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Abstract

Surface waves at a free interface of a saturated porous medium are investi-

gated. Existence and peculiarities of surface wave propagation were revealed.

Two types of surface waves proved possible: true surface wave, propagating

almost without dispersion, and generalized Rayleigh wave, which attenuates

along the propagation direction.

1 Introduction

The study of fundamental laws of propagation and interaction of elastic waves on

the interface of �uid saturated porous medium is related to numerous geophysical,

geological, acoustical, and marine problems as well as engineering applications. The

theory of propagation of elastic waves through an in�nite saturated isotropic porous

medium was developed by M.Biot [1,2] in mid 1950's using macroscopic continuum

mechanics and subsequently it was investigated by other scientists [3-6]. M.Biot

proposed a phenomenological theory in which the average motions of solid and liquid

phases are di�erent. In other words, it is assumed that a medium is a mixture

of interpenetrating continua, namely solid phase, constituting the matrix of the

medium, and the liquid phase, constituting the saturating �uid. This theory takes

into account the energy dissipation due to relative motion between the pore �uid

and solid matrix. The theory predicts an existence of two compressional waves and

one shear wave in saturated porous medium. The shear wave and the compressional

wave of the �rst kind (fast wave) are similar to the waves in an ordinary single

phase, isotropic, solid elastic medium. A particular and most interesting feature of

Biot's model arises due to the prediction of the compressional wave of the second

kind, or slow wave, which is strongly attenuated. It is essential that the velocity of

slow wave is always lower than both compressional wave velocities in the solid and

liquid. Biot's theory was con�rmed experimentally by Plona [7].

Another approach was developed in [4]. Here the porous medium is considered

also as a mixture of compressible solid and liquid continua. The main mechanism

of dissipation is described by the linear contribution of the relative velocity to the

momentum balance equations. The new feature of this model is the balance equation

for porosity. This equation describes the microscopic relaxation processes through

the presence of the source term as well as the transport processes of porosity. This
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yields an additional dissipation. This model, similarily to the Biot model, predicts

three types of waves: two lingitudinal waves and one shear wave.

It is clear, that in most geophysical problems media are of �nite extent. Thus,

boundary conditions have to be considered. The existence of boundaries and inter-

faces allows for a generation of surface waves.

It is well known that at an interface between an isotropic solid and vacuum, there

is only one surface wave�the Rayleigh wave [8]. This wave is a nondispersive plane

inhomogeneous wave, undamped in its direction of propagation along the surface,

and damped normal to the boundary. Its phase velocity cR is a single-valued function

of parameters of an elastic half-space. It does not depend on its frequency and is

close t but somewhat less than the velocity of shear wave in unbounded media. The

Rayleigh wave is a coupled compressional-shear system, propagating with unique

velocity cR.

The Rayleigh waves are modi�ed if the vacuum-bounding plane elastic half-space is

replaced by a liquid or by another solid. Early studies on this subject are due to Love

[9] and Stoneley [10]. The essential results are that a wave corresponding to Rayleigh

wave on a free surface, due to seepage of energy into another medium becomes

exponentially attenuated along its direction of propagation, while simultaneously

other new modes of surface waves appear. Whereas for certain values of elastic

parameters these generalized Rayleigh waves cannot exist on a plane surface between

two solids, they are always possible on a liquid-solid interface [11].

At a solid-liquid interface the phase velocity of generalized Rayleigh wave, which is

a system of three waves (one in the liquid and two in the solid), is higher than the

wave velocity in the �uid. This surface wave radiates energy continuously into the

liquid, forming therein an inhomogeneous wave departing from the boundary. Since

the energy �ows across the interface (leaky wave), the wave attenuates along the

propagation direction. At the same time on a solid-liquid interface there exists a

true Stonely surface wave (sometimes called Scholte wave) [11,12], consisting of an

inhomogeneous wave in the liquid and two inhomogeneous waves in the solid, and

propagating parallel to the boundary without attenuation and being exponentially

damped in both directions perpendicular to the interface. Its velocity is lower than

all the bulk velocities in the solid and in the liquid.

Due to the presence of a second compressional wave in a �uid-saturated porous

media, the properties of surface waves at interfaces of �uid-�lled porous solid in

contrast to either free interface of elastic half-space or liquid-solid interface should

be di�erent.

There are only a few papers published on this subject. Surface waves on a free bound-

ary of a porous medium were examined by Deresiewicz [13] within the framework of

Biot's model. A numerical analysis of the dispersion equation revealed that there

is always a complex root which corresponds to the velocity of generalized Rayleigh

wave. Hence, contrary to the elastic medium, Rayleigh waves in saturated porous

medium are dispersive. This generalized Rayleigh wave leaks its energy into the
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slow compressional wave. For low frequencies, the velocity of this wave tends to the

velocity of Rayleigh wave in an elastic medium. Additionally, as it was discovered

experimentally [14] for the case of completely closed surface pores and viscosity-free

�uid, there exists a true surface wave with a velocity slightly below that of the slow

wave. Theoretically this true surface wave is slightly leaky as well since its velocity

is higher than the sound velocity in air, although, in fact, the energy loss is negligible

because of the large density di�erence between the two �uids.

This paper is the �rst part of the general work devoted to surface waves at the

interface between saturated porous solid and di�erent media. It concerns the surface

waves propagating along the free boundary of a porous medium.

2 Mathematical Model

2.1 Govering Equations

Consider two semi-in�nite spaces 
I and 
II having a common interface �. Let the

region 
I is occupied by a saturated porous medium. In dimensionless variables the

set of �eld equations describing the porous medium has the form (x 2 R3
; t 2 [0; T ])

[4]:

Mass conservation equations

@

@t
%f + div(%fvf ) = 0;

@

@t
%s + div(%svs) = 0: (2:1)

Here � is the mass density, v is the velocity vector and indices f and s indicate a

�uid or solid phases, respectively.

Momentum conservation equations

%f

"
@

@t
+ (vfj;

@

@xj
)

#
vfi �

@

@xj
T
f
ij + �(vfi � vsi) = 0;

%s

"
@

@t
+ (vsj;

@

@xj
)

#
vsi �

@

@xj
T
s
ij � �(vfi � vsi) = 0: (2:2)

Here T
f
ij and T

s
ij are the stress tensors, � is a positive constant. The stress tensor in

the �uid is assumed to be given by the following linear law:

T
f
ij = �pf�ij � ��m�ij; pf = pf0 + �(%f � %f0); (2:3)

where pf is the pore pressure. pf0 and %f0 are the initial values of pore pressure and

�uid mass density, respectively. � is the constant compressibility coe�cient of the
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�uid depending only on equilibrium value of the porosity mE. �m = m�mE is the

change of the porosity. � denotes the coupling coe�cient of the components.

The stress tensor in skeleton has the following form:

T
s
ij = �ekk�ij + 2�eij + ��m�ij; (2:4)

where � and � are the Lame constants of the skeleton, which depend only on mE,

and eij is the strain tensor of small deformations.

Equation for the change of porosity

@

@t
�m + (vsi;

@

@xi
)�m +mE div(vf � vs) = �

�m

�
; (2:5)

where � is the relaxation time of porosity.

For the strain tensor one has:

eij =
1

2

 
@ usi

@xj
+
@usj

@xi

!
; (2:6)

where us is the displacement vector for the solid phase with vs = @us=@t.

2.2 Boundary Conditions

For the general case, when the region 
II is occupied by a saturated porous medium

as well, the boundary conditions at the interface � are:

1) the continuity of total stresses

(T s
ij + T

f
ij)nj jI = (T s

ij + T
f
ij)nj jII ; (2:7)

where n is a unit vector normal to the interface

2) the continuity of the displacements of the solid phases (i.e. the boundary � is

material with respect to the skeleton)

us jI = us jII (2:8)

3) the continuity of the mass �ux across the interface

%f(vf � vs)n jI = %f (vf � vs)n jII (2:9)
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4) proportionality between discontinuity in pressure and relative velocity of the �uid

with respect to solid phase [16]

%f (vf � vs)n jI = �(pf jI �
m

I

mII
pf jII): (2:10)

Condition (10) re�ects in a phenomenological way the existence of a boundary layer

and relates the rate at which saturating �uid �ows relative to the solid at the in-

terface due to the pressure drop across the surface. Thus experimental constant �

is a kind of surface porosity and the case � = 0 corresponds to completely closed

surface pores (impermeable boundaries), while the case � = 1 corresponds to the

dynamical compatibility condition for partial tractions used in composits.

2.3 Linearized Equation System

Let us linearize the equation system (1)-(5) about some equilibrium state. The

simplest case arises when the equilibrium state is taken to have constant values,

namely %f = %f0, %s = %s0, vf = 0, vs = 0 and �m = 0. After the introduction

of displacement vector for the �uid phase uf
1 and linearization, the system (1)-(5)

takes the following form:

@

@t
%f + %f0

@

@xi

�@ufi
@t

�
= 0; (2:11)

@

@t
%s + %f0

@

@xi

�@usi
@t

�
= 0; (2:12)

%f0
@
2
ufi

@t2
+

@

@xj
pf�ij +

@

@xj
��m�ij + �

@

@t
(ufi � usi) = 0; (2:13)

%s0
@
2
usi

@t2
� ��usi � (�+ �)r div us �

@

@xj
��m�ij � �

@

@t
(ufi � usi) = 0; (2:14)

@

@t
�m +mE div

@

@t
(uf � us) = �

�m

�
: (2:15)

Here the unknown variables are %f , %s, uf , us and �m.

The general problem on propagation of elastic waves through the bounded space

is rather complicated. We con�ne ourselves to the consideration of 2D problem

(i; j = 1; 2, xy plane). Let us consider the propagation of elastic waves through the

porous medium which occupies the semi-in�nite space y > 0 and bounded by the

1Let us note that this is common in the �uid dynamics.
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vacuum y < 0. On the interface y = 0 the following boundary conditions, which are

the consequence of the general conditions (2.7)-(2.10), have to be satis�ed:

a) the total stresses vanish

�(
@us1

@ y
+
@us2

@ x
)jy=0 = 0; (2:16)

�
� div us + 2�

@us2

@ y
� �(%f � %f0)

�
jy=0 = 0; (2:17)

b) relative velocity is equal to zero, i.e. � = 0. Latter means that the pores at the

interface are completely closed

@(uf2 � us2)

@ t
jy=0 = 0: (2:18)

We will show that for the boundary value problem (2.11)-(2.18), which we will call

SWP (surface wave problem), there exist solutions in the form of surface waves.

For this purpose we will investigate the propagation of harmonic wave along the

positive axis x > 0 whose frequency is !, wave number is k and amplitude depends

on y. We will seek solutions which decrease rapidly with increasing distance from

the interface, i.e. for y !1.

3 Construction of Solution

Solution of SWP is sought in the following form:

uf = r'f + (( f )y;�( f )x); us = r's + (( s)y;�( s)x);

'f = Af (y) exp(i(kx� ! t)); 's = As(y) exp(i(kx� ! t)); (3:1)

 f = Bf (y) exp(i(kx� ! t));  s = Bs(y) exp(i(kx� ! t));

%f � %f0 = A%;f(y) exp(i(kx� ! t));

%s � %s0 = A%;s(y) exp(i(kx� ! t));
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�m = A�m
(y) exp(i(kx� ! t)):

It should be noted here that in this paper we consider the solutions of (2.1)-(2.5)

in the absence of external forces, which are de�ned uniquely by Cauchy data. In

this case it is natural to derive ! as a function with respect to real wave number

k 2 R
1. Thus, Re!=jkj de�nes the phase velocity of the waves, while Im! de�nes

attenuation.

Substituting the solution (3.1) into linearized equation system (2.11)-(2.15), one gets

from the mass balance equations:

A%;f (y) + %f0(
d
2

d y2
� k

2)Af(y) = 0; (3:2)

A%;s(y) + %f0(
d
2

d y2
� k

2)As(y) = 0: (3:3)

Under the assumptions (3:1)1�3 we obtain from the momentum balance equation for

the �uid phase:

�
h
%f0

@
2
'f

@ t2
+ �

@

@ t
('f � 's) + ��m + �(%f � %f0)

i
= 0; (3:4)

�
h
%f0

@
2
 f

@ t2
+ �

@

@ t
( f �  s)

i
= 0: (3:5)

Consequently,

A%;f = kf1(kf1%f0 + i
�

af1
)Af � i

�

af1
kf1As �

�

a2f1

A�m
; (3:6)

Bf =
i�

!%f0 + i�
Bs: (3:7)

Here a2f1 = � and k2f1 = !
2
=a

2
f1.

From the momentum balance equation for the solid phase one has:

�
h
%s0

@
2

@ t2
's � (�+ 2�)�'s � �

@

@ t
('f � 's)� ��m

i
= 0; (3:8)

�
h
%s0

@
2

@ t2
 s � �� s � �

@

@ t
( f �  s)

i
= 0; (3:9)

which yields

d
2

d y2
As + (k2s1 � k

2)As �
i�

%s0as1
ks1(Af � As) +

�

%s0a
2
s1

A�m
= 0; (3:10)
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d
2

d y2
Bs + (k2s2 � k

2)Bs +
i�

%s0as2
ks2(Bf � Bs) = 0; (3:11)

where k2s1 = !
2
=a

2
s1, a

2
s1 = (�+ 2�)=%s0, k

2
s2 = !

2
=a

2
s2, a

2
s2 = �=%s0.

From the equation for the change of porosity one gets:

A�m
=
imE!

1
�
� i!

(
d
2

d y2
� k

2)(Af � As): (3:12)

Thus we obtain three equations for Af(y), As(y) and Bs(y):

(
d
2

d y2
� k

2)Af + kf1(kf1 + i
�

%f0af1
)Af � i

�

%f0af1
�f1As

+
�

%f0af1

mEkf1
i
�
+ !

(
d
2

d y2
� k

2)(Af � As) = 0; (3:13)

d
2

d y2
As + (k2s1 � k

2)As �
i�

%s0as1
ks1(Af � As)

� � mEks1

%s0as1(
i
�
+ !)

(
d
2

d y2
� k

2)(Af � As) = 0; (3:14)

d
2

d y2
Bs �

�
k
2 � k

2
s2 +

i�ks2

%s0as2

!%f0

!%f0 + i�

�
Bs = 0 (3:15)

and four algebraic relations for Bf (y), A�m
(y), A%;s(y), and A%;f(y):

Bf =
i�

!%f0 + i�
Bs; (3:16)

A�m
= � mE!

i
�
+ !

(
d
2

d y2
� k

2)(Af � As); (3:17)

A%;s = �%s0(
d
2

d y2
� k

2)As; (3:18)

A%;f = kf1(kf1%f0 +
i�

af1
)Af �

i�kf1

af1
As +

�

af1

mEkf1
i
�
+ !

(
d
2

d y2
� k

2)(Af � As): (3:19)
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Next let us prove the existence of the solution for the system (3.13)-(3.14) and for

the equation (3.15). First consider (3.15). The solution has the following form:

Bs = Cs(0) exp(��s y) (3:20)

with

�s =

vuutk2 � k2s2 +
i�ks2

%s0as2

!%f0

!%f0 + i�
(3:21)

Let us de�ne the following condition:

Condition 3.1

Re
h
k
2 � k

2
s2 +

i�ks2

%s0as2

!%f0

!%f0 + i�

i
> 0 (3:22)

As we will show below, this condition can be indeed ful�lled by both surface waves

which are proven to be possible. It is also quite natural. Namely, a similar condition

in the classical elasticity theory yields the conclusion that phase velocity of the

surface wave should be less than velocity of shear wave.

Then, the square root in (3.21) is de�ned as
p
1 = 1 and in order to get bounded

solution we choose

Bs = Cs(0) exp(��s y): (3:23)

We proceed to prove the existence of solution for (3.13)-(3.14). The solution is

sought in the following form:

 
Af

As

!
= Cj(0)

 
Rfj

Rsj

!
exp(�j y): (3:24)

Substituting (3.24) into (3.13),(3.14), one has:

df1(j)Rfj + ds1(j)Rsj = 0;

df2(j)Rfj + ds2(j)Rsj = 0: (3:25)

Consequently,

df1(j)ds2(j)� df2(j)ds1(j) = 0: (3:26)

In the above relations we have de�ned:
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df1(j) =
�
1 +

� mEkf1

%f0af1(! + i
�
)

�

2
j + kf1(kf1 + i

�

%f0af1
)

�
� � mEkf1

%f0af1(! + i
�
)
+ 1

�
k
2
;

ds1(j) = �
� mEkf1

%f0af1(! + i
�
)
(2j � k

2) + i
�kf1

%f0af1
;

df2(j) = �
� mEks1

%s0as1(as1ks1 +
i
�
)
(2j � k

2)� i
�ks1

%s0as1
;

ds2(j) =
�
1 +

� mEks1

%s0as1(as1ks1 +
i
�
)

�

2
j + ks1(ks1 + i

�

%s0as1
)

�
� � mEks1

%2s0as1(as1ks1 +
i
�
)
+ 1

�
k
2
: (3:27)

The constants j follow from (3.26). For � = 0 one has:

A0
4
j �A1

2
j +A2 = 0;

where

A0 = 1;

A1 = 2k2 � kf1(kf1 + i
�

%f0af1
)� ks1(ks1 + i

�

%s0as1
);

A2 = k
2
f1(k

2
s1 � k

2) +
i�ks1k

2
f1

%s0as1
+
i�kf1(k

2
s1 � k

2)

af1%f0

�k2(k2s1 � k
2)� i�ks1k

2

%s0as1
:

The assumption on the vanishing coe�cient � means that we neglect a static cou-

pling between components. This happens to be justi�ed for the su�ciently small

changes of porosity �m even though these changes in�uence, however to much lesser

extent than relative motion of the phases, both speeds of propagation and attenua-

tion [15].

Hence we have the solution:


2
j =

1

2

h
2k2 � kf1(kf1 + i

�

%f0af1
)� ks1(ks1 + i

�

%s0as1
)
i

�1

2

s�
2k2 � 1

%f0
kf1(kf1 + i

�

%f0af1
)� ks1(ks1 + i

�

%s0as1
)
�2 � 4A2: (3:28)
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or in a more convenient form:


2
j =

1

2

h
2k2 � k

2
s1 � k

2
f1

i
� 1

2
Re � +

i

2

h
� Im � � kf1�

%f0af1
� ks1�

%s0as1

i
; (3:29)

where

� =

s�
2k2 � kf1(kf1 + i

�

%f0af1
)� ks1(ks1 + i

�

%s0as1
)
�2 � 4A2:

Similarly to the analysis of the equation (3.15) we assume that the following condi-

tion holds:

Condition 3.2

Re
h
2k2 � k

2
s1 � k

2
f1

i
� Re � > 0: (3:30)

Then there exist two roots j; j = 1; 2, such that

Re j > 0;

1;2 =
1

21=2

vuuth2k2 � k
2
s1 � k

2
f1

i
� Re � + i

h
� Im � � kf1�

%f0af1
� ks1�

%s0as1

i
: (3:31)

(As before, square root is de�ned as
p
1 = 1.) Physically condition (3.30) means

that phase velocity of the surface wave should be less then velocities of longitudinal

waves both in solid and liquid. We will show below that this condition holds for one

of the surface waves, namely for the surface wave whose phase velocity c1 < af1.

For another surface wave (generalized Rayleigh wave) with phase velocity cR0 such

that af1 < cR0 < as2, we prove that the following condition holds:

Condition 3.3

Re
h
2k2 � k

2
s1 � k

2
f1

i
+ Re � > 0; Re

h
2k2 � k

2
s1 � k

2
f1

i
� Re � < 0: (3:300)

Then Re2 > 0 and 2 is de�ned as above. But square root in expression for 1
is de�ned in such a way that the so-called radiation condition [8], i.e. condition of

boundness of solution, is satis�ed:

1 = �i
1

21=2

vuuthk2s1 + k
2
f1 � 2k2

i
+ Re � + i

h
Im � +

kf1�

%f0af1
+

ks1�

%s0as1

i
: (3:310)
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Thus, a bounded solution to (3.13)-(3.15) exists and it has the form:

 
Af

As

!
= C1(0)

 
Rf1

Rs1

!
exp(�1 y) + C2(0)

 
Rf2

Rs2

!
exp(�2 y);

Bs = Cs(0) exp(��s y): (3:32)

In order to specify the constants C1(0), C2(0) and Cs(0), one has to consider the

boundary conditions (2.16)-(2.18). We proceed to do so.

4 Dispersion Relation and Surface Wave Velocity

4.1 Dispersion Relation

Substituting the solution (3.1), (3.32) into boundary conditions (2.16)-(2.18) for the

case � = 0 one gets the following system of equations with respect to C1(0), C2(0)

and Cs(0):

1Rf1C1 + 2Rf2C2 +
�
i
�
2
s � k

2

2k
� k�

!%f0 + i�

�
Cs = 0; (4:1)

1Rs1C1 + 2Rs2C2 + i
�
2
s + k

2

2k
Cs = 0; (4:2)

(�+ 2�)
�
(21 � k

2)Rs1C1 + (22 � k
2)Rs2C2

�

+2� k2(Rs1C1 +Rs2C2) + 2i�k�sCs � �

�
kf1(kf1%f0 + i

�

af1
)(Rf1C1 +Rf2C2)

�i �
af1

kf1(Rs1C1 +Rs2C2)

�
= 0: (4:3)

For the sake of simplicity consider solely the case jkj � 1, i.e. short waves. Dividing

(3.27) by k2 one gets:

df1(j) =

2
j

k2
+

1

a
2
f1

~!2 � 1;

ds1(j) = 0; df2(j) = 0;
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ds2(j) =

2
j

k2
+

1

a2s1

~!2 � 1:

Here ~! = !=jkj. From (3.26)

1 = jkj
vuut1� 1

a2f1

~!2;

2 = jkj
s
1� 1

a
2
s1

~!2; (4:4)

and, consequently, eigenvectors for (3.25) take the form:

R1 = (Rf1; Rs1) = (1; 0); R2 = (Rf2; Rs2) = (0; 1): (4:5)

Also, from (3.21) one has

�s = jkj
s
1� ~!2

a2s2

: (4:6)

Solving (4.1)-(4.3) one gets:

C1(0) = i
k~!2

21a
2
s2

Cs(0);

C2(0) = �i
k(2� ~!2

a2
s2

)

22
Cs(0): (4:7)

Substitution of (4.7) into (4.3) leads to the dispersion equation

� i�

212

h
�
�
(�+ 2�)

~!2

�a2s1

� 2
�
1(2�

~!2

a2s2

) + %f0
2~!

4

�a2s2

� 4�s
12

k2

i
= 0: (4:8)

Obviously, (4.8) includes radicals 1; 2, and �s, which are multi-valued functions.

In order to make these functions single-valued, consider Riemann surface of ~! with

the cuts outgoing from the points �af1; � as2; � as1. In the following we will

consider only the upper strip of the Riemann surface, where the signs of radicals on

the real axis satisfy radiation condition [8]. The latter means that solutions (3.1)

are bounded in the whole half-space.

Let either

13



Condition 4.1

1 > maxRe
� ~!2

a
2
f1

;
~!2

a
2
s2

;
~!2

a
2
s1

�
; (4:9)

and, consequently, 1; 2, and �s are de�ned as in (4.4) and (4.6),

or

Condition 4.2

Re
~!2

a2f1

> 1 > maxRe
� ~!2
as2

;
~!2

as1

�
: (4:90)

Then 2 and �s are de�ned as above and

1

jkj1 = �i
vuut 1

a2f1

~!2 � 1:

Note, that condition (4.9) is similar to conditions (3.23), (3.30), i.e. phase velocity

of one of the surface waves should be less then velocities of the body longitudinal

and shear waves. Below we will show that dispersion equation (4.8) has two roots

satisfying either (4.9) or (4.9').

Expression in square brackets in (4.8) can be rewritten as

P(~!) = ~!4
�
%f0

a2s2

s
1� 1

a2s1

~!2 +
�+ 2�

a2s1a
2
s2

vuut1� 1

a2f1

~!2
�

�2~!2
vuut1� 1

a2f1

~!2
��+ 2�

a2s1

+
�

a2s2

�

�4�
vuut1� 1

a2f1

~!2
�s

1� ~!2

a2s2

s
1� 1

a2s1

~!2 � 1

�
= 0: (4:10)

Due to condition (4.9) one of the roots of (4.10) is from the interval [0;�0), where

�0 = min(af1; as2; as1) = af1 =
p
�:

Next let us prove that indeed there exists a root, satisfying (4.9). It is obvious that

P(0) = 0: (4:11)

Hence there exists the root

~!0 = 0:

14



It is easy to check that

P(�0) = %f0a
4
f1

1

a
2
s2

vuut1� a
2
f1

a
2
s1

> 0: (4:12)

Next consider the derivative P 0 with respect to ~!. It is not di�cult to show that

P 0(0) = �2�+ �

a
2
s1

< 0: (4:13)

Thus due to (4.11)-(4.13) there exists a root ~!1 2 (0;
p
�), satisfying Condition 4.1.

Now it is easy to prove that the following proposition holds true (see Appendix for

some details):

Proposition 4.1 For su�ciently small � � �0 and su�ciently large jkj � k0 > 0

there exists a root of dispersion equation

~!1 = O(
p
�) + a1 + ib1; a1; b1 = O(� +

1q
jkj

); (4:14)

satisfying Condition 4.1.

4.2 Approximation

It is easy to see that dispersion equation (4.10) can be rewritten in the following

form:
%f0

%s0

1

a
4
s2

~!4
s
1� 1

a
2
s1

~!2 +

s
1� 1

�
~!2PR = 0; (4:15)

where

PR =
�
2� 1

a
2
s2

~!2
�2 � 4

s
1� 1

a
2
s1

~!2

s
1� 1

a
2
s2

~!2 (4:16)

is the classical Rayleigh equation [8]. Moreover, (4.15) corresponds exactly to the

case of surface waves at the interface between liquid and solid half-spaces [8]. Equal-

ity (4.15), i.e. the condition of surface wave existence, is an equation for the def-

inition of phase velocity of the surface waves and their attenuation. Let us show

that (4.15) has a unique root, satisfying Condition 4.1 and de�ning the velocity of

very slow surface wave propagating without dispersion. Indeed, as it was shown,

the existence of such a root follows from general Proposition 4.1. Now we construct

the asymptotics for this root.

Let us rewrite dispersion equation (4.15) as

� Z
2
p
1� � Z +

s
1� 1

�
Z

�
(2� Z)2 � 4

p
1� Z

p
1� � Z

�
= 0; (4:17)
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where Z = a
2
s2~!

2
; � =

%f0
%s0
; � = �

a2
s2

; � =
a2
s2

a2
s1

.

In order to satisfy Condition 4.1, the root of (4.17) should belong to the interval

(0; �). After the change

Z = �(1� Y
2); where Y 2 (0; 1); Y � 0; (4:18)

one has:

��
2(1� Y

2)2
q
1� ��(1� Y 2)

+Y
�
(2� � + � Y

2)2 � 4
p
1� � + � Y 2

p
1� �� + �� Y 2

�
= 0: (4:19)

Let

Y = � Y0 + �
2
Y1 + : : : (4:20)

Substituting (4.20) into (4.19) one gets from the leading part that

Y0 =
�

2(1� �)
=) Y = � Y0 < 1: (4:21)

Finally, one obtains phase velocity

c
2
1 = �

�
1� %

2
f0

4�2(1� �)2
�
2 +O(�3)

�
(4:22)

It corresponds to very slow surface wave, propagating almost without dispersion. Its

speed is less than the velocities of all bulk waves in porous medium and has order

O(
p
�).

Remark. Justi�cation of asymptotics is presented in Appendix.

Next, let us show that dispersion equation (4.15) has also a complex root, satisfying

Condition 4.2. It belongs to the interval (�; a2s2) and corresponds to generalized

Rayleigh wave whose phase velocity cR0 ! cR as %f0 ! 0, where cR is a velocity

of the classical Rayleigh wave in elastic half-space. It should be noted here that in

(4.15) for
q
1� 1

�
~!2 the following branch is taken (see Condition 4.2):

q
1� 1

�
~!2 =

�i
q

1
�
~!2 � 1. Also, since cR0 should be close to as2, than

q
1
�
~!2 � 1 � ~!p

�
. Thus

(4.15) takes the form:

p
�
%f0

%s0

1

a
4
s2

~!3
s
1� 1

a
2
s1

~!2 � iPR = 0: (4:23)

Let

~! = 
0 +
p
�
1 + : : : (4:24)
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It is easy to show that the leading part 
0 of (4.24) satis�es the Rayleigh equation

PR(
0) = 0, i.e. 
0 = cR. For the next term 
1 of expansion (4.24) one gets the

following equation:

h 4

a4s2


3
0 � 8

1

a2s2


0 � 4
d

dc

�s
1� 1

a2s2

~!2

s
1� 1

a2s1

~!2
����

c=
0

i

1

= �i
3
0

%f0

%s0

1

a4s2

s
1� 1

a2s1


2
0: (4:25)

Finally one has:

~!R0 = cR +
p
�
1 +O(�); (4:26)

where 
1 is imaginary and is determined by (4.25). Real part of (4.26), i.e. cR,

de�nes the phase velocity of generalized Rayleigh wave and Im
1 corresponds to

the attenuation of this wave. Thus the reradiation of the energy into the medium

occures. Namely generalized Rayleigh wave radiates energy into the slow compres-

sional wave and attenuates along the propagation direction. It is so-called leaky

wave. But in contrast to the generalized Rayleigh wave at the interface between

liquid and solid half-spaces, where energy is radiated from solid into liquid, leaky

wave at the free interface of a porous medium radiates energy into the half-space,

where the wave is localized. The �rst example of such type of surface waves was

described at the concave cylindrical interface of elastic solid [8]. As it is clear from

the research presented, such leaky waves, radiating energy into the medium where

they are located, exist at the plane interface of a porous saturated medium.

Similarly to Proposition 4.1 we can now prove that

Proposition 4.2 For su�ciently small � � �0 and su�ciently large jkj � k0 > 0

there exist two roots of the dispersion equation. The �rst one

c1 =
p
Z + a1 + ib1 Z = �

�
1� �%

2
f0

4�2(1� �)2
+O(�4)

�
; a1; b1 = O(� +

1q
jkj

);

de�nes phase velocity of the surface wave, which propagates without attenuation.

The second one

~!R0 = cR +
p
�
1 +O(�) + aR0 + ibR0 ; aR0 ; bR0 = O(� +

1q
jkj

);

where 
1 is de�ned from (4.25), corresponds to the generalized Rayleigh wave, which

propagates with phase velocity cR and attenuates along the interface.
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5 Conclusions

The results presented in the paper concern surface waves which propagate on free

interfaces of saturated porous media. Such waves were not yet systematically inves-

tigated. The present research reveals new features of surface waves in porous media

which do not appear for example in the case of classical liquid/elastic medium in-

terface. They are connected with the presence of a slow compressional wave in

a porous solid. In contrast to free interface of elastic half-space, where only the

Rayleigh wave exists, in porous materials two types of surface waves are proven to

be possible. They are due to the combination of three waves in porous medium:

two longitudinal waves and one shear wave. Consequently, as in the case of inter-

face between liquid and elastic half-spaces, there are two surface waves. However,

qualitatively the properties of the surface waves in porous media di�er signi�cantly.

The �rst mode, which exists at the free interface of a saturated porous medium, is a

true surface wave, which, as shown in (4.22), propagates almost without dispersion.

Asymptotic analysis showed that its velocity is less than the velocities of all bulk

waves in unbounded porous medium and is in�uenced primarily by the compress-

ibility coe�cient of the liquid phase. This surface wave is much slower than an

analogous one at the interface of liquid and elastic half-spaces.

The second type of surface waves, which appear on interfaces of porous media are

the so-called leaky waves. These leaky waves are generalized Rayleigh waves since

their phase velocity is close to the velocity of the classical Rayleigh wave. In typical

case of an interface between liquid and elastic half-spaces a generalized Rayleigh

wave is carried mostly by the elastic half-space and radiates some of its energy

into the liquid. This is not the case for porous materials in which the generalized

Rayleigh wave is carried by the porous medium and radiates the energy into the

porous medium itself. Most likely this energy is absorbed by a slow compressional

wave. However, this statement has solely a physical nature and could not yet be

proven. Such leaky modes are the intermediate waves between surfaces waves and

bulk waves. It is obvious that due to energy radiation into the bulk of the medium,

they can exist only in the limited domain. They are transformed into the bulk waves

as soon as their surface component is transformed into the bulk one.

Appendix

Here we present justi�cation of asymptotics for the roots of dispersion equation. In

fact, the following asymptotic expansion

~! = ~!0 +
1

jkj ~!1 + : : : (A:1)

has been considered. Let us estimate now ~!1.

18



Substituting (3.20), where

Cs(0) = Cs0 +
1

jkjCs1 + : : : ; ~�s = ~�s0 +
1

jkj ~�s1 + : : : ; (A:2)

into (3.15), one gets:

~!0%f0
h
~�2s0 � 1 +

1

a2s2

~!20

i
Cs0

+
1

jkj

��
i�

h
~�2s0 � 1 +

1

a2s2

~!20

i
� %f0~!

2
0 sign (k)

i�

�
+ ~!1%f0

h
~�2s0 � 1 +

1

a2s2

~!20

i

+2~!0%f0[~�s0~�s1 +
1

a
2
s2

~!0~!1]

�
Cs0 + Cs1~!0%f0

�
~�2s0 � 1 +

1

a
2
s2

~!20

��
= O(

1

jkj2 ): (A:3)

Hence from the �rst approximation

~�2s0 = 1� 1

a
2
s2

~!20; (A:4)

(see (4.4)) or

~!0 = 0;

and from the second approximation

� sign (k)
i�

�
~!0 + 2(~�s0~�s1 +

1

a2s2

~!0~!1) = 0: (A:5)

From (A.5) it is de�ned

~�s1 =
~!0

~�s0

�
i sign (k)

�

2�
� 1

a2s2

~!1
�
: (A:6)

Next dividing (3.27) by k2 and keeping the terms O(1=jkj), one has:

df1(j) = ~2j � 1 +
1

�
~!(~! + i

�

%f0k
);

ds1(j) = �i
�~!

%f0� k
;

df2(j) = �i
�~!

(� + 2�)k
;

ds2(j) = ~2j � 1 +
1

a
2
s1

~!(~! + i
�

%s0k
); (A:7)
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where ~j =
1
jkjj. Let us introduce the matrix

D(j) = D0(j) +
1

k
D1: (A:8)

Here

D0(j) =

(
~2j � 1 + 1

�
~!2 0

0 ~2j � 1 + 1
a2
s1

~!2

)
;

and

D1 = i~! sign(k)

( �
�%f0

� �
�%f0

� �
(�+2�)

�
(�+2�)

)
:

Solving (3.25) with

Rj = Rj0 +
1

jkjRj1 + : : : ; ~j = ~j0 +
1

jkj~j1 + : : : ; (A:9)

one gets from the �rst approximation

D00(j)Rj0 = 0; (A:10)

where

D00(j) =

8<
:

~2j0 � 1 + 1
a2
f1

~!20 0

0 ~2j0 � 1 + 1
a2
s1

~!20

9=
; :

Hence R10 = (1; 0), R20 = (0; 1), ~10 =
r
1� 1

a2
f1

~!2, ~20 =
q
1� 1

a2
s1

~!2 (see (4.7),

(4.5)).

Second approximation leads to the following system:

D00(j)Rj1 +D01(j)Rj0 +D10Rj0 = 0; (A:11)

where

D01(j) = 2

(
~j0~j1 +

1
�
~!0~!1 0

0 ~j0~j1 +
1
a2
s1

~!0~!1

)

and D10 = D1j~!=~!0 .

Solvability condition to the system (A.11)D
D01(j)Rj0 +D10Rj0; Rj0

E
= 0; (A:12)

results in de�nition of ~j1. Consequently, Rj1 can be obtained from (A.11). Finally

one gets:
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~1 = ~10 �
1

jkj
~!0

2a2f1~10

h
2~!1 + i sign(k)

�

%f0

i
;

~2 = ~20 �
1

jkj
~!0

2a2s1~20

h
2~!1 + i sign(k)

�

%s0

i
; (A:13)

R1 = (Rf1; Rs1) = (1; 0)� i sign(k)
1

jkj
�a

2
f1

%s0~!0

�
a
2
s1 � a

2
f1

��1
(0; 1);

R2 = (Rf2; Rs2) = (0; 1) + i sign(k)
1

jkj
� a

2
s1

~!0%f0

�
a
2
s1 � a

2
f1

��1
(1; 0): (A:14)

In order to get a dispersion equation, consider boundary conditions (4.1)-(4.3). Let

Cj = Cj0 +
1

jkjCj1 + : : : (A:15)

Substitution of (A.1), (A.2), (A.9), and (A.15) into (4.1)-(4.3) yields:

~!0%f0
�
~10C10 �

1

2a2s2
i~!20Cs0

�

+
1

jkj

�
i�~10C10 + ~!0%f0

�
~11C10 + ~10C11 + ~20C20Rf2;1

�

+�
�
� 1 +

1

2a2s2
~!20

�
Cs0 � i

1

2a2s2
~!30%f0Cs1 + %f0~10C10~!1

�3

2
i
1

a
2
s2

~!20 ~!1%f0Cs0 + i~�s0~�s1Cs0

�
+O(

1

jkj2 ) = 0; (A:16)

~20C20 + i

�
1� 1

2a2s2
~!20

�
Cs0

+
1

jkj

�
~10C10Rs1;1 + ~21C20 + ~20C21 + i

�
1� 1

2a2s2
~!20

�
Cs1

�i 1

a2s2

~!0~!1Cs0 + i~�s0~�s1Cs0

�
+O(

1

jkj2 ) = 0; (A:17)

�(%s0C20 + %f0C10)~!
2
0 + 2�C20 + 2i�~�s0Cs0
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+
1

jkj

�
� 2(%s0C20 + %f0C10)~!0~!1 + i�~!0C20 � (�+ 2�)

�1
�
Rs1;1C10 +

1

a2s1

C21

�
~!20

+2(�+ 2�)~20~21C20 + 2� (Rs1;1C10 + C21) + 2i�(~�s0Cs1 + ~�s1Cs0)

�%f0~!20(C11 + C20Rf2;1)� i�~!0C10

�
+O(

1

jkj2 ) = 0: (A:18)

Leading part of (A.16)-(A.18) results in the following system:

~10C10 � i
1

2a2s2
~!20Cs0 = 0; (A:19)

~20C20 + i

�
1� 1

2a2s2
~!20

�
Cs0 = 0; (A:20)

�(%f0C10 + %s0C20)~!
2
0 + 2�C20 + 2i�~�s0Cs0 = 0: (A:21)

The latter leads to the dispersion relation with respect to ~!0 (see (4.15)):

P0(~!0) = �i
�

2~10~20

�
~10PR + ~20

%f0

%s0

~!40
a4s2

�
: (A:22)

First approximation of (A.16)-(A.18) yields:

C11 � i
1

2a2s2~10
~!20Cs1 =

1

~10%f0~!0
F1Cs0; (A:23)

C21 + i
1

~20
(1� 1

2a2s2
~!20)Cs1 =

1

~20
F2Cs0; (A:24)

�(%f0C11 + %s0C21)~!
2
0 + 2�C21 + 2i�~�s0Cs1 = F3Cs0; (A:25)

where

� 1

~10%f0~!0
F1 = i

�
~!0

~11

~10
+ ~!1

� 1

2a2s2~10
~!0
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+sign(k)
2� a2s1
%f0~!0~10

�
1� 1

2a2s2
~!2
�
(a2s1 � a

2
f1)

�1

� �

%f0~!0~10
� i

3

2a2s2~10
~!0~!1 + i

~�s0~�s1

%f0~!0~10
;

� 1

~20
F2 = �i

~!0~!1

~20

h
� 1

a
2
s1~

2
20

�
1� ~!20

2a2s2

�
+

1

a
2
s2

+
1

a
2
s1

i

+sign(k)
�~!0

2�~20

�
�(a2s1 � a

2
f1)

�1 � 1
�

�sign(k) �~!0

2a2s1~
3
20%s0

�
1� ~!20

2a2s2

�
;

�F3 = i
~!0%s0

~20

�
1� ~!20

2a2s2

�
(2~!1 + i sign(k)

�

%s0
) + 2i�

~!0

~�s0
(i sign(k)

�

2�
� ~!1

a2s1

)

+2i
~!0~!1%s0

~20

�
1� ~!20

2a2s2

�
� i

~!1%f0

~10

~!30
a2s2

+
�~!0

~20

�
1� ~!20

2a2s2

�
+

�

~10

~!30
2a2s2

sign(k)�(a2s1 � a
2
f1)

�1
h
� ~!30

~10

a
2
s1

2a2s2
+

~!0�

~10
� ~!0

~20
a
2
s1

�
1� ~!20

2a2s2

�i
:

Obtaining C11 and C21 from (A.23), (A.24) and substituting these expressions into

(A.25), one gets relation

i
�

2~10~20
P0(~!0)Cs1 =

h 2�
~20

(1� ~!20
2a2s2

)F2 �
~!0

~10
F1 � F3

i
Cs0; (A:26)

which leads to the dispersion equation with respect to ~!1:

2�

~20
(1� ~!20

2a2s2
)F2 �

~!0

~10
F1 � F3 = 0: (A:27)

Taking into account that ~!0 = c1 =
p
�(1 + O(�2)) (see (4.22)) and ~10 = O(�), it

is not di�cult to estimate that

2�

~20
(1� ~!20

2a2s2
)F2 �

~!0

~10
F1 � F3
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= �i ~!50%f0

4�~310a
2
s1

(2~!1 + i sign(k)
�

%f0
)(1 +O(j~!0j))

+
�~!0

~10

h
sign(k)a2s1(1�

~!20
2a2s2

)(a2s1 � a
2
f1)

�1 � 1
i�
1 +O(j~!0j)

�
= 0: (A:28)

Hence

~!1 = �i sign(k)
�

2%f0
� i

2��~210a
2
s1

~!40%f0

h
sign(k)a2s1(1�

~!20
2a2s2

)(a2s1 � a2f1)�1 � 1
i
+O(�3=2)

= �i sign(k) �

2%f0
+O(�): (A:29)

Thus the asymptotics is valid if

1

jkj = �
1

2
+�
; � > 0: (A:30)
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