results [3, 5] noted

above. The properties of tests procedures provided upper bounds in Theorem 3.1

are studied in the proof of Theorem 3.4 below.

Remark 3.1 In BP assume b = bn > c > 0. If h = hn = 1 (this corresponds to

the relation (i) in Lemma 1.1), then un !1 and we can distinguish the hypothesis

and alternative by using the combination of �
2
-tests and supremum-tests:

 
(2;1)
tn;Hn

= 1f�n;2>tng[fmaxi jxij>Hng; Hn �
q
logn; n�(�Hn)! 0 (3.5)

with tn !1 but the rate of tn is small enough. The same holds for

b
p
hnn

p=4 !1; if p � 2; (logn)n1=2hn(b
2
n
= logn)p=2 !1; if p > 2:

Therefore in BP we can exclude in consideration below cases (i) with large enough

b = bn > c > 0 and cases with b
2
n
� logn; lim inf nh2

n
> 0.

Proof. One easily has (see [1], for example) that

�( 2;1
n;�

)! 0; �( 2;1
n;�

; vn)! 0

if

max
1�i�n

jvij > CHn; C > 1 or n�1=2
X

1�i�n
v
2
i
� tn !1:

It follows from Lemma 1.1 that
P

1�i�n jvijp � R
p

n;1 = nhnb
p

n
: Let 0 < p � 2. Then

(n�1
X

1�i�n
v
2
i
)1=2 � (n�1

X
1�i�n

jvijp)1=p � n
�1=p

Rn;1 = h
1=p
n
bn;
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which implies

n
�1=4(

X
1�i�n

v
2
i
)1=2 � n

1=4
h
1=p
n
bn � t

1=2
n
;

if bphnn
p=4 � t

p=2
n
!1. Let p > 2 and max1�i�n jvij � CHn. ThenX

1�i�n
v
2
i
= (CHn)

2
X

1�i�n
(vi=CHn)

2 � (CHn)
2
X

1�i�n
jvi=CHnjp =

(CHn)
2�p X

1�i�n
jvijp � (CHn)

2�p
nhnb

p

n
� n

1=2
tn;

if (logn)n1=2hn(b
2
n
= logn)p=2 � tn !1.

3.2 The case of large bn

Fix a positive sequence �n ! 0 ( in BP �x a sequence pn ! 1; pn = o(logn)

also) and a value � > 0. Assume below � � min(p; q); p � pn in BP. Denote

�1
n

= f�n : bn(�n) > (2� �n)b
�
n
; nhn(�n) > �

�1
n
g (3.6)

�1
n;1 = f�n : bn(�n) > (1 + �)b�

n
; nhn(�n) > �

�1
n
g: (3.7)

Put

�
�
n
(�n) = inf

�n2�n

�
�
n
(�n):

Theorem 3.2 1) Let �n � �1
n
. Then

�n(�; Vn(�n)) = (1� �) exp(���
n
(�n)) + o(1)

and tests (3.5) with Hn = Hn;� are asymptotically minimax:

�( 
(2;1)
tn;Hn;�

)! �; �n( 
(2;1)
tn;Hn;�

; Vn(�n)) = (1� �) exp(���
n
(�n)) + o(1):

2) Let �n � �1
n;1. If un(�n))! 0, then �n(�; Vn(�n))! 1� �: If un(�n)) !

1, then test procedure (2.28) is minimax consistence: �n( 
(2;1)
tn ;Hn;�

; Vn(�n))! 0:

Proof. The lower bounds of Theorem 3.2 follow from Remarks 2.1, 2.2 and

Proposition 2.1.

In view of Remark 3.1 to proof the upper bounds in BP we can exclude the

cases p � q because hn = 1 here (it follows from Lemma 1.1; it is the only point

that we use �2-test in this proof). Next part of the proof is based on the study of

minimax properties of the tests (2.28). It was shown in [3], sec. 6 (see also sec. 5.3

below) that uniformly on vn 2 Rn

�n( 
(1)
Hn;�

; vn)! 0; as max
1�i�n

(vn;i �Hn;�)!1
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and

�n( 
(1)
n;�

; vn) � (1� �) exp(� ~Fn(vn; Hn;�)) + o(1);

where

~Fn(v;H) =
nX
i=1

~�(vi; H); ~�(v;H) = �(v �H) + �(�v �H):

In MCP this implies

�n( 
(1)
n;�

; Vn(b; k)) � (1��) exp(�k ~�(b;Hn;�))+o(1) = (1��) exp(���
n
(�n))+o(1)

which implies the statement of Theorem. In BP denote

V (�n; Qn) = fv 2 V (�n) : max
i

jvij � Qng; Qn = Cbn

and put

Fn(v;H) = ~Fn(v;H)� 2n�(�H); �(v;H) = ~�(v;H)� 2�(�H): (3.8)

Lemma 3.1 For any C1 > C2 > 1 there exist such B > 0; � > 0 (which do not

depending on n; p; q) that if

C1b > H � C2b > B; b < Q < C1b; p � �b
2
; p > q

(here b = bn(�n)), then

inf
v2V (�n;Q)

Fn(v;H) � nh�(b;H) (3.9)

which imply

inf
v2V (�n;Q)

~Fn(v;H) � nh~�(b;H):

Proof of Lemma 3.1 is given in Appendix, sec. 6.5.2. It is modi�cation of the

proof of Lemma 6.1 in [5]. Using (3.9) we get

�n( 
(1)
n;�

; V (�n)) � (1� �) exp(�nhn�(bn �Hn;�)) + o(1)

uniformly on �n with bn ! 1; p � pn = o(logn); � > 0. By Remarks 2.1, 2.2

these imply the upper bounds of Theorem 3.2.

The main results of the paper correspond to the case of moderate bn: bn(�n)!
1; bn(�n) < (2� �)b�

n
:

3.3 The case of moderate bn

Introduce semi-logarithmic scale. Namely, introduce variables z = zn(bn) = zn(�n)

and sets �n(z1; z2):

z = zn(b) =

�
b; if b � b

�
n
+ 1;

b
�
n
+ 1 + log(b� b

�
n
); if b � b

�
n
+ 1;

(3.10)

�n(z1; z2) = f� 2 ��
n
: z1 � zn(�n) � z2g: (3.11)
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Here zl = zn;l; l = 1; 2,

0 � z1 < z2 � z
�
n
= b

�
n
+ 1 + log(b�

n
): (3.12)

These correspond to the inequalities on b = b(z):

0 � b(z1) < b(z2) � 2b�
n
:

Here and below we denote as b(z) = bn(z) the inverse values: zn(bn(z)) = z.

Observe that by the inequality ex � 1 + x one has

jzn(bn;1)� zn(bn;2)j � jbn;1 � bn;2j: (3.13)

For a set �n � ��
n
denote Zn(�n) = fz(�n) : �n 2 �ng:

Let us consider a sequence of functions wn(z) > 0; z 2 [z1; z2] which will de�ne

possible adaptive bounds. Introduce the assumptions

W1. The functions w2
n
(z); z 2 [z1; z2] are uniform Lipschitzian: there exists

B > 0

jw2
n
(z

0

)� w
2
n
(z

00

)j � Bjz0 � z
00 j for all z

0

; z
00 2 [z1; z2]:

W2.

wn = inf
z2[z1; z2]

wn(z)!1:

W3. Z
z2

z1

�(�wn(z))dz � 1:

Note that it follows from (3.12), W1 and W3

sup
z1�z�z2

wn(z) = O((logn)1=4): (3.14)

Theorem 3.3 Lower bounds. Assume W1, W2, W3. Let there exist ~�n � �n

such that [z1; z2] � Zn( ~�n) and

sup
�n2~�n

(un(�n)� wn(zn(�n)) � Rn + o(1):

Then

�n(�; Vn(�n)) � (1� �)�(�Rn) + o(1):

Theorem 3.4 Upper bounds. Let �n � �n(z1; z2); z2 � z
�
n
�B; B > 0 and

inf
�n2�n

(un(�n)� wn(zn(�n)) � Rn:

Assume W1, W2, W3. Then

�n(�; Vn(�n)) � (1� �)�(�Rn) + o(1):
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Corollary 3.1 Let

�n = f�n 2 ��
n
: z(�n) 2 [z1; z2]; un(�n) � wn(zn(�n)) +Rn + o(1)g:

Then

�n(�; Vn(�n)) = (1� �)�(�Rn) + o(1):

Remark 3.2 First, note that the assumption z2 � z
�
n
�B; B > 0 is equivalent to

bn(�) � (2� �)b�
n
; � > 0. Also the assumption W2 in Theorem 3.4 may be replaced

onto Rn !1.

Next, we can replace the assumption W3 onto one of the following:

W3a Z
z2

z1

exp(�w2
n
(z)=2)dz � 1;

W3b There exist such Bl 2 R1
; l = 1; 2; B1 > B2 thatZ

z2

z1

exp(�w2
n
(z)=2)wB1

n
(z)dz !1;

Z
z2

z1

exp(�w2
n
(z)=2)wB2

n
(z)dz ! 0:

In fact, under assumptions W2 and either W3a or W3b one can �nd such sequence

�n ! 0 that the sequence ~wn(z) = wn(z) + �n satis�es W3. This implies the upper

and lower bounds with ~Rn = Rn + �n which are equivalent to original bounds.

In view of Remark 3.2 we can apply Theorems 3.3, 3.4 and Corollary 3.1, par-

ticularly, to the functions

wn(z) =
q
2 log z; z1 !1; z2=z1 � C > 1 (3.15)

or

wn(z) =
q
2 log(z�

n
� z); z�

n
� z2 !1; z2=z1 � C > 1: (3.16)

Note the case of constant functions w(z). Let

z2 � z1 !1; w(z) = wn =
q
2 log(z2 � z1): (3.17)

Corollary 3.2 Let

z2 � b
�
n
; z2 � b

�
n
; z1 = o(b�

n
); wn =

q
2 log(z2 � z1) =

q
log logn + o(1): (3.18)

If �n � �n(z1; z2)), then

�n(�; Vn(�n)) � (1� �)�(wn � un(�n)) + o(1) (3.19)

where, as above, un(�n) = inf�n2�n
un(�n): If there exist ~�n � �n such that

[z1; z2] � Zn( ~�n), then

�n(�; Vn(�n)) � (1� �)�(wn � u
+
n
( ~�n)) + o(1): (3.20)

where u
+
n
( ~�n) = sup

�n2~�n
un(�n):
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3.4 Examples

In this section we consider adaptive version of examples 2 and 3 above. Let Rn;2 =

An
a
; a > 0; A > 0. Assume A; p; q be �xed to simplicity and consider the case of

unknown a 2 A. Denote un(�n) = un(a; Rn;1); bn(�n) = bn(a; Rn;1). Our arm here

is to describe the asymptotics of adaptive critical radii Rn;1(a) = Rn;1(a; A; p; q)

such that uniformly on a 2 A

un(a; Rn;1) = wn(zn(a)) + Cn + o(1); Cn � 1 (3.21)

for wide enough sets A and for functions wn(z) type of (3.15) � (3.18); here zn(a) =

zn(bn(a; Rn;1(a; A; p; q))).

Example 6: � > 2.

Analogously with Example 2, let p > q and consider sets A = ((1+��
n
)=4q; (1+

�
�
n
)=2q). Assume ��

n
logn!1; c(��

n
)2 � log log logn= logn; 0 < c < 1=4. Denote,

as above, Vn = (1� 2aq) logn; Un = (1� 4aq)
p
logn: Assuming

wn(zn(a)) = o(Vn= logVn); log(wn(zn(a))) < cU
2
n
; (3.22)

we can use estimations of Example 2 for Hn = wn(zn(a))+Cn uniformly on a 2 A.
By taken bn = bn(a; A; p; q), de�ne Rn;1 = Rn;1(a; A; p; q) according to (2.11). Then

we get (2.12). Let bn satisfy (2.13), (2.14) which implies (2.19) and correspond to

(2.15), (2.16). Under assumptions above �(Tn�2bn) � 1�o(1=
q
log b2

n
) and (3.21)

holds. Note that bn = zn = zn(a) in this case. Thus we go to critical radii (2.11)

with

b
2
n
= Vn + q(logVn � 2 logA) + log(2w2

n
(bn)) + Cn=wn(bn): (3.23)

If Cn ! �1, then �n(�)! 1� �, if Cn !1, then �n(�)! 0.

Let w2
n
(b) = log b2; b � b

�
n
. Then w2

n
(bn) � logVn and (3.22) hold. The relation

(3.23) is of the form

b
2
n
= �n logn+ q log(�nA

�2 logn) + log(2 logVn) + Cn=

q
logVn:

Let w2
n
(b) = log log n. Then (3.22) hold under additional assumption: �n �

(log log n)1=2 log log logn= logn: The relation (3.23) is of the form

b
2
n
= �n logn + q log(�nA

�2 logn) + log(2 log logn) + Cn=

q
log log n:

Example 7: � = 2.

Analogously with Example 3, consider the case a = an is closed to 1=4q. Let

A = ((1� �n;2)=4q; (1� �n;1)=4q). Assume

0 < �n;1 < �n;2 = o((log log n)�2); �n;1

q
logn!1; 
n = log(�n;2=�n;1)!1:

19



Put Rn;2; Rn;1 according to (2.21) and let bn is de�ned by (2.25) with Hn =

wn(zn(a)) + Cn. Then we get (3.21). Particularly, one has the relations for zn =

zn(an):

z
�
n
� zn = � log(�n=2) + o(1= log log n); �n;1 < �n = 1� 4aq < �n;2;

z1 = b
�
n
+ 1� log �n;2; z2 = b

�
n
+ 1� log �n;1:

We can rewrite (2.25) in the form:

b
2
n

=
1

2
(5� �n � 4

q
1� �n) logn + (q + 1=2) log log n� 2q logA

+ log �n +
1

2
log� � q log 2 + log(2w2

n
(zn)) + Cn=wn(zn): (3.24)

Let w2
n
(z) = log
2

n
. Then we get: log(2w2

n
(zn)) = log 2 + log log
2

n
:

Let w2
n
(z) = log(z�

n
� z)2; z > b

�
n
. Then

log(2w2
n
(zn)) = log 2 + 2(log log ��1

n
+ log 2= log ��1

n
):

As above, if Cn ! �1, then �n(�)! 1� �, if Cn !1, then �n(�)! 0.

4 Lower bounds

4.1 Methods of constructions

We use methods of [1, 6] based on Bayesian approach. It is enough to construct

priors �n = �
n(dv)

�
n(Vn( ~�n))! 1; �(�; P�n) � (1� �)�(�Rn) + o(1); n!1

We consider priors �n which are �nite mixtures of collections of particular priors

�
n

l
; 1 � l �M :

�
n =

MX
l=1

pn;l�
n

l
; pn;l � 0;

MX
l=1

pn;l = 1; M =Mn !1: (4.1)

Denote likelihood ratio statistics:

Ln = dP�n=dP0 =
MX
l=1

pn;l

dP�n
l

dP0

=
MX
l=1

pn;lLn;l; ln;l = log
�
dP�n

l

=dP0

�

Let there are given sequences of collections un;l > 0; wn;l > 0; 1 � l � Mn and

values Rn such that

min
1�l�M

wn;l !1; un;l � wn;l +Rn + o(1);
MX
l=1

exp(�w2
n;l
=2) � 1: (4.2)
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Put

pn;l = exp(�w2
n;l
=2)

 
MX
l=1

exp(�w2
n;l
=2)

!�1
: (4.3)

Let there are given statistics ~ln;l such that

�n = Pn;0f 9 l : ln;l 6= ~ln;l; 1 � l �Mg = o(1): (4.4)

and uniformly on 1 � l �M

mn;l = En;0(~ln;l) = �u2
n;l
=2 + o(1); �2

n;l
= Varn;0(~ln;l) = u

2
n;l

+ o(1): (4.5)

Consider centred and normalized statistics ~ln;l:

~�n;l = (~ln;l �mn;l)=�n;l:

Denote �n;l = sup
x2R1 jPn;0(~�n;l < x)� �(x)j and assume

�n =
X

1�l�M
�n;l = o(1): (4.6)

Let ~Ln;l;w = exp(~ln;l)1~�n;l<wl;n

be truncated statistics ~Ln;l = exp(~ln;l): Assume

Cn = max
1�l<k�M

CovPn;0(
~Ln;l;w; ~Ln;k;w) � o(1): (4.7)

The following Lemma is an extension of Theorem 4.2 in [1] and is analogous

with Lemma 3.2 in [6].

Lemma 4.1 Under the assumptions (4.2)�(4.7) for any � 2 (0; 1)

�(�; P�n) � (1� �)�(�Rn) + o(1): (4.8)

Proof of the Lemma is given in Appendix, section 6.1.

Let as go to the proof of Theorem 3.3. First, note that under assumptions W1,

W2, W3 we can assume that for any b > 0

z1 !1; z
�
n
� z2 !1; sup

z1�z�z2
w

2
n
(z) exp(b(z � z

�
n
)) = o(1): (4.9)

The �rst relations in (4.9) correspond to the inequalities on b = b(z):

b(z1)!1; b(z2) � b
�
n
(1 + o(1)): (4.10)

In fact, let us consider W3a to simplicity. Put

~z1 = z1 +Bn;1; ~z2 = z2 �Bn;2; Bn;l !1; Bn;l = o(exp(w2
n
=2)); l = 1; 2:
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Then

Z ~z1

z1

exp(�w2
n
(z)=2))dz � Bn;1 exp(�w2

n
=2) = o(1);Z

z2

~z2

exp(�w2
n
(z)=2))dz � Bn;2 exp(�w2

n
=2) = o(1)

and we can consider ~zl in place of zl. Moreover, put �n = B
�1=2
n;2 ! 0 and

ẑ2 = maxfz 2 [~z1; ~z2] : w
2
n
(z) � �n exp(b(z

�
n
� z))g:

If z 2 [ẑ2; ~z2], then w
2
n
(z) � �n exp(b(z

� � z)) > b�n(z
� � z) and

Z
ẑ2

~z2

exp(�w2
n
(z)=2))dz �

Z
ẑ2

~z2

exp(b�n(z � z
�
n
)dz � exp(b�n(ẑ2 � z

�
n
)=b�n ! 0

Therefore we can replace ~z2 onto ẑ2 and if z 2 [~z1; ẑ2], then by W1

w
2
n
(z) � w

2
n
(ẑ2) +B(ẑ2 � z); w2

n
(ẑ2) = �n exp(b(z

�
n
� ẑ2)) � �n exp(b(z

�
n
� z));

B(ẑ2 � z) � (B=b) exp(b(ẑ2 � z)) = o(exp(b(z�
n
� z)):

Thus (4.9) and W1 � W3 satis�es after replacing z1; z2 onto ~z1; ẑ2.

Let us choose such collections �M

n
= f�n;1; :::; �n;Mg � ~�n � �n that the values

zn;l = z(�n;l) 2 [z1; z2]; wn;l = wn(zn;l); un;l = un(�n;l)

satisfy (4.2). First, we choose ~zn;l; l = 1; :::; 2M + 1 such that uniformly on l

~zn;l+1 = ~zn;l + �n;l; �n;l � wn(~zn;l); l = 1; :::; 2M + 1; ~zn;1 = z1; ~zn;2M+1 = z2

and consider intervals In;l = (~zn;l; ~zn;l+1); l = 1; :::; 2M . Let

Jn;l =

Z
In;l

�(�wn(z))dz; An =
MX
l=1

Jn;2l�1; Bn =
MX
l=1

Jn;2l:

Under assumption W3 we have: either An � 1 or Bn � 1. Let An � 1. By using

mean-value theorem we �nd zn;l 2 In;2l�1; l = 1; :::;M such that

Jn;2l�1 = �(�wn(zn;l))�n;l � �(�wn(zn;l))wn(~zn;2l�1):

Denote a = ~zn;2l�1; b = zn;l and observe that under the assumptions W1, W2 one

has

jwn(b)� wn(a)j =
jw2

n
(b)� w

2
n
(a)j

wn(b) + wn(a)
� B

jb� aj
2wn

= o(�n;l) = o(wn(a)):

Therefore

wn(~zn;2l�1) � wn(zn;l); Jn;2l�1 � �(�wn(zn;l))wn(zn;l) � exp(�w2
n
(zn;l)=2)
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and we have:

MX
l=1

exp(�w2
n
(zn;l)=2) � 1; zn;l+1 � zn;l � �n;l � wn(z) 8 z 2 [zn;l; zn;l+1]: (4.11)

Other relations in (4.2) follow from the assumption of Theorem.

Denote bn;l = bn(�n;l), analogously hn;l; Tn;l and so on.

We consider product priors of the type (1.4), (1.5) and put

�
n

l
= �

n(b
0

n;l
; h

0

n;l
); b

0

n;l
= bn(�

0

n;l
); h

0

n;l
= hn(�

0

n;l
)

were primes correspond to small changing � such that uniformly on l

un(b
0

n;l
; h

0

n;l
) = un;l + o(1); �n

l
(Vn(�n;l)) = 1� o(1): (4.12)

The constructions are described in [3, 5]. To simplicity of notation we omit primes

below. In view of (4.12) one has

�
n(Vn(�n)) �

X
l

pn;l�
n

l
(Vn(�n;l)) � 1� o(1)

which implies �(�; P�n) � �(�; Vn(�n)). Thus, it is enough to check the assump-

tions of Lemma 4.1.

The statistics ln;l and ~ln;l are de�ned by (2.1), (2.4), (2.5) in the case. Using

(3.14) assume without loss of generality

Rn � B; b < un;l � B(logn)1=4; 1 � l � M (4.13)

by in other case lower bounds of Theorem 3.3 are obvious. Put

rn;lk = nEn;0( ~Zn;l ~Zn;k); �n;lk =
rn;lk

unlunk
:

Denote T �
n
= min(Tn;l; Tn;k). Then, using the relation (6.13) below one has: as

bn;l !1; bn;k !1; T
�
n
� bn;l � bn;k !1

rn;lk � nhn;lhn;k exp bn;lbn;k�(T
�
n
� bn;l � bn;k); (4.14)

�n;lk � 2 exp(�(bn;l � bn;k)
2
=2)

�(T �
n
� bn;l � bn;k)q

�(�dn;l)�(�dn;k)
(4.15)

Lemma 4.2 Assume (4.13) and

max
1�l�M

cn;l = o(1);
X

1�l�M
cn;l=u

3
n;l

= o(1): (4.16)

where (remind) cn;l = 2n�(�Tn;l): Then the relations (4.4), (4.5) and (4.6) hold.

Moreover, assume

max
1�l<k�M

rn;lk = o(1): (4.17)

Then (4.7) holds.
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Proof of the Lemma is given in Appendix, section 6.3.

To obtain lower bounds we use estimations of cn = cn(�n) and �n;lk = �n(�l; �k)

in terms of zn = zn(�n) and zn;l = zn(�n;l); zn;k = zn(�n;k).

Proposition 4.1 Let bn = bn(�n)!1; un = un(�n) = o(logn). Then there exist

B > 0; b > 0 such that for large enough n one has:

cn � Bu
2
n
exp(b(zn � z

�
n
)): (4.18)

Proof of Proposition is given in sec. 6.2

Proposition 4.2 Let bn;l; bn;k !1. Then there exist B > 0; b > 0 such that for

large enough n one has:

�n;lk � B exp(�bjzn;l � zn;kj): (4.19)

Proof of Proposition is given in sec. 6.6.1

4.2 Proof of the lower bounds of Theorem 3.3

We need to check the assumptions (4.16) and (4.17). The �rst relation in (4.16)

follows directly from (4.18) and (4.9). The second relation in (4.16) follows from

(4.18), (4.11), (4.13) and from estimations:

z
�
n
� zn;l = z

�
n
� z2 + z2 � zn;l � (z�

n
� z2) + b(M � l + 1)wn;X

1�l�M
cn;l=u

3
n;l
� B

X
1�l�M

exp(�b(z�
n
� zn;l)) �

B exp(�b(z�
n
� z2)� b1wn) = o(1):

The relation in (4.17) follows from (4.19), (4.11) by

jzn;l � zn;kj � b(wn;l + wn;k);

rn;lk = un;lun;k�n;lk � Bwn;lwn;k exp(�b(wn;l + wn;k)) = o(1):

5 Upper bounds

5.1 Test procedures

We will use the assumption W3a in place of W3 without loss of generality.
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Let us describe the test procedures which provide the upper bounds of Theo-

rem 3.4. We need to provide such families of tests  n =  n;� that

�( n;�) � � + o(1); �( n;�; Vn(�n)) � (1� �)�(�Rn) + o(1) (5.1)

It is enough to �nd such family  n that

�( n)! 0; �( n; Vn(�n)) � �(�Rn) + o(1) (5.2)

by the relations (5.2) implies (5.1) for tests  n;� = � + (1� �) n.

We assume below Rn = R + o(1) by if Rn ! �1, then the upper bounds are

trivial, and if Rn ! 1, then we will obtain (5.2) for any R
0

n
= R + o(1) which

imply the statement of Theorem.

The constructed families are based on collections of tests

 n(x) = max
l2L�

n

 n;l(x); L
�
n
= f0g [ Ln: (5.3)

Let  n;0 =  
(2;1)
tn;Hn

be tests de�ned by (3.5) with tn !1; tn = o(wn) and

c
�
n
= 2n�(�Hn) � (log(wn))

�1 = o(1); Hn =
q
2 logn+ o(1): (5.4)

To describe tests  n;l; l 2 Ln let us consider the functions un(b) = wn(zn(b)) +Rn

and let h(b) = hn(b) be such values that un(b) = un(b; h); the values u
2
n
(b; h) are

de�ned by (2.6). Let us consider the collections

0 < z1 = zn;1 < ::: < zn;M = z2; zn;l+1 = zn;l+�n;l; �n;l � (wn;l)
�2=3

; wn;l = wn(zn;l):

Denote bn;l = bn(zn;l); cn;l = cn(bn;l; hn;l); un;l = un(bn;l) and so on.

Fix � 2 (0; 2=3) and consider the set L = Ln = fl : cn;l � u
�

n;l
g: For any l 2 L

we consider the tests  n;l =  n(bn;l) of the type

 n(b) = 1f�n;b>wn(b)+!ng; wn(b) = wn(zn(b)); (5.5)

where statistics �n;b are de�ned by (2.9), values !n = o(1) are concreted below.

Note that if bn = o(n�1=4(logn)�1), then the test  n(bn) is asymptotical equiva-

lent to �2-test (2.10). This easily follows from Tailor expansion of statistics �(x; b)

for small b.

5.2 The �rst kind errors

For the tests (5.3) one has

�( n) �
X
l2L�

n

�( n;l) (5.6)

It is clear that

�( n;0)! 0; (5.7)
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and to obtain the �rst relation in (5.2) it is enough to show that

X
l2Ln

Pn;0(�n;l > wn;l) = o(1): (5.8)

Fix small � > 0; � : � < � < 2=3 and put b�
n;1 =

p
logn=10; b�

n;2 = b
�
n
(1� �). If

b � b
�
n;1, then let us consider thresholds

~Tn(b) =

(
Tn(b); if b < b

�
n;2

Tn(b) + �n(b); if b � b
�
n;2

; where �n(b) = � log(un(b))=Tn(b) = o(1):

Introduce ~Tn(b)-truncated statistics

~�n;b(x) =
h

un(b)

nX
i=1

~�n(xi; b); ~�(x; b) = �(x; b)1jxj< ~Tn(b)
: (5.9)

Denote ~�n;l = ~�n;bn;l;
~Tn;l = ~Tn(bn;l) and so on and observe that

Pn;0(�n;l(x) 6= ~�n;l(x) for any l 2 L) � 2nmax
l2L

�(� ~Tn;l) = o(1) (5.10)

because if b < b
�
n;2, then dn ! �1; �n > 2 and 2n�(� ~Tn;l) = cn;l ! 0, (this

follows from the relations (6.18) and (3.14)); if b � b
�
n;2, then by (2.18)

2n�(� ~Tn;l) � cn;l exp(�Tn;l�n;l) � u
(���)
n;l

= o(1):

In view of (5.10) we can replace the statistics �n;l onto ~�n;l in (5.8). Put

�̂n;l = (~�n;l �mn;l)=�n;l; mn;l = En;0
~�n;l; �

2
n;l

= Varn;0~�n;l:

Denote, as in Lemma 4.1,

�n(b) = sup
x2R1

jPn;0(�̂n;b < x)� �(x)j:

Proposition 5.1 For some � > 0; B > 0; 1 � 3�=2 < % < 1 � 3�=2 and any

l 2 Ln one has:

�n;l � B

8><
>:
n
��
; if b < b

�
n;1,

cn;lu
�3
n;l

+ n
��
; if b

�
n;1 � b � b

�
n;2,

cn;l(un;l)
�2�%

; if b > b
�
n;2.

Moreover, uniformly on l 2 L

mn;l � 0; mn;l = o(1); �n;l � 1 + !n;l; !n;l = o(u�1
n;l
): (5.11)
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Proof of Proposition 5.1 is given in Appendix, section 6.3.

To estimate �rst �nd errors, �rst, let us show that

An =
X
l2L

�n(bn;l) = o(1): (5.12)

In fact, because Mn = O((logn)2), the sum of n�� is o(1). It follows from (4.18),

from the choose �n;l and from W1 that

X
l:bn;l�b�n;1

�n(bn;l) � B

MnX
l=1

u
��
n;l

exp(�b(z�
n
� zn;l)) �

B exp(�bz�
n
)

Z
z2

z1

e
bz
w

2=3��
n

(z)dz � Bw
2=3��
n

exp(�b(z�
n
� z2)) = o(1)

in view of W2. Next, let as show that

Bn =
MnX
l=1

�(�wn;l) = o(1): (5.13)

In fact, using W1, W2, W3a one easily has

MnX
l=1

�(�wn;l) �
MnX
l=1

w
�1
n;l

exp(�w2
n;l
=2)

�
Z
z2

z1

w
�1=3
n

(z) exp(�w2
n
(z)=2)dz = O(w�1=3

n
) = o(1)

Put !n = maxl2L !n;l. Using (5.7), (5.10), (5.11), (5.12) and (5.13) we get (5.8):

X
l2Ln

Pn;0(�n;l > wn;l+!n) � An+
X
l2Ln

�(�(wn;l�mn;l+!n)=�n;l) � An+Bn = o(1):

Let us consider the tests  n;�(an) from Theorem 3.1. Using (6.7) one can easily

see that, as an ! 0,

En;0�n;2 = En;0�n(an) = 0; En;0�
2
n;2 = 1; En;0(�n(an))

2 = 4 sinh2(a2
n
=2)=a4

n
� 1;

En;0(�n;2�n(an)) = a
�2
n

((E1;an(x
2 � 1) + E1;�an(x

2 � 1))=2� E1;0(x
2 � 1)) = 1

which imply

En;0(�n;2 � �n(an))
2 ! 0: (5.14)

It follows easily from Central Limit Theorem that the statistics �n;2; �n(an)

are asymptotical (0; 1)-Gaussian under Pn;0-probability and by (5.14) this implies

�( an
n;�

)! �. If an = O(1), then one has:

�( n;�n(an)) � 2�! 0; as �! 0:
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5.3 The second kind errors

For the tests (5.3) one has

�( n; v) � min
0�l�M

�( n;l; v); v 2 l2 (5.15)

and to obtain the second relation in (5.2) it is enough to construct such collections

of sets

�n;l � �n;
[

0�l�M
�n;l = �n

that uniformly on 0 � l �M

min
0�j�M

�( n;j; Vn(�n;l)) � �(�R) + o(1) (5.16)

(we will consider no more than two tests  n;l;  n;l+1 in this minimum).

We will consider subsets �n;l � �n such that bn(�n) 2 [bn;l�1; bn;l].

First, let us consider tests  n;0. Observe

�( n;0; v) � Pn;v(max
i

jxij � Hn) =
nY
i=1

(1� �(jvij �Hn)� �(�jvij �Hn)

�
�
exp (�Pn

i=1(�(jvij �Hn) + �(�jvij �Hn)))

maxi�(Hn � jvij) :

Therefore we need consider below only such v = vn 2 Vn that for B > � log�(�R)

Sn(v) =
nX
i=1

(�(jvij �Hn) + �(�jvij �Hn)) � B; max
i

jvij � Hn +R (5.17)

Before to consider consider the tests  n;l =  n(bn;l); l 2 L, observe, that

�( n;l; v) � �( ~ n;l; v), where the tests ~ n;l are based on on Tn;l-truncated statistics
~�n;l analogous with (5.9). Therefore we will used the tests ~ n;l for bn;l > b

�
n;1 and

omit tilde to simplicity of notation.

Lemma 5.1 Uniformly on v 2 Rn
under the constraints (5.17)

�( n;l; v) � �(wn;l � F
�
n
(v; bn;l)) + o(1):

Here the functional F
�
n
(v; a) is of the form

F
�
n
(v; a) = Fn(v; a)=

q
Fn(a; a); Fn(v; a) =

nX
i=1

'n(vi; a) (5.18)

where

'n(v; a) =

(
2 sinh2(av=2); if a < b

�
n;1,

2 sinh2(av=2) �(Tn(a)� a� jvj); if a � b
�
n;1.

(5.19)
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Proof of Lemma 5.1 is given in Appendix, section 6.4.

In view of Lemma 5.1 we need to estimate the values

Fn(�n; a) = inf
v2Vn(�n)

Fn(v; a); with a = bn;l:

First, let bn;l � b
�
n;1. Denote b = bn(�n); h = hn(�n); and for BP p = p(�n); q =

q(�n). Remind that by Lemma 1.1 there are three possible relations (i), (ii) and

(iii) for parameters b; h in BP. We show that in BP the following inequalities are

possible:

Fn(�n; a) � Fn;1(�n; a) = 2nh sinh2(ab=2); (5.20)

Fn(�n; a) � Fn;2(�n; a) = 2nh sinh2(b2(p)=2)(ab=b2(p))p; (5.21)

Fn(�n; a) � Fn;3(�n; a) = 2n sinh2(abh1=p=2): (5.22)

Observe that in MCP the relation (5.20) holds. For BP introduce the assumptions

(we assume b(p) = 0 for p � 2):

A :

(
or p > q; ab � b

2(p);

or p < q; ab � b
2(p);

(5.23)

B :

(
or p � q; ab < b

2(p);

or p � q; ab > b
2(p) � h

1=p
ab;

(5.24)

C : h
1=p
ab � b

2(p); (5.25)

D : h
1=p
ab > b

2(p): (5.26)

Lemma 5.2

1. Assume: {(iii) and A}. Then (5.20) holds true.

2. Assume: either Bor {C and either (i) or (ii)}. Then (5.21) holds true.

3. Assume: D and either {(iii) and p < q}, or {either (i) or (ii)}. Then (5.22)

holds true.

Proof of Lemma 5.2 is given in Appendix, section 6.5.1.

Remark 5.1

First, observe that if p � 2, then B;C are empty and D holds.

Next, if h = 1 (this means (i) holds), then Fn;1(�n; a) = Fn;3(�n; a). Therefore

using Lemmas 1.1 and 5.2 one can easily see that if p � 2, then (5.20) holds.

Moreover, (5.20) does not holds for p > 2, if either b � b(p) � a, or b � b(p) � a.

DenoteM� = maxfl : bn;l � b
�
n;1g. Using Lemmas 5.1, 5.2 we get for 1 � l �M

�:

�n( n;l; Vn(�n)) � �(wn;l � �n(�n; bn;l)un(�n)) + o(1); (5.27)
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where under (5.20) (this holds for MCP)

�n(�n; a) = �n;1(�n; a) =
sinh2(ab=2)

sinh(a2=2) sinh(b2=2)
; (5.28)

under (5.21)

�n(�n; a) = �n;2(�n; a) =
g
2
p
(b(p))

gp(a)gp(b)
; gp(b) =

sinh(b2=2)

bp
(5.29)

(remind that the value b(p) minimizes gp(b) on b > 0) and under (5.22)

�n(�n; a) = �n;3(�n; a) =
sinh2(abh1=p=2)

h sinh(b2=2) sinh(a2=2)
: (5.30)

Let us estimate the values �n;1(�n; a).

Proposition 5.2 1). Let a = an � b
�
n;1; b = bn(�n) � b

�
n;1; ja� bj = O(w�2=3

n
(a)):

Then �n;1(�n; a) � 1 � O(w�4=3
n

(a)); and if b = b(p) � a, then �n;l(�n; a) �
1�O(w�4=3

n
(a)); l = 2; 3:

2) If a; b ! 0, then �n;1(�n; a) ! 1, and if a; b = O(1), then �n;1(�n; a) � 1. If

b = b(p) � a, then analogous relations hold for �n;l(�n; a); l = 2; 3.

Proof of Proposition 5.2 is given in Appendix, section 6.6.2.

Return to estimations of �( n;l; Vn(�n)). Let � 2 �n;l; bn;l+1 � b
�
n;1. It means

bn(�n) 2 [bn;l; bn;l+1]. Observe that l; l+1 2 L because cn;l; cn;l+1 = o(1) in view of

(6.18). In BP let us divide the set �n;l onto

�+
n;l

= f� 2 �n;l : bn(�n) > b(p(�n))g; ��
n;l

= f� 2 �n;l : bn(�n) < b(p(�n))g;
�0
n;l

= f� 2 �n;l : bn(�n) = b(p(�n))g:

We use the test  n;l with a = bn;l for the sets �
�
n;l

and the test  n;l+1 with a = bn;l+1

for the set �+
n;l
;�0

n;l
. By using Remark 5.1 we see that the relation (5.20) holds for

� 2 ��
n;l

and b = b(p) � a for � 2 �0
n;l
: Using the choose of zn;l and Proposition

5.2, we obtain for l �M
�

rn = �n;1(�n; a)un(�n) � un(�n)�Bun(�n)w
�4=3
n;l

; l = 1; 2; 3:

If un(�n) < w
7=6
n;l

, then rn � un(�n)+o(1), and if un(�n) � w
7=6
n;l

, then rn�wn;l !1.

This implies

�( n;l; Vn(�n)) � �(wn;l � un(�n)) + o(1) � �(�R) + o(1):

The study for MCP are analogous. Thus (5.16) is proved for �n;1 = f�n 2 �n :

b(�n) � b
�
n;1g.
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Let us study the tests  n;�(an) from Theorem 3.1. First, observe, that we need

consider bn > an;0 for any positive sequence an;0 � n
��
; � > 1=4 by un(bn; hn)! 0,

if bn = o(n�1=4). Using Tailor expansion one can easily replace the �2-statistics

�n;2 onto �n(an;0). By Proposition 5.2 we get: �n;l(�n; a) � 1, if l = 1; bn(�n) =

o(1); a = o(1) or b = b(p) � a = o(1) and �n;l(�n; a) � 1 if l = 1; bn(�n) =

0(1); a = O(1) or b = b(p) � a = O(1). Therefore using similar arguments

uniformly on v 2 Vn(�n); an;0 < bn(�n) � an one has:

�n( n;�(an; v) � minfPn;v(�n(an;0) < t�); Pn;v(�n(an) < t�)g �
�(t� � un(bn)) + o(1):

The same estimations show that �n( n;�(an); v)! 0 as un(bn)!1 uniformly on

v 2 Vn(�n); an;0 < bn(�n) � an = O(1).

Consider the cases bn;l > b
�
n;1. Remind that we use ~Tn;l-truncated statistics ~�n;l

in these cases.

Proposition 5.3 Let vn 2 Vn(�n) : bn > b
�
n;1; dn � Bw

�c
n
b
�
n
! 1; 0 < c < 2.

Then Sn(vn)!1 (the values Sn(vn) are de�ned by (5.17)).

Proof of Proposition 5.3 is given in Appendix, section 6.2.

In view of Proposition 5.3 we can consider below alternatives v 2 Vn(�n) with

such �n 2 �n that dn = o(bn) by in opposite case they are rejected by the tests

 n;0. The considerations below follow to the scheme above. By Lemma 5.1 and

Remark 3.1 we need to estimate the values

Fn(�n; a) = inf
v2Vn(�n;Qn)

Fn(v; a); Vn(�n; Qn) = fv 2 Vn(�n) : max
i
jvij � Qng

assuming in BP: p > q; a = bn;l ! 1; bn = bn(�n) ! 1: In fact, if p � q; p �
p
�
n
= o(logn), then b(p) � p

1=2 � b
�
n;1 < bn. By Lemma 1.1 it is possible under the

relation (i). This case was excluded before.

Lemma 5.3 . In BP for any 0 < C1 < 1 < C2; 0 < C3 < 1 there exist such

B > 0; � > 0; � > 0 that if b = bn(�n) > B; C1b < a < C2b; d = dn(a; b) =

a+ b� T < �a; p < �b
2
; b < Q � C3(4a+ 3b� 2T ), where T = Tn(a), then

Fn(�n; a) � 2nhn sinh
2(ab=2)�(�dn(a; b)):

Proof of Lemma 5.3 is given in Appendix, section 6.5.2.

Note that same relation holds for MCP. Using Lemma 5.1 and Lemma 5.3 we

get for M� � l �M :

�n( n;l; Vn(�n)) � �(wn;l � �n(�n; bn;l)un(�n)) + o(1); (5.31)

where

�n(�n; a) = �n;4(�n; a) =
sinh2(abn=2)

sinh(a2=2) sinh(b2
n
=2)

�(�(dn(a) + dn(bn))=2 + �n=2)q
�(�dn(a))�(�dn(bn))

;

and dn(b) = 2bn � Tn(b); �n = Tn(a)� Tn(b):
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Proposition 5.4 . Let b
�
n;1 � a; b = bn(�n); jzn(a) � zn(b)j = O((wn(a))

�2=3).

Then

�n;4(�n; a) � 1� O((wn(a))
�4=3): (5.32)

Proof of Proposition 5.4 is given in Appendix, section 6.6.3.

Consider subsets �n;l � �n such that bn(�n) 2 [bn;l; bn;l+1]; bn;l > b
�
n;1. If l 2 L,

then we used the test  n;l here. Using (5.31), the choose of zn;l and Proposition

5.4 analogously with above we obtain the relation

�( n;l; Vn(�n)) � �(wn;l � un(�n)) + o(1) � �(�R) + o(1):

Let l =2 L, it means cn;l > u
�

n;l
!1. We use the test  n;0 here. It is enough to

show Sn(v)!1 for any v = vn 2 Vn(�n); �n 2 �n;l.

To proof this, �rst, observe that dn = dn(�n) � dn;l + o(1): In fact, it is clear,

if Tn = Tn(�n) � Tn;l. If Tn > Tn;l, then it follows from Tn � Tn;l = o(1) (the

last is shown in the proof of Proposition 5.4). By cn;l > u
�

n;l
, using (6.19) we get

dn;l=b
�
n
� dn;l=Tn;l > u

��2
n;l

> w
�c
n
; c = 2�� > 0. This implies dn=b

�
n
� Bw

�c
n
. Using

Proposition 5.3 we obtain required relation. The study for MCP are analogous.

The upper bounds of Theorem 3.4 are proved.

6 Appendix

6.1 Proof of Lemma 4.1

It is enough to show that under Pn;0-probability

Ln =
MX
l=1

pn;lLn;l = Dn + o(1); Dn � �(�Rn); (6.1)

By the assumption (4.4) we can replace Ln;l onto ~Ln;l;w. In fact, let

~Ln =
MX
l=1

pn;l
~Ln;l; ~Ln;w =

MX
l=1

pn;l
~Ln;l;w

(a tilde corresponds to the replacement ln;l onto ~ln;l, an index w corresponds to

wn;l-truncation). Then we get

Pn;0(Ln 6= ~Ln;w) � Pn;0(Ln 6= ~Ln) + Pn;0(~Ln 6= ~Ln;w); Pn;0(Ln 6= ~Ln) = �n;

Pn;0(~Ln 6= ~Ln;w) �
MX
l=1

Pn;0(~Ln;l 6= ~Ln;l;w) � �n +
MX
l=1

�(�wn;l) = o(1)

by
MX
l=1

�(�wn;l) �
MX
l=1

exp(�w2
n;l
=2)=wn;l � Bw

�1
n
! 0:
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To obtain (6.1) with this replacement it is enough to check that

MX
l=1

pn;lEn;0
~Ln;l;w � �(�Rn) + o(1);

MX
l=1

p
2
n;l
En;0

~L2
n;l;w

= o(1): (6.2)

In fact, using (6.2) and the assumption (4.7) we get:

En;0
~Ln;w � �(�Rn) + o(1); Varn;0(~Ln;w) �

MX
l=1

p
2
n;l
En;0

~L2
n;l;w

+ 2
X

1�l<k�M
pn;lpn;kCovn;0(~Ln;l;w; ~Ln;k;w) = o(1)

and using Chebyshev inequality we get (6.1).

To check (6.2) we use the equality for the moments of bounded random variables

0 � X � H with distribution functions F (x) = P (X < x):Z
H

0
xdF (x) =

Z
H

0
(1� F (x))dx

which imply the inequalities for di�erences of moments of bounded random vari-

ables 0 � X1; X2 � H with distribution functions F1(x); F2(x):

jEX1 � EX2j � H sup
x

jF1(x)� F2(x)j; k = 1; 2; (6.3)

jEX2
1 � EX

2
2 j � H

2 sup
x

jF1(x)� F2(x)j: (6.4)

Let � be standard Gaussian random variable. Put

Xl = exp(mn;l + �n;l�) = e
�n;l exp(��2

n;l
=2 + �n;l�); Xl;w = Xl1f�<wn;lg;

Hn;l = exp(mn;l + �n;lwn;l) � exp(��2
n;l
=2 + �n;lwn;l):

where �n;l ! 0 uniformly on 1 � l � M and are nonrandom by (4.5). Using (6.3),

(6.4) we get:

En;0
~Ln;l;w = EXl;w +O(Hn;l�n;l);

En;0
~L2
n;l;M

= EX
2
l;w

+O(H2
n;l
�n;l):

Note that

pn;lHn;l � exp(�(�n;l � wn;l)
2
=2) � 1

which implies that sums of remainder terms areO(�n) = o(1). At last, for Gaussian

variable one has

EXl;w � P (� + �n;l < wn;l) = �(wn;l � un;l + o(1)) � �(�Rn) + o(1);

which implies the �rst relation in (6.2). To obtain the second relation it is enough

to show that uniformly on l

pn;lEX
2
l;w
� exp(�2

n;l
� w

2
n;l
=2)�(wn;l � 2�n;l) = o(1):

Consider di�erently the cases wn;l > 3�n;l=2; and wn;l � 3�n;l=2. We get in these

cases respectively:

exp(�2
n;l
�w2

n;l
=2)�(wn;l� 2�n;l) �

(
exp(�2

n;l
� w

2
n;l
=2) � exp(�w2

n;l
=18) =o(1),

Bw
�1
n;l

exp(�(wn;l � �n;l)
2) =o(1),
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6.2 Some properties of likelihood ratio

Remind some properties of the statistics �(x; b) and truncated ones ~�n(x; b) =

�(x; b)1fjxj�Tng under null-hypothesis.

If x is a standard Gaussian variable, then we have the representation:

�(x; b) = (�(x; b) + �(x;�b))=2� 1; �(x; b) = e
�b2=2+xb; (6.5)

�(x; b1)�(x; b2) = e
b1b2�(x; b1 + b2); E�(x; b) = 1: (6.6)

Using (6.5), (6.6) we get:

E�(x; b) = 0; E�2(x; b) = 2 sinh2
b
2

2
; E(�(x; b1)�(x; b2)) = 2 sinh2

b1b2

2
; (6.7)

Also for an integer k > 1 one has

E�
2k(x; b) � C1(k) exp(C2(k)b

2)(E�2(x; b))k (6.8)

where C1(k) > 0; C2(k) > 0 are constants (see the Lemma 1 in [2] ). Particularly,

one can check that C2(2) = 4.

Let there are sequences bn ! 1; Tn � bn ! 1. Denote �̂n(x; bn) =

�n(x; bn)1fjxj<Tng. Direct calculation analogous to [6] gives:

E�̂n(x; bn) � ��(bn � Tn); (6.9)

E�̂
2
n
(x; bn) = (2 sinh2

b
2
n

2
+ 1)�(Tn � 2bn)� 1 + o(1); (6.10)

E(�̂n(x; b))
3 � 1

4
exp(3b2

n
) �(Tn � 3bn): (6.11)

Observe that if nh2
n
! 0 (this holds under assumption of Theorems 3.3, 3.4), then

using (6.9), (6.10) we get:

nh
2
n
Var1;0�̂n(x; bn) = u

2
n
+ o(1): (6.12)

If we have two sequences bn;1 ! 1; bn;2 ! 1 and a sequence Tn such that

Tn � bn;1 � bn;2 !1, then

E�̂n(x; bn;1)�̂n(x; bn;2) = 2 sinh2
bn;1bn;2

2
�(Tn � bn;1 � bn;2) +O(1): (6.13)

Assume

bn !1; logun= logn = o(1); �n � 2� o(1): (6.14)

Then using (2.3), (2.7), (2.18), one can easily see that

b
2
n
� logn

2(�n � 1)
; d

2
n
� (�n � 2)2

2(�n � 1)
logn; (6.15)

T
2
n
� �

2
n
logn

2(�n � 1)
� 2 logn; log(nh2

n
) � � logn

2(�n � 1)
: (6.16)
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Below we use the asymptotics which follow from the relations (2.3), (2.18):

cn �
u
2
n
exp(�d2

n
=2)p

2�Tn�(�dn)
(6.17)

where (remind) cn = 2n�(�Tn): This implies

cn � u
2
n
exp(�d2

n
=2)=Tn; if dn � B; (6.18)

cn = u
2
n
dn=Tn(1 +O(d�2

n
)); if dn !1: (6.19)

Proof of Proposition 4.1. Let �n ! � > 2. Then, by (6.14) holds under

assumption (4.13), the relation (4.18) follows from (6.15), (6.18) because bn <

b
�
n
; d

2
n
=2 � (bn � b

�
n
)2 > b

�
n
� bn � 1. Therefore

exp(�d2
n
=2)=Tn � B exp b(1 + bn � b

�
n
)=b�

n
= B exp b(zn � z

�
n
):

Let �n ! 2. Using the relations (6.15), (6.16) we get:

Tn =
q
2 logn (1 + o(1)); bn = Tn=�n � b

�
n
: (6.20)

Note that �n � 2 + o(1) if and only if bn � b
�
n
(1 + o(1)).

Put d�
n
= 2(bn� b�n) = 2bn� t�n (it does not depend on Tn; hn). Here and below

t
�
n
=
q
2 log(n). Using the relation (6.19) we can see that if dn !1; dn(�) = o(t�

n
),

then the di�erence

d
�
n
� dn = �n = �n(�) = Tn(�)� t

�
n
= O(log t�

n
=t
�
n
): (6.21)

In fact, using (2.18) and (6.19) we get:

(t�
n
)�1 � n�(�t�

n
) � n�(�Tn) exp(t�n�n + �

2
n
=2) � cn exp(t

�
n
�n + �

2
n
=2);

exp(�t�
n
�n � �

2
n
=2) � u

2
n
dn; j�nj �

2 logun + log dn +B

t�
n

= o(log t�
n
=t
�
n
):

Here we use �n = o(t�
n
); un = o(logn). Therefore we can replace dn onto d�

n
in

(6.19). Then (4.18) follows from (6.19) by d�
n
=Tn � exp(zn � z

�
n
):

If dn � B; bn � b
�
n
+ 1, then by using (6.18) and arguments analogous with

what given for � > 2, we get (4.18).

If bn > b
�
n
+ 1, then exp(zn � z

�
n
) = (bn � b

�
n
)=b�

n
> 1=b�

n
; and by using (6.18) we

get: cn � Bu
2
n
=b
�
n
� Bu

2
n
exp(zn � z

�
n
):

Proof of Proposition 5.3. First, observe that un(�n) � wn +R + o(1)!1.

Denote

�n = Hn � Tn; �
�
n
= nhn�(bn �Hn); �n = nhn�(bn � Tn);

where Hn is de�ned by (5.4). In view of Lemma 3.1 it is enough to show that

�
�
n
!1.
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It follows from (6.19) that cn � Bw
2�c
n

which implies �n > 0. By �n �
cn�n=(�n � 1) > cn, if bn � Tn ! 1 (�n � 1) and �n = nhn�(bn � Tn) �
n exp(�T 2

n
=2)�(�B) � cn, if bn � Tn � �B, then using (2.18) we get: if

Tn � Hn + 2(log logwn)=bn = Hn + o(1), then

�n = nhn�(bn �Hn + �n) � �
�
n
exp((Hn � bn)�n � �

2
n
=2) > Bcn �

n�(�Hn + �n) � c
�
n
exp(Hn�n � �

2
n
=2)

which imply (by bn � b
�
n;1)

cn=c
�
n
� exp(Hn�n � �

2
n
=2) < exp(Hn�n); �

�
n
> Bc

�
n
exp(bn�n) >

Bc
�
n
(cn=c

�
n
)bn=Hn � Bc

1=10
p
2+o(1)

n
(c�
n
)1�1=10

p
2+o(1)

>

Bw
(2�c�o(1))=10

p
2

n
= log(wn)!1:

by the choose of c. If Tn < Hn + 2(log logwn)=bn, then

�
�
n
� c

�
n
exp(bn(Hn � Tn)) � exp(bn(Hn � Tn))= logwn > logwn !1:

Remind some properties of the statistics �(x; b) under alternatives.

If x is a standard Gaussian variable, then using (6.5), for any v 2 R1 we get:

�(x+ v; b) = (ebv�(x; b) + e
�bv

�(x;�b))=2� 1; (6.22)

�(x+ v; b)� E�(x+ v; b) =
1

2
(ebv(�(x; b)� 1) + e

�bv(�(x;�b)� 1)): (6.23)

Using (6.6), (6.22), (6.23) we get:

E�(x+ v; b) = 2 sinh2
bv

2
; (6.24)

V ar�(x+ v; b) = 2 sinh2
b
2

2
+ (eb

2 � 1) sinh2 bv; (6.25)

Ej�(x+ v; b)j3 � 2 + E(�(x+ v; b))3 �
2 +Be

3bjvj+3b2
: (6.26)

6.3 Proof of Lemma 4.2

To check (4.4) note, that

Pn;0f 9 l : ln;l 6= ~ln;l; 1 � l � Mg = Pn;0(max
1�i�n

jxij � min
1�l�M

Tn;l) �

nP1;0(jxj � min
1�l�M

Tn;l) = 2n�(� min
1�l�M

Tn;l) = max
1�l�M

cn;l = o(1)

by the assumption (4.16).
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Proposition 6.1 Under (6.14) for some � > 0; B > 0 one has:

nE1;0j ~Znj3 � B(cn + n
��): (6.27)

Proof of Proposition 6.1. First, let us establish analogous relation for non-

absolute moments:

nE1;0( ~Z
3
n
) � B(cn + n

��): (6.28)

Note that by �1 < �(x; bn), then the di�erence between absolute and non-absolute

moments of �n is no more then 2. Therefore a di�erence between left-hand sides of

(6.27) and (6.28) is bounded by the values of the rate

nh
3
n
= O(n��n); �n �

2�n + 1

4(�n � 1)
> 0

(we use (2.3), (6.16)). Therefore (6.28) implies (6.27).

Let us check (6.28). Let �n > 5=2. Then using (2.3), (6.15), (6.16), (6.11) we

get:

nE1;0( ~Z
3
n
) � nh

3
n
e
3b2

n � n exp(3b2
n
(3=2� �n)) � n

��n ; �n �
2�n � 5

4(�n � 1)
> 0:

Let �n � 5=2. Then Tn� 3bn � bn(�n� 3)! �1 and using (2.3), (2.18),(6.11) we

get:

nE1;0( ~Z
3
n
) = nh

3
n
e
3b2

n�(Tn � 3bn) �
nT

�1
n

exp((9b2
n
� 6bnTn � (Tn � 3bn)

2)=2) = nT
�1
n

exp(�T 2
n
=2) � cn:

Thus (6.27) is proved.

Proof of (4.5), (4.6). First, estimate means and variances of statistics ~ln;l
under Pn;0-probability. By �hn;l � ~Zn;l � 1 and hn;l ! 0, one has

j ~Wn;l � ~Zn;l + ~Z2
n;l
=2j � Bj ~Zn;lj3: (6.29)

Using (6.9) we have:

nE1;0
~Zn;l � �nhn;l�(bn;l � Tn;l) � �cn;l

�n;l

�n;l � 1
� �cn;l: (6.30)

The relations (6.27), (6.29), (6.30) imply

En;0
~ln;l = nE1;0

~Wn;l = n(E1;0
~Zn;l �

1

2
E1;0( ~Z

2
n;l
) +O(E1;0(j ~Zn;lj3)

= �u2
n;l
=2 +O(cn;l + n

��); (6.31)

Varn;0~ln;l = nVar1;0 ~Wn;l = nE1;0( ~W
2
n;l
)� n

�1(nE1;0
~Wn;l)

2

= u
2
n;l

+O(cn;l + n
��): (6.32)
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The estimations above imply (4.5). Denote ~W 0
n;l

= ~Wn;l � E1;0
~Wn;l. Note that

by (6.29) analogous to (6.27) relation holds:

nE1;0j ~Wn;lj3 � B(cn;l + n
��): (6.33)

The relation (4.6) follows directly from the assumption (4.16), from (6.33) and

from Bahr-Essen inequality because M = o((logn)1=2) and

�n;l �
BnE1;0j ~W 0

n;l
j3

(nE1;0( ~W
0
n;l
)2)3=2

= O((cn;l + n
��)=u3

n;l
):

Proof of (4.7). Let us establish the inequality:

Covn;0(~Ln;l;w ~Ln;k;w) � exp(rn;lk)� 1 + o(1) (6.34)

which implies (4.7). Denote rn;lk = rn; �n;lk = �n = rn=un;kun;l to simplicity.

Proposition 6.2 Under the assumptions of the Lemma

En;0(~Ln;l;w) = �(wn;l � un;l) + o(1); (6.35)

En;0(~Ln;l;w ~Ln;k;w) � exp(rn)��n(wn;l � un;l � �nun;k; wn;k � un;k � �nun;l)

(1 + o(1)) + o(1) (6.36)

where ��(x; y) stands for the joint distribution function of standard Gaussian ran-

dom variables X; Y with E(X; Y ) = �.

Proof of Proposition 6.2. We give the proof (6.36) only, because (6.35) is

proved by analogous way (in particular, En;0(~Ln;l) = 1 + o(1) in view (6.30)).

First, note the equality

En;0(~Ln;l;w ~Ln;k;w) = En;0(~Ln;l ~Ln;k)P
n(~Ln;l � Hn;l;

~Ln;k � Hn;k); (6.37)

where Hn;l = exp(�u2
n;l
=2+wn;lun;l) and P

n = P
n

l;k
is the measure on (Rn

;Bn) with
likelihood ratio

dP
n

dPn;0
(x) =

~Ln;l(x)~Ln;k(x)

En;0(~Ln;l ~Ln;k)
=

nY
i=1

(1 + ~Zn;l(xi))(1 + ~Zn;k(xi))

E1;0(1 + ~Zn;l)(1 + ~Zn;k)
; x = (x1; :::; xn) 2 Rn

:

By the equality (6.37) it is enough to show

En;0(~Ln;l ~Ln;k) = (E1;0(1 + ~Zn;l)(1 + ~Zn;k))
n � e

rn;l;k(1 + o(1)) (6.38)

and that under P n-distribution the statistics (~�n;l; ~�n;k) are asymptotical Gaussian

with

EPn
~�n;l = un;l + �nun;k + o(1);

EPn
~�n;k = un;k + �nun;l + o(1);

VarPn(~�n;l) = 1 + o(1);

VarPn(~�n;k) = 1 + o(1);

CovPn(~�n;l; ~�n;k) = �n + o(1):
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The last follows from asymptotical normality of the statistics (~ln;l; ~ln;k) under

P
n-distribution with

EPn
~ln;l = u

2
n;l
=2 + rn + o(1);

EPn
~ln;k = u

2
n;k
=2 + rn + o(1); (6.39)

VarPn(~ln;l) = u
2
n;l

+ o(1);

VarPn(~ln;k) = u
2
n;k

+ o(1); (6.40)

CovPn(~ln;l; ~ln;k) = rn + o(1): (6.41)

To obtain (6.38) observe that

(E1;0(1 + ~Zn;l)(1 + ~Zn;k))
n = (1 + E1;0

~Zn;l + E1;0
~Zn;k + E1;0

~Zn;l ~Zn;k)
n

� exp(n(E1;0
~Zn;l + E1;0

~Zn;k + E1;0( ~Zn;l ~Zn;k))) = e
rn(1 + o(1))

because it follows from (4.16), (6.30) that

nE1;0
~Zn;l = o(1); nE1;0

~Zn;k = o(1); nE1;0( ~Zn;l ~Zn;k) = rn:

The items ~Wn;l(xi) in the sum ~ln;l are i.i.d. under Pn-distribution where Pn =

Pn;l;k is the measure on (R1
;B1) with likelihood ratio

dPn

dP1;0

(x) = (1 + ~Zn;l(x) + ~Zn;k(x) + ~Zn;l(x) ~Zn;k(x))(1� �n +O(�2
n
)); x 2 R1

and

�n = E1;0
~Zn;l + E1;0

~Zn;k + E1;0( ~Zn;l ~Zn;k) = o(1=n):

Therefore we have:

EPn
~ln;l = nE1;0( ~Wn;l + ~Wn;l

~Zn;l + ~Wn;l
~Zn;k + ~Wn;l

~Zn;l ~Zn;k)

(1 + o(1=n)); (6.42)

VarPn(~ln;l) = nVarPn(
~Wn;l) = nEPn(

~W 2
n;l
)� n

�1(EPn
~ln;l)

2

= nE1;0( ~W
2
n;l

+ ~W 2
n;l

~Zn;l + ~W 2
n;l

~Zn;k + ~W 2
n;l

~Zn;l ~Zn;k)

(1 + o(1=n))� n
�1(EPn

~ln;l)
2
; (6.43)

CovPn(~ln;l; ~ln;k) = nCovPn(
~Wn;l;

~Wn;k) = nEPn(
~Wn;l

~Wn;k)� n
�1
EPn

~ln;l EPn
~ln;k

= nE1;0( ~Wn;l
~Wn;k + ~Wn;l

~Wn;k
~Zn;l + ~Wn;l

~Wn;k
~Zn;k +

~Wn;l
~Wn;k

~Zn;l ~Zn;k)(1 + o(1=n))� n
�1
EPn

~ln;l EPn
~ln;k: (6.44)

The relation (6.29) and estimations analogous to (6.30) - (6.32) imply:

nE1;0( ~Wn;l) = �u2
n;l
=2 + o(1); nE1;0( ~Wn;l

~Zn;l) = u
2
n;l

+ o(1); (6.45)

nE1;0( ~Wn;l
~Zn;k) = rn + o(1); nE1;0( ~Wn;l

~Wn;k) = rn + o(1); (6.46)

nE1;0( ~W
2
n;l
) = u

2
n;l

+ o(1); nE1;0( ~W
2
n;k

) = u
2
n;k

+ o(1): (6.47)
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Moreover, Proposition 6.1 and boundness of ~Zn;l; ~Wn;l imply that the moments of

the order 3, 4 are of the rate o(1=n). These and the relations (6.42) - (6.47) imply

(6.39) - (6.41).

The asymptotical normality of the statistics (~ln;l; ~ln;k) follows from (6.39) - (6.41)

and from two-dimensional Bahr-Essen inequality:

sup
x;y

jP n(~ln;l + u
2
n;l
=2 � xun;l;

~ln;k + u
2
n;k
=2 � yun;k)�

��n(x� un;l � �nun;k; y � un;k � �nun;l)j

� Bn(E1;0jWn;lj3 + E1;0j ~Wn;kj3)
(1� j�nj)(n(E1;0j ~Wn;lj2 + E1;0j ~Wn;kj2))3=2

� B(cn;l + cn;k + n
��)

u
3
n;l

+ u
3
n;k

= o(1):

The relation (6.34) follows from Proposition 6.2 by (we omit index n here)

CovP0(
~Ll;w; ~Lk;w) = E0(~Ll;w ~Lk;w)� E0(~Ll;w)E0(~Lk;w) �

(er � 1)��(wl � ul � �uk; wk � uk � �ul)(1 + o(1)) + o(1)

+��(wl � ul � �uk; wk � uk � �ul)� E0(~Ll;w)E0(~Lk;w));

j��(wl � ul � �uk; wk � uk � �ul)� �(wl � ul)�(wl � uk)j
� B(j�j(1 + ul + uk))

for some B > 0 (the last relation follows from estimation of Hellinger distance),

max
1�k<l�M

�n;lk(1 + un;l + un;k) � B max
1�l<k�M

rn;lk = o(1)

and in view on (6.35), En;0(~Ln;l;w) = �(wn;l � un;l) + o(1):

Lemma 4.2 is proved.

Proof of of Proposition 5.1 If bn;l � b
�
n;2, then estimations are the same as

in the proof of Proposition 6.1 and (4.5), (4.6). If bn;l > b
�
n;2, then using analogous

estimations we get:

mn;l � �nhn;l�(bn;l � ~Tn;l)=un;l < 0;

�mn;l � cn;l exp(�(Tn;l � bn;l)�n;l)=un;l < cn;lu
�1
n;l

= o(1);

�
2
n;l

= nh
2
n;l
e
b
2
n;l�(�n;l � dn;l)=2u

2
n;l

+ o(u�2
n;l
);

�
2
n;l

= 1 + o(u�2
n;l
) +

(
B�n;l = o(u�1

n;l
); if dn;l < B

e
dn;l�n;l � 1 = o(u�1

n;l
); if dn;l > B

= 1 + o(u�1
n;l
);

which imply (5.11). Here we use (6.19) and de�nition of the set L to obtain the

relation: exp(dn;l�n;l) = 1 + o(u�1
n;l
). The estimation of �n;l are based on the

estimation of Lyupunov ratio. It is bounded by

nh
3
n;l
E1;n

~�3
n
(x)=u3

n;l
� cn;l exp((3bn;l � Tn;l)�n;l)=u

3
n;l

� Bcn;l exp(�(3 + �n;l)=�n;l � 3) logun;l) � Bu
�2�%
n;l

because 2+� > �n;l � 2�o(1) which follows from the constraints on cn;l and (6.19).

40



6.4 Proof of Lemma 5.1

To prove Lemma 5.1 for b � b
�
n;1 observe that by (6.25), (6.26) for any � > 0 and

maxi jvij � Q = (1 + �)tn and using the equality sinh(b2=2) = (eb
2 � 1)=2eb

2
=2 we

get:

En;v�n;b =
2p

2n sinh(b2=2)

nX
i=1

sinh2(bvi=2) = F
�
n
(v; b);

Varn;v�n;b � 1 =
e
b
2 � 1

2n sinh2(b2=2)

nX
i=1

sinh2 bvi �
2eb

2
=2+bQ

(n=2)1=2
En;v�n;b � n

��
En;v�n;b

(the last relation holds for small enough � > 0; � > 0 by b � b
�
n;1 =

p
logn=10).

Using Chebyshev inequality we get for En;v�n;b � 2wn(b) � 2wn !1:

�( n;l(v)) � Pn;v(�n;b < wn(b)) � Pn;v(j�n;b � En;v�n;bj > En;v�n;b � wn(b)) �
Varn;v�n;b=(En;v�n;b � wn(b))

2 = o(1): (6.48)

Let En;v�n;b < 2wn(b). Then by Bahr-Essen inequality and (6.26)

jPn;v(�n;b < wn(b))� �(wn(b)� En;v�n;b)j � Be
3(bQ+b2)

n
�1=2 + o(1) = o(1)

(the last relation holds for small enough � > 0; � > 0 by b � b
�
n;1 =

p
logn=10).

These imply the statement of Lemma for l < M
�.

Let us consider the case b > b
�
n;1. Here and below in the proof we denote

�̂n(x; bn) = ~�n(x; bn)� E1;0
~�n(x; bn); ~�n(x; bn) = �(x; bn)1jxj<Tn:

Replace �n onto statistics

�̂n = ~�n � En;0
~�n =

hn

un(b)

nX
i=1

�̂n(xi; bn):

(it is possible by En;0~�n = o(1) for Tn-truncated statistics ~�n and by remark before

Lemma).

Proposition 6.3 Let

bn � b
�
n;1; Tn � bn(1 + �); jvj � Tn(1 + �); � > 0: (6.49)

Then

mn(v) = E1;v �̂n(x; bn) = 2 sinh2(bnv=2)�(Tn � bn � jvj)(1 + o(n��)); (6.50)

��2
n
(v) = Var1;v �̂n(x; bn)� Var1;0�̂n(x; bn) +m

2
n
(v) = O(Rn(v) + n

��
mn(v));

Rn(v) = e
b
2
n sinh2(bnv=2)e

bnjvj�(Tn � 2bn � jvj): (6.51)
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Proof of Proposition 6.3. Direct calculation analogous with [3] gives (we

omit index n):

m(v) = Ev
~�(x; b)� E0

~�(x; b) = E0
~�(x; b)�(x; v)

=
1

2
e
bv(�(T � b� v)� �(�T � b� v))

+
1

2
e
�bv(�(T � b + v)� �(�T � b+ v))

��(T � b) + �(�T � b) + �(�T � v) + �(�T + v)� 2�(�T ): (6.52)

If bjvj = o(1) or bjvj = O(1), then using Tailor expansion and (2.18) one can get

m(v) = 2 sinh2(bv=2)�(T � b� jvj)(1 + o(n��1)); �1 > 0;

if bjvj ! 1; jvj < �2(T � b); 0 < �2 < 1, then using (2.18) we get

jm(v)� 2 sinh2(bv=2)�(T � b� jvj)j = o(n��3); �3 > 0;

and if �2(T � b) � jvj � Tn + �4

q
b(2T � b); 0 < �4 < 1, then

jm(v)� 2 sinh2(bv=2)�(T � b� jvj)j = O(1);

2 sinh2(bv=2)�(T � b� jvj) > n
�5 ; �5 > 0;

which implies (6.50).

Analogously, using direct calculation we can get:

Var1;v �̂n(x; bn)� Var1;0�̂n(x; bn) = E1;v(~�
2(x; bn)� E1;0(~�

2(x; bn))�m
2
n
(v)�

2mn(v)E1;0
~�n(x; bn); Ev(~�

2(x; b)� E0(~�
2(x; b)) = E0(~�

2(x; b)�(x; v)) �
� BRn(v); E1;0

~�n(x; bn) � ��(bn � Tn) = o(n��6); �6 > 0;

which implies (6.51).

Proposition 6.4 Assume (6.49). Then

hnRn(v) � Cn;1(v)mn(v) (6.53)

where Cn;1(v) = O(1) and if jvj � Tn � bn(1� u
�1
n
), then Cn;1(v) = o(1). Also

hnmn(v) = o(1); hnmn(v) � Bun(bn)�(jvj�Tn); if jvj � Tn� bn(1�u�1n ): (6.54)

Proof of Proposition 6.4. In view of (2.3) the relation (6.53) follows from

exp(3b2
n
=2� Tnbn + bnjvj)�(Tn � 2bn � jvj) � Cn;1�(Tn � bn � jvj): (6.55)

To check (6.55) consider di�erently cases

(a) : jvj < Tn � 3bn=2� �;

(b) : Tn � 3bn=2� � � jvj � Tn � bn +B;

(c) : Tn � bn +B < jvj � Tn � bn(1� u
�1
n
);

(d) : jvj > Tn � bn(1� u
�1
n
):
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In the cases (a) (6.55) holds by the argument of the function �(�) in right-hand

side tends to1 and the argument of exponent is bounded by �bn� ! �1. In the

case (b) the argument of the function �(�) in right-hand side is bounded away from

�1, the argument of the function �(�) in left-hand side tends to �1 and using

(2.18) we get that left-hand side is bounded by B exp(�(Tn�bn�jvj)2=2)=(B+bn).

This implies (6.55) with Cn;1 = o(1). In the case (c) and (d) using (2.18) we get

that left-hand is of the rate exp(�(Tn � bn � jvj)2=2)=(B + bn + x) and right-hand

side is of the rate exp(�(Tn� bn�jvj)2=2)=(B+x); x = jvj�Tn+ bn�B � 0: Also

in the case (c) we have: (B + x)=(B + bn + x) � (un(bn))
�1 = o(1). This implies

(6.55) with Cn;1 = O(1).

Analogously in view of (2.3) the relations (6.54) follow from

exp(b2
n
=2� (Tn � jvj)bn) = o(1); if jvj � Tn � bn(1� u

�1
n
);

S(v) = exp(b2
n
=2� (Tn � jvj)bn)�(Tn � bn � jvj) �

exp(�(Tn � jvj)2=2)(jvj+ bn � Tn)
�1 � un=bn = o(1); if jvjj 2 In;1 [ In;2;

S(v) � B

8<
:

Tn�jvj
jvj+bn�Tn�(jvj � Tn) � un(bn)�(jvj � Tn); if jvj 2 In;1
�(jvj�Tn)
jvj+bn�Tn � �(jvj � Tn); if jvj 2 In;2

;

where In;1 = [Tn � B; Tn � bn(1 � u
�1
n
)]; In;2 = [Tn � B; Tn(1 + �)]; which are

established by using (2.18).

It follows from Proposition 6.3 that

En;v�̂n =
hn

un(bn)

nX
i=1

mn(vi) =

P
n

i=1 sinh(bnvi=2)�(Tn � bn � jvij)
sinh(b2

n
=2)

q
n�(Tn � 2bn)=2

(1 + o(n��))

= F
�
n
(v; bn)(1 + o(n��)):

Proposition 6.5 Under constraints (5.17), (6.49)

Varn;v�̂n = 1 + o(F �
n
(v; bn)=un(bn) + 1): (6.56)

Proof of Proposition 6.5. Using (6.12) we get: Varn;0�̂n = 1 + o(1). Using

Propositions 6.3, 6.4 we get:

u
�2
n
(bn)

nX
i=1

h
2
n
m

2
n
(vi) = o(u�2

n

nX
i=1

hnmn(vi)) = o(F �
n
(v; bn)=un(bn)):

Therefore

Varn;v�̂n � Varn;0�̂n =
h
2
n

u2
n
(bn)

nX
i=1

(��2
n
(vi)�m

2
n
(vi)) �

B
h
2
n

u2
n
(bn)

nX
i=1

Rn(vi) + o(F �
n
(v; bn)=un(bn))
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and it is enough to check that

h
2
n

nX
i=1

Rn(vi) = o

 
nX
i=1

hnmn(v) + u
2
n
(bn)

!
: (6.57)

Denote In(v) = fi : jvij � Tn � bn(1 � (un(bn))
�1)g. It follows from Proposition

6.4 that

h
2
n

X
i62In(v)

Rn(vi) � �n

X
i62In(v)

hnmn(vi); �n = o(1);

h
2
n

X
i2In(v)

Rn(vi) � Bun

X
i2In(v)

hnmn(vi) � B
X

i2In(v)
�(jvij � Tn) = un

~Sn(v):

Observe that if Tn > Hn, then ~Sn(v) � Sn(v) = O(1) by (5.17) which implies (6.56).

Let Tn � Hn; �n = Hn�Tn = o(1). If jvij � Tn�B, then �(jvij�Tn) � �(jvij�Hn)

Note that

cn = 2n�(�Tn) = 2n�(�Hn + �n) � 2n�(�Hn)e
�nTn = c

�
n
e
�nTn � e

�nTn= log(wn):

In view of (6.19) this implies e�nTn � cn log(wn) � u
�

n
(bn) log(wn): Therefore if

Tn � bn(1� u
�1
n
(bn)) � jvij � Tn � B; Tn � bn(1 + �), then:

�(jvij � Tn)

�(jvij �Hn)
� e

�n(Hn�jvij) � e
�nbn(1�u�1

n ) � B(u�
n
log(wn))

(1�u�1
n )=(1+�) = o(u�

n
):

Therefore un(bn) ~Sn(v) � o(Sn(v)u
1+�
n

(bn)) = o(u2
n
(bn)). This implies (6.56).

The relation (6.54) and estimations above imply the statement of Lemma. In

fact, using Proposition 6.5 and Chebyshev inequality analogously to (6.48) we get

for En;v�̂n;b � 2un(b):

�( n;l(v)) � Pn;v(�̂n;b < wn(b)) �
Varn;v�̂n;b

(En;v�̂n;b � wn(b))2
= o(1):

If En;v�̂n;b < 2un(b), then by Cn = supjxj<Tn j ~Zn(b)j = 1 and using Bahr-Essen

inequality, we get

En;v�̂n;b = F
�
n
(v; b) + o(1); Varn;v�̂n;b = 1 + o(1);

jPn;v(�̂n;b < wn(b))� �(wn(b)� En;v�̂n;b)j � O(Cn=un(b)) + o(1) = o(1):

6.5 Extreme problems

Let �n = �p;q
n
(R1; R2; Q) be the set of collections of probability measures �r =

(r1; :::; rn) on the real line supported on the interval [�Q;Q] subject to constraints

F1(�r) =
nX
i=1

Z
�1(v)ri(dv) � H1; F2(�r) =

nX
i=1

Z
�2(v)ri(dv) � H2
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where

�1(v) = jvjp; �2(v) = jvjq; H1 = R
p

n;1; H2 = R
q

n;2:

We assume Q =1 under assumptions of Lemma 5.2. Let

�(r) =

Z
�(v)r(dv); F (�r) =

nX
i=1

�(ri)

where the functions �(v) = �n(v; a) is de�ned by (5.19) or �(v) = �(v;H) is de�ned

in (3.8). Consider linear convex minimization problems:

F = inf
�r2�n

F (�r); F (�r) =
nX
i=1

Z
�(v)ri(dv): (6.58)

It is clear that F � Fn(�n) = inf F (v); where F (v) =
P
n

i=1 �(vi) and in�mum is

taken over v 2 Vn(�n) : maxi jvij � Q. It is enough to study the problem (6.58).

Note that for the types (i) and (ii) we can put Rn;2 = 1. This corresponds to

widest case and does not a�ect on the values h; b and u = un(�n).

By symmetry of the problems the in�mum is attained on collections �r�
n

=

(r�; :::; r�) 2 �n of equal symmetric measures r�. Furthermore, using the method

of sub-di�erentials and the theorem by Kuhn and Tucker (see, for example, Io�e

and Tikhomirov [7], pp. 76-77) one gets su�cient conditions for in�mum: there

exist � = �n � 0; � = �n � 0; � = �n such that

 (v) = �(v)� ��1(v) + ��2(v) � � for all v 2 [�Q;Q] (6.59)

(note that � � 0 by �(0) = 0) and

r
�(fv : �(v)� ��1(v) + ��2(v) = �g) = 1: (6.60)

Moreover, if F1(�r
�
n
) > H1, then � = 0, and if F2(�r

�
n
) < H2, then � = 0 (this implies

� = 0 for H2 =1).

6.5.1 Proof of Lemma 5.2

Let �(v) = 2 sinh2(av=2); b = bn(�n); h = hn(�n). Consider the measures

r
�
1 = �(b; h); r�2 = �(b�; h�); b� =

b
2(p)

a
; h

� = h

 
ab

b2(p)

!p
; r�3 = �(~b; 1); ~b = bh

1=p

(note that h� � 1 under assumptions of n. 2.). It is clear that F (�r�
n;l
) =

Fn;l(�; a); l = 1; 2; 3 (see (5.20) - (5.22)). We show that measures r�1 � r�3 attain

the minimum for extreme problem (6.58) under assumptions 1) � 3) of Lemma.

Let us observe that �r�
n;l
2 �n under assumptions 1) � 3). Using Lemma 1.1 can

easily check that F1(�r
�
n;l
) = nhb

p = H1; l = 1; 2; 3: To check F2(�r
�
n;l
) � H2, if (iii),

then observe F2(�r
�
n;1) = nhb

q = H2 by Lemma 1.1. Also

F2(�r
�
n;2) = nhb

q(b2(p)=ab)q�p � H2;
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if B or either (i) or (ii) (by H2 =1). At last, if q � p or h = 1 or either (i) or (ii),

then

F2(�r
�
n;3) = n~bq = nh

q=p
b
q � nhb

q � H2:

Let us consider �r�
n;1 under assumptions A and (iii). By Lemma 1.1 this corre-

spond the equality F2(�r
�
n;1) = H2 and either p > q; p � 2 or p > 2; p > q; ab �

b
2(p) or p > 2; p < q; ab � b

2(p). Put � = 0 and

� = �(a; b) =
b�

0(b)� q�(b)

bp(p� q)
; � = �(a; b) =

b�
0(b)� p�(b)

bq(p� q)
: (6.61)

The relations (6.61) imply the required equalities for v = 0 and v = b in (6.60).

Moreover, these imply that the line w = 0 on the half-plane f(v; w); v > 0g is

tangent to  (v) at the point v = b.

We need to check the inequalities � � 0; � � 0 and (6.59). Note that

� = �(a; b) =
4x sinh x cosh x� 2q sinh2 x

(p� q)bp
; (6.62)

� = �(a; b) =
4x sinhx cosh x� 2p sinh2 x

(p� q)bq
; x = ab=2: (6.63)

The relation � � 0 implies � � 0. The inequality � � 0 is equivalent to

p tanh x � 2x; if p > q; (6.64)

p tanh x � 2x; if p < q: (6.65)

These relations are equivalent to: 2x = ab � b
2(p), if p > q and 2x = ab � b

2(p), if

p < q. These hold under assumptions A.

The inequality (6.59) is equivalent to

 1(v) = �(v)=vp � �+ �v
q�p � 0 for all v > 0 (6.66)

and the tangent property observed above holds for  1(v).

Observe the following convex property.

Proposition 6.6 The function f
�

p
(u) = sinh2(u�)=u�p is convex on R+ = fu > 0g

for � � 1=2; p � 2 and for � < 0; p � 2:

Proof of Proposition 6.6 is given in [10].

Let p > 2 and either p > q or q � p+1. Then the inequality (6.66) follows from

convexity of the functions  p(v) = �(v)=vp and vq�p for v > 0.

Let either p > 2; 1 > q � p > 0, or q < p � 2. Put u = v
q�p

; � = 1=(q � p).

The inequality (6.66) is equivalent to

 2(u) = �(u�)=u�p � �+ �u
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from convexity of the function  2(u) by Proposition 6.6.

Assume C or B (remind that this is possible for p > 2 only). Consider the

measure r�2. Put

� = 0; � = �(a; b�) =
b
�
�
0

(b�)

p(b�)p
; � = �(a; b�) = �(b�)� �(b�)p = �(b�)� b

�
�
0

(b�)=p

(6.67)

and note that � > 0 and

p� = �4x sinh x cosh x + 2p sinh2 x = 0; by 2x = ab
� = b(p)2:

The inequality (6.59) follows from the line w = 0 is tangent to  (v) at the point

v = b
� and from the convexity of the function  1(v) =  (v)=vp � �.

Assume D. Consider the measure r�3. Put analogously with (6.67)

� = 0; � = �(a; b) =
~b�

0

(~b)

p~bp
; � = �(a;~b) = �(~b)� �(~b)p = �(~b)� ~b�

0

(~b)=p: (6.68)

Note that � > 0. This implies

p� = �4x sinh x cosh x + 2p sinh2 x � 0

by 2x = a~b � b
2(p) which is D.

The relation (6.67) implies that the line w = 0 is tangent to ~ (v) = �(v)��vp+
�; � = �� � 0 at the point v = ~b. The inequality (6.59) is equivalent to

~ 1(v) = �(v)=vp � �+ �v
�p � 0

and follows from the convexity ~ 1(v) for p � 2, and from convexity

~ 2(u) = �(u�)=u�p � �+ �u; u = v
�p
; � = �1=p

by Proposition 6.6 for p � 2. Lemma 5.2 is proved.

6.5.2 Proof of Lemmas 3.1 and 5.3

Lemmas 3.1 and 5.3 correspond to extreme problems (6.58) for the functions

�(v) = �(v; a; T ) = 2 sinh2(av=2)�(T � a� jvj)); T = Tn(a); (6.69)

�(v) = �(v;H) = �(v �H) + �(�v �H)� 2�(�H); H = Hn: (6.70)

We show that r� = �(b; h) is extreme measure in the problem (6.58): F =

F (�(b; h)). It is enough to check that r� satis�es (6.60) and (6.59) holds for some

� � 0; � � 0; � = 0.

Relation (6.60) implies the equality in (6.59) for v = 0; v = b and v = �b. We

choose �; � by (6.61) which implies (6.60) and the line w = 0 is tangent  (v) at
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the point v = b. By p > q the inequality � � 0 follows from � � 0 which is the

same that

b�
0

(b)=�(b)� p � 0: (6.71)

Denote below � = b�
0

(b)=�(b)� p and put

�p(v) = �(v)=vp; z = v=b; v > 0;  p(v) =  (v)=vp = �p(v)� �+ �v
q�p

:

The inequality (6.59) is equivalent:  p(v) � 0 for 0 < v � Q: This may be rewrite

in the form
�p(v)

�p(b)
� �(1� z

q�p)

(p� q)
� 1 � 0; 0 < v � Q: (6.72)

By (1� zq�p)=(p� q) � log z; the inequality (6.72) holds for � > 1; z � 1�1=�.

Analogously, the inequality also (6.72) holds, if

�p(v)=�p(b) � 1 + � logC; 1 < c � z � Q=b = C: (6.73)

The inequality (6.73) follows from

�(v)=�(b)) � C
p(1 + � logC); 1 < c � z � C: (6.74)

At last, (6.72) holds, if

�
00

p
(v) � 0; 1� 1=� < z < c: (6.75)

This follows from convexity  p(v) in this case.

Therefore we need to check the relations (6.71) and to choose such c > 1 that

(6.74), (6.75) hold under assumptions of Lemmas for the functions (6.69), (6.70).

Under assumption of Lemma 3.1 the inequality (6.71) follows from (2.18):

� � b(H � b)!1 as b � (H � b)!1; p = o(b2):

Analogously, under assumption of Lemma 5.3, it follows from the limit relations:

as a; b!1; p = o(ab); d = o(a)

b�
0(b) = ab sinh(ab)�(�d)� 2b sinh2(ab=2) exp(�d2=2)=

p
2� �

(ab=2) exp(ab)�(�d); �(b) � exp(ab)�(�d)=2; �(b) � ab:

To check (6.74) under assumption of Lemma 3.1 put c = (b + H)=2b; 1 +

C2 < 2c < 1 + C1: Let x = H � b; y = H � cb. It is enough to show that if

x � y � x � y � b ! 1; p = o(b2), then b
�2 log(�(cb)=�(b)) � 1 which easily

follow from (2.18).

To check (6.74) under assumption of Lemma 5.3 let a � b!1; d � o(a); p =

o(b2). We have for u = v � b > d+ b
1=2 = o(b):

�(v)

�(b))
� exp(u(a� d)� (u2 + d

2)=2)p
2��(�d)(u+ d)

>

A exp(�(u� a+ d)2=2 + (a� d)2=2); A =
exp(�d2=2)q

2�(d+ b(C1 � 1))
:
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Therefore the inequality (6.74) follows from

(u� a + d)2 � (a� d)2 � 2 log(A=B); B = C
p(1 + � logC) = o(a2): (6.76)

Because log(A=B) = o(a2), the inequality (6.76) implies (6.74) for lager enough

a; b, any �xed � 2 (0; 1) and c = 1 + �; Q = C1b < (b + 2(a� d))(1� �):

To check (6.75) it is enough to show that

f(v) = v
p+2

�
00

p
(v) = v

2
�
00

(v)� 2pv�
0

(v) + p(p+ 1)�(v) > 0; 1� 1=� � z � c:

Under assumption of Lemma 3.1 it follows from asymptitic relation: for any �xed

0 < c1 < c2 < 1 as b � H � b!1; c1b < v < c1H

f(v) � �(v)
�
(v(H � v))2 � pv(H � v) + p(p+ 1) + o(1 + p

2)
�
=

�(v)
�
(v(H � v)� p)2 + p+ o(1 + p

2)
�
� �(v)b2 > 0:

Under assumption of Lemma 5.3 the same relations hold with replacing H on T .

6.6 Correlations properties

6.6.1 Proof of Proposition 4.2

If dn;k; dn;l � B, then, by bn;l; bn;k !1, we have:

�n;lk � exp(�(bn;l � bn;k)
2
=2)

which implies (4.19). Let ~dn;k; dn;l � B. Let T �
n
= Tn;l � Tn;k. Denote ~dn;k =

2bn;k � T
�
n
� dn;k: Using (4.15), (2.18), we get:

�n;lk � exp(�(bn;l � bn;k)
2
=2)

�(�(dn;l + ~dn;k)=2)q
�(�dn;l)�(� ~dn;k)

q
�(� ~dn;k)=�(�dn;k) ;

q
�(� ~dn;k)=�(�dn;k) �

q
dn;k=

~dn;k exp
�
d
2
n;k
=4� ~d2

n;k
=4
�
�
q
dn;k=

~dn;k ;

�(�(dn;l + ~dn;k)=2)q
�(�dn;l)�(� ~dn;k)

� 2 exp(�n)
q
dn;l

~dn;k=(dn;l + ~dn;k)

where, by de�nitions dn;l; ~dn;k,

�n =
1

4

�
(2bn;l � T

�
n
)2 + (2bn;k � T

�
n
)2 � 2(bn;l + bn;k � T

�
n
)2
�
= (bn;l � bn;k)

2
=2:

Therefore (assume dn;k � dn;l)

�n;lk �
B

q
dn;l

~dn;k

dn;l + ~dn;k

vuutdn;k

~dn;k
=
B

q
dn;ldn;k

dn;l + ~dn;k
�
B

q
dn;ldn;k

dn;l + dn;k
� B

q
dn;k=dn;l

We can replace dn = 2bn � Tn on d
�
n
= 2(bn � b

�
n
) in this relation which implies:

�n;lk � B

q
d
�
n;k
=d

�
n;l

= B exp(�jzn;l � zn;kj=2):

The cases type of ~dn;k � B; dn;l � B are considered by similar way.
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6.6.2 Proof of Proposition 5.2

First, consider the case (5.28). Let a; b � Bw
�1=2
n

(a). Using the relation

sinh(x) = x + x
3
=6 +O(x5) as x! 0 (6.77)

we get:

1� �(�n; a) = O(a4 + b
4 + (ab)2) = O(w�2

n
(a)):

Let a; b > Bw
�1=2
n

(a). Introduce the function g(t) = log sinh(et=2): Put x =

2 log a; y = 2 log b and note that

log �(�n; a) = �(g(x) + g(y)� 2g((x+ y)=2) = �g00(t)(x� y)2; t 2 [x; y]:

Observe

g
00(t) =

u(sinh(u)� u)

4 sinh2(u=2)
� Bu; u = e

t
;

for some B > 0 and all u > 0. Then by (b� a)=a = o(1) we get:

� log �(�n; a) � Bb
2
n;l
(log(bn;l=bn;l�1)

2 � B(b� a)2 = O(w�2
n
(a)):

Consider the cases (5.29), (5.30). By b(p) minimizes gp(b) = sinh(b2=2)=bp,

sinh2((abh1=p)2=2)

h sinh(b2=2) sinh(a2=2)
=

g
2
p
(x)

gp(a)gp(b)
� g

2
p
(b(p))

gp(a)gp(b)
; x = abh

1=p
:

Therefore it is enough to consider the case (5.29) with b = b(p).

Using the relation (6.77) and by

cosh(x) = 1 + x
2
=3 +O(x4); x! 0; tanh(x) = 1 +O(e�2x); x!1

one can easily get

b
4(p) � 6(p� 2) as p! 2; p > 2; b2(p) � p as p!1: (6.78)

Let b = b(p) � a � Bw
�2=3
n

(a). By (6.78), (p� 2) = O(b4
n;2) and one easily get:

1 � gp(a)=gp(b(p)) � (b(p)=a)(p�2)(1 +O(a2)) � 1 +O(a2)

which imply the required relation.

Let b = b(p) 2 [a� w
�2=3
n

(a); a]; a > Bw
�2=3
n

(a); B > 2. Introduce the function

fp(u) = log gp(a) = log sinh(u)� (p=2) log(2u); u = u(a) = a
2
=2; up = u(b(p)):

Observe

log(gp(a)=gp(b(p))) = f
00

p
(v)(u� up)

2
=2; v 2 [u; up]
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and

f
00

p
(u) = p=(2u2)� sinh�2(u) � p=(2u2); f

00

p
(u) � B(p� 2)u�2 +O(1); if u = O(1):

By (6.78) we get: for bounded p; b(p); a:

log(gp(a)=gp(b(p))) � B(p� 2)b�4(p)(a2 � b
2(p))2 = O(w�4=3

n
(a));

and if p!1, then, analogously,

log(gp(a)=gp(b(p))) � Bpb
�4(p)(a2 � b

2(p))2 � (a� b(p))2 = O(w�4=3
n

(a)):

The statement 2) follows from estimation above.

6.6.3 Proof of Proposition 5.4

Denote

Rn(a; bn) =
�(�(dn(a) + dn(bn))=2 + �n=2)q

�(�dn(a))�(�dn(bn))
;

R
�
n
(a; bn) =

�(�(dn(a) + dn(bn))=2)q
�(�dn(a))�(�dn(bn))

;

Qn(a; bn) =
sinh2(abn=2)

sinh(a2=2) sinh(b2
n
=2)

; Q
�
n
(a; bn) = exp(�(a� bn)

2
=2):

By a; bn � b
�
n;1 one easily see:

Qn(a; bn) = Q
�
n
(a; bn) + o(n��); � > 0:

It is well known that the function log�(x) is concave. Therefore R�
n
(a; bn) � 1.

If �n = Tn(a)� Tn(bn) � 0, then Rn(a; bn) � R
�
n
(a; bn). This implies

�n;4 = Qn(a; bn)Rn(a; bn) � exp(�(a� bn)2=2) + o(n��) � 1� (a� bn)2=2+ o(n��)

which implies (5.32). Therefore we need to consider the case Tn(bn) > Tn(a) which

implies dn(b) � dn(a) + ja� bnj.
First, observe, that if dn(a) � �4 logwn(a), then

Hn = �(dn(a) + dn(bn))=2 + �n=2) = �dn(a) + a� b > 4 logwn(a) + o(1)

and

Rn(a; bn) � �(Hn) = 1� �(�Hn) � 1� w
�2
n
(a)

which implies (5.32).

Let �4 logwn(a) � dn(a) � B. Then dn(bn) � B + o(1). Denote ~un = un(�n).

Using (6.18) we get:

0 < T
2
n
(bn)� T

2
n
(a) = 2 log(u2

n
(a)=~u2

n
) + d

2
n
(bn)� d

2
n
(a) +O(1):
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By

u
2
n
(a)=~u2

n
� u

2
n
(a)=u2

n
(bn) � 1 + ju2

n
(a)� u

2
n
(bn)j=u2n(bn) �

1 +B(jzn(a)� zn(bn)jw2
n
(bn) � 1 +Bw

�8=3
n

(bn)

this yields

Tn(bn)� Tn(a) = b
�1
n
(2 log(u2

n
(a)=~u2

n
) + (b� a)dn(a) + (b� a)2 +O(1))

= o(1); Tn(bn)� Tn(a) = O(b�1
n
) = O(w�2

n
(a));

�(�(dn(a) + dn(bn))=2 + �n=2) = �(�(dn(a) + dn(bn))=2)(1�O(w�2
n
(a))

which implies (5.32) in this case.

By using analogous estimation one can see that if dn(a)!1, then dn(b)!1.

Let dn(a)!1; dn(bn)!1: Using (6.19) we get:

0 < T
2
n
(bn)� T

2
n
(a) = 2 log(u2

n
(a)=~u2

n
) + log(dn(a)=dn(bn))

+O(d�1
n
(a) + d

�1
n
(bn)); dn(a)� dn(bn) = o(1);

Tn(bn)� Tn(a) =
2 log(u2

n
(a)=~u2

n
) + log(dn(a)=dn(bn)) +O(d�1

n
(a))

Tn(bn) + Tn(a)

= O((dn(a)b
�
n
)�1);

which analogously implies

�(�(dn(a) + dn(bn))=2 + �n=2) = �(�(dn(a) + dn(bn))=2)(1� O(w�2
n
(a)):

Therefore we need to estimate

~�n;4 = Q
�
n
(a; bn)R

�
n
(a; bn) = exp(��) � 1��;

where

� = (	(dn(a)) + 	(dn(bn))=2� 	((dn(a) + dn(bn))=2); 	(x) = log(e�x
2=2�(�x)):

Using the expansions 	(x) = � log x+ a1=x+ a2=x
2 + :::; x!1 we get 	

00

(x) �
x
�2, and for some ~d 2 [dn(a); dn(bn)] one has:

� = 	
00

( ~d)(dn(a)� dn(bn))
2
=2 � (1� dn(bn)=dn(a))

2
=2:

Therefore by

Tn(a) = 2b�
n
+ o(1); dn(a) � 2(a� b

�
n
); dn(a)� dn(bn) = 2(a� bn) + o(1=b�

n
)

one has:

1� ~�n;4 � B(1� dn(bn)=dn(a))
2 � (exp(zn(a)� zn(bn) + o(1=b�

n
))� 1)2) �

(zn(a)� zn(bn) + o(1=b�
n
))2 = O(w�2

n
(a)):

This implies (5.32).
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