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Abstract

We consider adaptive estimating the value of a linear functional from indi-

rect white noise observations. For a �exible approach, the problem is embed-

ded in an abstract Hilbert scale. We develop an adaptive estimator that is rate

optimal within a logarithmic factor simultaneously over a wide collection of

balls in the Hilbert scale. It is shown that the proposed estimator has the best

possible adaptive properties for a wide range of linear functionals. The case

of discretized indirect white noise observations is studied, and the adaptive

estimator in this setting is developed.

1 Introduction

In this paper we consider adaptive estimating linear functionals from indirect white

noise observations. Let X be a separable Hilbert space with the inner product h�; �i
and the norm k � k. Consider an operator equation

Ax = y ; (1)

where A is a linear injective operator from X into a dense subset Range(A) � X.

Suppose that the right hand side y of (1) is observed in the presence of a Gaussian

white noise of the intensity ". This speci�cally means that for every element � 2 X
we can observe

y"(�) = hAx; �i+ "�(�) ; (2)

where �(�) is a Gaussian random variable on a probability space f
;A;Pg with zero
mean and variance k�k2. In addition,

E [�(�)�( )] = h�;  i; 8�;  2 X; (3)

where E is the expectation with respect to P. We are interested in estimating the

value of a linear functional `f(x) = hf; xi from the indirect noisy observations (2).

Statistical approach to inverse problems has been proposed by a number of au-

thors, including Sudakov and Khal�n (1964), Bakushinskii (1969), Wahba (1977).

For more recent work on this topic see, e.g., O'Sullivan (1986), Nychka and Cox

(1989), Johnstone and Silverman (1991), Nussbaum (1994), Donoho (1995), Mair

and Ruymgaart (1996), Golubev and Khasiminskii (1997), Chow, Ibragimov and
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Khasminskii (1999), Mathe and Pereverzev (1999) and references therein. Typically

in these papers A is an integral operator

Ax(t) =

Z
T

a(t; �)x(�)d� ; (4)

acting from X = L2(T ) to L2(T ), where T is an interval in R, and x(�) is the

function to be estimated. There is also a considerable literature on the optimal

recovery problem, where it is assumed that the right hand side y of (1) is observed

with a deterministic noise. A few selected references on the classical deterministic

approach to inverse problems are Tikhonov and Arsenin (1977), Traub, Wasilkowski

and Wozniakowski (1988), Engl, Hanke and Neubauer (1996).

When estimating a linear functional `f(x) = hf; xi, it is usually assumed that some

a priori information on the unknown solution x is available. This information typi-

cally re�ects prior knowledge on smoothness of x, and is stated in the form x 2 W ,

where W is a prespeci�ed subset of X. Let ^̀"(x) = ^̀(x; y") be an estimate of `f (x)

based on the observations (2). In the framework of the minimax approach accuracy

of an estimate ^̀" is measured by its uniform with respect to W risk

R[^̀";W ] := sup
x2W

E j^̀"(x)� `f (x)j2 :

The minimax risk is de�ned by

R�[";W ] := inf
^̀"
R[^̀";W ] = R[`�;W ];

where inf is taken over all possible estimates ^̀". The main purpose is to construct

asymptotically optimal, or in optimal in order estimates ^̀" satisfying

R[^̀";W ] = R�[";W ](1 + o(1)); "! 0;

R[^̀";W ] � C(�)R�[";W ]; sup
"

C(�) <1

respectively.

The outlined problem of estimating linear functionals from white noise observations

is a subject of considerable literature under various assumptions on the operator A,

the linear functional `f (x) and the solution set W . It has been extensively stud-

ied for the case of direct observations, where A is the identity operator (Speckman

(1979), Li (1982), Ibragimov and Has'minskii (1984)). For models with indirect

observations see, e.g., Donoho and Low (1992), Donoho (1994), Stander and Sil-

verman (1995) and references therein. In these papers a variety of optimal in the

minimax sense estimators has been developed. Typically, such estimators are highly

specialized in the sense that their construction depends heavily on the solution set

W . The crucial step of the construction involves selecting a smoothing parameter;

to choose it optimally one should have a priori information on the solution set W .

In practice, however, specifying the set W of possible solutions can present severe
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di�culties. Therefore, developing estimators that are optimal in the minimax sense

simultaneously over a collection of solution sets W is of interest.

Let W" denote a collection of solution sets W , possibly growing as " ! 0. We say

that an estimate ^̀" is adaptive with respect to W" if

sup
W2W"

fR[^̀";W ]=R�[";W ]g � C("); (5)

where sup
"
C(") < 1, or C(") grows slowly as " goes to 0 (we say that C(")

grows slowly as " ! 0 if lim"!0[C(r")=C(")] = 1 for every r > 0). Recently much

attention has been concentrated on developing adaptive nonparametric estimators

both for direct and indirect observations (Lepskii(1991), Donoho and Johnstone

(1994), Barron, Birge, Massart (1999), Donoho (1995), Abramovich and Silverman

(1998), Johnstone (1999), Cavalier and Tsybakov (1998)). For adaptive estimation

of linear functionals from direct white noise observations we refer to Lepskii (1990),

Efromovich and Low (1994) and Tsybakov (1998). Adaptive estimates that are

within a logarithmic factor optimal simultaneously over a collection of the solutions

sets have been proposed there. It has been shown also that the extra logarithmic

factor is often unavoidable when estimating linear functionals. In particular, this

fact has been established by Lepskii (1990, 1992) and Brown and Low(1996) for

estimating a function (or its derivative) at a single given point from direct white noise

observations. This similar result holds for indirect observations involving certain

convolution operators (Goldenshluger (1998)). It should be noticed that there is a

vast literature on data�driven selection of smoothing parameters in inverse problems

(see, e.g., Wahba (1977), Lukas (1998) and references therein); however, the minimax

properties of the related estimation methods are not usually analyzed.

The goal of the present paper is to develop an adaptive estimator of linear func-

tionals in the general Hilbert space framework. For a �exible approach, we embed

the problem in a Hilbert scale, and propose the estimator that is adaptive over a

collection of balls in the Hilbert scale. Our construction exploits deterministic regu-

larization methods along with the general adaptation scheme developed by Lepskii

(1990, 1991) for estimation from direct white noise observations. We show that

the accuracy of our adaptive estimator is only by a logarithmic factor worse than

the one we could achieve in the case when the solution set W is known exactly.

We argue also that in many important cases this extra logarithmic factor cannot

be reduced; here our estimator possesses the best possible abilities for adaptation.

Furthermore, we consider the case of discretized observations, where the data (2)

are available only for a �nite number of �probe� functions �i 2 X, i = 1; : : : ; n.

This case corresponds to grouped or binned data which are typical in statistical

practice (Johnstone and Silverman (1991), Bickel and Ritov (1995)). In the context

of indirect estimation in the Hilbert scales the case of discretized observations has

been studied by Mathe and Pereverzev (1999). Both the �probe� functions and the

number of observations n taken are important parameters of the estimation method.

We consider the problem of optimal discretization, and show that our estimate as-

sociated with a data�driven choice of the design set �n = f�i 2 X; i = 1; : : : ; ng
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possesses the same adaptive minimax properties, as the adaptive estimate based on

the complete observations (2).

The rest of the article is organized as follows. Section 2 introduces our notation and

assumptions. In Section 3 we consider the regularized inverse estimator and show

that it is optimal in order under a proper choice of the regularization parameter. In

Section 4 our adaptive estimator is de�ned, and its accuracy is analyzed. Adaptive

estimation of linear functionals from indirect discretized observations is studied in

Section 5.

2 Formulation and assumptions

Recall that a Hilbert scale fXrgr2R is a family of Hilbert spaces Xr with the inner

products hu; vir := hLru; Lrvi, where L is an unbounded self-adjoint strictly positive

operator in a dense domain of X. More precisely, Xr is de�ned as the completion

of the intersection of domains of all operators fLsgs2R, endowed with the norm

kukr := hu; ui1=2r , k � k0 = k � k. The �rst investigation of inverse problems with de-

terministic noise in Hilbert scales dates back to Natterer (1984). Statistical inverse

estimation in Hilbert scales has been studied by Mair and Ruymgaart (1996), and

Mathe and Pereverzev (1999). Usually fXrg are the Sobolev spaces of various kinds;
in this case r is the index characterizing smoothness.

Example 1 (a). Let X = L2(0; 1), and

Xr =

(
x 2 L2(0; 1) :

1X
k=1

k2rjhx; 'kij2 <1
)
;

where '1; '2; : : : be an orthonormal basis of L2(0; 1). In this case Xr is the domain

of the operator Lr, where L : X1 ! L2(0; 1) is de�ned by Lx =
P1

k=1 khx; 'ki'k.

(b). Let X = L2(R), and

Xr =

�
x 2 L2(R) :

Z
R

(1 + s2)rj(Fx)(s)j2ds <1
�
;

where F denotes the Fourier transform from L2(R) into itself. ThenXr is the domain

of the operator Lr, where L = S1=2 and S : X2 ! L2(R) is given by Sx = x� x00.

The following factors determine essentially behavior of the minimax risks in esti-

mating linear functionals `f(x) = hf; xi: (a) degree of ill�posedness of the operator
A; (b) smoothness of the representer f ; (c) smoothness of the solution x. We intro-

duce the main assumptions on these ingredients of the problem in the Hilbert scale

framework.

Throughout the paper we assume that the operator A is adapted to the Hilbert scale

fXrg is the following sense.
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Assumption 1 The operator A acts along the Hilbert scale fXrg: for some pa-

rameter a � 0 there exist constants d;D > 0 such that

dkukr�a � kAukr � Dkukr�a; 8u 2 Xr�a; r 2 R: (6)

Examples of integral operators (4) satisfying (6) can be found in Neubauer (1988),

Mair and Ruymgaart (1996). Condition (6) describes the degree of ill�posedness of

the operator A relative to the Hilbert scale fXrg. We note that even if the operator

A does not �t some standard Hilbert scale, one can often construct a scale adapted

to A. This is the case when A : X ! X acts compactly and injectively in some

Hilbert space X. Then A meets condition (6) with a = 1=2 in the scale generated

by L := (A�A)�1; see Natterer (1984) and Hegland (1995) for further details.

The following assumption on the linear functional `f(x) will be used in the sequel.

Assumption 2 The representer f of the linear functional `f(x) = hf; xi belongs
to the Hilbert space X�, and either (i) � � a, or (ii) � < a.

The condition (i) is quite usual in estimating linear functionals (see Tautenhahn

(1996)); it includes linear functionals that can theoretically be estimated both at

the parametric O("2) and nonparametric rates. The condition (ii) corresponds to

estimating nonparametric (singular) linear functionals, where the representer f is a

generalized function relative to the Hilbert space X.

As for the unknown solution x, we suppose that x belongs to the ball W�(M) � X�

W�(M) := fx 2 X� : kxk� � Mg

for some index � > 0 and constant M > 0. Since the dual space of X� is X�� (see,

for example, Krein et al. (1982), p. 237), and Xr is embedded in Xs for r > s, we

need also the condition � � �� to ensure that the linear functional `f(x) = hf; xi
is well�de�ned.

Example 2 Let X = L2(0; 1), and A be a compact integral operator given by (4).

Let the Hilbert scale fXrg be generated by an operator L, and let f'kg be a complete

orthonormal system of eigenfunctions of the operator L, i.e. L'k(t) = �k'k(t); k =

1; 2; : : : . Thus, 0 < �1 � �2 � � � � with �k ! 1 as k ! 1. Then the solution x

of integral equation (1) with the integral operator (4) satisfying (6) belongs to X�

if and only if
1X
k=1

�
2�
k
jh'k; xij2 <1:

Suppose we are interested in estimating the value of `f(x) = x(t0), where t0 2 [0; 1].

If for some � � ��
1X
k=1

�2�
k
j'k(t0)j2 <1
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then for x 2 X� � X��

x(t0) = hft0 ; xi :=
Z 1

0

ft0(t)x(t)dt =

1X
k=1

'k(t0)h'k; xi:

Here the representer ft0 of estimated linear functional is a generalized function de-

termined by the series

ft0(t) =

1X
k=1

'k(t0)'k(t)

converging in X�. In particular, if L is as in Example 1(a) and � > 1=2, then

ft0 2 X�1=2.

3 Regularized inverse estimator

The inverse operator A�1 is not necessarily bounded in the X-topology; therefore

some kind of regularization is required for estimating the value hf; xi. In the context
of the deterministic approach to inverse problems it was shown in Bakushinskii

(1967), Groetsch (1977), Vainikko and Veretennikov (1986), and Tautenhahn (1996)

that a wide variety of regularizationmethods can be constructed in the following way.

Let g�(�) be a piecewise continuous function on [0; D2] depending on a regularization

parameter � > 0 and satisfying the following conditions:

sup
�2[0;D2]

j�g�(�)j � c�
�1; 0 �  � 1; (7)

sup
�2[0;D2]

j��[1� �g�(�)]j � c��
�; 0 � � � 1; (8)

where D is given in (6), and c; c� are positive constants. Fix a non-negative number

s � �� and de�ne the regularized estimate ^̀"
�;s

(x) of `f(x) = hf; xi by
^̀"
�;s

(x) = y"(AL
�sg�(L

�sA�AL�s)L�sf) ; (9)

where A� is the adjoint of the operator A in X. Observe also that the condition

s � �� ensures that AL�sg�(L
�sA�AL�s)L�sf 2 X, so that the estimate is well�

de�ned. The well-known Tikhonov regularization method is characterized by (9)

with g�(�) = (�+ �)�1. In the statistical context this method has been applied

to estimating the value of a linear functional by Li (1982) with the special choice

� = O("2).

Accuracy of the regularization methods depends crucially on the choice of the reg-

ularization parameter �. Let ^̀"
�;s

(x) be the estimate (9) associated with some reg-

ularization parameter � and s � maxf0;��g. It follows immediately from (2) and

(9) that

hf; xi � ^̀"
�;s

(x) = b�;s(f; x) + "v�;s(f; �);
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where

b�;s(f; x) = hf; (I � L�sg�(L
�sA�AL�s)L�sA�A)xi;

v�;s(f; �) = ��(AL�sg�(L�sA�AL�s)L�sf):

Since v�;s(f) is a zero mean random variable, we obtain

E jhf; xi � ^̀"
�;s

(x)j2 = b2
�;s

(f; x) + "2Ev2
�;s

(f; �): (10)

Now we establish upper bounds on the bias and variance in the right hand side of

(10).

Lemma 3.1 Let Assumptions 1, 2(i) hold, and ^̀"
�;s

(x) be associated with s �
maxf0;��g. Then for every � 2 (��; 2s+ a] one has

sup
x2W�(M)

jb�;s(f; x)j � cMkfk� �
�+�

2(a+s) ; (11)

where c = c(�; a; s; d;D) depends on �; a; s; d;D only.

Proof Let

x0
�;s

= L�sg�(L
�sA�AL�s)L�sA�Ax (12)

then

jb�;s(f; x)j = jhf; x� x0
�;s
ij � kfk�kx� x0

�;s
k�� ;

and the proof follows immediately from (7) and Proposition 2.2 in Tautenhahn

(1996). 2

Lemma 3.2 Let Assumptions 1, 2(i) hold, and s � maxf0;��g. Then

Ev2
�;s

(f; �) � c �
��a

a+s ;

where c = c(�; a; s; f) depends on �, a, s and f only.

Proof In order to prove the statement of the lemma, we should establish the upper

bound on kAL�sg�(L�sA�AL�s)L�sfk2. Let us introduce the operator H = AL�s.

We need the following assertion that can be found in Natterer (1984):

Rangef(H�H)r=2g = Xr(a+s); jrj � 1: (13)

Then for f 2 X�; � � a and s � maxf0;��g we obtain

L�sf 2 Xs+� = Rangef(H�H)
s+�

2(a+s)g:

7



This guarantees existence of vf 2 X such that

L�sf = (H�H)
s+�

2(a+s)vf : (14)

Then (3), (13), (14) and (7) imply

Ev2
�;s

(f; �) = kAL�sg�(L�sA�AL�s)L�sfk2

= kHg�(H�H)(H�H)
s+�

2(a+s)vfk2

� sup
�2[0;D2]

���g�(�)� s+�

2(a+s)
+ 1

2

���2kvfk2 � c�
��a

a+s ;

where the constant c = c(�; a; s; f) depends on �, a, s and f only. 2

Combining Lemmas 3.1, 3.2, we obtain that under Assumptions 1, 2 the uniform

risk of the estimate ^̀"
�;s

(x) associated with s � maxf0;��g and � > 0 admits the

following upper bound

R[^̀"
�;s

;W�(M)] � c
�
M2�

�+�

a+s + "2�
��a

a+s

�
; 8� 2 (��; 2s+ a]; (15)

where c = c(�; s; a; f; d;D). Thus, � controls trade-o� between the bias and the

variance of the risk. As usual in nonparametric estimation, the optimal choice of

the regularization parameter minimizes the upper bound (15). We obtain that with

the optimal choice � � (M�1")
2(a+s)

�+a one has

R[^̀"
�;s

;W�(M)] � cM�
2(��a)

�+a "
2(�+�)

�+a ; 8� 2 (��; 2s+ a]; (16)

where ��� means equivalent in the sense of the order.

One can argue that the rate of convergence given in (16) cannot be improved for

estimating linear functionals. Indeed, it follows from Donoho and Low (1992) that

1

4
!2(") � R�[";W�(M)] � !2("); (17)

where the modulus of continuity !(") is given by

!(") = supf2`f(x) : kAxk � "=2; kxk� � Mg:
Since � > ��, we have X� � X��, and hf; xi � kfk�kxk��. Condition (6) implies

that the constraint kAxk � "=2 is equivalent to kxk�a � ~d"=2 with some constant
~d 2 [d;D]. Taking into account the embedding X�a � X�� � X�, and the strict

interpolation property of the Hilbert scales, we obtain

supfkxk�� : kxk�a � ~d"=2; kxk� �Mg = ( ~d"=2)
�+�

�+aM�
��a

�+a : (18)

Thus, the estimate ^̀"
�;s

(x) is optimal in order for every ball W�(M) with � 2
(��; 2s+ a].

It is interesting to note also the order of the risk indicated in (16) coincides with the

optimal order of accuracy obtained by Engl and Neubauer (1988) and Tautenhahn

(1996) in the problem of optimal recovery of hf; xi.
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4 Adaptive estimator

The optimal choice of the regularization parameter requires a priori information

on the parameters � and M of the solution set W�(M), and by this reason is not

practical. In this section we introduce our adaptive estimator which is near optimal

simultaneously over a wide collection of the ballsW�(M), not just over a single one.

Let ^̀"
�;s

(x) be the regularized inverse estimator de�ned in (9). Denote � = "2(a+s)=(a��),

� = 1, r� = �(��a)=(2(a+s)), and for a �xed real number q > 1 de�ne

�q := f� 2 [�; �] : � = �j = qj�; j = 0; 1; : : :g:

Consider the family of the regularized inverse estimates f^̀"
�;s

(x)g associated with

the regularization parameter � from the �nite ordered set �q. Let { � 1; then we

de�ne our adaptive estimate as ^̀"
�+;s

(x), where

�+ := maxf� 2 �q : j^̀"�;s(x)� ^̀"
�;s
(x)j � 4{"r�; 8� � �; � 2 �qg: (19)

Note that �+ is well�de�ned; in particular, the minimal �+ = � is a feasible solution

to (19). Observe also that �+ depends on the random noisy data (2), on the ill�

posedness index a, on ", on smoothness of the representer f of estimated linear

functional, and on three design parameters s; q and {. In the sequel { will be

chosen as function of "; s and q, so that actually �+ depends on the two design

parameters s and q. We would like to stress that the parameters � and M of the

solution set W�(M) are not involved in our construction.

Theorem 4.1 Let Assumptions 1, 2(ii) hold, and " be small enough such that for

some constant c1 = c1(�; a; s; f) one has

"
p
ln "�1 � c1min

n
M; M

�
��a

�+a

o
: (20)

Assume also that

� 2 (��; 2s+ a]: (21)

Then there exists a constant c2 = c2(�; a; s; f; d;D; q) such that for the estimate

^̀"
�+;s

(x) associated with { = c2
p
ln "�1 and s � maxf0;��g one has

R[^̀"
�+;s

;W�(M)] � c3

h
M�

��a

�+a ("2 ln "�1)
�+�

�+a + "2 ln "�1
i
; (22)

where c3 = c3(�; a; s; f; d;D; q).

Proof In the below proof c1; c2; : : : stand for the constants depending on �, a, s,

f , d, D and q only. For brevity, we will write ^̀
�(x) for ^̀"

�;s
(x), v�(f) for v�;s(f; �),

and b�(x) for b�;s(f; x).
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Denote B�(x) = c1kxk�kfk��(�+�)=(2(a+s)), where c1 is the constant appearing in the

right hand side of (11). For a �xed { � 1, de�ne

�� = maxf� 2 �q : B�(x) � {"r�g:

It follows immediately from (11) that for q�� 2 �q

{"rq�
�

< Bq�
�

(x) � cMkfk�(q��)(�+�)=(2(a+s));

and then

�� � (c2{"M
�1)

2(a+s)

�+a (23)

for some constant c2. Condition (20) implies that the quantity in the right hand

side of (23) belongs to the interval [�; �].

Consider the event


{ =
n
! 2 
 : max

�2�q

�
r�1
�
jv�(f)j

�
� {

o
:

Assume that 
{ holds; then for every � 2 �q satisfying � � �� we have

j^̀�(x)� ^̀
�
�

(x)j � jhf; xi � ^̀
�(x)j+ jhf; xi � ^̀

�
�

(x)j
� jb�(x)j+ "jv�(f)j+ jb�

�

(x)j+ "jv�
�

(f)j
� 2B�

�

(x) + {"r� + {"r�
�

� 4{"r� :

This means that on the set 
{ our adaptive rule (19) always chooses the regulariza-

tion parameter �+ greater than ��. Thus, taking into account that �+ � �� on the

set 
{, and (23) we obtain

jhf; xi � ^̀
�+
(x)j � jhf; xi � ^̀

�
�

(x)j+ j^̀�
�

(x)� ^̀
�+
(x)j

� B�
�

(x) + "jv�
�

(f)j+ 4{"r�
�

� 6{"r�
�

� c3({")
�+�

�+aM�
��a

�+a : (24)

Now consider the case ! 2 
c

{
= 
 n 
{. By Lemma 3.2 for � = "2(a+s)=(a��) � �+

one has independently of the event 
{

jhf; xi � ^̀
�+
(x)j � j^̀�(x)� ^̀

�
�

(x)j+ jhf; xi � ^̀
�(x)j

� 4{"r� +B�(x) + "jv�(f)j
� 4{"�1 + "[Ev2

�
(f)]1=2 max

�2�q

�
jv�(f)j[Ev2�(f)]�1=2

�
� c4{"

�1�(�) ; (25)

where

�(�) := max
�2�q

�
jv�(f)j[Ev2�(f)]�1=2

�
:

10



Since v�(f)[Ev
2
�
(f)]�1=2 is the standard Gaussian random variable, and the cardi-

nality of the set �q does not exceed N = c5 ln "
�1, we can write

Pf�(�) > �g � N

Z 1

�

exp(�t2=2)dt; � > 0: (26)

Integrating by parts we easily obtain from (26) that

E [�(�)]4 � c0 (lnN)2; (27)

where c0 is an absolute constant. Further, Lemma 3.2 and (26) imply that

Pf
c

{
g = P

�
! 2 
 : max

�2�q

�
a��

2(a+s) jv�(f)j > {

�

� P

�
! 2 
 : max

�2�q

jv�(f)j(Ev2�(f))�1=2 > c�16 {

�

= Pf�(�) > c�16 {g � N

1Z
c
�1
6 {

exp(�t2=2)dt : (28)

Using (25), (26), (27), and (28) we obtain

E

�
jhf; xi � ^̀

�+
(x)j21f
c

{
g
�

� c4{"
�1

Z

c
{

j�(�)j2dP(!)

� c4{"
�1(E j�(�)j4)1=2[P(
c

{
)]1=2

� c7{"
�1
p
N lnN

� 1Z
c
�1
6 {

exp(�t2=2)dt
�1=2

:

Now it is evident from the above upper bound that one can choose a constant c8
such that for { = c8

p
ln "�1 one has

E

h
jhf; xi � ^̀

�+
(x)j21f
c

{
g
i
� "2 ln

1

"
: (29)

With this choice of {, combining (29) and (24) we �nally obtain

E jhf; xi � ^̀
�+
(x)j2 � c9

h
M�

��a

�+a ("2 ln "�1)
�+�

�+a + "2 ln "�1
i
:

2

If we knew in advance the parameters � andM of the solution set W�(M), we could

achieve the rate of convergence given in (16). The arguments of Donoho and Low

(1992) show that this is the minimax rate of convergence. Therefore accuracy of

our adaptive estimator coincides, up to a logarithmic in "�1 factor, with the best

achievable rate of convergence for the case, where the parameters of the solution set

W�(M) are known exactly. We stress, however, that the upper bound (22) holds

11



simultaneously for all ballsW�(M) from the collectionW" de�ned by (20) and (21).

Comparing the upper bound (22) with the order of the minimax risk given by (17)

and (18), we conclude that the estimate `"
�+;s

(x) is adaptive with respect to W" in

the sense of (5).

We can argue also that in many important cases the estimate ^̀"
�+;s

(x) possesses the

best possible abilities for adaptation; i.e. the ln "�1 factor cannot be eliminated if one

is interested in adaptive estimation over a collection of solution sets. In particular, if

X = L2(0; 1), A is the identity operator, `f(x) is the singular linear functional, and

W" contains at least two balls W�1
(�), W�2

(�) with �1 6= �2, then the extra ln "�1

cannot be avoided (see Lepskii (1990), Brown and Low (1996), Efromovich and Low

(1994) and Tsybakov (1998)). The same is true for some convolution operators

(Goldenshluger (1998)). In these cases our estimator has the best possible adaptive

properties.

5 Discretization

In this section we consider the problem of estimating a linear functional `f(x) from

discretized indirect white noise observations. In other words, we assume that only

a �nite number of observations is available

y"(�i) = hAx; �ii+ "�(�i); i = 1; : : : ; n; (30)

where the set of the elements �n := f�i 2 X; i = 1; : : : ; ng is called the design.

From now on we assume that both the design set �n, and the number of observations

n can be chosen. This assumption has a practical meaning, because it concerns with

the important question of how many observations to use for a given noise intensity

" (cf. Johnstone and Silverman (1991)). The goal is to estimate a linear functional

`f(x) = hf; xi from such discretized indirect white noise observations.

Our construction is based on the Tikhonov regularized inverse estimator character-

ized by g�(�) = (� + �)�1. Suppose that �n is an orthonormal system in X, and

let Qn denote the orthogonal projector onto the spanf�1; �2; : : : ; �ng

Qn =

nX
i=1

h�i; �i�i:

Let s � maxf0;��g, and de�ne the regularized estimate ^̀"
�;n;s

(x) of the linear

functional `f (x) = hf; xi by
^̀"
�;n;s

(x) = y"(QnAL
�s(�I + L�sA�QnAL

�s)�1L�sf) (31)

(cf. (9)). Since QnAL
�s(�I + L�sA�QnAL

�s)�1L�sf 2 spanf�1; �2; : : : ; �ng, the
estimate is well�de�ned.

12



Another representation for ^̀"
�;n;s

(x) can be obtained from the variational character-

ization of the Tikhonov method. Denote

Qny" =

nX
i=1

y"(�i)�i; Qn� =

nX
i=1

�(�i)�i:

Then the observations (30) can be written as

Qny" = Qn(Ax + "�): (32)

Note that (32) is the standard form of the projection scheme for the approximate

solution of the operator equation (1) with random noise. Let x"
�;n;s

be the solution

to the following minimization problem

min
u2Xs

fkQnAu�Qny"k2 + �kuk2
s
g:

Equivalently, x"
�;n;s

is the solution to the Euler equation

�u+ L�2sA�QnAu = L�2sA�Qny"; (33)

which is, in fact, a �nite-dimensional operator equation in spanfL�2sA��i; i =

1; 2; : : : ; ng. With this notation, ^̀"
�;n;s

(x) = hf; x"
a;n;s

i.
In what follows we assume that the design sets �1 � �2 � � � � � �n � � � � have
good approximation properties in the following sense.

Assumption 3 For every n

kI �QnkXr!X0
� ~c n�r; 8r 2 [0; s+ a]; (34)

where ~c is a constant depending on s and a only.

This assumption is standard for discretization of inverse problems in Hilbert scales

(see, for example, Neubauer (1988)). If fXrg is a scale of Sobolev spaces then (34) is
valid for a wide variety of design sets, like splines, wavelets, trigonometric functions.

It follows from (30), (31) and (33) that

hf; xi � ^̀"
�;n;s

(x) = b�;n;s(f; x) + v�;n;s(f; �);

where

b�;n;s(f; x) =


f; (I � (�I + L�2sA�QnA)

�1L�2sA�QnA)x
�
;

v�;n;s(f; �) = ��(QnAL
�s(�I + L�sA�QnAL

�s)�1L�sf):

Now we establish upper bounds on the bias and variance of the estimate ^̀"
�;n;s

(x).
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Lemma 5.1 Let Assumptions 1, 2(ii) and 3 hold, and s � maxf0;��g. Then there

exists a constant �c1 = �c1(a; �; s; d;D) such that for n = n(�) = �c1�
�1=(2(a+s))

one

has

sup
x2W�(M)

jb�;n(�);s(f; x)j � �c2Mkfk� �
�+�

2(a+s) ; 8� 2 (��; 2s+ a];

where �c2 = �c2(a; �; s; d;D).

Proof In the below proof c1; c2; : : : stand for positive constants depending on a, �,

s, d and D only.

Let x0
�;n;s

= (�I + L�2sA�QnA)
�1L�2sA�QnAx; then

jb�;n(�);s(f; x)j = jhf; x� x0
�;n;s

ij � kfk�kx� x0
�;n;s

k�� ;
and it is su�cient to bound from above the norm kx � x0

�;n;s
k��. It follows from

(11) that

kx� x0
�;n;s

k�� � kx� x0
�;s
k�� + kx0

�;s
� x0

�;n;s
k��

� c1Mkfk� �
�+�

2(a+s) + kx0
�;s
� x0

�;n;s
k��; (35)

where x0
�;s

is given in (12). Let us evaluate the second term in (35). Using the

formula

g�(L
�2sA�A) = L�sg�(H

�H)Ls; H = AL�s;

(see, e.g., Tautenhahn (1996)) for g�(�) = (�+ �)�1 and Hn = QnH = QnAL
�s we

have

x0
�;s

� x0
�;n;s

= L�s[g�(H
�H)H� � g�(H

�
n
Hn)H

�
n
]Ax

= L�s[(�I +H�H)�1H� � (�I +H�
n
Hn)

�1H�
n
]Ax

= L�s(�I +H�H)�1[(H� �H�
n
)� (H�H �H�

n
Hn)(�I +H�

n
Hn)

�1H�
n
]Ax

= L�s(�I +H�H)�1H�(I �Qn)[I � AL�s(�I +H�
n
Hn)

�1H�
n
]Ax

= L�s(�I +H�H)�1H�(I �Qn)A(x� x0
�;n;s

): (36)

Further, it follows from Proposition 1 by Natterer (1984) that for any u 2 X
kuk�r(a+s) � d0 k(H�H)r=2uk; jrj � 1; (37)

where d0 = [minjrj�1minfdr; Drg]�1, and d, D are the constants from (6). Combin-

ing (6), (7), (34), (36) and (37) we obtain

kx0
�;s
� x0

�;n;s
k�� = kL���s(�I +H�H)�1H�(I �Qn)A(x� x0

�;n;s
)k

= k(�I +H�H)�1H�(I �Qn)A(x� x0
�;n;s

)k���s
� d0k(H�H)

�+s

2(a+s) (�I +H�H)�1H�(I �Qn)A(x� x0
�;n;s

)k
� d0 sup

�

jg�(�)�
�+s

2(a+s)
+ 1

2 jkI �QnkXa��!XkA(x� x0
�;n;s

)ka��

� c2 �
�+s

2(a+s)
� 1

2n�(a��)D kx� x0
�;n;s

k��:

14



Now it is easy to see that there exists a constant c3 such that for n = c3 �
�1=(2(a+s))

kx0
�;s
� x0

�;n;s
k�� � 1

2
kx� x0

�;n;s
k��: (38)

The assertion of the lemma follows from (35) and (38). 2

Remark 5.1 Reconsidering the proof of Lemma 5.1 one can see that the constant

�c1 can be chosen as

�c1 =
h
cd0D(a+ s)�1

�
(� + a + 2s)�+a+2s(a� �)a��

� 1
2(a+s)

i 1
a��

;

where c is a constant from (34).

Lemma 5.2 Let Assumptions 1, 2(ii) and 3 hold, and s � maxf0;��g. Assume

that n = n(�) = �c1�
�1=(2(a+s))

, where �c1 is as in Lemma 5.1. Then

E [v2
�;n(�);s(f; �)] � �c2�

��a

a+s ; (39)

where �c2 = �c2(�; a; s; f).

Proof We have

Ev2
�;n(�);s(f; �) = kHn(�)g�(H

�
n(�)Hn(�))L

�sfk2:
By (14) and (7) we obtain

Ev2
�;n(�);s(f; �) � kHn(�)g�(H

�
n(�)Hn(�))(H

�H)
�+s

2(a+s)vfk2

� c1

n
kHn(�)g�(H

�
n(�)Hn(�))(H

�
n(�)Hn(�))

�+s

2(a+s)kX!X

+kHn(�)g�(H
�
n(�)Hn(�))[(H

�H)
�+s

2(a+s) � (H�
n(�)Hn(�))

�+s

2(a+s) ]kX!X

o2

� c2

n
�

�+s

2(a+s)
� 1

2 + ��
1
2k(H�H)

�+s

2(a+s) � (H�
n(�)Hn(�))

�+s

2(a+s)kX!X

o2

:(40)

Using (34) and Corollary 4.2 from Plato and Vainikko (1990) we �nally obtain

k(H�H)
�+s

2(a+s) � (H�
n(�)Hn(�))

�+s

2(a+s)kX!X � k(I �Qn(�))AL
�sk

�+s

a+s

X!X

�
n
c3 [n(�)]

�(a+s)kAL�skX!Xa+s

o �+s

a+s

� [c4 n(�)]
�(�+s)

�
DkL�skX!Xs

� �+s

a+s

� c5 �
�+s

2(a+s) :

Together with (40) this yields (39). 2

Now we are ready to establish an analog of Theorem 4.1 for the case of discretized

observations. Let n = n(�) = �c1�
�1=(2(a+s)), where �c1 is de�ned in Lemma 5.1 (see
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also Remark 5.1). Then the estimate ^̀"
�;n(�);s depends only on two design parameters

� and s. Let �+ be given by (19) and n+ = n(�+). Consider the estimate ^̀"
�+;n+;s

(x)

associated with the choice { = �c2
p
ln "�1, where �c2 depends on �, a, s, f , d, D and q.

We stress here that ^̀"
�+;n+;s

(x) is based on discretized observations (30), the number

of which n+ = n(�+) depends on the random regularization parameter �+. Then

the following statement holds.

Theorem 5.1 Let the conditions of Theorem 4.1 holds, and Assumption 3 is satis-

�ed. Then

R[^̀"
�+;n+;s

;W�(M)] � ~c
h
M

�
��a

�+a ("2 ln "�1)
�+�

�+a + "2 ln "�1
i
;

where ~c = ~c(�; a; s; f; d;D; q).

Proof follows from Lemmas 5.1, 5.2 using the same arguments as in the proof of

Theorem 4.1. 2

Theorem 5.1 shows that the same rate of convergence as in (22) can be achieved

even in the case where only a �nite number of observations n is available. Thus,

the estimate ^̀"
�+;n+;s

(x) is adaptive over the collection of the balls W�(M) de�ned

by (20) and (21).
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