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Abstract. A number of new layer methods solving Dirichlet problems for semilinear

parabolic equations is constructed by using probabilistic representations of their solu-

tions. The methods exploit the ideas of weak sense numerical integration of stochastic

di�erential equations in bounded domain. In spite of the probabilistic nature these meth-

ods are nevertheless deterministic. Some convergence theorems are proved. Numerical

tests are presented.

1. Introduction

Numerical analysis of nonlinear partial di�erential equations (nonlinear PDE) is gen-

erally based on deterministic approaches (see, e.g., [1, 2, 3, 4]). A probability approach

to constructing new layer methods for solving nonlinear PDE of parabolic type is pro-

posed in [5] (see [6] as well). It is based on making use of the well-known probabilistic

representations of solutions to linear parabolic equations (see, e.g., [7, 8]) and the ideas

of weak sense numerical integration of SDE [9, 10, 11]. In spite of their probabilistic

nature these methods are nevertheless deterministic. The probability approach takes into

account a coe�cient dependence on the space variables and a relationship between dif-

fusion and advection in an intrinsic manner. In particular, the layer methods allow us

to avoid di�culties stemming from essentially changing coe�cients and strong advection.

Other probabilistic applications to numerical solving nonlinear PDE are available, e.g., in

[12, 13].

The papers [5, 6] are devoted to layer methods for the nonlinear Cauchy problem.

The aim of this paper is to develop such methods for nonlinear problems with Dirichlet

boundary conditions. Some probability methods solving boundary value problems for

linear parabolic equations are proposed in [14, 15, 16].

Let G be a bounded domain in Rd, Q = [t0; T )�G be a cylinder in Rd+1; � = �Q n Q:
The set � is a part of the boundary of the cylinder Q consisting of the upper base and

the lateral surface.

Consider the Dirichlet problem for the semilinear parabolic equation

@u

@t
+
1

2

dX
i;j=1

aij(t; x; u)
@2u

@xi@xj
+

dX
i=1

bi(t; x; u)
@u

@xi
+ g(t; x; u) = 0; (t; x) 2 Q;

(1.1)

u(t; x)j� = '(t; x): (1.2)

The form of equation (1.1) is relevant to a probabilistic approach, i.e., the equation is

considered under t < T , and the "initial" conditions are prescribed at t = T: Using the

well known probabilistic representation of the solution to (1.1)-(1.2) (see [7, 8]), we get

u(t; x) = E('(�;Xt;x(�)) + Zt;x;0(�)): (1.3)

In (1.3) Xt;x(s); Zt;x;z(s); (t; x) 2 Q; s � t; is the solution of the Cauchy problem for

the Ito system of stochastic di�erential equations

dX = b(s;X; u(s;X))ds+ �(s;X; u(s;X))dw(s); X(t) = x;

dZ = g(s;X; u(s;X))ds; Z(t) = z; (1.4)

where w(s) = (w1(s); :::; wd(s))> is a standard Wiener process, b(s; x; u) = (b1(s; x; u);
:::; bd(s; x; u))> is the column vector, the matrix � = �(s; x; u) is obtained from the equa-

tion

��> = a; � = f�ij(s; x; u)g; a = faij(s; x; u)g;
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and � = �t;x is the �rst exit time of the trajectory (s;Xt;x(s)) from the domain Q.
If the equation (1.1) is linear, system (1.4) does not contain the unknown function

u(s; x) and therefore one can use weak approximation schemes for solving (1.4) with the

Monte Carlo realization of the representation (1.3). The representation involves the point

(�;Xt;x(�)): To get a su�ciently e�ective approximation of this point is rather a hard

problem. Some constructive schemes solving this problem in the case of linear parabolic

equation are presented in [14, 15]. The procedures of [14, 15] together with the Monte

Carlo approach allow us to �nd a value u(t; x) at a single point even under a big dimension
of the domain G:
Of course, the nonlinear case is much more complicated. But we are aimed to construct

layer methods and due to this fact it becomes possible to use a one-step (local) version

of the representation (1.3) (see formula (2.3) below). Introduce a time discretization, for

de�niteness the equidistant one

T = tN > tN�1 > � � � > t0; h :=
T � t0

N
:

The proposed here methods give an approximation �u(tk; x) of the solution u(tk; x); k =

N; :::; 0; x 2 Q; i.e., step by step everywhere in the domainQ: It is feasible if the dimension
of the domain G is comparatively small (d � 3): To construct the layer methods, we

exploit the ideas of weak sense numerical integration of stochastic di�erential equations

in bounded domain and obtain some approximate relations on the basis of (2.3), (1.4). The

relations allow us to express �u(tk; x); k = N � 1; :::; 0; recurrently in terms of �u(tk+1; x).
Despite the probabilistic nature these methods turn out to be deterministic as in [5, 6].

In Sections 2 and 4, we derive a few methods for nonlinear parabolic equations relying

on the numerical integration of ordinary stochastic di�erential equations. In Section 3 we

prove a convergence theorem using deterministic type arguments. To realize layer methods

in practice, we need a discretization in the variable x with some kind of interpolation at

every step to turn an applied method into an algorithm. Such numerical algorithms are

constructed in Section 5. A majority of ideas can be demonstrated at d = 1 though that

we restrict ourselves to this case in Sections 2-5. The case d � 2 is shortly discussed in

Section 6. Numerical tests are presented in the last section.

2. Construction of layer method with one-step error O(h2)

The boundary value problem (1.1)-(1.2) in the one-dimensional case has the following

form:

@u

@t
+
1

2
�2(t; x; u)

@2u

@x2
+ b(t; x; u)

@u

@x
+ g(t; x; u) = 0; (t; x) 2 Q ; (2.1)

u(t; x)j� = '(t; x) : (2.2)

In this case Q is the partly open rectangle: Q = [t0; T )� (�; �); and � consists of the

upper base fTg � [�; �] and two vertical intervals: [t0; T ) � f�g and [t0; T ) � f�g: We

assume that �(t; x; u) � �0 > 0 for (t; x) 2 Q; �1 < u <1:
Let u = u(t; x) be the solution to problem (2.1)-(2.2), which is supposed to exist, to

be unique, and to be su�ciently smooth. One can �nd many theoretical results on this

topic in [17, 18, 19, 20, 21] (see also references therein).

Analogously to (1.3) we have

u(tk; x) = E(u(#tk;x; Xtk;x(#tk;x)) + Ztk;x;0(#tk;x)) ; (2.3)

where #tk ;x = #tk;x(tk+1) := �tk;x ^ tk+1; and X; Z satisfy system (1.4).
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Let us suppose for a while that it is possible to extend the coe�cients of the equation

(1.1) so that the new equation has a solution u(t; x) on [t0; T )�R which is an extension of

the solution to the boundary value problem (1.1)-(1.2). Then instead of (2.3), we obtain

(we suppose the layer u(tk+1; x) to be known)

u(tk; x) = E(u(tk+1; Xtk;x(tk+1)) + Ztk;x;0(tk+1)): (2.4)

Applying the explicit weak Euler scheme with the simplest simulation of noise to the

system (1.4), we get

�Xtk;x(tk+1) = x+ b(tk; x; u(tk; x))h+ �(tk; x; u(tk; x))
p
h� ; (2.5)

�Ztk;x;0(tk+1) = g(tk; x; u(tk; x))h ; (2.6)

where the � is distributed by the law: P (� = �1) = 1

2
:

Using (2.4), we get to within O(h2)

u(tk; x) ' E(u(tk+1; �Xtk ;x(tk+1)) + �Ztk;x;0(tk+1))

=
1

2
u(tk+1; x+ b(tk; x; u(tk; x))h� �(tk; x; u(tk; x))

p
h)

+
1

2
u(tk+1; x + b(tk; x; u(tk; x))h + �(tk; x; u(tk; x))

p
h) + g(tk; x; u(tk; x))h:

(2.7)

Now we can obtain an implicit relation for an approximation of u(tk; x): Applying the
method of simple iteration to the implicit relation and taking u(tk+1; x) as a null iteration,
we get the following explicit one-step approximation v(tk; x) of u(tk; x) :

v(tk; x) =
1

2
u(tk+1; x+ bk � h� �k �

p
h) +

1

2
u(tk+1; x + bk � h+ �k �

p
h) + gk � h ;

(2.8)

where bk; �k; gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; x; u(tk+1; x)).
But in reality we know the layer u(tk+1; x) for � � x � � only. At the same time the

argument x+bkh��k
p
h for x close to � is less than � and the argument x+bkh+�k

p
h for

x close to � is more than �: Thus we need to extend the layer u(tk+1; x) in a constructive

manner.

Using the explicit weak Euler scheme for the initial point (t; �) with tk � t � tk+1; we
put (cf. (2.5)-(2.6))

�Xt;�(tk+1) = x+ b(t; �; u(t; �)) � (tk+1 � t) + �(t; �; u(t; �)) �
p
tk+1 � t � � ;

�Zt;�;0(tk+1) = g(t; �; u(t; �)) � (tk+1 � t) : (2.9)

Analogously we de�ne �Xt;�(tk+1); �Zt;�;0(tk+1):
We have (see (2.7), (2.9)) for tk � t � tk+1

u(t; �) ' E(u(tk+1; �Xt;�(tk+1)) + �Zt;�;0(tk+1))

=
1

2
u(tk+1; � + b(t; �; u(t; �)) � (tk+1 � t)� �(t; �; u(t; �)) �

p
tk+1 � t)

+
1

2
u(tk+1; �+ b(t; �; u(t; �)) � (tk+1 � t) + �(t; �; u(t; �)) �

p
tk+1 � t)
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+g(t; �; u(t; �)) � (tk+1 � t) : (2.10)

If we replace (remember, u(t; �) = '(t; �) due to (2.2)) the argument (t; �; u(t; �)) =
(t; �; '(t; �)) by (tk; �; '(tk+1; �)), the right-hand side of (2.10) is changed by a quantity

of the order O(h2). Since the approximation in (2.10) is also of the order O(h2), we get

1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � (tk+1 � t)� �(tk; �; '(tk+1; �)) �

p
tk+1 � t)

= '(t; �)� 1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � (tk+1 � t) + �(tk; �; '(tk+1; �)) �

p
tk+1 � t)

�g(tk; �; '(tk+1; �)) � (tk+1 � t) +O(h2): (2.11)

Introduce

�0 := �+ b(tk; �; '(tk+1; �)) � h� �(tk; �; '(tk+1; �)) �
p
h:

Clearly �0 < � and �0 � � + b(tk; �; '(tk+1; �)) � (tk+1 � t) � �(tk; �; '(tk+1; �)) �p
tk+1 � t � � for tk � t � tk+1 under a su�ciently small h.
Analogously

1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � (tk+1 � t) + �(tk; �; '(tk+1; �)) �

p
tk+1 � t)

= '(t; �)� 1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � (tk+1 � t)� �(tk; �; '(tk+1; �)) �

p
tk+1 � t)

�g(tk; �; '(tk+1; �)) � (tk+1 � t) +O(h2); (2.12)

�0 := � + b(tk; �; '(tk+1; �)) � h+ �(tk; �; '(tk+1; �)) �
p
h:

The relations (2.11)-(2.12) give the desired extension of the function u(tk+1; x) on the

interval [�0; �0].

Let us return to the formula (2.8) now. The arguments x + bk � h � �k �
p
h and

x + bk � h + �k �
p
h are monotone increasing functions in x 2 [�; �] under a su�ciently

small h, their values belong to [�0; �0]; and x + bk � h + �k �
p
h is always (for x 2 [�; �])

more than � while x + bk � h � �k �
p
h is less than �. Let x + bk � h � �k �

p
h < �

(clearly it is possible for x close to �). Due to the stated above, there exists the only root

k(x); 0 < k(x) � 1; of the quadratic equation

� + b(tk; �; '(tk+1; �)) � kh� �(tk; �; '(tk+1; �)) �
p
kh = x+ bk � h� �k �

p
h:
(2.13)

Analogously, if x + bk � h + �k �
p
h > �, then there exists the only root �k(x); 0 <

�k(x) � 1; of the quadratic equation

� + b(tk; �; '(tk+1; �)) � �kh+ �(tk; �; '(tk+1; �)) �
p
�kh = x + bk � h+ �k �

p
h:
(2.14)

If, for instance, x+ bk � h� �k �
p
h < �; then one can replace the value u(tk+1; x+ bk �

h� �k �
p
h)=2 in the formula (2.8) by the value due to the formulas (2.13) and (2.11):

1

2
u(tk+1; x+ bk � h� �k �

p
h) =

=
1

2
u(tk+1; �+ b(tk; �; '(tk+1; �)) � kh� �(tk; �; '(tk+1; �)) �

p
kh)
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� '(tk+1�k ; �)�
1

2
u(tk+1; �+ b(tk; �; '(tk+1; �)) � kh + �(tk; �; '(tk+1; �)) �

p
kh)

�g(tk; �; '(tk+1; �)) � kh;
where tk+1�k = tk + (1� k) � h:
As a result we obtain the following one-step approximation v(tk; x) for u(tk; x)

v(tk; x) =
1

2
u(tk+1; x+ bk � h� �k �

p
h) +

1

2
u(tk+1; x+ bk � h + �k �

p
h)

(2.15)

+gk � h; if x + bk � h� �k �
p
h 2 [�; �];

v(tk; x) = '(tk+1�k ; �)� g(tk; �; '(tk+1; �)) � kh

�1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � kh+ �(tk; �; '(tk+1; �)) �

p
kh)

+
1

2
u(tk+1; x+ bk � h + �k �

p
h) + gk � h; if x + bk � h� �k �

p
h < �;

v(tk; x) =
1

2
u(tk+1; x + bk � h� �k �

p
h) + '(tk+1��k ; �)� g(tk; �; '(tk+1; �)) � �kh

�1

2
u(tk+1; � + b(tk; �; '(tk+1; �)) � �kh� �(tk; �; '(tk+1; �)) �

p
�kh)

+gk � h; if x + bk � h+ �k �
p
h > �; k = N � 1; : : : ; 1; 0;

where (let us recall) bk; �k; gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated
at the point (tk; x; u(tk+1; x)) and k; �k are the corresponding roots of the equations

(2.13) and (2.14).

Thus the layer method acquires the form

�u(tN ; x) = '(tN ; x); x 2 [�; �]; (2.16)

�u(tk; x) =
1

2
�u(tk+1; x +�bk � h� ��k �

p
h) +

1

2
�u(tk+1; x +�bk � h+ ��k �

p
h)

+�gk � h; if x +�bk � h� ��k �
p
h 2 [�; �];

�u(tk; x) = '(tk+1��k ; �)� g(tk; �; '(tk+1; �)) � �kh

�1

2
�u(tk+1; � + b(tk; �; '(tk+1; �)) � �kh+ �(tk; �; '(tk+1; �)) �

p
�kh)

+
1

2
�u(tk+1; x+ �bk � h + ��k �

p
h) + �gk � h; if x +�bk � h� ��k �

p
h < �;

�u(tk; x) =
1

2
�u(tk+1; x+ �bk � h� ��k �

p
h) + '(tk+1���k

; �)� g(tk; �; '(tk+1; �)) � ��kh

�1

2
�u(tk+1; � + b(tk; �; '(tk+1; �)) � ��kh� �(tk; �; '(tk+1; �)) �

p
��kh)

+�gk � h; if x +�bk � h+ ��k �
p
h > �;
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k = N � 1; :::; 1; 0;

where �bk; ��k; �gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; x; �u(tk+1; x)) and �k; ��k are the corresponding roots of the equations (2.13) and (2.14)

with the right sides x+ �bk � h� ��k �
p
h and x+ �bk � h + ��k �

p
h.

The method (2.16) is an explicit layer method for solving the Dirichlet problem (2.1)-

(2.2). This method is deterministic, even though the probabilistic approach is used for

its constructing. It is of the �rst order of smallness with respect to h (see below Theorem

3.1).

3. Convergence theorem

We shall keep the following assumptions.

(i) There exists the only solution u(t; x) to the problem (2.1)-(2.2) such that

u� < u� � u(t; x) � u� < u
�

; t0 � t � T; x 2 [�; �]; (3.1)

where u�; u�; u
�; u

�

are some constants, and there exist the uniformly bounded derivatives:

j @
i+ju

@ti@xj
j � K; i = 0; j = 1; 2; 3; 4; i = 1; j = 0; 1; 2; i = 2; j = 0; t0 � t � T; x 2 [�; �]:

(3.2)

(ii) The coe�cients b(t; x; u); �(t; x; u); g(t; x; u) and their �rst and second derivatives

in x and u are uniformly bounded:

j @
i+jb

@xi@uj
j � K; j @

i+j�

@xi@uj
j � K; j @

i+jg

@xi@uj
j � K; 0 � i+ j � 2;

t0 � t � T; x 2 [�; �]; u� � u � u
�

: (3.3)

Below we use the letters K and C without any index for various constants which do

not depend on h; k; x:
First of all let us evaluate the one-step error �(tk; x) of the method (2.16).

Lemma 3.1. Under the assumptions (i) and (ii) the one-step error �(tk; x) of the

method (2.16) has the second order of smallness with respect to h; i.e.,

j�(tk; x)j = jv(tk; x)� u(tk; x)j � Ch2;

where v(tk; x) is de�ned by (2.15), C does not depend on h; k; x:

Proof. If both points x+ bk � h� �k �
p
h belong to [�; �]; the statement of this lemma

follows directly from Lemma 4.1 of [5].

Let us consider the case when the point x+ bk �h��k �
p
h < �: Introduce the notation

b�; ��; g� for the coe�cients b; �; g calculated at the point (tk; �; '(tk+1; �)):We get from

(2.13)

�� x = bkh� �k
p
h� b�kh+ ��

p
kh = (��

p
k � �k)

p
h +O(h) = O(

p
h):

(3.4)

Expand the terms of (2.15) at the point (tk; x):

'(tk+1�k ; �) = u(tk + (1� k)h; x + (�� x)) = u+
@u

@t
� (1� k)h (3.5)

+
@u

@x
� (�� x) +

@2u

@t@x
� (1� k)(�� x)h +

1

2

@2u

@x2
� (�� x)2 +

1

6

@3u

@x3
� (�� x)3 +O(h2);
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u(tk+1; � + b�kh+ ��
p
kh) = u(tk + h; x + (�� x + b�kh+ ��

p
kh))

(3.6)

= u+
@u

@t
h +

@u

@x
� (�� x + b�kh + ��

p
kh) +

@2u

@t@x
� (�� x + ��

p
kh)h

+
1

2

@2u

@x2
� ((�� x+ ��

p
kh)

2 + 2(�� x + ��
p
kh)b�kh)

+
1

6

@3u

@x3
� (�� x + ��

p
kh)

3 +O(h2);

and

u(tk+1; x+ bkh+ �k
p
h) = u+

@u

@t
h+

@u

@x
� (bkh + �k

p
h) +

@2u

@t@x
� �kh3=2

(3.7)

+
1

2

@2u

@x2
� (�2kh + 2bk�kh

3=2) +
1

6

@3u

@x3
� �3kh3=2 +O(h2):

Here the function u and its derivatives are calculated at the point (tk; x):
Substituting (3.5)-(3.7) in the corresponding expression for v(tk; x) of (2.15) and using

(3.4), we obtain

v(tk; x) = u+ h(1� k) � (
@u

@t
+
�2k
2

@2u

@x2
+ bk

@u

@x
+ gk) +

@u

@x
� (bk � b�)kh

(3.8)

+
@2u

@t@x
� (�k � ��

p
k)kh

3=2 +
@2u

@x2
� (1
2
(�2k � �2�)kh + b�(�k � ��

p
k)kh

3=2)

+
1

2

@3u

@x3
� �2�(�k � ��

p
k)kh

3=2 + (gk � g�)kh +O(h2):

Due to the assumptions (i) and (ii) and (3.4), we get

�� = �(tk; �; u(tk+1; �)) = �(tk; x; u(tk; x)) +
@�

@x
� (�� x) (3.9)

+
@�

@u
� (u(tk+1; �)� u(tk; x)) +O(h)

= � +
@�

@x
� (��

p
k � �k)

p
h+

@�

@u

@u

@x
� (��

p
k � �k)

p
h+O(h)

= � + (
@�

@x
+
@�

@u

@u

@x
) � �k(

p
k � 1)

p
h +O(h);

b� = b(tk; �; u(tk+1; �)) = b + (
@b

@x
+
@b

@u

@u

@x
) � �k(

p
k � 1)

p
h+O(h);

g� = g(tk; �; u(tk+1; �)) = g + (
@g

@x
+
@g

@u

@u

@x
) � �k(

p
k � 1)

p
h+O(h);

and

bk = b(tk; x; u(tk+1; x)) = b+O(h); �k = � +O(h); gk = g +O(h);
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where b; �; g (without any indexes) and their derivatives are calculated at the point

(tk; x; u(tk; x)):
Using (3.9) we obtain from (3.8):

v(tk; x) = u(tk; x) + h(1� k) � [
@u

@t
+
�2

2

@2u

@x2
+ b

@u

@x
+ g] (3.10)

+h3=2k�(1�
p
k) � [

@2u

@t@x
+
�2

2

@3u

@x3
+ � � (@�

@x
+
@�

@u

@u

@x
)
@2u

@x2
+ b

@2u

@x2

+(
@b

@x
+
@b

@u

@u

@x
)
@u

@x
+
@g

@x
+
@g

@u

@u

@x
] +O(h2)

= u(tk; x) + (h(1� k) + h3=2k�(1�
p
k)

@

@x
)[
@u

@t
+
�2

2

@2u

@x2
+ b

@u

@x
+ g] +O(h2):

Taking into account that u(t; x) is the solution to the problem (2.1)-(2.2), the relation

(3.10) implies

v(tk; x) = u(tk; x) +O(h2):

The case x+ bk � h+ �k �
p
h > � can be considered analogously. Lemma 3.1 is proved.

Let us prove the following theorem on global convergence.

Theorem 3.1. Under the assumptions (i) and (ii) the method (2.16) has the �rst order

of smallness with respect to h, i.e.,

j�u(tk; x)� u(tk; x)j � Kh;

where K does not depend on h; k; x:

Proof. Denote the error of the method (2.16) on the k-th layer ((N � k)-th step) as

R(tk; x) := �u(tk; x)� u(tk; x): (3.11)

If x+ �bk � h� ��k �
p
h 2 [�; �]; we have (see (2.16) and (3.11)):

u(tk; x) +R(tk; x) =
1

2
u(tk+1; x+ �bk � h� ��k �

p
h) +

1

2
R(tk+1; x +�bk � h� ��k �

p
h)

+
1

2
u(tk+1; x +�bk � h+ ��k �

p
h) +

1

2
R(tk+1; x+ �bk � h + ��k �

p
h) + �gk � h:

(3.12)

Expanding the functions u(tk+1; x+ �bk � h� ��k �
p
h) at the point (tk; x); we get

u(tk+1; x+ �bk � h� ��k �
p
h) = u(tk; x) +

@u

@t
h+ (�bk � h� ��k �

p
h)
@u

@x

+
��2k
2

@2u

@x2
� h� �bk��k

@2u

@x2
� h3=2 � ��k

@2u

@t@x
� h3=2 � ��3k

6

@3u

@x3
� h3=2 +O(h2);

(3.13)

where the derivatives are calculated at the point (tk; x):
Here we have to suggest for a while that the value u(tk+1; x)+R(tk+1; x) remains in the

interval (u�; u
�

) for a su�ciently small h (see the conditions (ii)). Clearly, R(tN ; x) = 0;
and below we prove recurrently that R(tk; x) is su�ciently small under a su�ciently small
h: Thereupon thanks to (3.1) this suggestion will be justi�ed for such h:

8



Due to the assumptions (i) and (ii) and the notation (3.11), we obtain

�bk = b(tk; x; �u(tk+1; x)) = b(tk; x; u(tk+1; x) +R(tk+1; x)) = b(tk; x; u(tk+1; x)) + �b

= b(tk; x; u(tk; x)) + �b +O(h);

��k = �(tk; x; u(tk; x)) + �� +O(h); ��2k = �2(tk; x; u(tk; x)) + ��2 +O(h);

�gk = g(tk; x; u(tk; x)) + �g +O(h); (3.14)

where

j�bj; j��j; j��2j; j�gj � K � jR(tk+1; x)j:
Substituting (3.13) in (3.12) and taking into account (3.14), we come to the relation

u(tk; x) +R(tk; x) = u(tk; x) + h � (@u
@t

+ b
@u

@x
+
�2

2

@2u

@x2
+ g) + r(tk; x) +O(h2)

+
1

2
R(tk+1; x+�bk � h� ��k �

p
h) +

1

2
R(tk+1; x+ �bk � h+ ��k �

p
h); (3.15)

where the derivatives are calculated at (tk; x), b; �; g are calculated at (tk; x; u(tk; x)); and

jr(tk; x)j � KhjR(tk+1; x)j:
Since u(t; x) is the solution to (2.1)-(2.2), the relation (3.15) implies

R(tk; x) =
1

2
R(tk+1; x +�bk � h� ��k �

p
h) +

1

2
R(tk+1; x+�bk � h+ ��k �

p
h)

+r(tk; x) +O(h2): (3.16)

For x such that x +�bk � h� ��k �
p
h < �; we get (see (3.11) and (2.16))

u(tk; x) +R(tk; x) = �u(tk; x) = '(tk+1��k ; �)

�1

2
u(tk+1; � + b��kh+ ��

p
�kh)) +

1

2
u(tk+1; x +�bk � h+ ��k �

p
h)

�1

2
R(tk+1; � + b��kh+ ��

p
�kh)) +

1

2
R(tk+1; x+ �bk � h + ��k �

p
h)

�g(tk; �; u(tk+1; �)) � �kh+ �gk � h; (3.17)

where b�; ��; g� are the corresponding coe�cients calculated at the point (tk; �; '(tk+1; �)):
In accordance with (2.16) and (2.13), we have (cf. (3.4))

�� x = �bkh� ��k
p
h� b��kh+ ��

p
�kh = (��

p
�k � �k)

p
h +O(h) = O(

p
h):

Recall that �k is the root of the equation (2.13) with the right side x +�bkh� ��k
p
h:

Now we expand the �rst three terms in the right side of (3.17) in powers of h at the

point (tk; x) like it has been done in the proof of Lemma 3.1 (see (3.5)-(3.8)). The obtained
new relation contains �bk; ��k; �gk; �k (instead of bk; �k; gk; k in (3.8)) and b�; ��; g�. We

present �bk; ��k; �gk due to (3.14) and b�; ��; g� due to (3.9). As a result, we get (cf. (3.10))

u(tk; x) +R(tk; x) = u(tk; x)

+(h(1� �k) + h3=2�k�(1�
p
�k)

@

@x
)[
@u

@t
+
�2

2

@2u

@x2
+ b

@u

@x
+ g]
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+r1(tk; x) +O(h2)� 1

2
R(tk+1; � + b��kh+ ��

p
�kh)) +

1

2
R(tk+1; x+ �bk � h + ��k �

p
h);

where the derivatives of u are calculated at the point (tk; x); the coe�cients b; �; g and

their derivatives are calculated at the point (tk; x; u(tk; x)); and

jr1(tk; x)j � KhjR(tk+1; x)j:
Since u(t; x) is the solution to (2.1)-(2.2), �nally we arrive at

R(tk; x) = �1

2
R(tk+1; � + b��kh+ ��

p
�kh))

+
1

2
R(tk+1; x+�bk � h+ ��k �

p
h) + r1(tk; x) +O(h2): (3.18)

Clearly, for x such that x + �bk � h + ��k �
p
h > �; we can obtain the relation similar to

(3.18):

R(tk; x) = �1

2
R(tk+1; � + b���kh� ��

p
��kh))

+
1

2
R(tk+1; x +�bk � h� ��k �

p
h) + r2(tk; x) +O(h2) (3.19)

with

jr2(tk; x)j � KhjR(tk+1; x)j:
Now introduce

Rk := max
x2[�;�]

jR(tk; x)j :

The relations (3.16), (3.18), and (3.19) imply (remember that R(tN ; x) = 0)

RN = 0; Rk � Rk+1 +KRk+1h+ Ch2; k = N � 1; :::; 1; 0:

Therefore

Rk �
C

K
(eK(T�t0) � 1) � h; k = N; :::; 0:

Theorem 3.1 is proved.

4. Layer method with one-step error O(h3=2)

Without exploiting the used above idea of involving the points outside the interval [�; �]
while constructing a layer method, it is possible to get a layer method being more simple

but less accurate than (2.16). To this end we approximate the solution u(tk; x); when the

point x is close to � (or �), using values of the solution at a point (tk+�k
; �) with some

�k 2 (0; 1) (or (tk+�k
; �) with �k 2 (0; 1)) and at the point (tk+1; x + bk � h + �k �

p
h)

(or (tk+1; x + bk � h � �k �
p
h)) with some (positive) weights. These two weights may

be interpreted as probabilities of reaching and not reaching of � (or �). The method

obtained on this way has the form

�u(tN ; x) = '(tN ; x); x 2 [�; �]; (4.1)

�u(tk; x) =
1

2
�u(tk+1; x +�bk � h� ��k �

p
h) +

1

2
�u(tk+1; x +�bk � h+ ��k �

p
h)

+�gk � h; if x +�bk � h� ��k �
p
h 2 [�; �];
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�u(tk; x) =
1

1 +
p
��k
'(tk+��k

; �) +

p
��k

1 +
p
��k

�u(tk+1; x+�bk � h+ ��k �
p
h)

+�gk �
p
��kh; if x +�bk � h� ��k �

p
h < �;

�u(tk; x) =
1

1 +
p
��k
'(tk+��k

; �) +

p
��k

1 +
p
��k
�u(tk+1; x+�bk � h� ��k �

p
h)

+�gk �
p
��kh; if x+ �bk � h + ��k �

p
h > �;

k = N � 1; :::; 1; 0;

where �bk; ��k; �gk are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; x; �u(tk+1; x)) and 0 < ��k; ��k < 1 are the roots of the quadratic equations (it is not

di�cult to verify that the roots exist and are unique)

� = x+�bk � ��kh� ��k �
p
��kh;

� = x +�bk � ��kh+ ��k �
p
��kh:

This method involves one value of the function '(t; x) and one value of the approximate
solution �u(tk+1; y) on the previous layer in contrast to the method (2.16) which requires

evaluating one value of the function '(t; x) and two values of the approximate solution

�u(tk+1; y) on the previous layer.

Lemma 4.1. Under the assumptions (i) and (ii) the one-step error �(tk; x) of the

method (4.1) is estimated as

j�(tk; x)j � Ch2 if x+ bk � h� �k �
p
h 2 [�; �];

j�(tk; x)j � Ch3=2 if x+ bk � h� �k �
p
h < � or x + bk � h+ �k �

p
h > �:

The proof is very similar (even more simply) to that of Lemma 3.1 and we do not give

it here. The following convergence theorem for the method (4.1) takes place.

Theorem 4.1. Under the assumptions (i) and (ii) the method (4.1) has the global error

estimated as

j�u(tk; x)� u(tk; x)j � K
p
h; (4.2)

where K does not depend on h; k; x:

The proof of the estimate (4.2) coincides, in general, with the proof of Theorem 3.1.

Remark 4.1. The assertions of Lemma 4.1 and Theorem 4.1 are also valid if we take

weaker assumptions on the coe�cients than (ii); namely:

jbj � K; j�j � K; jgj � K;

jb(t; x2; u2)� b(t; x1; u1)j+ j�(t; x2; u2)� �(t; x1; u1)j+ jg(t; x2; u2)� g(t; x1; u1)j

� K(jx2 � x1j+ ju2 � u1j); t0 � t � T; x 2 [�; �]; u� � u � u
�

:

Remark 4.2. The layer methods of Sections 2 and 4 can be applied to solving the

Dirichlet problem for linear parabolic equations. But if the dimension d of the linear
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problem is high (d � 3 in practice) and it is enough to �nd the solution in a few points

only, the Monte Carlo approach is preferable [14, 15].

The used here weak approximations of SDE generate other random walk methods for

solving the linear Dirichlet problem than the random walk proposed in [14, 15]. These

and some other new random walks will be considered in a separate paper.

Remark 4.3. In the case of the linear Dirichlet problem one can prove using probabilis-

tic arguments that the method (4.1) has the �rst order of smallness with respect to h.
Apparently this is so in the nonlinear case as well and our numerical tests approve that

(see Section 7). But we do not succeed in proving such a theorem.

Remark 4.4. Using other weak approximations for SDE, some new layer methods can

be constructed (cf. [5, 6]). In particular, there are special methods of numerical inte-

gration in the weak sense for stochastic di�erential equations with small noise which are

more e�ective than general ones [22]. In [6] they were used for constructing special layer

methods for the Cauchy problem for semilinear parabolic equations with small parameter

at higher derivatives. It is also possible to get some special layer methods in the case of

the Dirichlet problem for semilinear parabolic equations with small parameter.

5. Numerical algorithms

To have become a numerical algorithm, the method (2.16) (just as other layer methods)

needs a discretization in the variable x: Consider the equidistant space discretization with
space step hx (recall that the notation for time step is h): xj = �+ jhx; j = 0; 1; 2; :::;M;
hx = (� � �)=M: Using, for example, linear interpolation, we construct the following

algorithm (we denote it as �u(tk; x) again, since this does not cause any confusion):

�u(tN ; x) = '(tN ; x); x 2 [�; �]; (5.1)

�u(tk; xj) =
1

2
�u(tk+1; xj +�bk;j � h� ��k;j �

p
h) +

1

2
�u(tk+1; xj + �bk;j � h + ��k;j �

p
h)

+�gk;j � h; if xj +�bk;j � h� ��k;j �
p
h 2 [�; �];

�u(tk; xj) = '(tk+1��k;j ; �)� g(tk; �; '(tk+1; �)) � �k;jh

�1

2
�u(tk+1; � + b(tk; �; '(tk+1; �)) � �k;jh+ �(tk; �; '(tk+1; �)) �

p
�k;jh)

+
1

2
�u(tk+1; xj + �bk;j � h + ��k;j �

p
h) + �gk;j � h; if xj + �bk;j � h� ��k;j �

p
h < �;

�u(tk; xj) =
1

2
�u(tk+1; xj +�bk;j � h� ��k;j �

p
h) + '(tk+1���k;j

; �)� g(tk; �; '(tk+1; �)) � ��k;jh

�1

2
�u(tk+1; � + b(tk; �; '(tk+1; �)) � ��k;jh� �(tk; �; '(tk+1; �)) �

q
��k;jh)

+�gk;j � h; if xj +�bk;j � h+ ��k;j �
p
h > �; j = 1; 2; :::;M � 1 ;

�u(tk; x) =
xj+1 � x

hx
�u(tk; xj) +

x� xj

hx
�u(tk; xj+1); xj � x � xj+1; (5.2)

j = 0; 1; 2; :::;M � 1 ; k = N � 1; :::; 1; 0;
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where �bk;j; ��k;j; �gk;j are the coe�cients b(t; x; u); �(t; x; u); g(t; x; u) calculated at the point

(tk; xj; �u(tk+1; xj)) and 0 < �k;j; ��k;j � 1 are the roots of the equations (2.13) and (2.14)

with the right sides xj +�bk;j � h� ��k;j �
p
h and xj + �bk;j � h + ��k;j �

p
h respectively.

Theorem 5.1. If the value of hx is taken equal to {h, { is a positive constant,

then under the assumptions (i) and (ii) the algorithm (5.1)-(5.2) has the �rst order of

convergence, i.e., the approximation �u(tk; x) from the formula (5.2) satis�es the relation

j�u(tk; x)� u(tk; x)j � Kh; (5.3)

where K does not depend on x; h; k.

The proof of Theorem 5.1 di�ers only little from the proof of the corresponding theorem

in [5] and is therefore omitted.

Remark 5.1. It is not di�cult to prove that the algorithm based on the method (4.1) and

linear interpolation has the global error O(h1=2) if we choose the space step hx = {h3=4:

Remark 5.2. It is natural to attract cubic interpolation instead of the linear one for

constructing numerical algorithms. Exploitation of cubic interpolation allows us to take

the space step hx = {

p
h (in contrast to hx = {h for the linear interpolation) and, thus,

to reduce the volume of computations. Moreover, if we use cubic interpolation, we can

avoid special formulas near the boundary choosing some appropriate { (indeed, we can

take, e.g., { = 2 max
t2[t0;T ]; x2G;u2[u� ; u

�

]

�(t; x; u); then for a su�ciently small h the points

xj + �bk;j � h � ��k;j �
p
h always belong to [�; �]): Unfortunately, we do not succeed in

proving a convergence theorem in the case of cubic interpolation. The way of proving

Theorem 5.1 gives us some restriction on the type of interpolation procedure which we

can use for constructing the numerical algorithm. The restriction is such that the sum

of the absolute values of the coe�cients staying at �u(tk; �) in the interpolation procedure

must be not greater than 1: Linear interpolation and B-splines of the order O(h2x) satisfy
this restriction. But cubic interpolation of the order O(h4x) does not satisfy the restriction.
In Section 7.1 we test an algorithm based on cubic interpolation. The tests give fairly

good results. See also some theoretical explanations and numerical tests in [5, 6].

Remark 5.3. Clearly, the algorithms can be considered with variable time steps and

space steps. An algorithm with variable space steps is used in our numerical tests (Section

7.1).

6. Extension to the multi-dimensional Dirichlet problem

In this section we generalize the layer method (4.1) to the multi-dimensional case

(d > 1). A generalization of the layer method (2.16) to the multi-dimensional case is

complicated and it is not considered here.

As it has been mentioned in Introduction, layer methods are feasible if the dimension

d of the domain G is not more than 3: That is why, we restrict ourselves here to the cases
d = 2 and d = 3:We mark only that it is not di�cult to generalize the layer method (4.1)

for an arbitrary d:
Consider the case d = 2: Introduce the notation iXk+1 := (iX

1
k+1; iX

2
k+1);

iX
1
k+1 = x1 + �b1kh + ��11k

p
h � i�1 + ��12k

p
h � i�

2;

iX
2
k+1 = x2 + �b2kh + ��21k

p
h � i�1 + ��22k

p
h � i�

2;
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i = 1; 2; 3; 4; x = (x1; x2) 2 G � R2;

where 1� = (�1;�1); 2� = (�1; 1); 3� = � 1�; 4� = � 2� and �bk = (�b1k;
�b2k); ��k = f��jlk g are

the coe�cients b(t; x; u); �(t; x; u) calculated at the point (tk; x; �u(tk+1; x)):
If the point x = (x1; x2) 2 G is su�ciently far from the boundary @G (more precisely,

if the points iXk+1; i = 1; 2; 3; 4; belong to G); the layer method has the form (cf. [5]):

�u(tk; x
1; x2) =

4X
i=1

1

4
�u(tk+1; iX

1
k+1; iX

2
k+1) + �gk � h; (6.1)

where �gk is the coe�cient g(t; x; u) calculated at the point (tk; x; �u(tk+1; x)):
If the point x = (x1; x2) 2 G is close to the boundary @G; then some of the points

iXk+1 = (iX
1
k+1; iX

2
k+1); i = 1; 2; 3; 4; may be outside of the domain G: Let us connect

the point x with the points i�Xk+1; which are outside of G; by the curves  i�(�) =

( 1
i�(�);  

2
i�(�)) :

 1
i�(�) = x1 +�b1k �h + ��11k

p
�h � i��1 + ��12k

p
�h � i��

2;

 2
i�(�) = x2 + �b2k�h + ��21k

p
�h � i��1 + ��22k

p
�h � i��

2; 0 � � � 1:

Due to the smoothness of the boundary @G; under a su�ciently small h there is a

unique value of � = i�
��k; 0 < i�

��k < 1; such that the point i��k = (i��
1
k; i��

2
k); where

i��
1
k = x1 +�b1k � i�

��kh + ��11k

p
i�
��kh � i��

1 + ��12k

p
i�
��kh � i��

2 ;

i��
2
k = x2 + �b2k � i���kh+ ��21k

p
i�
��kh � i��

1 + ��22k

p
i�
��kh � i��

2;

belongs to the boundary @G (of course, @G is supposed to be su�ciently smooth).

Put j
��k = 1 and j�k = jXk+1 for the points jXk+1 belonging to G: Then the layer

method takes the form

�u(tk; x
1; x2) =

p
2
��k � 3

��k � 4
��k

(
p

1
��k +

p
3
��k)(

p
1
��k � 3

��k +
p

2
��k � 4

��k)
�u(tk+ 1

��k
; 1�

1
k; 1�

2
k)

(6.2)

+

p
1
��k � 3

��k � 4
��k

(
p

2
��k +

p
4
��k)(

p
1
��k � 3

��k +
p

2
��k � 4

��k)
�u(tk+ 2

��k
; 2�

1
k; 2�

2
k)

+

p
1
��k � 2

��k � 4
��k

(
p

1
��k +

p
3
��k)(

p
1
��k � 3

��k +
p

2
��k � 4

��k)
�u(tk+ 3

��k
; 3�

1
k; 3�

2
k)

+

p
1
��k � 2

��k � 3
��k

(
p

2
��k +

p
4
��k)(

p
1
��k � 3

��k +
p

2
��k � 4

��k)
�u(tk+ 4

��k
; 4�

1
k; 4�

2
k)

+�gk �
2
p

1
��k � 2

��k � 3
��k � 4

��kp
1
��k � 3

��k +
p

2
��k � 4

��k
h:

Recall that if i�k = (i�
1
k; i�

2
k) 2 @G then �u(tk+ i

��k
; i�

1
k; i�

2
k) = '(tk+ i

��k
; i�

1
k ; i�

2
k) (see

(1.2)).

The error of the one-step approximation corresponding to (6.2) is of the order O(h3=2);

and the layer method (6.1)-(6.2) has the global error estimated by O(h1=2) (see Remark
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4.3 as well). These assertions can be checked directly without attracting some new ideas

in comparison with Lemma 3.1 and Theorem 3.1.

Now consider the case d = 3: Introduce the notation iXk+1 = (iX
1
k+1; iX

2
k+1; iX

3
k+1);

i = 1; 2; : : : ; 8; where

iX
j
k+1 := xj + �b

j
kh + ��

j1
k

p
h � i�1 + ��

j2
k

p
h � i�

2 + ��
j3
k

p
h � i�

3; j = 1; 2; 3;

x = (x1; x2; x3) 2 G � R3:

Here �bk = f�bjkg and ��k = f��jlk g are the coe�cients b(t; x; u) and �(t; x; u) calculated at

the point (tk; x; �u(tk; x)) and i� = (i�
1; i�

2; i�
3); i = 1; : : : ; 8; are the following vectors:

1� = (�1;�1;�1); 2� = (�1;�1; 1); 3� = (�1; 1;�1); 4� = (1;�1;�1);

i+4� = � i�; i = 1; 2; 3; 4:

If the points iXk+1; i = 1; 2; : : : ; 8; belong to G; the layer method has the form

�u(tk; x) =

8X
i=1

1

8
�u(tk+1; iXk+1) + �gk � h; (6.3)

where �gk is the coe�cient g(t; x; u) calculated at the point (tk; x; �u(tk+1; x)):

If some points i�Xk+1 =2 G; we connect the point x with the points i�Xk+1 by the curves

 i�(�) = ( 1
i�(�);  

2
i�(�);  

3
i�(�));

 j
i�(�) = xj +�bjk �h+ ��j1k

p
�h � i��1 + ��j2k

p
�h � i��

2 + ��j3k
p
�h � i��

3;

j = 1; 2; 3; 0 � � � 1:

Due to the smoothness of the boundary @G; under a su�ciently small h there is a

unique value of � = i�
��k; 0 < i�

��k < 1; such that the point i��k = (i��
1
k; i��

2
k; i��

3
k); where

i��
j
k = xj + �bjk � i���kh+ ��j1k

p
i�
��kh � i��1 + ��j2k

p
i�
��kh � i��2 + ��j3k

p
i�
��kh � i��3 ;

j = 1; 2; 3;

belongs to the boundary @G:
Put j

��k = 1 and j�k = jXk+1 for the points jXk+1 belonging to G: Then the layer

method takes the form

�u(tk; x) =

4X
i=1

kp
i
��k +

p
i+4

��k
(

1p
i
��k

�u(tk+ i
��k
; i�k) +

1p
i+4

��k
�u(tk+ i+4

��k
; i+4�k))

(6.4)

+�gk � 4kh;
where

k =

 
4X

j=1

1p
i
��k � i+4

��k

!�1
:

To construct the corresponding numerical algorithms, we attract linear interpolation as

in the previous section. For example, consider the case d = 2: To this end put the domain

G into a rectangle � with corners (x10; x
2
0); (x

1
0; x

2
M2
); (x1M1

; x20); (x
1
M1
; x2M2

) and introduce

the equidistant space discretization of the rectangle �:

�M1;M2
:= f(x1j ; x2l ) : x1j = x10 + jhx1; x

2
l = x20 + lhx2 ; j = 0; : : : ;M1; l = 0; : : : ;M2g;

15



hx1 =
x1M1

� x10
M1

; hx2 =
x2M1

� x20
M2

:

The values of �u(tk; x
1
j ; x

2
l ) at the nodes of �M1;M2

\ G are found in accordance with

(6.1)-(6.2). Let (x1; x2) 2 G and x1j � x1 � x1j+1; x
2
l � x2 � x2l+1: If all the nodes

(x1j ; x
2
l ); (x

1
j ; x

2
l+1); (x

1
j+1; x

2
l ); (x

1
j+1; x

2
l+1) 2 G; the value of �u(tk; x1; x2) is evaluated as

�u(tk; x
1; x2) =

x1j+1 � x1

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j ; x

2
l ) +

x1j+1 � x1

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j ; x

2
l+1)

(6.5)

+
x1 � x1j

hx1
� x

2
l+1 � x2

hx2
�u(tk; x

1
j+1; x

2
l ) +

x1 � x1j

hx1
� x

2 � x2l
hx2

�u(tk; x
1
j+1; x

2
l+1):

If the point x = (x1; x2) : x1j � x1 � x1j+1; x
2
l � x2 � x2l+1 is such that some of the

nodes (x1j ; x
2
l ); (x

1
j ; x

2
l+1); (x

1
j+1; x

2
l ); (x

1
j+1; x

2
l+1) do not belong to G; then we use some

points on the boundary @G (due to (1.2) we know values of u(t; x) for x 2 @G) to �nd

�u(tk; x
1; x2) by linear interpolation.

If we take hxi = {
ih3=4; i = 1; 2; {1;{2 > 0 are positive constants, the error of the

proposed algorithm is estimated as O(h1=2).

7. Numerical tests

In the previous sections we deal with semilinear parabolic equations with negative

direction of time t : the equations are considered under t < T and the "initial" conditions

are given at t = T: This form of equations is suitable for the probabilistic approach which

we use to construct numerical methods. Of course, the proposed methods are adaptable

to semilinear parabolic equations with positive direction of time, and this adaptation is

particularly easy in the autonomous case. In our numerical tests we use algorithms with

positive direction of time (see, e.g., (7.13)-(7.14)).

7.1. The Burgers equation. Consider the Dirichlet problem for the one-dimensional

Burgers equation:

@u

@t
=
"2

2

@2u

@x2
� u

@u

@x
; t > 0; x 2 (�1; 1); (7.1)

u(0; x) = �A sin �x; x 2 [�1; 1]; (7.2)

u(t;�1) = 0; t > 0: (7.3)

This problem was used for testing various numerical methods in, e.g., [23, 24] (see also

references therein). By means of the Cole-Hopf transformation, one can �nd the explicit

solution of the problem (7.1)-(7.3) in the forms:

u(t; x) = �A

Z 1

�1

sin�(x� y) exp(� A
�"2

cos �(x� y)� y2

2"2t
) dyZ 1

�1

exp(� A
�"2

cos �(x� y)� y2

2"2t
) dy

(7.4)
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Figure 1. A typical solution u(t; x) of the problem (7.1)-(7.3) for " = 0:1;
A = 2 and various time moments.

or

u(t; x) =
�"2

2

1X
n=1

nan exp(�1
8
"2�2n2t) sin 1

2
�n(x + 1)

1
2
a0 +

1X
n=1

an exp(�1
8
"2�2n2t) cos 1

2
�n(x + 1)

(7.5)

with

an =

Z 1

�1

exp(� A

�"2
cos �x) cos

1

2
�n(x + 1) dx:

We shall simulate the problem (7.1)-(7.3) on relatively small time intervals [0; T ]; where
the formula (7.4) is more convenient. For a small "; there is a thin internal layer, where

the solution to (7.1)-(7.3) has singular behavior (see, e.g., [25] and references therein).

Derivatives of the solution go to in�nity as " ! 0: A typical behavior of the solution is

demonstrated on Fig. 1.

Here we test the following three algorithms: the algorithm (5.1)-(5.2), the algorithm

based on the layer method (4.1) and linear interpolation, and the algorithm based on

cubic interpolation (see also Remark 5.2). In the algorithm (5.1)-(5.2) and the algorithm

based on the layer method (4.1) and linear interpolation we take the space step hx being
equal to the time step h:
The algorithm based on cubic interpolation in the case of the problem (7.1)-(7.3) has

the form (cf. [6])

�u(0; x) = �A sin �x; x 2 [�1; 1]; (7.6)

�u(tk+1; x0) = �u(tk+1;�1) = 0;

�u(tk+1; xM) = �u(tk+1; 1) = 0;

17



Table 1. The Burgers equation. Dependence of the errors errc(t) and

errl(t) in h for the algorithms (5.1)-(5.2) and (7.6) under t = 0:5, " = 0:1,
and A = 2.

h algorithm (5.1)-(5.2) algorithm (7.6)

0:01
0:0016
0:0001
0:000016

errc(t) errl(t)

1:239 � 10�1 3:035 � 10�2
4:574 � 10�2 5:311 � 10�3
2:673 � 10�3 3:288 � 10�4
4:261 � 10�4 5:259 � 10�5

errc(t) errl(t)

1:854 � 10�1 3:081 � 10�2
5:855 � 10�2 5:481 � 10�3
3:737 � 10�3 3:466 � 10�3
5:919 � 10�4 5:527 � 10�5

�u(tk+1; xj) =
1

2
�u(tk; xj � h�u(tk; xj)� "h1=2) +

1

2
�u(tk; xj � h�u(tk; xj) + "h1=2);

j = 1; : : : ;M � 1;

�u(tk; x) =

3X
i=0

�j;i(x)�u(tk; xj+i); xj < x < xj+3;

�j;i(x) =

3Y
m=0;m6=i

x� xj+m

xj+i � xj+m
;

k = 0; : : : ; N � 1:

Here we use a nonequidistant discretization of the interval [�1; 1]: In the thin internal

layer (in a neighborhood of x = 0) we take hx := xj+1 � xj = "
p
h and outside the layer

hx =
p
h: Since "� 1 in our experiments and hx =

p
h for nodes xj close to the end of the

interval [�1; 1], it is clear that the points xj�h�u(tk; xj)� "h1=2; j = 1; : : : ;M �1; always
belong to the interval (�1; 1): Thus, we avoid using special formulas near the boundary

in (7.6) (see Remark 5.2 as well).

Table 1 gives numerical results obtained by using the algorithms (5.1)-(5.2) and (7.6).

The algorithm based on the layer method (4.1) and linear interpolation gives results being

practically identical to the ones for (5.1)-(5.2). We present the errors of the approximate

solutions �u in the discrete Chebyshov norm and in l1-norm:

errc(t) = max
xi
j�u(t; xi)� u(t; xi)j;

errl(t) =
X
i

j�u(t; xi)� u(t; xi)j � hx :

7.2. Quasilinear equation with power law nonlinearities. Consider the Dirichlet

problem for quasilinear parabolic equation with power law nonlinearities [4, 19]

@u

@t
=

1

2

@

@x
(uq

@u

@x
); t 2 (0; 1); x > 0; q > 0; (7.7)

with the initial condition

u(0; x) = (1� x=L)2=q; x 2 [0; L]; (7.8)

u(0; x) = 0; x > L;
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Figure 2. A typical solution u(t; x) of the problem (7.7)-(7.9) for q = 1:5
and various time moments.

and the boundary regime

u(t; 0) = (1� t)�1=q; t 2 [0; 1); (7.9)

where L =
p
(q + 2)=q:

The exact solution to this problem has the form [4, 19]

u(t; x) =

�
1� x=Lp
1� t

�2=q

for x 2 [0; L]

and

u(t; x) = 0 for x > L:

The temperature u(t; x) grows in�nitely as t ! 1: At the same time the heat remains
being localized in the interval [0; L): Figure 2 presents a typical behavior of the solution

to (7.7)-(7.9).

The equation (7.7) is not of the form (2.1). The function

v = uq+1

satis�es the problem

@v

@t
=

1

2
vq=(q+1) @

2v

@x2
; t 2 (0; 1); x > 0; (7.10)

v(0; x) = (1� x=L)2(q+1)=q; x 2 [0; L]; (7.11)

v(0; x) = 0; x > L;

v(t; 0) = (1� t)�(q+1)=q; t 2 [0; 1): (7.12)

The equation (7.10) has the form (2.1).
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Table 2. Quasilinear equation with power law nonlinearities. Dependence

of errors err�v(t; h) (top position) and err�u(t; h) (lower position) in h and t
for the algorithm (7.13)-(7.14) under q = 1:5.

h = 10�1 h = 10�2 h = 10�3 h = 10�4

t = 0:5
0:8664 � 10�1
0:3542 � 10�1

0:8786 � 10�2
0:7693 � 10�2

0:9705 � 10�3
1:685 � 10�3

1:018 � 10�4
3:622 � 10�4

t = 0:9
> 5

5:910 � 10�1
8:094 � 10�1
8:109 � 10�2

8:265 � 10�2
8:656 � 10�3

8:817 � 10�3
8:918 � 10�4

We simulate the solution to (7.10)-(7.12) by two algorithms: the algorithm (5.1)-(5.2)

and the algorithm based on the layer method (4.1) and linear interpolation. The last one

in the case of the problem (7.10)-(7.12) has the form

�v(0; x) =

�
(1� x=L)2(q+1)=q; x 2 [0; L];

0; x 2 (L;1);
(7.13)

�v(tk+1; xj) =
1

2
�v(tk; xj � (�v(tk; xj))

q=2(q+1) �
p
h) +

1

2
�v(tk; xj + (�v(tk; xj))

q=2(q+1) �
p
h);

if xj � (�v(tk; xj))
q=2(q+1) �

p
h � 0;

�v(tk+1; xj) =
1

1 +
p
��k
(1� tk+1���k

)�(q+1)=q +

p
��k

1 +
p
��k
�v(tk; xj + (�v(tk; xj))

q=2(q+1) �
p
h);

��k =

 
xj

(�v(tk; xj))q=2(q+1) �
p
h

!2

; if xj � (�v(tk; xj))
q=2(q+1) �

p
h < 0;

�v(tk+1; x) =
xj+1 � x

hx
�v(tk+1; xj) +

x� xj

hx
�v(tk+1; xj+1); xj � x � xj+1;

(7.14)

j = 0; 1; 2; :::; k = 1; :::; N;

where xj = j � hx; tk = k � h:
In our tests we take hx = h: Tables 2 and 3 give numerical results obtained by using

the algorithm (7.13)-(7.14). The algorithm (5.1)-(5.2) gives similar results and they are

omitted here. Let us mark that in the experiments the algorithm (7.13)-(7.14) based on

the layer method (4.1) behaves as an algorithm of the order O(h) while due to Theorem

4.1 the layer method (4.1) has the accuracy order O(h1=2) only (see also Remark 4.3).

Table 2 presents the errors

err�v(t; h) := max
j
j�v(t; xj)� v(t; xj)j;

err�u(t; h) := max
j
j�u(t; xj)� u(t; xj)j; �u(t; xj) = (�v(t; xj))

1=(q+1):

For times t which are close to the explosion time t = 1 the functions u(t; x) and v(t; x)
take big values and the absolute errors become fairly large. In Table 3 we present the

relative error

�(t; h) :=
err�u(t; h)

u(t; 0)

20



Table 3. Quasilinear equation with power law nonlinearities. Dependence

of the relative error �(t; h) in h and t for the algorithm (7.13)-(7.14) under

q = 1:5.

h = 10�1 h = 10�2 h = 10�3 h = 10�4

t = 0:9 1:273 � 10�1 1:747 � 10�2 1:865 � 10�3 1:921 � 10�4
t = 0:99 |{ 1:392 � 10�1 1:789 � 10�2 1:913 � 10�3
t = 0:999 |{ |{ 1:398 � 10�1 1:801 � 10�2
t = 0:9999 |{ |{ |{ 1:400 � 10�1

at times close to the explosion.

Acknowledgement

We acknowledge support from the Russian Foundation for Basic Research (project 99-

01-00134).

References

[1] J.C. Strikwerda. Finite Di�erence Schemes and Partial Di�erential Equations. Wadsworth &

Brooks/ Paci�cGrove, California, 1989.

[2] C.B. Vreugdenhil, B. Koren (eds.). Numerical Methods for Advection-Di�usion Problems. Notes on

Numerical Fluid Mechanics, v. 45. Vieweg: Braunschweig, Wiesbaden, 1993.

[3] A. Quarteroni and A. Valli. Numerical Approximation of Partial Di�erential Equations. Springer,

1994.

[4] A.A. Samarskii. Theory of Di�erence Schemes. Nauka, Moscow, 1977.

[5] G.N. Milstein. The probability approach to numerical solution of nonlinear parabolic equations.

Preprint No. 380, Weierstra�-Institut f�ur Angewandte Analysis und Stochastik, Berlin, 1998 (sub-

mitted).

[6] G.N. Milstein, M.V. Tretyakov. Numerical algorithms for semilinear parabolic equations with small

parameter based on approximation of stochastic equations. Math. Comp. (in print).

[7] E.B. Dynkin. Markov Processes. Springer: Berlin, 1965 (engl. transl. from Russian 1963).

[8] M.I. Freidlin. Functional Integration and Partial Di�erential Equations. Princeton Univ. Press,

Princeton, 1985.

[9] G.N. Milstein. Numerical Integration of Stochastic Di�erential Equations. Kluwer Academic Pub-

lishers, 1995 (engl. transl. from Russian 1988).

[10] P.E. Kloeden, E. Platen. Numerical Solution of Stochastic Di�erential Equations. Springer: Berlin,

1992.

[11] E. Pardoux, D. Talay. Discretization and simulation of stochastic di�erential equations. Acta Appl.

Math., 3 (1985), pp. 23-47.

[12] H.J. Kushner. Probability Methods for Approximations in Stochastic Control and for Elliptic Equa-

tions. Academic Press: New York, 1977.

[13] D. Talay, L. Tubaro (eds.). Probabilistic Models for Nonlinear Partial Di�erential Equations. Lecture

Notes in Mathematics, 1627. Springer, 1996.

[14] G.N. Milstein. Solving �rst boundary value problems of parabolic type by numerical integration of

stochastic di�erential equations. Theory Prob. Appl., 40 (1995), pp. 657-665.

[15] G.N. Milstein. The solving of boundary value problems by numerical integration of stochastic equa-

tions. Math. Comp. Simul. 38(1995), 77-85.

[16] G.N. Milstein. Application of numerical integration of stochastic equations for solving boundary

value problems with the Neumann boundary conditions. Theory Prob. Appl. 41 (1996), pp. 210-218.

[17] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'ceva. Linear and Quasilinear Equations of Para-

bolic Type. Amer. Math. Soc., Providence, R.I., 1988 (engl. transl. from Russian 1967).

[18] J. Smoller. Shock Waves and Reaction-Di�usion Equations. Springer, 1983.

[19] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov. Blow-up in Quasilinear Para-

bolic Equations. Walter de Gruyter: Berlin, New York, 1995 (engl. transl. from Russian 1987).

21



[20] P. Grindrod. The Theory and Applications of Reaction-Di�usion Equations: Patterns and Waves.

Clarendon Press: Oxford, 1996.

[21] M.E. Taylor. Partial Di�erential Equations III, Nonlinear Equations. Springer, 1996.

[22] G.N. Milstein, M.V. Tretyakov. Numerical methods in the weak sense for stochastic di�erential

equations with small noise. SIAM J. Numer. Anal., 34 (1997), pp. 2142-2167.

[23] C.A.J. Fletcher. Computational Galerkin Methods. Springer, 1984.

[24] C. Basdevant, M. Deville, P. Haldenwang, J.M. Lacroix, J. Onazzani, R. Peyret, P. Orlandi, A.T.

Patera. Spectral and �nite di�erence solutions of the Burgers equations. Comput. Fluids 14(1986),

pp. 23-41.

[25] A.M. Il'in. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Amer.

Math. Soc., Providence, 1992 (engl. transl. from Russian 1989).

22


