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Abstract

The degrees of ill-posedness for inverse estimation in Hilbert scales in the

presence of deterministic and random noise are compared. For Gaussian ran-

dom noise with di�erent �smoothness� the optimal order of the rate of conver-

gence for above mentioned estimation is indicated.

1. Suppose we observe data y
�
� of the form

(1) y
�
� = Ax + ��;

where x is an element of some subset M of Hilbert space X, A is a compact linear

operator from X to X, � is a noise and � is a small positive number used for

measuring noise level. We are interested in recoverring an element x, and we wish

to do this in such a way as to minimize the error occurring at the worst x 2 M.

A problem of such a kind arises when an unknown signal x is to be recovered from

an imperfect measurement y
�
� of a given transform of the signal Ax. Or, in more

mathematical language, on operator equations (1) that require a stable solution.

When � is assumed to be a zero-mean Gaussian noise, this is a problem of minimax

statistical estimation. Inverse problems (1) in such a ststistical setting can be found

throughout Wahba's work (1977), in Nychka and Cox (1989), Johnstone and Sil-

verman (1991) and, more recently, in Donoho (1995), Mair and Ruymgaart (1996),

Lukas (1998). For direct density and regression estimation, where A is the identity

operator I, the reader is referred to Nussbaum (1985), Speckman (1985), Donoho

at al. (1997).

When � is assumed to be an element of X chosen, not at random, but by an an-

tagonistic opponent, subject to the constrain k�kX � 1, this is a problem of deter-

ministic regularization or of optimal recovery. A few selected references from the

huge literature on this topic are Tikhonov and Arsenin (1977), Ivanov et al. (1978),

Lavrentiev et al. (1980), Morozov (1984), Vainikko and Veretennikov (1986), Traub,

Wasilkowski and Wozniakowski (1988), Louis (1989). Suppose now that A and M

are �xed, but we approach the problem two di�erent ways: one time assuming the

noise � is random Gaussian, and the other time assuming the noise � is deterministic,

i.e. � 2 X; k�kX � 1. In some cases both ways of stating the problem have been

solved approximately, but with di�erent rates of convergence, because the in�uence

of the nature of the noise � on the rate of convergence can be reasonably assumed.
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This in�uence has been pointed out by Nussbaum (1994) in the special case that

the operator

(2) Ax(t) =

Z t

0

(t� �)a�1

a!
x(�)d�

is a-fold integration, X = L2(0; 1) and M is a Sobolev space W s
2 (0; 1). Namely, for

deterministic noise the order of optimal error bound

(3) e
det
� (A;M) := inf

x̂
sup
x2M

sup
k�k�1

kx� x̂(�)k

for recovery x 2 M = W
s
2 (0; 1) from noisy data (1),(2) is �

s

a+s , where the inf in

(3) is taken over all estimators x̂ based on observations (1). On the other hand,

it might be interesting to note that precisely in the example mentioned above, but

for Gaussian white noise �(t), which is the derivative of Weiner process W (t), the
optimal (minimax) rate of convergence for recovery x 2M =W

s
2 (0; 1) is

(4) e
stoc
� (A;M; �) := inf

x̂
sup
x2M

(Ekx� x̂(�)k2)1=2 � �
s

a+s+1=2 ;

where E means the expected value and ��� means equivalent. Nussbaum (1994) of-

fers an explanation of this phenomenon using the notion of the degree of ill-posedness

of equations involving operator A. The degree of ill-posedness is a term coined by

Wahba (1977) to quantify interplay between �nastiness� of operator A and �dimen-

sionality� of regularizing setM. For example, the problem (1),(2), with deterministic

noise � and x 2 W
s
2 (0; 1) is ill-posed of degree (a; s) in the terminology of Wahba

(1977). On the other hand, as it has been pointed out by Nussbaum (1994), for

problem (1),(2) with Gaussian white noise in fact we observe

Y�(t) =

Z t

0

Ax(�)d� + �W (t); t 2 [0; 1];

where W (t) is Wiener process, and if A is a-fold integration then th operator x !R t

0
(Ax) has degree of ill-posedness a + 1. The Wiener's noise W (t) is smooth of

degree 1/2, and an element D1=2
W (t) is bounded only in L2-norm, where D1=2 is

the derivative of order 1/2. Applying formally D1=2 to our model with Y� we get an

�e�ective ill-posed problem� of degree (a+1� 1=2; s) for x 2 W s
2 (0; 1). The essence

of explanation by Nussbaum (1994) is this: we can consider the problem (1),(2)

with Gaussian white noise �(t) and x 2 W
s
2 (0; 1) as problem (1) with operator

D
1=2
R t

0
(Ax) and �deterministic� noise �D1=2

W (t). The optimal rate of convergence

for such deterministic problem with degree of ill-posedness (a+1=2; s) is O(�
s

a+s+1=2 ).
This is just the order indicated in (4).

Note that the Sobolev scale of subspaces W s
2 (0; 1); s 2 R, is a particular case of

Hilbert scale fXsg generated by some self-adjoint unbounded operator L. On the

other hand, operator (2), in its turn, is a speci�c example of an operator acting

along Hilbert scale. It is our purpose in this paper to show that above mentioned
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e�ect pointed out by Nussbaum (1994) for operator (2) and Xs = W
s
2 (0; 1) takes

place in general situation too. Moreover, we indicate a suitable �scale� of Gaussian

noises �� with �interpolation� property such that �� is the Gaussian white noise for

� = 0 and

(5) e
stoc
� (A;Xs; �

�) � �
s

s+a��+1=2 ; � 2 [0; a]:

In addition we establish that the employment of deterministic regularizaton spectral

cut-o� scheme allows to reach the optimal rate of convergence within the framework

of deterministic as well as stochastic noise model. Moreover, we show that this

scheme realizes the lower bound for the order of the di�culty of estimation with

optimal precision.

2. A Hilbert scale fX�; � 2 Rg, it will be recalled, is a family of Hilbert spaces

X� with inner product (x; y)� := (L�
x; L

�
y), where L is an unbounded self-adjoint

strictly positive operator in a dense domain of X and (�; �) is the inner product

in X. In more exact terms X� is de�ned as the completion of the intersection of

domains of the operators L�
; � � 0, accomplished with the norm k � k�, such that

kxk� := (x; x)1=2� ; k � k0 = k � kX .

To obtain a result for regularization of ill-posed problems (1) in Hilbert scale, it is

often assumed that there exist constants a; d1; d2 > 0, such that

(6) d1kxk�a � kAxk0 � d2kxk�a

holds for all x 2 X0. Moreover, the exact solution x0 of the equation (1) for � = 0,
which is assumed to exist, is in some �xed ball XR

s of Xs. i.e.

(7) kx0ks � R:

Let us illustrate the assumptions (6), (7). Denote by W
�
2 the Sobolev space of

1-periodic functions (distributions) on the real line with the norm

kxk� =
�
jx̂(0)j2 +

1X
m=�1;

m6=0

jmj
2�
jx̂(m)j2

�1=2

where x̂(m); m = 0;�1;�2; : : : , are the Fourier coe�cients of

x(t) =
1X

m=�1

x̂(m)eim2�t
:

It is easy to see that the family of Sobolev spaces fW
�
2 g is a Hilbert scale generated

by the operator

Lx(t) = x̂(0) +
1X

m=�1;

m6=0

jmjx̂(m)eim2�t
:
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Consider now Symm's integral equation

Z
�

log ju� vjz(v)dsv = g(u); u 2 �;

arising from solving the Dirichlet boundary value problem for the Laplace equation

in some region with curve � as the boundary. Assume that � has a C1-smooth 1-

periodic parametrization  : [0; 1]! � with j
0

(t)j 6= 0 for t 2 [0; 1]. Then Symm's

equation can be rewritten as

Ax(t) :=

Z 1

0

log j(t)� (�)jx(�)d� = y(t):

where x(t) = z((t))j
0

(t)j; y(t) = g((t)), and the operator A de�ned above meets

the condition (6) for a = 1 and X� = W
�
2 (see, for example, Bruckner et al. (1996)).

Note that some inverse boudary problems for partial di�erantial equations were

considered recently from statistical viewpoint by Golubev and Khasiminskii (1997).

It should be noted in addition that if injective operatorA does not meet the condition

(6) for some standard Hilbert scale like scale of Sobolev spaces, one can construct

a scale adapted to concrete operator A. Namely, any compact injective operator

A meets the condition (6) for a = 1=2 and Hilbert scale generated by the operator

L = (A�A)�1 (see, for example, Natterer (1984)).

Regularization of ill-posed problems in Hilbert scales has been introduced by Nat-

terer (1984). From his results it follows that within the framework of deterministic

noise model under the conditions (6), (7)

(8) e
det
� (A;XR

s ) � �
s

a+s :

Statistical inverse estimation in Hilbert scales has been studied by Mair and Ruym-

gaart (1996). But in their asymptotic considerations B.A. Mair and F.H. Ruymgaart

didn't interfere in the case of noisy observations (1).

Let f'kg
1

k=1 be some orthonormal basis of Hilbert space X. If � is a zero-mean

X-valued Gaussian random noise de�ned on some probability space (
;�;P) then
for any k = 1; 2; : : : ; (�; 'k) = �k�k; �k 2 R; �k is i.i.d. N(0; 1) and � can be

represented in the form of series

(9) � =
1X
k=1

(�; 'k)'k;

which converges in X almost surely. For Gaussian white noise � the inner products

(�; 'k) are de�ned as i.i.d. N(0; 1) too but (9) is divergent series. If, as it usually is,
we restrict ourselves to the case of random noise with �nite second weak order then

there is a very simple mathematical construction which allows to consider various

types of Gaussian random noise from one standroint. Namely, as in Vakhania et

al. (1987), we can associate with any random element � having �nite second weak

order a linear bounded operator �� acting from X to the space L2(
) = L2(
;�;P)
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of functions F : 
 ! R, that are P-square-summable on 
. Note that the inner

product in L2(
) is de�ned in term of expected value, i.e.

(F1; F2)L2(
) = E(F1(!)F2(!)) =

Z



F1(!)F2(!)dP(!):

The image of any element ' 2 X under the action of above mentioned operator ��

is considered as inner product ('; �) in X, i.e. ('; �) := ��' 2 L2(
). It su�ces to
de�ne the operator �� only on elements of the basis f'kg. Let ��'k = �k�k, where

�k 2 R; �k 2 L2(
). If � is zero-mean Gaussian random element then �k are i.i.d.

N(0; 1) and �� has the following decomposition

(10) �� =
1X
k=1

�k�k('k; �):

For Gaussian white noise � the operator �� has the form (10) too, but �k = 1; k =
1; 2; : : : .

If � is non-random element of X then formally operator �� is de�ned as �� =
(�; �){
, where {
 is characteristic function of 
, i.e. {
(!) � 1; ! 2 
. Thus,

for deterministic as well as for stochastic noise � the equivalent form of (1) is �
y�
�

=

�Ax + ���, but for deterministic noise � �� is very poor 1-dimensional operator. If

we know this operator and � then we have the exact free term of initial equation

Ax0 = y0; y0 = y
�
����, and inverse problem (1) can be solved with arbitrary however

small error. Therefore, to avoid this trivial situation we assume that within the

framework of deterministic setting the noise element � is chosen by an antagonistic

opponent and take the second sup in (3) over all possible choice of �. This is the

main di�erence among deterministic noise model and stochastic one. Because in

stochastic case we usually know the operator ��, for example, for Gaussian white

noise �� has the form (10) with �k = 1; k = 1; 2; : : : , but nevertheless we can

guarantee only some �xed level of precision for recovery of unknown solution x0.

Now we estimate this level.

3. In this section to obtain a result for general Hilbert scales we assume the fol-

lowing conditions, which are usually ful�lled in special cases. First of all, following

Ruymgaart (1993) and Mair and Ruymgaart (1996) we assume that in (1) A is an

injective operator and eigenvectors of operator L generating a Hilbert scale fX�g

coincide with eigenvectors of A�A. This means that operators L�1 and A can be

represented in the form.

(11) L
�1 =

1X
k=1

lk k( k; �); A =
1X
k=1

ak'k( k; �);

where f'kg; f kg are some orthonormal basises of X. Moreover, we assume that a

Hilbert scale fX�g has the same embedding properties as a Sobolev scale fW
�
2 (0; 1)g.
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What this means is

(12) lk � k
�1
; k = 1; 2; : : :

From (6), (11), (12) it follows, in particular, that

(13) ak � k
�a
; k = 1; 2; : : :

As to the noise �, we will assume that � = �
�, where �� is such that corresponding

operator ��� has singula-value decomposition (10) with �k � k
��
; k = 1; 2; : : : .

Note that for � = 0 �
� is a Gaussian white noise.

Lemma 1. Suppose we are given

(14) vk = �k + ��k�k; k = 1; 2; : : : ;

where �k are i.i.d. N(0; 1), �k � k
b
; b � 0, and � = (�1; �2; : : : ; �k; : : : ) is unknown,

but it is known that � lies in

B
s
R := f� :

1X
k=1


2
k�

2
k � R

2
; k � k

s
g:

Then

inf
�̂(v)

sup
�2Bs

R

(Ek� � �̂(v)k2l2)
1=2

� �
s

s+b+1=2 ;

where the inf is taken over all estimators �̂(v) based on observations (14).

This lemma is proved, in fact, in Korostelev and Tsybakov (1993), ch.9, and in

Belitser, Levit (1995). Moreover, it should be noted that Donoho (1995) obtained

the analogue of Lemma 1 for more general situation when one uses k � klp instead of

k � kl2 and B
s
R is a Besov-body.

Theorem 1. Let the assumptions (6), (11), (12) be ful�lled. Then for � 2 [0; a]

e
stoc
� (A;XR

s ; �
�) � �

s

s+a��+1=2 :

Proof. Using (10), (11), (13) we can represent the observations (1) in the equivalent

form (14), where vk = a
�1
k (y�� ; 'k); �k = ( k; x0); �k = �ka

�1
k � k

a��
; k = 1; 2; : : : ,

and any estimator � based on (14) with such vk; �k; �k gives the estimator x̂ =P
k �k k for x0, and the converse. Applying Lemma 1 with b = a��; k = l

�s
k � k

s

we obtain the assertion of the theorem:

inf
x̂

sup
x2XR

s

(Ekx� x̂k
2)1=2 = inf

�̂
sup
�2Bs

R

(Ek� � �̂k
2
l2
)1=2 � �

s

s+a��+1=2 :
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From Theorem 1 it follows that the optimal rate of convergence obtained within

the framework of stochastic setting for Gaussian noise �
1

2 coincides with optimal

deterministic rate (8) in the sense of order. But Gaussian noise �
1

2 is not X-valued

random element because in view of (10)

Ek�
�
k
2 = E(

1X
k=1

(��; 'k)
2) =

1X
k=1

�
2
k �

1X
k=1

k
�2�

<1

only for � > 1=2. It means that Gaussian structure of random noise allows to obtain

the rate of convergence that can be reached within the framework of deterministic

setting only for more �smooth� noise � 2 X. On the other hand, for X-valued

Gaussian random noise �
1

2
+", where " is a small positive number, the optimal rate of

convergence is even better than in the case when noise is assumed to be an element of

X chosen, not at random, but by antagonistic opponent. Thus, Gaussian X-valued

noise �
1

2
+" does not exhaust the potentialities of such antagonistic choise.

4. One of the estimators making possible to reach the rate of convergence indicated

in Theorem 1 was constructed, in fact, by Pinsker (1980). Moreover, in some im-

portant cases Pinsker's estimator is optimal even up to the constant in the sense of

quantity estoc� (see, for example, Nussbaum (1996)). To construct this estimator we

must know the singular-value decomposition of A and the values of R; s; lk; �k. Then

the realization of Pinsker's estimator reduces to solving some nonlinear equation de-

pending on these constants. In this section we show that if one is interested only in

optimal order of the rate of convergence then there is a more simple estimator real-

izing this order. This estimator, in addition, is order optimal within the framework

of deterministic setting too. We mean the so-called spectral cut-o� scheme when

one takes as estimator for x0 an element

(15) x
�
� (�) =

X
k: ak��

a
�1
k  k('k; y

�
�):

This scheme is well-known. Statistical justi�cation for it has been given recently by

Mair and Ruymgaart (1996). But we would like to note once again that the case of

noisy observations (1) is not considered in above mentioned paper.

Theorem 2. Under the conditions of Theorem 1 for � = �
2a

2s+2a�2�+1

sup
x2XR

s

(Ekx� x
�
� (�

�)k2)1=2 � e
stoc
� (A;XR

s ; �
�) � �

s

s+a��+1=2 :

Proof. In view of Theorem 1 it su�ces to show that for any x 2 X
R
s and � =

�
2a

2s+2a�2�+1

Ekx� x
�
� (�

�)k2 � c�
2s

s+a��+1=2 ;
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where the constant c does not depend on � and x. From (1), (10), (11), (15) it

follows that

(16)

Ekx� x
�
� (�

�)k2 = Ek
P

k:ak<�
a
�1
k  k('k; Ax)

� �
P

k:ak��
a
�1
k �k k�kk

2

=
P

k:ak<�
a
�2
k ('k; Ax)

2 + �
2
P

k:ak��
a
�2
k �

2
k:

Note that for � = �
�

�k � k
��. Then from (13) we have

(17) �
2
X

k:ak��

a
�2
k �

2
k � �

2
X

k���1=a

k
2(a��)

� �
2
�
�
2a�2�+1

a :

On the other hand, if x 2 X
R
s then x = L

�s
v; kvk � R, and from (11) it follows

that

('k; Ax)
2 = ('k; AL

�s
v)2 = a

2
k( k; L

�s
v) = a

2
kl
�2s
k ( k; v)

2
:

Then using (12), (13) we have

(18)

P
k:ak<�

a
�2
k ('k; Ax) =

P
k:ak<�

l
�2s
k ( k; v)

2

�
P

k���1=a k
�2s( k; v)

2

� �
2s

a kvk2 � �
2s

a R
2
:

Combining (16)�(18) with �
2a

2s+2a�2�+1 we obtain the error estimate

Ekx� x
�
� (�

�)k2 � c
�
�
2s

a + �
2
�
�
2a�2�+1

a

�
� c�

2s

s+a��+1=2

as claimed.

Note that within the framework of deterministic noise model under the conditions

of Theorem 1 for � = �
a

s+a

kx� x
�
� (�)k = k

X
k:ak<�

a
�1
k  k(Ax; 'k)k+ �k

X
k:ak��

a
�1
k  k('k; �)k

� c
�
�

s

aR + �(
X

k���1=a

k
�2a('k; �)

2)1=2
�
� �

s=a + �
�1
� � �

s

a+s :

In view of (8) we can see that in the case of deterministic noise the spectral cut-o�

scheme (15) is order optimal too.

5. From Theorem 2 and (13) it follows that to construct the estimator (15) making

possible to reach the optimal rate of convergence indicated in Theorem 1 it su�ces

to use only �nite amount of descretized observations of the form

(19) y
�
�;k = ('k; y

�
�) = ('k; Ax) + �('k; �); k = 1; 2; : : : ; n;

8



and the collection of elements ' = f'ig
n
i=1 plaies the role of the so-called design of the

statistical experiment consisting in obtaining the values (19). Let us denote by �n

the set of all designs f = ffig
n
i=1; fi 2 X, determined by collections of no more than

n elements. As in Donoho et al. (1990) the number n can be treated as the di�culty

of the estimator with design f 2 �n. It is natural to ask what is the minimal

di�culty of estimation with optimal precision. If we concentrate on the case of linear

estimators of x from discretized observations f(Ax+��) = f(fi; y
�
�); i = 1; 2; : : : ; ng

and it is a priori known that x belongs to some setM � X then the answer on above

mentioned question is connected with behaviour of the quantity

�n;�(A;M; �) := inf
f2�n

inf
S2Ln(X)

sup
x2M

fEkx� S � f(Ax+ ��)k2g1=2;

where Ln(X) is the set of all linear mapping from R
n to X. It should be noted that

the quantity �n;�(A;M; �) was considered earlier by Donoho et al. (1990) in the spe-
ci�c case when A = I and S � f is the orthogonal projector on spanff1; f2; : : : ; fng.

In this section we show that the estimator (15) and the design ' are order optimal

in the sense of di�culty.

Theorem 3. Let the assumptions of Theorem 1 be ful�lled. Then

�n;�(A;X
R
s ; �

�) � cfn
�s + �

s

s+a��+1=2g;

where the constant c does not depend on � and n.

Proof. Let fekg
n
k=1 be the canonical basis of Rn . Then for any f 2 �n; S 2

Ln(X); g 2 X

S � f(g) = S
� nX
k=1

ek(fk; g)
�
=

nX
k=1

Sek(fk; g) =
nX

k=1

qk(fk; g);

qk 2 X; k = 1; 2; : : : ; n:

Moreover, by de�nition

E(g; S � f(��)) =
nX

k=1

(g; qk)E(fk; �
�) = 0

and

Ekx� S � f(Ax+ ��
�)k2 = kx� S � f(Ax)k2

� 2�E(x� S � f(Ax); S � f(��))

+ �
2
EkS � f(��)k2

= kx� S � f(Ax)k2 + �
2
EkS � f(��)k2

� kx� S � f(Ax)k2

9



Then using (12) and a simple fact that rankfS � f(A�)g � n we have

(20)

�n;�(A;X
R
s ; �

�) � inf
f2�n

inf
S2Ln(X)

sup
x2XR

s

kx� S � f(Ax)k

� R inf
f2�n

inf
S2Ln(X)

sup
g:kgk�1

kL�sg � S � f(AL�sg)k

� R inf
B;

rankB�n

kL�s �BkX!X = Rl
s
n+1 � n

�s
:

On the other hand, it is easy to see that

(21) �n;�(A;X
R
s ; �

�) � e
stoc
� (A;XR

s ; �
�);

and the assertion of the theorem follows now from (20), (21) and Theorem 1.

From the Theorem 3 it follows that under the conditions of Theorem 1 the lower

bound for the di�culty of estimation of x 2 X
R
s from noisy observations y

��

� =

Ax + ��
� with optimal precision is n � �

�
1

s+a��+1=2 . On the other hand, from

Theorem 2 it follows that the estimator (15) allows to reach the optimal level of

precision using discretized observations (19) with n such that an � �
a

s+a��+1=2 . Due

to (13) we have that n � c�
�

1

s+a��+1=2 . It means that the estimator (15) is order

optimal in the sense of di�culty.
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