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1. INTRODUCTION 

This paper is a continuation of [1] where we considered the link between expansions 
to a real base /3 and ergodic properties of the corresponding /3-shift. 
We found there a certain gap in the hierarchy of the sizes in the classification 
proposed by F. Blanchard. The aim of this paper is to fill in this gap. We will 
follow the notations in [1]. 

2. STATEMENT OF THE MAIN THEOREM 

In [1] we have shown that the set Os of /3-numbers whose orbit of 1 is dense in 
[O, 1) has full Lebesque measure and is residual. Therefore its complement 0 4 has 
Lebesque measure zero and is meager. Here we want to define a set Os, 0 4 C Os C 
Cs, which still has full Lebesque measure and is meager. 
Let 7r : (0, 1] ~ Sf3 denote the map assigning to each x E [O, 1] its /3 expansion 
{in(x,/3)} and Sf3 the closure of the image of 7r (For definitions see [1].). 

Definition 2.1. We say a real number /3 E (1, oo) is self normal iff /3 belongs to 
the set 

Os = {/3 E (1, oo) I The orbit of 1 under Tf3 is normally distributed 
in [O, 1) w.r.t. Vf3}. 

For an allowed word B = [i1 , ... , im] and an /3-expansion ~ of a real number in 
[O, 1) l~t ft(~, B) denote the relative frequency 

of the word B in ~. Then 

Os = {/3 E (1, oo )I limt-+oo ft( { in(l, /3)}, B) exists for all allowed words B 
and equals v13( 7r-1 B)}. 

Now we can state the main 

Theorem 2.1. {1) Gs has full Lebesque measure in (1, oo). 
{2) Gs is meager. 
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3. ERGODIC PROPERTIES OF SHIFT SPACES 

Most of the results in this section are contained in [2]. Let :E be a shift space -
that is a set of 1-sided infinite sequences over the alphabet {O, ... , m} which is 
invariant under the left-shift a. 

Definition 3.1. For ~ E :E we denote by VT(~) the set of accumulation points of 

{ 
1 N-1 ·}

00 

"'""' -i -L.Jµ·a 
N i=O N=l 

Definition 3.2. For~ E :Ewe define the lower entropy of~ as 

h(~) =inf {hµIµ E VT(~)} 
and for (3 E (1, oo) 

h({3) = h ( { in(l, {3)}). 

Within these notations standard facts for shift spaces give: 

Proposition 3.1. h(f3) =inf {-1 :E fN(B)lnfN(B)} 
where the sum is taken over all allowed words of length N and · 
fN(B) = fN( {in(l, {3)}, B). 

4. SUBSHIFTS OF FINITE TYPE 

We begin by recalling some facts about subshifts of fintite type (s.f.t.). A quite rich 
expository is contained in [2]. 
Let A be an irreducible s.f.t. that is given an alphabet {O, ... , m - 1} and an 
irreducible and aperiodic matrix T = ( tij )mxm whose entries are either 0 or 1 then 
A is the set 

A={~= [x1 ... ] E {O, ... ,m- l}N ltxixi+i = 1} 
Let a be the shift to the left. A Markov measure is given by a stochastic matrix 

P = (Pii)mxm with Pij > 0 ~ tij = 1. 
Let (pi, ... , Pm) be the only eigenvector with eigenvalue 1. Then the measure of a 
cylinder [x1 , ... , Xn] is defined by 

µp([x1, · · ·, Xn]) = Px1Px1x2 · • ·Pxn-lXn· 

This measure is shift-invariant and mixing. 
It is well known that under these conditions the limit 
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and moreover 

_ 1 N-1 
P = (Pii) = lim - L pn 

N---too N n=O 

Pii =Pi· 

exists 

Then these Pi will be called the stationary distributions. Also there exists the 
stationary distribution of any block µ;( B) = µp( B). Let {Bi} be the blocks of 
length m. We omit the proof of the following easy lemma: 

Lemma 4.1. For~ EA and c > 0 there is am EN and a Markov measureµ s.t. 
(1) lim fn1e(~, Bi) - c ~µ(Bi)~ lim fn1e(~, Bi)+ c 

k---too k---too 

(2) }~~ n~ lnµ(Cn1e(~)) ~ ! lnTI µ(Bi)µ.(Bi) + c 

with Gn(~) = fa. E Alx1 = Y1 ... Xn = Yn} the n-cylinder of~ in A and {nk} a 
subsequence of the naturals such that the limits of the relative frequencies exist. 

A s.f.t. has topological entropy log>.. where >.. is the largest positive eigenvalue of 
the tran-sition matrix T. There exists a unique measure of maximal entropy µ(>.). 
This measure is Markov and has the property , that for each cylinder G of length 
n 

K-1 >..-n ~ µ(>.)( G) ~ K>..n, K >_0. 
The eigenvector of the eigenvalue >.. for the corresponding stochastic matrix p(>.) 
we denote by (p~.\), . .. , p~.\)). 

5. DIMENSIONS LIKE VALUES 

We introduce a dimension-like value diIDe on the s.f.t. A (e from entropy). 
For X CA, s E JR+ we define in Hausdorff measure styles-dimensional e-measure 
by 

es(X) = lim inf L >..-sn(c) 
N---too CN CECN 

where the infimum is taken over all covers CN of X consisting of cylinders C with 
length n( c) ~ N. One easily can check that there is a unique s0 = diIDe X being 
the border between infinite and zero es-measure of X. 

In [3) Ya. Pesin introduced the following notions of topological entropy: for a shift 
space 2:, s E JR+, Y C 2: we set 

and 
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ms(Y) = lim inf L e-sN 
N-+oo co 

N cEC~ 

where the infimum in ms is taken over all covers CN of Y consisting of cylinders of 
length n( C) ~ N and in ms over covers consisting of cylinders of length N. The two 
numbers h and h defining the transition from 00 to 0 for ms and mil respectively 
are the Pesin entropy and the Pesin entropy-capacity. 
He proved that for compact and invariant sets these two notions coincide with the 
usual topological entropy h introduced by Bowen. 

Lemma 5.1. Let /3 be a simple /3-number - i.e. {in(l,/3)} is finite - and 

_ { I h(x) 1 } MN(/3) = ~ E Sf3 log-/3 < 1 - N . 

Then 

Proof. We fix now the simple /3-number /3. It is well known that the topological 
entropy of s{j is ln /3. 
Let {µn} be a countable and dense - in the set of all Markov measures - set of 
Markov measures. 
According to lemma 4.1. if~ E MN(/3) then there is a measure µn with stationary 
distributions {µn(B1), ... , ILn(Bt)} arbitrary close to the set { limfr(~, Bi)}1=1 of 
accumulation points of the sequences 
{fz;(~, Bi)}. Let us furthermore assume that supp µn == Sf3. Suppose that for a large 
enough m {Bi} are the allowed words of length m. Then the following inequalities 
are fulfilled for a suitable choice of a subsequence Tk 

lim _lzn-µ (C (x)) == _1..zn fl-µ (B·)"iin(Bi) + ~ == k-+oo r,. n r,. - m n i 2 

== -! "LILn(Bi)lnµn(Bi) + ~ < hµn + e < (1 - -Ji) ln/3 

If we consider the sets 

00 -

then U An :J MN(/3). 
n=l 

Let Bk== {Cm(~)I~ E MN(/3),/Ln(Cm(~)) > e-m(l-1f)ln{3 ,m ~ k}. 
By the preceeding arguments Bk is a covering of MN(/3). Therefore we can proceed 
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1 > lim inf L: /ln (Cm(~)) > 
- k-HXJ B'CB"- Cm.(ff)EB' 

> lim inf L: e-m(l--Ji )ln/3 
k--+oo B'CB"- Cm.(!f)EB' 

= lim inf L: {3-(l--Ji)m 
k--+oo B'cBh Cm.(!Q)EB' 

where the infimum is taken over all subcovers B' of Bk. But this means 

- . 1 
diine MN(f3) < 1 - N. 

D 

6. AUXILARY LEMMA 

For the prove of the main theorem the following lemma is useful: 

Lemma 6.1. Let f3 be a simple {3-number. Then form E N the set flm = {x E 
(0, 1) I for some allowed word B of length m the relative frequencies of B in 
{im(x,{3)} do not converge to v(B)} where v is the unique measure of maximal 
entropy is the union of sets Mk with dimH Mk ~ 1 - t. . 

Proof. Let m be fixed. It is well known that for simple {3-numbers the shift S13 is 
of finite type. By changing if neccessary the alphabet {O, ... , [{3]} we obtain a s.f.t. 
Am conjugate to S/3. The measure v is the projection of the measure µ(> .. ) on Am 
under 7r m : Am -+ (0, 1) the superposition of the conjugation of Am and S13 and the 
map 7r : S/3 -+ [O, 1 ). 
We consider the set A of all numbers x E [O, 1) having the same limits of the relative 
frequencies of blocks or length m in their coding as correspond to the measure v 
(such numbers are often called simple m-normal). 
Since the measure v has a bounded non-vanishing density [4]: 

CdiamCn(x) ~ v(Cn(x)) ~ c-1diamCn(x) 
for some C > 0 and Cn(x) = {y E (0, l)lij(x,{3) = ii(y,{3) j = 1, ... ,n} and the 
length of the cylinder Cn( x) is bounded inbetween 

n-1 >..-n ~ diamCn(x) ~ D>..-n (D > 0). 
(see for instance [5]) 
the map 7r-1 is Lipschitz and consequently the set-functions dime(E) and 
dimH( 7r-1 E) coincide. Hence, we can apply lemma 5.1. 
Then the sets 7r-1 Mk = Mk fit the assertion of the lemma. D 
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7. PROOF OF THE MAIN THEOREM 

The proof of the theorem consists of several steps. First we subdivide (1, oo) into 
a countable union of closed intervals { In}:=-oo to obtain uniform bounds on these 
compact sets In. Let I= In= [[!, ;B] N, m EN be fixed in the further. 
We will need a couple of observations. 

( 1) Suppose f3o E (,B, ;B]. Then all expansions of 1 for ,B < ,B < {30 are at the 
same time expa~sions for some x E [O, 1) in base ,e-;. We denote the set of 
such x by l,e0 • If 7ro : (0, 1) ---+ S,e0 is the map assigning to each x E (0, 1) its 
,Bo-expansion we define a map Po : l,e0 ~ [[!, f3o] by po( x) is the unique ,B 
having 7ro( x) as its expansion of 1. 
A well-known fact is ([3],[4]) that if ,80 is a simple ,8-number S,e0 is of finite 
type and the Parry measure v0 is homogeneous in the sense of Bowen: 

K-1,e-n < v (7r-1C ) < K,Bn 0 _o 0 n_ 0 

for some K > 0 and any cylinder set Cn of length n. 
From the explicit form of the density 

of the Parry measure we can derive that for C = .B~l and any cylinder set 
~ - . 

c-1vo(?r01(Cn)) ~ diam (7r01 (Cn))::; Cvo(?r01(Cn)) 
holds. Combining these inequalities we get: 

diam (7r01(Cn)) ~ c-1 K- 1,e0n. 

On the other hand the maximal distance between {31 and ,82 in In having 
both their expansion of 1 in the same cylinder set Cn is at most .ef-i (See 
lemma 4.3. in (1]) which not depends on {30 E ([!, ;B] . Therefore 

log /31 
lp(x)- p(y)I::; C · K · L Ix -y!Iog/30 

with ,81 = min(p( x ), p(y)) and L > 0. 
Hence, there exist a 5 depending on N, ,B and ;B but not on {30 such that 
the restriction of p0 to the set p01 ({3p - S1 ,{30 ) is Holder continuous with 
exponent 1 - 2}v. . 

(2) For a simple ,B-number {36 let MN(f3a) be the set considered in the auxilary 
lemma 6.1. for the s.f.t. S.ea· We write 3N(f3a) for the set 

From observation 1. we know 
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d. ,......, (~) < d" (M (~ )) dimH MN(f3s) · 1 ImH =..,N fJs _ ImH p N fJs :::; l < 1 - . 
1- - 2N-1 2N 

(3) There exists only a countable number of simple (3-numbers in In. Therefore 
the set 

u 
,(3,,-simple 
{3,,Eln. 

{(3EIn13 simple f3s ~ (3 ~ f3s - 6 s.t. p(MN(f3s)) 3 (3} 
has Hausdorff dimension at most 1- 2.J _1 and hence zero Lebesque measure. 

( 4) Finally we define 

,......, 
.......... -

{(3 E IN I · 3 NE Nanda simple f3s ~ (3 ~ f3a - 6(N) 
s.t. p(}y!N(f3s)) 3 (3}. 

Then we can estimate its Lebesque measure: 

00 

£(3) ~ L £(3N) = 0. 
N=l 

(5) For a given number (3 E In and any allowed word·B of length m the set 
7ri1 (B) is a nonempty interval. Here 7rf3 is the map 7r : [O, 1] -t S/3. Moreover, 
the word B is also allowed for all (3' > (3 and the length of B changes· 
continuously because it depends only on the first ( m - 1) iterates of T/3. 
This ensures for each (3 E In the existence of a simple (3-number f3s = f3s(f3) 
with the property: 
For all (in S f3 )- allowed words B of length m 

! < length ( 7ri1 (B)) < 2 
2 - length ( 7ri

11

1 (B)) -
holds. Using the bounds on the density h13 for (3 E In (see observation 1) we 
get 

_1_ < V,B( 7ril(B)) < 202 
202 - Vf3,,(1ri,,1(B)) - . 

(6) Let M > 0 and suppose that for all allowed words {B} in base (3 their 
relative frequencies {ft(~, {3)} in some expansion~= {in( x, (3)} are bounded 
by the measure of B: 

M- 1vf3(B):::; {limft(~, B)}:::; Mvf3(B). 
then all measures in VT.a(x) are absolutely continuous w.r.t. v13 and therefore 
they all coincide with v13. But 
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VT 13 ( x) = { v /3} 
implies that x is normal. Here we denoted the set of accumulation points of 
the sequence {ft(~, B)} by {limft(~, B)}. 

(7) Let /3 be a non-selfnormal number in In. By 6. there exists a sequence { Bmw.} 
of allowed words in 813 with length mk s.t. 

{limfL(l, Bm.)} ¢. [ 2~2 1113( 71"-l Bm.), 202 1113( 71"-l Bm.)] 
Using 5. we then can find intervals [/3,/3k] where the relative frequencies 
ft({in(l,,B)}, Bmw.) are not converging to v131 for any /3' E [/3,/3k]· 
Because /3 is not selfnormal we know that 

h(,B) < ln,B = h1113 (T13) :::; ln,B' = .hv13, (T13). 
Therefore there exist naturals N and m and a real~> ,8 with 

l _ _!__ > limk~oo -~ l:n= ft,,iBm) log ftw.(Bm) > h(/32 
N - log,B - log,8 

for a suitable sequence £1 < l 2 < .... where the sum is over all allowed words 
Bm of le~th m. 
Making /3 a simple /3-number in [/3, /3 + 5(N)] we can apply the auxilary 
lemma and can conclude /3 E 3. This together with 4. gives the first part of 
the theorem. The proof of the second part is included in proposition 6.1. of 
[1] by observing that the set Gin that proposition i_s contained in Cs \Cs. 

D 
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