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Abstract

In this paper we give an overview on well-known stability and convergence

results for simple quadrature methods based on low order composite quadra-

ture rules and applied to the numerical solution of integral equations over

smooth manifolds. First we explain the methods for the case of second-kind

equations. Then we discuss what is known for the analysis of pseudodi�eren-

tial equations. We explain why these simple methods are not recommended

for integral equations over domains with dimension higher than one. Finally,

for the solution of a two-dimensional singular integral equation, we prove a

new result on a quadrature method based on product rules.

1 Introduction

A major task in numerical analysis is to provide methods for the solution of in-

tegral equations. For instance, the popular boundary element method consists in

transforming a boundary value problem for a partial di�erential equation into an

equivalent boundary integral equation and in solving this boundary equation nu-

merically. Usually, collocation or Galerkin schemes are applied for the discretization

of integral equations. If no analytic formulas for the integrals appearing in the dis-

cretized matrix operators are known, then, in a further discretization step, the inte-

grals are to be replaced by quadrature formulas. Therefore, methods like Galerkin's,

collocation or qualocation are called semi-discretization schemes. To get e�cient nu-

merical methods, the question arises how to choose optimal quadrature rules. This

essential question is discussed in a lot of papers in the engineering literature, and

mathematicians have analyzed and systematized these quadrature algorithms (cf:

e.g: [40, 21, 17, 46, 23, 31, 32, 6, 44, 14, 16, 15] ).
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However, right from the start (cf: e.g: [30]) fully discrete schemes have been

proposed. Applying these so-called quadrature methods, the integrals in the

original integral equation is directly replaced by a quadrature rule. The en-

tries of the resulting linear system can be expressed as linear combinations of

kernel function values with quadrature weights as coe�cients. The advantage

of quadrature methods is that they require less time for writing codes and a

little bit less time for computation. On the other hand, as a rule of thumb, the

approximation errors of quadrature methods are a little bit larger then those of

Galerkin or collocation schemes. Especially, the errors measured in negative

Sobolev norms may be essentially larger than those for Galerkin methods.

However, there are cases when quadrature methods can compete with the

accuracy of other schemes. Quadrature methods can be recommended for uni-

variate integral equations of the second kind with smooth kernels. For univari-

ate equations of the �rst kind and non-smooth kernels, quadrature methods

often require modi�cations, and their analysis is much more involved. Note

that �rst kind equations with smooth kernels are ill-posed, and the methods

of their regularization will not be discussed in this paper. In case of higher

dimensional equations, the simple quadrature methods can be recommended

only for second-kind equations with smooth kernels. For the general case, more

complicated quadrature methods like methods based on product integration

are needed. The latter, however, are very close to Galerkin or collocation meth-

ods with quadrature approximated entries in the sti�ness matrix. Note that,

in general, there is no big di�erence between a quadrature method and a col-

location scheme combined with an e�cient quadrature algorithm. Only the

�singular� integrals in the main diagonal of the sti�ness matrix and the �al-

most singular� integrals corresponding to the neighbour elements are treated

di�erently. Unfortunately, this small di�erence is essential for the convergence

analysis and the error estimates.

Similarly to the semi-discretized schemes, the quadrature methods can be

divided into h-methods, p-methods, and h-p-methods according to the under-

lying quadrature rule. If the last is exact for high order polynomials, i.e. a

variant of a Gauÿ rule, then the quadrature algorithm is called a p-method.

These p-versions of quadrature are known to be useful for second-kind equa-

tions, and they have been studied very extensively for Cauchy singular integral

equations over the interval (cf: the references in [35,13]). Quite recently they

have been applied to di�erent one-dimensional operator equations as well (cf:

[25,29] and see also [48] for a comparable approach). If the underlying quadra-

ture rule is a low order composite rule, i.e. if the domain of integration is

subdivided into small domains of step size less or equal to h and if a low order

rule like the trapezoidal rule or Simpson's rule is applied to each subdomain,

then we call the quadrature method h-method. h-methods for second-kind and

�rst-kind equations have been well analyzed (cf: e.g: [3,35,18,2,13,12] and the

references in these publications). Clearly, due to the �xed polynomial accu-

racy, these h-versions of quadrature methods are designed for problems with
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�nite degree of smoothness. Finally a combination of the composite technique

with quadrature rules over the subdomains of variable orders is called h-p

method. Note that p- and h-p-methods seem to be very promising even for

equations with a �nite degree of smoothness. The analysis of these methods

for general equations, however, seems to be a challenging problem.

In this paper we give an overview on more or less well-known results for the

h-version of quadrature methods. In Sect. 2 we shall introduce the notion

of simple quadrature methods and that of quadrature methods with prod-

uct integration. We shall formulate some convergence results for second-kind

equations with smooth kernel functions and smooth solutions. In Sect. 3 we

shall apply simple quadrature methods to pseudodi�erential equations, i.e. to

�rst-kind integral equations over smooth curves and over the torus. Note that,

for these methods, a sort of �Fourier analysis� is required to derive stability

and convergence. If the integral operator is de�ned over non-smooth bound-

ary curves, then the �Fourier analysis� of the approximation methods is much

more involved, and we refer e.g: to [35,12] for more details. In Sect. 4 we show

how the concept of mesh gradings for higher dimensional quadrature methods

leads naturally to fully discretized collocation schemes. We explain why sim-

ple quadrature methods may not converge in case of second-kind boundary

integral equations over curves and surfaces with corners and edges. Finally, we

explain that, from the view point of complexity, simple quadrature methods

over graded meshes are not optimal for the approximation of these higher-

dimensional integral equations. In Sect. 5 we consider a quadrature method

based on product integration for the numerical solution of two-dimensional

strongly singular integral equations.

2 Quadrature methods and Fredholm integral equations of the sec-

ond kind

A lot of boundary value problems over domains with smooth boundary can

be converted into a Fredholm integral equation of the second kind (cf: e.g:

[26]) the numerical theory for which is well known (cf: e.g: [3,18,2]). Let us

begin with the simplest one-dimensional case. Suppose we have to solve the

equation

x(t) +

1Z
0

k(t; � )x(� ) d� = y(t); 0 � t � 1; (2.1)
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where y and k are given smooth functions and x is to be determined. Replacing

the integral by the rectangle rule, we obtain the Nyström method for (2.1).

~x(t) +
n�1X
l=0

k

 
t;

l + 1=2

n

!
~x

 
l + 1=2

n

!
1

n

= y(t); 0 � t � 1: (2.2)

The solution of this continuous equation over the interval [0; 1] consists of

two steps. First one has to solve the quadratic linear system for the values

~x((j + 1=2)=n); j = 0; : : : ; n� 1

~x

 
j + 1=2

n

!
+

n�1X
l=0

k

 
j + 1=2

n

;

l+ 1=2

n

!
~x

 
l

n

!
1

n

= y

�
j

n

�
; (2.3)

j = 0; 1; : : : ; n� 1:

Then, knowing the values ~x(j=n), ~x is to be computed via Nyström's interpo-

lation.

~x(t) = y(t)�
n�1X
l=0

k

 
t;

l + 1=2

n

!
~x

 
l + 1=2

n

!
1

n

; 0 � t � 1: (2.4)

Using e.g: the theory of collectively compact operators, one can prove that

(2.2) is stable, i.e., that (2.3) has a unique solution for n large enough and

that the spectral norm of the inverse matrix is uniformly bounded. The ap-

proximate solution ~x converges to x with the same order as the quadrature

rule in (2.2) approximates the integral in (2.1).

Next we generalize this method. Suppose � is a compact manifold which is

embedded in a Euclidean space and which is either closed or open with bound-

ary. One should think of smooth curves or two-dimensional closed surfaces or

pieces of these two. Over the manifold we consider the integral equation

a(t)x(t) +
Z
�

k(t; � )x(� ) d�� = y(t); t 2 �; (2.5)

including the kernel k and the coe�cient function a. Frequently, for �rst-kind

equations, a is even zero. If a is a bounded non-vanishing function, then we

can divide the equation by a. Thus we may suppose that a is a constant. A

good example for kernel k is the two-dimensional double layer kernel which

corresponds to three-dimensional boundary value problems and which is de-

�ned by the formula k(t; � ) := (t� � ) � ��=(4�kt � �k3), where kt� �k is the

Euclidean distance from t to � and �� stands for the unit normal to the man-

ifold � taken at the point � . Note that the integral operator corresponding to

this double layer kernel is a pseudo-di�erential operator of order minus one
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(cf: e.g. [20,7]). The double layer equation including this integral operator is

an equation of the second kind with a = 0:5. In order to discretize (2.5) we

introduce a partition � = [K

k=1�k of � into small submanifolds �k of diameter

less than a prescribed small positive number h. Fixing a small integer L and

choosing quadrature knots tk;l 2 �l; l = 1; : : : ; L and non-negative quadrature

weights !k;l; l = 1; : : : ; L for a quadrature over �k, we arrive at the composite

quadrature rule

Z
�

f(� ) d�� =
KX
k=1

Z
�k

f(� ) d�k� �
KX
k=1

LX
l=1

f(tk;l)!k;l: (2.6)

Note that, for �ner and �ner approximations, K tends to in�nity, the maxi-

mum h of the diameters diam�k; k = 1; : : : ;K tends to zero but L is supposed

to be �xed. By mQ we denote the order of convergence de�ned by

������
Z
�

f(� ) d�� �
KX
k=1

LX
l=1

f(tk;l)!k;l

������ � Ch
mQ

: (2.7)

For example, the partition could be a triangulation of a two-dimensional poly-

hedron and the quadrature rule the mid-point rule
R
�k
f � f(tk;1)!K;1 with

tk;1 the centroid of triangle �k and !k;1 :=
R
�k

1 or the three-point rule us-

ing the mid-points of the sides of the triangle as quadrature knots and the

weights !k;l =
R
�k

1=3. Note that the mid-point rule is exact for linear func-

tions whereas the three-point rule is exact for quadratic functions over the

subtriangles of the triangulation which leads to an order of convergence of

mQ = 2 and mQ = 3, respectively. For polygons the subdomains are intervals,

and one could take the trapezoidal rule and Simpson's rule, which are exact

for linear and cubic polynomials, respectively. In other words mQ = 2 and

mQ = 4, respectively. However, for periodic functions over the interval, the

order mQ of the trapezoidal rule is even 1. In case of curved polygons or

polyhedra, we can introduce parametrization mappings 
 : 
 �! � to reduce

the integral
R
�k
f to the integral

R

k
f �
 � j
0j over a subdomain 
k = 


�1(�k)
of 
 which is a subtriangle or subinterval. Applying the just mentioned rules

to the transformed integral, we end up with a rule of the form (2.6).

Now we replace the integration in (2.5) by the quadrature (2.6) and arrive at

the corresponding simple quadrature method (cf: (2.3))

a~xh(tk0;l0) +
KX
k=1

LX
l=1

k (tk0;l0; tk;l) ~xh (tk;l)!k;l = y(tk0;l0); (2.8)

k
0 = 1; : : : ;K; l

0 = 1; : : : ; L:

5



If the constant coe�cient a is not zero and if the linear system (2.8) is solved,

then we even can de�ne the Nyström interpolant (cf: (2.4))

~xh(t) :=
1

a

(
y(t)�

KX
k=1

LX
l=1

k (t; tk;l) ~xh (tk;l)!k;l

)
; t 2 �: (2.9)

Theorem 1 Suppose that the compact manifold � is mQ + 1 times continu-

ously di�erentiable and the right-hand side y is mQ times continuously di�er-

entiable. Furthermore, suppose that the kernel k is mQ times di�erentiable with

respect to each of its variable such that even the mixed derivatives @�
t
@
�

�
k(t; � )

with order � and � less than mQ are bounded. Finally, assume that the con-
stant a is not zero and that, for y � 0, the integral equation (2.5) has only

the trivial solution x � 0. Then the linear system of the quadrature method

(2.8) is uniquely solvable for any right hand side y at least if the step size of
discretization h is su�ciently small. The approximate solution ~xh converges

uniformly to the exact solution x and

sup
t2�

j~xh(t)� x(t)j � Ch
mQ (2.10)

with a constant C independent of the discretization parameters h, K, and L.

Note that in case of quasi-uniform partitions, i.e., in case that there exists a

constant c > 1 with c
�1
h � irad�k � diam�k � ch,

diam�k := supfjt� � j : t; � 2 �kg;

irad �k := supf" : 9� 2 �k s:t:jt� � j � ") t 2 �kg;

then the number of degrees of freedom is of order O(h�d) with d = 1 and

d = 2 for boundary curves and two-dimensional surfaces, respectively.

Theorem 2 Suppose that k is the kernel of a classical pseudodi�erential op-

erator of negative order minus m. Furthermore, suppose that mQ � m > 0,
that the compact manifold � is m+1 times continuously di�erentiable, and the
right-hand side y is m times continuously di�erentiable. Finally assume that a

is a non-zero constant and that, for y � 0, the integral equation (2.5) has only
the trivial solution x � 0. Then the linear system of the quadrature method

(2.8) is uniquely solvable for any right-hand side y at least if the step size of

discretization h is su�ciently small. The approximate solution ~xh converges

uniformly to the exact solution x and

sup
t2�

j~xh(t)� x(t)j � C log h�1hm (2.11)

with a constant C independent of the discretization parameters h, K, and L.
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In particular, the quadrature method applied to the double layer equation

over a two-dimensional boundary manifold converges with order O(h log h�1).
To prove the results of the last two theorems, one �rst shows stability of the

discretized operators on the right-hand side of (2.8). This can be done, for in-

stance, by the principle of collective compactness. Once stability is shown, the

convergence order is derived from the order of convergence of the quadrature.

For details we refer e.g: to [3,18,2,13]. The reason for the restrictive order of

convergence in Theorem 2 is the singular behaviour of the kernel which can

be characterized by the so called Calderón-Zygmund estimate

���@�
t
@
�

�
k(t; � )

���<C jt� � j�d+m�j�j�j�j (2.12)

valid for all derivatives of order � and � such that �d +m � j�j � j�j < 0.
Here �m is the order of the pseudodi�erential operator and d the dimension of

the underlying manifold �. The order in Theorem 2 can improved if a slightly

modi�ed quadrature method is considered. This modi�cation is called singu-

larity subtraction or regularization (cf: e.g: [13]). To introduce this method we

write (2.5) as

b(t)x(t) +
Z
�

k(t; � )[x(� )� x(t)] d�� = y(t); t 2 �; (2.13)

b(t) := a+
Z
�

k(t; � ) d��:

Thus we assume that we are able to compute the function b explicitly. E.g. for

the double layer equation over smooth surfaces constant functions are known

to be eigen functions of the integral operator corresponding to the eigen value

one half, and (2.13) takes the form

x(t) +
1

4�

Z
�

n� � (t� � )

k� � tk3
[x(� )� x(t)] d�� = y(t); t 2 �: (2.14)

If we replace the integration in (2.13) by the quadrature (2.6), we obtain the

following quadrature method and the following Nyström interpolation step

b(tk0;l0)~xh(tk0;l0) +
KX
k=1

LX
l=1

k (tk0;l0; tk;l) [~xh (tk;l)� ~xh (tk0;l0)]!k;l = y(tk0;l0);

k
0 = 1; : : : ;K; l

0 = 1; : : : ; L: (2.15)

~xh(t) :=
y(t)�

P
K

k=1

P
L

l=1 k (t; tk;l) ~xh (tk;l)!k;l

b(t)�
P

K

k=1

P
L

l=1 k (t; tk;l)!k;l
; t 2 �: (2.16)
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Theorem 3 Suppose that k is the kernel of a classical pseudodi�erential op-

erator of negative order minus m. Furthermore, suppose that mQ � m+1 > 0,
that the compact manifold � is m + 2 times continuously di�erentiable, and
that the right-hand side y is m + 1 times continuously di�erentiable. Finally

assume that a is a non-zero constant and that, for y � 0, the integral equa-

tion (2.5) has only the trivial solution x � 0. Then the linear system of the

quadrature method (2.15) is uniquely solvable for any right-hand side y and

the denominator in (2.16) does not vanish at least if the step size of discretiza-

tion h is su�ciently small. The approximate solution ~xh converges uniformly
to the exact solution x and

sup
t2�

j~xh(t)� x(t)j � C log h�1hm+1 (2.17)

with a constant C independent of the discretization parameters h, K, and L.

Another way to improve quadrature methods for non-smooth kernels is to

apply adapted quadrature rules of product type (cf: e.g: [24,2,13]). Indeed,

in many applications the kernel function k(t; � ) is singular but it admits a

factorization

k(t; � ) = ksm(t; � )ksi(t; � ); (2.18)

where the �rst factor ksm has at least a �nite degree of smoothness and where

the singularity of k is contained in ksi. Moreover, we suppose that the singular

kernel ksi is simpler such that the integral of ksi can be computed by analytic

formulae. Or we suppose that ksi(t; � ) is analytic with respect to � for � 6= t

such that the integral of ksi can be computed by higher order Gauÿ rules

and other techniques (cf: e.g: [45,46,23,44]). Note that an additional additive

perturbation by a smooth kernel function can be treated easily. For the sake

of simplicity, however, we drop this additional term.

One example for a factorization of the form (2.18) is the representation of

one-dimensional potential kernels for the Helmholtz equation. In particular,

the single layer kernel kk corresponding to the equation with wavenumber k

and transformed to the 2� periodic interval (cf: [24]) takes the form

kk(t; � ) = M1(t; � ) log
����4 sin2 t� �

2

����+M2(t; � ); (2.19)

M1(t; � ) :=�
1

2�
J0(kj
(t)� 
(� )j);

M2(t; � ) :=
i

2
H

(1)
0 (kj
(t)� 
(� )j)�H1(t; � ) log

����4 sin2 t� �

2

���� ;
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where 
 : [0; 2�] �! � is the parametrization of the boundary curve, where

J0 is the Bessel function of order zero, and where H
(1)
0 is the Hankel function

of order one. The factors M1 and M2 in (2.19) are analytic resp: smooth

functions if the parametrization 
 is analytic resp: smooth. Another example

for a factorization is due to the representation k(t; � ) = k0(t; � )jt� � j�� for

a typical boundary integral kernel over a smooth boundary curve ~�, where k0
is an analytic function and where � > 0 is a certain degree of singularity. If


 : � = [0; 2�] �! ~� denotes the parametrization of the boundary manifold

and if 
0 is the parametrization of the unit circle, then we get a factorization of

the form (2.18) for the kernel transformed to the 2�-periodic interval setting

ksm(
(t); 
(� )) := k0(
(t); 
(� ))
j
(t)� 
(� )j�

j
0(t)� 
0(� )j�
j
0(� )j; (2.20)

ksi(
(t); 
(� )) := j
0(t)� 
0(� )j
��
:

Unfortunately, such a factorization does not work for the higher dimensional

case. In the higher dimensional case, the structure of singularity is more in-

volved and depends strongly on the geometry. Thus the factorization (2.18) is

to be de�ned by ksm(t; � ) = k0(t; � ) and ksi(t; � ) = jt � � j�� (cf: Sect: 5 for

more details). Then, in the case of curved boundaries, there are no analytic

formulas available for the integration of ksi. However, if the boundary mani-

fold is piecewise analytic, then the integral of ksi can be computed by tensor

products of Gaussian quadratures. For general boundaries of �nite degree of

smoothness, the parametrization 
 can be replaced by a piecewise polynomial

interpolant ~
 which is polynomial at least over each subdomain �k of the cor-
responding partition of the quadrature method. After this substitution the

integral over the kernel ksi(~
(t); ~
(� )) = j~
(t) � ~
(� )j�� can again be com-

puted by tensor products of Gaussian quadratures (for more details in some

special case cf: e.g: [10]).

Now we choose points �k;l 2 �k and interpolating polynomials 'k;l over �k
such that 'k;l(�k;l0) = �l;l0. Polynomial means here polynomial with respect to

a given parametrization of the boundary manifold.We consider the quadrature

rule

Z
�

k(t; � )x(� ) d� =
Z
�

ksi(t; � ) [ksm(t; � )x(� )] d�

�
KX
k=1

Z
�k

ksi(t; � )
LX
l=1

[ksm(t; �k;l)x(�k;l)]'k;l(� ) d�

=
KX
k=1

LX
l=1

ksm(t; �k;l)x(�k;l)!
p

k;l
; (2.21)

9



!

p

k;l
:=

Z
�k

ksi(t; � )'k;l(� ) d�

In order to simplify the assumptions, we assume that the manifold � is a

curve or a surface given by a single parametrization 
 : 
 �! � and that

the preimages 
k := 

�1(�k) of the subdomains �k are intervals or triangles.

Moreover, we suppose that the L parameter points �k;l corresponding to the

quadrature knots �k;l = 
(�k;l) 2 �k are de�ned as the a�ne images of �xed

points �l; l = 1; : : : ; L in the standard interval [0; 1] resp: in the standard

triangle f(s1; s2) : 0 � s2 � s1 � 1g. Likewise, the polynomials 'k;l are sup-

posed to be the pull backs of interpolatory polynomials 'l de�ned over the

standard interval or triangle. If this basis spans a space containing all poly-

nomials of degree less than mp, than the convergence order of the quadrature

rule is mQ = mp. Applying the corresponding product rule to (2.5), we arrive

at the quadrature method

a~xh(�k0;l0) +
KX
k=1

LX
l=1

ksm (�k0;l0; �k;l) ~xh (�k;l)!
p

k;l
= y(�k0;l0); (2.22)

k
0 = 1; : : : ;K; l

0 = 1; : : : ; L:

Let us note that, for the special choice ksm � 1, the method (2.16) coincides

with the piecewise polynomial collocation method, where the trial space is the

span of the f'k;l; k = 1; : : : ;K; l = 1; : : : ; Lg. In other words, the quadrature

method with product rule is already a compromise between quadrature and

collocation method.

Theorem 4 Suppose that the kernel k admits a factorization (2.18), where
ksm is mp times continuously di�erentiable with respect to both variables such
that even the mixed derivatives @

�

t
@
�

�
k(t; � ) with order � and � less than mp

are bounded. For ksi(t; � ), we suppose the same degree of di�erentiability for
t 6= � and, for t �! � and the same orders of di�erentiation, the estimates
(2.12) where m > 0. Furthermore, suppose that the compact manifold � is

mp + 1 times continuously di�erentiable, and that the exact solution x and

the right-hand side y are mp times continuously di�erentiable. Finally assume

that a is a non-zero constant and that, for y � 0, the integral equation (2.5)

has only the trivial solution x � 0. Then the linear system of the quadrature
method (2.22) is uniquely solvable for any right-hand side y at least if the

step size of discretization h is su�ciently small. The approximate solution ~xh
converges uniformly to the exact solution x and

sup
t2f�k;l: k=1;:::K; l=1;:::;Lg

j~xh(t)� x(t)j � Ch
mp (2.23)

with a constant C independent of the discretization parameters h, K, and L.
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3 Quadrature methods for pseudodi�erential equations over smooth

boundaries

Boundary integral operators over smooth boundaries belong to the class of

classical pseudodi�erential operators (cf: e.g: [20,7]). If the order of such an

operator is non-negative, then the kernels of the integral operators are strongly

singular or even hypersingular. The convergence of simple quadrature meth-

ods applied to such functions is not guaranteed. In fact, in many situations

the straightforward quadrature methods do not convergence. We present here

convergent variants of quadrature methods, only. All these methods rely on

a singularity subtraction step (cf: e.g: (3.7), (3.8), and [41,4] for operators of

order minus one) though, at �rst glance, this may not be visible. Let us start

with the simplest case, i.e., with a Cauchy singular integral equation over the

unit circle T.

Ax(t) := a(t)x(t) + b(t)
1

�i

Z
T

x(� )

� � t

d� +
Z
T

k(t; � )x(� ) d� = y(t); (3.1)

t 2 T

Here a; b; k, and y are given functions and x is to be determined. Using the

ideas developed for second-kind integral equations, it is not hard to reduce

the problem for arbitrary kernel functions k to the case k � 0. Moreover, for

simplicity, we suppose a and b to be continuous. We choose an even positive

integer n, set tk := e
i2�k=n, and consider the following quadrature rules.

Z
T

f(� ) d� =

2�Z
0

f(eis)ieis ds �
n�1X
l=0

f(tl)tl
2�i

n

; (3.2)

Z
T

f(� ) d� �
X

l=0;:::;n�1; l� k+1mod 2

f(tl)tl
4�i

n

: (3.3)

Note that the rule (3.3) has doubled step size in comparison with (3.2).

However, it is appropriate to functions f having a singularity at tk and will

lead to optimal quadrature methods. Thus we consider (3.1) for t = tk; k =
0; : : : ; n � 1, replace the integral by the rule (3.3) to obtain the quadrature

method

a(tk)~x(tk) + b(tk)
1

�i

X
l=0;:::;n�1; l� k+1mod 2

~x(tl)

tl � tk

tl

4�i

n

= y(tk); (3.4)

k = 0; : : : ; n� 1:

11



We call this quadrature method stable if, at least for su�ciently large n,

the equations (3.4) are uniquely solvable for any right-hand side and if the

Euclidean matrix norms of the matrices of the linear systems in (3.4) and the

norms of their inverses are uniformly bounded with respect to n. The method

is called convergent if the trigonometric interpolation

Ln~x(t) :=
n�1X
k=1

~x(tk)
1

n

n=2�1X
l=�n=2

t
l

t
l

k

(3.5)

tends in the L2 norm to the exact solution x of (3.1) for all continuous right-

hand sides y. Note that stability is an important condition for solving the

linear system of equations. Moreover, it is necessary for the method to be

convergent.

Theorem 5 If the singular integral operator A is invertible, then the quadra-

ture method (3.4) is stable and convergent. For a right-hand side which is m

times di�erentiable such that the m-th derivative is square integrable, the L
2

error kLn~x� xk is less than a constant times n�m.

PROOF. We assume a and b to be constant. The general case can be treated

by well-known localization techniques (cf: e.g: [35]). Set ek(t) := t
k, denote

the span of the ek; k = �n=2 : : : ; n=2 � 1 by T n, and recall that Ln stands

for the interpolation projection of (3.5). Now it is well known that ek is an

eigenfunction of A corresponding to the eigenvalue a+ b sign(k+1=2). Hence,
Tn is an invariant subspace for A. The collocation solution xn 2 Tn is de�ned

by Axn(tk) = y(tk); k = 0; : : : ; n � 1, i.e., by LnAxn = Lny. Consequently,

we get Axn = Lny and the collocation solution xn = A
�1
Lny converges to the

exact solution x = A
�1
y. Thus in order to prove our theorem, it is su�cient

to show the equivalence of method (3.4) and the collocation.

The solution ~x of (3.4) is a discrete function over ftk; k = 0; : : : ; n � 1g. We

identify ~x with the linear interpolation Ln~x. Then our proof is �nished if we

show

Axn(tk) = axn(tk) + b

1

�i

X
l=0;:::;n�1; l� k+1mod 2

xn(tl)

tl � tk

tl

4�i

n

:

We have to prove that, for xn 2 Tn,

1

�i

Z
T

xn(� )

� � tk

d� =
1

�i

X
l=0;:::;n�1; l� k+1mod 2

xn(tl)

tl � tk

tl

4�i

n

: (3.6)

We arrive at

12



1

�i

Z
T

xn(� )

� � tk

d� =
1

�i

Z
T

xn(� )� xn(tk)

� � tk

d� + xn(tk)
1

�i

Z
T

1

� � tk

d� (3.7)

=
1

�i

X
l=0;:::;n�1; l� k+1mod 2

xn(tl)� xn(tk)

tl � tk

tl

4�i

n

+ xn(tk);

where we have used that e0 � 1 is an eigenfunction corresponding to the

eigenvalue 1, that fxn(t)�xn(tk)g=ft�tkg is in spanfek; k = �n=2; : : : ; n=2�
2g and that (3.3) is exact on spanfek; k = �n=2; : : : ; n=2� 2g. Note that the
exactness of (3.3) is a simple consequence of the formula for the geometric

series. Now (3.6) follows from (3.7) by a straightforward computation. The

convergence order can be derived by standard methods (cf: e.g: [35]). ut

An analogous result holds for the one-dimensional hypersingular equation

([22,5]). However, the singularity subtraction step (3.7) is to be replaced by

the following regularization of the �nite part integral.

1

2�

Z
T

~x(� )

j� � tkj2
jd� j=

1

2�

Z
T

~x(� )� ~x(tk)� ~x0(tk)(� � tk)

j� � tkj2
jd� j+ (3.8)

~x(tk)
1

2�

Z
T

1

j� � tkj2
jd� j+ ~x0(tk)

1

2�

Z
T

� � tk

j� � tkj2
jd� j:

Applying (3.3) to the �rst integral on the right-hand side, computing the

others and performing some easy calculations, we arrive at the quadrature

approximation

1

2�

Z
T

~x(� )

j� � tkj2
jd� j �

n

8
~x(tk) +

X
l=0;:::;n�1; l� k+1mod 2

~x(tl)

jtl � tkj2
tl

2

n

; (3.9)

which, again, is exact for ~x = xn 2 Tn. Note that a regularization like in (3.8)

is necessary in order to obtain a convergent quadrature method.

Now let us consider the generalized single layer equation

Ax(t) :=
Z
T

k(t; � )x(� )jd� j = y(t); t 2 T; (3.10)

k(t; � ) := a(t)k0(t; � ) + b(t)k1(t; � ) + k2(t; � );

k0(t; � ) :=�
1

�

log jt� � j; k1(t; � ) =; k1 (t=� ) ;

k1

�
e
i2�u

�
:=

8><
>:
i[u� 0:5] if 0 < u < 1

0 if u = 0
; (3.11)

13



where a, b and k2 are smooth functions. Operator A is a pseudodi�erential

operator with symbol �A(t; �) = [a(t)+b(t)sign(�)]j�j�1. Replacing integration
by the quadrature (3.2), we arrive at the quadrature method

n�1X
l=0

k (tk; tl) ~x(tl)
2�

n

= y(tk); k = 0; : : : ; n� 1: (3.12)

Note that k0(t; t) := lim�!t k0(t; � ) = 1. Thus, in the last formula, we need

to �x an arti�cial �nite value for k0(t; t) = k0(1; 1). Due to the factor 2�
n
this

value is of no importance for the consistency of the quadrature. However, the

choice of this value is essential for the stability and the order of convergence.

We take k0(1; 1) = � log n=� which corresponds to the quadrature method

modi�ed by singularity subtraction ([41,4]). For quadrature methods applied

to the general pseudo-di�erential equation (3.10) of order �1 and analogous

methods applied to other pseudodi�erential equations of negative order, the

method of the proof to Theorem 5 fails. The theory of collectively compact

operators is helpful to treat the compact perturbations
R
k2(t; � )x(� )jd� j. The

stability of the main part of the equation, however, requires new techniques.

Of course, stability is to be understood not in terms of the Euclidean matrix

norm but in terms of a more general operator norm induced by the norms of

the Sobolev spaces in whichA and its inverse are bounded. The �rst method of

proof is the so-called localization principle. The second is the Fourier analysis

or circulant technique. For example, the stability of the discretized weakly

singular operator de�ned by the left-hand side of (3.12) can be reduced by

localization to the stability of the corresponding matrices with frozen functions

a, b, and k2. The matrix with constant a, b, and k2 is a circulant and takes

the form

Vn :=
�
�a log j1 � tk�lj

2

n

+ b k1(tk�l)
2�

n

+ k2

2�

n

�n�1
k;l=0

: (3.13)

In general, a matrix (ak;l)
n�1
k;l=0 is called a circulant if ak;l = ak�l and ak�l =

ak�l�n. The eigenvalues f�l; l = �n=2;�n=2+1; : : : ; n=2�1g of the circulant
(ak�l)

n�1
k;l=0 are connected with the entries by

�k =
n�1X
l=0

e
i2�lk=n

al: (3.14)

Using (3.14), writing j1 � tlj = 2j sin(�l=n)j, and substituting sin(�x) by

�x

Q
1

j=1(1 � x
2
=j

2), it is not hard to verify that the matrix Vn has the eigen-

values

14



�
n

l
=

8><
>:
[s(tl)]=n if l = �n

2
; : : : ;�1; 1; : : : ; n

2
� 1

2�k2 if l = 0 ;
(3.15)

where the numerical symbol function s is de�ned by s(t) := a f(t) + bg(t),

f(t) :=2 log(2�)� 2
X

l2Z; l6=0

log jlj tl; g
�
e
i2�u

�
:= � cot(�u):

Note that function f is smooth except at t = 1. Multiplying f(t) by (t � 1)2

we get an absolutely convergent series. By the way, f is the symbol func-

tion of the Toeplitz matrix (�2 log jk � lj)1
k;l=�1 which is the quadrature dis-

cretization of step size one for the logarithmic equation over the real axis.

Comparing the eigen values (3.15) with the eigen values �0 = 2�k2 and

�l = (a + sign(l + 1=2))jlj�1; l = �1;�2; : : : corresponding to operator

A, we observe the consistency property �
n

l
=�l �! 1 for any �xed l and for

n �!1. The stability is equivalent to the existence of a constant c > 1 such

that c�1j�lj � j�n
l
j � cj�lj holds for su�ciently large n and l = �n

2
; : : : ;

n

2
� 1.

We arrive at the following typical theorem.

Theorem 6 If the pseudodi�erential operator A of order minus one is invert-
ible, if k0(1; 1) is chosen to be � log n=�, and if a(t) + �b(t) 6= 0 for all t 2 T
and �1 � � � 1, then the quadrature method (3.4) is stable and convergent.
For a right-hand side which is four times continuously di�erentiable or at least

contained in the Sobolev space H4(T), we get the estimate (cf: (3.5))

sup
t2T

jLn~x� xj �C kLn~x� xk
H1(T) � C n

�2 kykH4(T): (3.16)

The assumption a(t) + �b(t) 6= 0; �1 � � � 1 means that operator A is

strongly elliptic. Note that the interval [�1; 1] in this condition originates

from the set fg(t)=f(t) : t 2 Tg. The convergence order two in the estimate

(3.16) can be derived from the symbol function s, too. Namely, if there exist

a constant � > 0 such that jxjf(x) = 1 +O(jxj�) and xg(x) = 1 +O(jxj�) for
x �! �0, then j�n

l
� �lj=j�lj � O(n��) and the order of convergence is �. In

fact this constant exists, and is equal to two. As it is well known (cf: [4,41]),

the convergence order is even three in the case that the coe�cient b vanishes

identically. To improve the order of convergence, one can use, for instance, an

end-point correction for the rectangle rule (cf: [1]). More details and di�erent

modi�cations to improve convergence can be found in [4,41,47,43,27,28,35,13].

In general, for the stability of the quadrature method applied to a �rst-kind in-

tegral operator, the invertibility of the operator is not su�cient. Often strong

ellipticity turns out to be the necessary and su�cient stability condition. For
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one-dimensional pseudodi�erential operators of order less than -1, the quadra-

ture method can also be considered as a Galerkin method with Dirac-� ansatz

functions (cf: [42]). In this case standard techniques for the Galerkin approx-

imation of strongly elliptic operators can be applied.

Finally, let us remark that there is not much known for quadrature methods

applied to pseudodi�erential equations over the boundaries of higher dimen-

sional domains. The only paper in this direction we know about is due to Saad

Abdel-Fattah ([39]). To report this result, we considers the two-dimensional

pseudodi�erential operator of order zero over the torus T2 := f(t1; t2) 2 R2 :
0 � t1; t2 < 1g

Ax(t) := a(t)x(t) +
Z
T2

k(t; � )x(� ) d� = y(t); t 2 T2
; (3.17)

k(t; � ) := k0(t; t� � ) + k2(t; � );

where the coe�cient a and the kernel function k2 are supposed to be smooth

and where the singular kernel k0(t; �) satis�es

k0(t; %�)= sign(%)k0(t; �)%
�2
; % 6= 0; (3.18)

and is smooth with respect to t and � for t 2 T2 and j�j = 1. Applying the

tensor product trapezoidal rule to (3.17), we arrive at the quadrature method

a

 
k1

n

;

k2

n

!
x

 
k1

n

;

k2

n

!
+

n�1X
l1;l2=0

k

  
k1

n

;

k2

n

!
;

 
l1

n

;

l2

n

!!
x

 
l1

n

;

l2

n

!
1

n
2

= y

 
k1

n

;

k2

n

!
; k1; k2 = 0; : : : ; n� 1: (3.19)

Here the singular value k(t; t) is set to zero. Using localization techniques and

two-dimensional Fourier analysis, Saad proved the following theorem.

Theorem 7 If the singular integral operator A is invertible and satis�es the

condition (3.18), then the method (3.19) is stable and convergent in the same
sense as the method (3.4) in Theorem 5.

The convergence order for smooth right-hand sides is one. Note that this result

is not important as a result for the arti�cial torus but it is important as a local

analysis of the quadrature method over regular tensor product grids. Of course,

for a full understanding of quadrature methods a lot of further local cases have

to be studied, and these cases seem to be much more involved.
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4 Negative results for quadrature methods applied to higher di-

mensional equations

Now let us have a look at quadrature methods for the solution of general

integral equations over two-dimensional manifolds. If the kernel function and

the manifold are smooth, then we have nice results for second-kind equations

like in Theorem 1 and a lot of problems with �rst-kind equations which are

severely ill-posed and not discussed here. In many important applications,

however, the kernel k(t; � ) is singular in the sense of (2.12). In this case, even

if the quadrature method is stable, the convergence of the quadratures and,

consequently, that of the approximate solutions is very poor if the method is

not diverging at all (cf: e.g: Theorem 7). We only mention here the lack of

convergence for the simplest quadrature method applied to the double layer

equation over polyhedra. Without loss of generalization we choose the simplest

example and consider the equation

�
1

2
+ dC(t)

�
x(t) +

1

2�

Z
�

�� � (t� � )

jt� � j3
x(� ) d��= y(t); t 2 � (4.1)

over the boundary � of C = f(x1; x2; x3) 2 R3 : 0 � xi � 1; i = 1; 2; 3g. Here
�� is the unit normal to � at � and dC(t) is the normalized solid angle of C

at the boundary points, i.e., dC(t) = 1=8 for vertex points, dC(t) = 1=4 for

edge points, and dC(t) = 1=2 else. For simplicity, we choose � = [K

k=1�k to be

the partition of � into K = 6n2 uniform squares of side length h = 1=n, and
we suppose that the rule (2.6) in method (2.8) is the mid-point rule. Then

the error sup
k;l
j~xh(tk;l)� x(tk;l)j need not tend to zero even if the right-hand

side y is smooth. This follows from the fact that the quadrature error does

not turn to zero uniformly. Indeed, choose tk0;l0 = (0:5h; 0; 0:5h) and x to be

one over f(x1; x2; 0) 2 R3 : 0 � xi � 1; i = 1; 2g and zero over the rest of �
and consider the quadrature error

Z
�

k (tk0;l0; � )x (� ) d�� �
KX
k=1

1X
l=1

k (tk0;l0; tk;l)x (tk;l)!k;l

=
1

2�

1Z
0

1Z
0

(0; 0; 1) � ((0:5h; 0; 0:5h)� (x1; x2; 0))

j(0:5h; 0; 0:5h) � (x1; x2; 0)j3
dx1 dx2

�
1

2�

nX
k1;k2=1

(0; 0; 1) � ((0:5h; 0; 0:5h) � ([k1 � 0:5]h; [k2 � 0:5]h; 0))

j(0:5h; 0; 0:5h) � ([k1 � 0:5]h; [k2 � 0:5]h; 0)j3
h
2

=
1

2�

nZ
0

nZ
0

0:5

j(0:5; 0; 0:5)� (x1; x2; 0)j3
dx1 dx2
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�
1

2�

nX
k1;k2=1

0:5

j(0:5; 0; 0:5) � ([k1 � 0:5]; [k2 � 0:5]; 0)j3
:

Obviously, this tends to

1

2�

1Z
0

1Z
0

0:5

j(0:5; 0; 0:5)� (x1; x2; 0)j3
dx1 dx2

�
1

2�

1X
k1;k2=1

0:5

j(0:5; 0; 0:5)� ([k1 � 0:5]; [k2 � 0:5]; 0)j3
;

i.e: to the quadrature error over an unbounded conical boundary manifold.

This quadrature error with step size h = 1 is di�erent from zero. Now the

convergence properties of the quadrature method correspond to those of the

quadrature rule, and the method (2.8) does not converge with respect to the

supremum norm. Similar homogeneity arguments apply to quadrature meth-

ods including special graded meshes and double layer equations over general

piecewise smooth boundary manifold. To get a converging quadrature method,

it is su�cient to choose the version with singularity subtraction (2.15). Anal-

ogous arguments can be used also for disproving the convergence in the case

of strongly singular integral equations.

Now turn again to general quadrature methods over two-dimensional mani-

folds. To improve a low order of convergence, one has to adapt the quadrature

to the singular behaviour of the kernel function � 7! k(t; � ). We shall discuss

two methods, mesh gradings in this section and product rules in Sect. 5. The

�rst and simplest way of adaption is to use a mesh grading towards the sin-

gularity point t of the kernel. In other words, the quadrature rule employed

for the numerical method should not be a �xed rule but it should depend

on the source point t. Such an improved method seeks approximate values

~x(t) for the unknown solution x over the points t of a �xed grid G. For each

point t 2 G, we have to approximate the integral
R
k(t; � )x(� ) d� in (2.5) by a

quadrature rule over a re�ned grid Gt the points of which accumulate around

t. Hence function values x(� ) at the quadrature knots � 2 Gt of this re�ned

grid are required, and these can be obtained by interpolating the �xed set of

approximate values f~x(t); t 2 Gg. If the interpolant is ~xI , i.e: if the values

~x(� ); � 2 Gt are approximated by ~xI(� ); � 2 Gt, then the quadrature ap-

proximation to
R
k(t; � )x(� ) d� is a discretization of

R
k(t; � )~xI(� ) d� . In other

words, the resulting scheme in its simplest form is rather not a quadrature

method but rather a fully discretized collocation method.

An exception, where a re�ned mesh can lead to a quadrature method in the

sense of (2.8), is the case of second-kind integral equations over non-smooth

but piecewise smooth surfaces. Let the piecewise smooth surface � 2 R3 take

the form [
m�

m=1�
m, where all the patches �m are smooth. Then, for instance,
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the kernel k(t; � ) of the double layer equation satis�es (2.12) with m = 0
for points t; � from di�erent patches �m and �m

0

. For points of the same

smooth boundary patch �m , the estimate (2.12) holds with m = 1. Moreover,

if the patches �m are planar, then the double layer kernel vanishes. Hence,

one can choose a �xed mesh G graded towards the boundaries of the patches

�m, and, for each t 2 G, the grids Gt can be chosen to be G. The mesh

grading means that the diameter of the partition domain has to be small

when the domain is close to the edge, i.e: to the boundary of the smooth

patches �m. Unfortunately, a partition with subdomains small only in the

direction toward the edge and larger in the direction parallel to the edge

is not su�cient. The resulting quadrature methods take the form (2.8) and

(2.15). The number of subdomains and the corresponding number of degrees

of freedom corresponding to such gradings is usually in the order [h�1]� where

h is the maximal mesh size and where � > 2. Thus essentially more degrees

of freedom are necessary than the [h�1]2 for methods over uniform grids. The

corresponding quadrature methods are analyzed in [37,36].

To evaluate the quadrature methods over graded meshes we turn to the com-

plexity. Let us suppose that � is the order of complexity for Nyström'smethods

over regular grids, i.e., suppose that the number of necessary arithmetic op-

erations to compute an approximate solution with a supremum norm error

less than a prescribed " > 0 is less than O(["�1]�). Here the � depends on

the singularities of the exact solution to the double layer equation. It turns

out that, using an appropriately graded mesh, the order of complexity of Nys-

tröm's method can be reduced to �=2. In contrast to this higher dimensional

result for quadrature methods, the complexity order of the univariate quadra-

ture method and that of higher dimensional discretized collocation or Galerkin

methods can be reduced to an arbitrarily small number if only a quadrature

rule resp: a trial space of su�ciently high order is used and if the mesh is

appropriately graded. In particular, in case of the two-dimensional colloca-

tion method, the graded meshes can be chosen to include subdomains which

are of small size in direction to the closest boundary point of the boundary

face and which have a larger size in the perpendicular direction. Hence, the

number of degrees of freedom can be estimated by [h�1]2 and, at least asymtot-

ically, the order of complexity can be reduced to an arbitrarily small number.

Consequently, even in the case of second-kind equations, the fully discretized

collocation or Galerkin methods are more e�cient than the simple quadrature

methods (2.8) and (2.15).

5 Product quadrature for two-dimensional singular equations

Suppose � is a smooth two-dimensional manifold. Over � we consider the

integral equation Ax = y from (2.5) with A an operator invertible in the
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space L
2(�). We suppose that the kernel k admits a factorization k(t; � ) =

ksm(t; � )ksi(t; � ) with the factor ksm of �nite degree of smoothness and with

the singularity factor ksi, which satis�es (2.12) with m = 0 and d = 2. We

assume that, in contrary to the integration of k, the integration of ksi is easy

to perform. Using the factorization, we can consider the product quadrature

rule (2.21) of order mp and the corresponding quadrature method (2.22) from

Sect: 2.

Let us discuss one important example. Operator A could be a classical pseu-

dodi�erential operator of order zero. Clearly, the corresponding equation is of

the form (3.17) with T2 replaced by �. To enable an explicit factorization, we

consider singular kernels k0 (cf: (3.17)) of the form

k0(t; � )= k00(t; � )
p(t� � )

jt� � j�
; (5.1)

where � is an integer greater or equal to two and where p is a homogeneous

polynomial of degree �� 2. Using (5.1), we de�ne the factorization k0(t; � ) =
ksm(t; � )ksi(t; � ) by

ksm(
(s); 
(s
0)) := k00(
(s); 
(s

0)) � j
0(s0)j;

ksi(
(s); 
(s
0)) :=

p(
(s)� 
(s0))

j
0(s0)j � j
(s)� 
(s0)j�
; (5.2)

where 
 : 
 �! � is the parametrization of � and where j
0(s)j with s =
(s1; s2) stands for the Jacobian determinant j@s1
(s)� @s2


(s)j of the param-

etrization. To simplify the formulas, for the case that there is no global param-

etrization, we suppose that 
 is the disjoint union of the parameter domains

corresponding to local parametrization patches.

For our example, we now consider a quadrature partition � = [K

k=1�k which

corresponds to a triangulation of the parameter domain 
. We may suppose

that the parametrization 
 is analytic over each panel �k since otherwise we

can replace 
 by a piecewise polynomial parametrization which is polyno-

mial over the parametrization domain 

�1(�k) (for an estimate of such an

replacement cf: e.g: [10]). Note that the integrant s0 7! ksi(
(s); 
(s0))j
 0(s0)j
is analytic over all triangular subdomains 
�1(�k) with a possible singularity

at s0 = s. The degree of smoothness of ksm is determined by the degree of

smoothness of k00 and of 
.

Let us turn back to the general case. To simplify the notation, we suppose from

now on, that the knots �k;l are located in the interior of the triangular panels

�k. Moreover, we shall call the triangulation � = [K

k=1�k locally quasiuniform

if:
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i) There is an " > 0 such that the interior angles of the triangles 
�1(�k)
are all bounded between " and � � ".

ii) There exists constants c > 0 and � � 1 such that the quadrature step

size h := maxfdiam�k : k = 1; : : : ;Kg satis�es the estimate c h
� �

minfdiam�k : k = 1; : : : ;Kg.
iii) There is a constant C > 0 such that, for any two non-neighbour subdo-

mains �k and �k0 , we have diam�k � Cdist(�k;�k0).
As before, we call the method (2.22) stable, if (2.22) is uniquely solvable for

any right-hand side at least for su�ciently small h and if the norm of the

matrix

��
a�(k;l);(k0;l0) + ksm (�k;l; �k0;l0)!

p

k0;l0

�
(k;l);(k0;l0)

�
�1

inverse to the matrix of the system (2.22) is uniformly bounded for all locally

quasiuniform partitions with su�ciently small step size h. The norm of the

matrix is the one induced by the L2 space. Since







KX
k=1

LX
l=1

�k;l'k;l







L2(�)

�

vuut KX
k=1

LX
l=1

%
2
k
j�k;lj

2
; %k :=

vuutZ
�k

1 d�t (5.3)

holds for any sequence of numbers �k;l, the norm of the matrix is the Euclidean

matrix norm of

�
aI +

�
%kksm (�k;l; �k0;l0)!

p

k0;l0
%
�1
k0

�
(k;l);(k0;l0)

�
�1

:

As mentioned in Sect. 2, the quadrature method based on product integration

is a perturbation of the collocation method where the trial functions are func-

tions spanned by 'k;l. More precisely, the collocation method seeks an approx-

imate solution ~x for the exact solution x of (2.5) in the span of the functions

'k;l such that A~x(�k;l) = y(�k;l) holds for any point �k;l. The coe�cients of ~x
with respect to the basis functions 'k;l are to be determined from a system of

linear equations including the so-called sti�ness matrix (A'k0;l0(�k;l))(k;l);(k0;l0).

Analogously to the quadrature method, the collocation is called stable if the

sti�ness matrix is invertible at least for small step size h and if the Euclidean

matrix norm of the inverse matrices (%kA'k0;l0(�k;l)%
�1
k0 )�1(k;l);(k0;l0) are uniformly

bounded. The stability analysis of these collocation methods for two dimen-

sional manifolds is a di�cult task. It seems, there exist only very few results for

special cases (cf: [33,19] and, for similar operator equations, cf: [49,38,34,8,9]).

On the other hand, many engineers use collocation methods successfully with-

out observing any stability problem. If stability is true, then the derivation of

the usual convergence results for the collocation is not di�cult.
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Theorem 8 We suppose that the partition � = [K

k=1�k is locally quasi uni-

form. Furthermore, we suppose that the parametrization 
 is analytic over each

subdomain �k and mp+1 times continuously di�erentiable. Recall that mp � 2
is the order of approximation of the interpolation f 7!

P
k;l f(�k;l)'k;l and the

order of the product rule (2.21). We assume that the kernel of (2.5) admits

a factorization k(t; � )=ksm(t; � )ksi(t; � ) such that the factor ksm is mp times

continuously di�erentiable and that ksi satis�es (2.12) with m = 0 and d = 2.
For the exact solution x of (2.5), we suppose the existence of square integrable

derivatives up to ordermp. Finally we suppose that the integral operator on the
right-hand side of (2.5) is invertible and that the collocation method based on

the trial basis functions 'k;l and the collocation points �k;l is stable. Then the

quadrature method (2.22) based on product quadrature is stable, too. Moreover,

we get the error estimate

k~xh � xk
L2(�)�Ch

mp log h�1; ~xh(t) :=
LX
l=1

~xh(�k;l)'k;l(t) if t 2 �k: (5.4)

PROOF. We have to show two things. First, to obtain stability, we have to

prove that the matrix of the quadrature method is a small perturbation of

the collocation matrix with respect to the norm. Second, to show the error

estimate, we have to derive consistency. I.e: we have to consider the di�erence

of the quadrature discretized operator applied to the exact solution minus the

operator applied to the exact solution and to prove that the result can be

estimated by the right-hand side of the estimate in (5.4).

For the di�erence of the matrix entries corresponding to the quadrature and

collocation matrices, we get

d(k;l);(k0;l0) := ksm(�k;l; �k0;l0)!
p

k0;l0
�

Z
�k

k(�k;l; t)'k0;l0(t) d�t

=
Z
�k

[ksm(�k;l; tk0;l0)� ksm(�k;l; t)]ksi(�k;l; t)'k0;l0(t) d�t: (5.5)

In view of the local uniformness of the mesh, we conclude, for t 2 �k and

t
0 2 �k0 with disjoint �k and �k0 , that

dist (�k;�k0) � jt� t
0j � dist (�k;�k0) + diam�k + diam�k0

� (1 + 2C)dist (�k;�k0) ;

jt� t
0j�2� j�k;l � �k0;l0j

�2
: (5.6)

Similarly, for neighbours �k and �k0 , the de�nition of the points �k;l = 
(�k;l)
as a�ne images of interior points �k in the standard triangle, implies
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jt� �k0 ;l0j
�2� j�k;l � �k0;l0j

�2 (5.7)

for any t 2 �k. Using this, the estimate j'k0;l0(t)j � Ch
�1jt � �k;lj valid for

k = k
0 and l 6= l

0, the condition (2.12), the representation (5.5), and the

di�erentiability of kernel ksm, we arrive at

���d(k;l);(k0;l0)

����C

8><
>:
h j�k;l � �k0;l0j

�2
%
2
k0 if k 6= k

0

h if k = k
0
:

(5.8)

We estimate the norm of the corresponding matrix by Schur's lemma to get

n :=




�%kd(k;l);(k0;l0)%

�1
k0

�
(k;l);(k0;l0)





 (5.9)

� sup
k;l

8<
:
X
k0;l0

���d(k;l);(k0;l0)

���
9=
; � sup

k0;l0

8<
:
X
k;l

%
2
k

���d(k;l);(k0;l0)

��� %�2
k0

9=
; :

Now the inequality (5.8) together with (5.6),(5.7) and the property iii) of local

uniformness of the quadrature partition lead to

X
k0;l0

���d(k;l);(k0;l0)

����Ch+ Ch

X
k0 ;l0

j�k0;l0 � �k;lj
�2

%
2
k0

�Ch+ Ch

Z
�n�k

jt� �k;lj
�2 d�t � Ch log h�1;

X
k;l

%
2
k

���d(k;l);(k0;l0)

��� %�2
k0 �Ch+ Ch

X
k;l

j�k0 ;l0 � �k;lj
�2

%
2
k

�Ch log h�1:

Hence, the di�erence of the quadrature discretized operator minus the collo-

cation discretized operator has a norm n less than Ch log h�1.

Next we turn to the estimation of the di�erence of the quadrature discretized

operator minus the full operator applied to the exact solution. Thus we have

to estimate the norm of
P

k;l dk;l'k;l with

dk;l :=
X
k0 ;l0

ksm(�k;l; �k0;l0)x(�k0 ;l0)!
p

k0;l0
�

Z
�

k(�k;l; t)x(t) d�t

=
Z
�

ksi(�k;l; t) fL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]g d�t;

where L stands for the interpolatory projection, i.e: L [ksm(�k;l; t)x(t)] :=P
k0;l0 ksm(�k;l; �k0;l0)x(�k0;l0)'k0;l0(t). We split dk;l = d

1
k;l

+ d
2
k;l

with
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d
1
k;l

:=
Z
�k

ksi(�k;l; t) fL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]g d�t;

d
2
k;l

:= dk;l � d
1
k;l

and estimate the norms of
P

k;l
d
1
k;l
'k;l and

P
k;l
d
2
k;l
'k;l separately. Using the

approximation property of the interpolation as well as the smoothness as-

sumptions for ksm and x, we arrive at

���d2
k;l

��� �
C

X
k0
6=k;l0

jksi(�k;l; �k0;l0)j %k0

vuut
Z
�k0

jL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]j
2 d�t

� C

X
k0
6=k;l0

jksi(�k;l; �k0;l0)j %k0h
mp

vuuut
mpX
n=0

Z
�k0

jrn
x(t)j2 d�t:

This expression can be looked at as the result of multiplying the vector

(
qP

n

R
�k0
jrn

x(t)j2 dt )(k0;l0) by a matrix. Hence, in view of (2.12) and (5.3),

the norm of
P

k;l d
2
k;l
'k;l is less than

C h
mp





�%k j�k;l � �k0;l0j
�2

%k0

�
(k;l);(k0;l0)





 �
vuuut

mpX
n=0

Z
�

jrn
x(t)j2 d�t: (5.10)

Analogously to the estimate h log h�1 for (5.9), we get the estimate C log h�1

for the matrix norm in (5.10). Finally, the norm of
P

k;l d
2
k;l
'k;l is less than the

expression Ch
mp log h�1 on the right-hand side of the estimate in (5.4).

Let us turn to
P

k;l d
1
k;l
'k;l. Over an arbitrary smooth and bounded two-

dimensional manifold ~�, the functions of the Sobolev space H
2 are known

to be Lipschitz, and we get that, for a �xed constant C > 0, for any ~� 2 ~�,
and for any function ~

f on ~�,

Z
~�

j~� � ~
tj�2j ~f (~�)� ~

f (~t)jd~�
~
t�C

vuut
Z
~�

jr ~
f(~t)j2 d~�

~
t+ C

vuut
Z
~�

jr2 ~
f(~t)j2 d~�

~
t:

Choosing ~� := f~t = t=diam�k : t 2 �kg, substituting the variable of inte-

gration ~
t by t=diam�k, and setting f(t) = ~

f(~t) and f(� ) = ~
f (~�), we arrive

at

Z
�k

j� � tj�2jf(� )� f(t)jd�k t�C

vuut
Z
�k

jrf(t)j2 d�kt
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+Cdiam�k

vuut
Z
�k

jr2
f(t)j2 d�kt; � 2 �k:

Using this and the approximation property for projection L, we obtain that

���d1
k;l

����C

�������
Z
�k

j�k;l � tj
�2
jL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]j d�t

�������
�C

vuut
Z
�k

jr fL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]gj
2 d�t

+C h

vuutZ
�k

jr2 fL [ksm(�k;l; t)x(t)]� [ksm(�k;l; t)x(t)]gj
2 d�t

�C h
mp�1

mpX
n=0

vuut
Z
�k

jrn
x(t)j2 d�t:

Hence, in view of %k � Ch and (5.3), we get that the norm of
P

k;l d
1
k;l
'k;l is

less than Ch
mp, and the consistency order of (5.4) is shown. ut

Note that, in view of the last proof we can relax the assumptions of Theorem

8. The global di�erentiability of 
 and ksm can be replaced by di�erentiability

over each subdomain �k together with the global boundedness of these local

derivatives. This weaker assumption holds true when a parametrization is

replaced by its piecewise polynomial interpolation. Furthermore, Theorem 8
remains true if the solution x has a weak singularity at a �nite number of

points. In this case, the mesh should be graded toward these points such that

the larger values for the
qR

�k
jrmp

xj2 in the estimates for the interpolation

error x �
P
x(�k;l)'k;l are compensated by the factors [diam�k]mp which are

smaller than h
mp.

Further, we remark that the logarithm in the error estimate (5.4) can be

dropped if the integral operator with the kernel function jk(t; � )j is bounded
in L

2. This last assumption holds true e.g: for operators of double layer type

de�ned over non-smooth domains. Finally, a generalization of Theorem 8 to

operators of order minus one and to piecewise linear collocation over regular

grids has been treated in [10]. In that paper even a fast quadrature algorithm

for a wavelet approach has been derived.
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