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Abstract. The paper is concerned with the problem of variance estimation for a high-

dimensional regression model. The results show that the accuracy n
�1=2 of variance

estimation can be achieved only under some restrictions on smoothness properties of

the regression function and on the dimensionality of the model. In particular, for a two

times di�erentiable regression function, the rate n
�1=2 is achievable only for dimen-

sionality smaller or equal to 8. For higher dimensional model, the optimal accuracy is

n
�4=d which is worse than n

�1=2 . The rate optimal estimating procedure is presented.

1. Introduction

In this paper, we consider the problem of variance estimation for the regression model

Yi = f(Xi) + "i (1.1)

where X1; : : : ;Xn are deterministic design points in the Euclidean space R
d , f : Rd !

R is an unknown regression function and "1; : : : ; "n are individual random errors which

we assume independent and satisfying the conditions E"i = 0 , E"2i = �2 and E"6i �
C6 <1 for all i � n . We aim to estimate the unknown error variance �2 .

Wahba (1983) and Silverman (1985) proposed to use for estimating �2 usual non-

parametric residuals obtained by substracting an appropriately smoothed curve from the

observations. Di�erence-based were thoroughly discussed in Gasser et al. (1986), Siefert

et al. (1993) among other. Hall et al (1990) found asymptotically optimal di�erences.

Choosing the curve estimation with respect to extracting residual variance has been

studied by Buckley et al (1988) and Hall and Marron (1990). We refer to Seifert et al

(1993) for more detailed descriptions and comparison of di�erent procedures for variance

estimation. Neumann (1994) discussed an application of data-driven procedure for non-

parametric smoothing. Hall and Carroll (1989), H�ardle and Tsybakov (1997), Ruppert

et al (1997), Fan and Yao (1988) discussed the problem of estimating the heteroscedastic

conditional variance.

The majority of the mentioned results focus on the mean squared error of the variance

estimation in the univariate regression model and claim the possibility to estimate �2

at the rate n�1=2 . Some extensions to the two-dimensional case are discussed in Hall et

al. (1991) and Seifert et al. (1993).

We show that this result can be extended to the case of a multivariate model but only

if the dimension d is not too high, more precisely, if d � 8 .

It is worth noting that the variance estimation is relatively rarely the target of statis-

tical analysis. Typically it is used as a building block for further procedure like adaptive

estimation (Rice, 1984; Gasser et al, 1991) of hypothesis testing (Hart, 1997), Spokoiny

(1999), where some pilot variance estimation is required. This enforces to study not only
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the risk of estimation but also some deviation probabilities which are presented in our

results.

2. The estimate

Our approach is a multidimensional analog of the proposal from Hart (1997, p.123) which

gives an unbiased estimate of the variance for a linear regression function. The idea is to

construct for every design point Xi a locally linear �t bf(Xi) of the unknown regression

function f and then to use the pseudo-residuals bei = Yi� bf(Xi) for variance estimation.

The main problem comes from design sparseness and non regularity in the multidimen-

sional situation. This makes di�cult the choice of the local neighborhood for constructing

the locally linear �t. We propose below two approaches how this choice can be done.

One utilizes a uniform bandwidth and another one allows the bandwidth to vary from

point to point.

2.1. The locally linear �t

First we describe the locally linear �t we apply. Let Uh(x) denote the ball with the

center x and the radius h and Nh(x) stand for the number of di�erent design points

in Uh(x) : Nh(x) = #fXi 2 Uh(x)g .
Let K be the uniform kernel function K(u) = 1(juj � 1) . Introduce linear functions

 0(x) � 1 ,  `(x) = x` , ` = 1; : : : ; d .

Lemma 2.1. For every i � n and every h > 0 de�ne the (d + 1)� (d + 1) matrix

	i;h with elements
Pn

j=1  `(Xj) k(Xj)K
�
Xj�Xi

h

�
, `; k = 0; : : : ; d . If this matrix is

non singular, then there exist coe�cients aij;h , j = 1; : : : ; n , depending on the design

X1; : : : ;Xn only and such that aij;h = 0 if jXj �Xij � h and

nX
j=1

aij;hK

�
Xj �Xi

h

�
= 1;

nX
j=1

aij;h  `(Xj �Xi)K

�
Xj �Xi

h

�
= 0; ` = 1; : : : ; d:

Proof. This is the system of d + 1 linearly independent equations of n variables aij;h

and hence a solution exists (it is usually non-unique) provided that the corresponding

characteristic matrix 	i;h is non degenerate.

Remark 2.1. The coe�cients aij;h can be calculated from the locally linear �t

b�h(Xi) = arginf
�2Rd+1

nX
j=1

 
Yj �

dX
`=0

�` `(Xj)

!2

K

�
Xj �Xi

h

�
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see Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996). This is a quadratic

optimization problem with respect to the vector of coe�cients � = (�`)`=0;::: ;d which can

be solved explicitly and the solution is a linear combination of the observations Yj with

the deterministic coe�cients depending on the design X1; : : : ;Xn only. In particular,

the �rst coe�cient can be represented in the form b�0;h(Xi) =
Pn

j=1 aij;hYj and it is easy

to check that such de�ned coe�cients aij;h ful�ll the conditions of Lemma 2.1.

A necessary and usually su�cient condition for non singularity of the matrix 	i;h is

that the ball Uh(Xi) contains at least d+ 1 design points.

2.2. Procedure with a variable bandwidth

For every i , de�ne the bandwidth hi by the condition

hi = inf fh : 	i;h is non singularg

where 	i;h is the (d+ 1)�(d + 1) matrix introduced in Lemma 2.1.

Next de�ne the locally linear estimate

bf(Xi) = bfhi(Xi) =

nX
j=1

aij;hiYj

and pseudo residuals bei
bei = bf(Xi)� Yi =

nX
j=1

cijYj

with cij = aij;hi for j 6= i and cii = aii;hi � 1 . Finally we set

s2i =

nX
j=1

c2ij ; i = 1; : : : ; n;

b�2 =
1

n

nX
i=1

jbeij2
s2i

: (2.1)

2.3. Procedure with a �xed bandwidth

De�ne the subset Xh of the set X1; : : : ;Xn by

Xh = fXi : 	i;h is non singularg

and let Mh stand for the number of design points in Xh : Mh = #Xh . Then, with

a given � � 1=2 , we de�ne the bandwidth h as the minimal value which satis�es the

condition

Mh � n�;

that is, there are at least n� points Xi , for which 	i;h is non singular. Next we de�ne

the locally linear estimate bf(Xi) by bf(Xi) =
Pn

j=1 aij;hYj and the pseudo residuals bei
by
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bei = bf(Xi)� Yi =

nX
j=1

cijYj

with cij = aij;h for j 6= i and cii = aii;h�1 . Finally the variance estimate b�2 is de�ned

by

s2i =

nX
j=1

c2ij ;

b�2v =
1

Mh

X
i:Xi2Xh

be2i
s2i
:

3. Properties

In this section we state some useful properties of the estimate b�2 from (2.1). The

estimate b�2v can be studied similarly. First we present the result for the case of Gaussian

errors "i and then we discuss the general case.

The estimate b�2 assumes some smoothness of the regression function f at a small

neighborhood of each design point Xi . When formulating the result, this local smooth-

ness will be characterized by the value

Li = 0:5 sup
u2Rd

sup
x2Uhi(Xi)

u>f 00(x)u

juj2

where f 00 denotes the d�d matrix of second derivatives of f .

Theorem 3.1. Let the observations Y1; : : : ; Yn follow the regression model (1.1) with

i.i.d. Gaussian errors "i � N (0; �2) and a two times di�erentiable regression function

f . Introduce n�n -matrix R with elements

rij =
1

nsisj

nX
k=1

cikcjk; i; j = 1; : : : ; n;

and de�ne the values � and S2 by

�2 =
1

n

nX
i=1

L2i h
4
i s
�2
i

0@X
j 6=i

jcij j

1A2

;

S2 = 2 trR2 = 2

nX
i=1

nX
j=1

r2ij :

Then for every nonnegative � with �2 � trR2

2kRk2 and any t > 0 , the variance estimate

b�2 ful�lls

P

�
�(b�2 � �2) > �2 + ��S1=2� + (�+ t)S�2

�
� 2e��

2=4��t=2: (3.1)
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Let also

e�2 = 1

n

nX
i=1

s�2i

0@ nX
j=1

cij"j

1A2

(3.2)

be the variance estimate corresponding to the "no-response" model with the vanishing

regression function f(x) � 0 and hence, Yi = "i . Then for any � � 1

P

�
�(b�2 � e�2) > �2 + ��S1=2�

�
� e��

2=2: (3.3)

Remark 3.1. The norm of the matrix R can be very roughly estimated as follows:

kRk2 � max
i=1;::: ;n

nX
j=1

r2ij:

3.1. The rate of estimation

Here we discuss some corollaries of Theorem 3.1 concerning the rate of estimation. For

this we have to bound the quantities � and S . This can be easily done for a regular

(equispaced) or random design. So we consider here two di�erent model assumptions

widely used in applications.

RD (Random design) The design points X1; : : : ;Xn are i.i.d. random variables from

a distribution with a density p(x) which is supported on a compact set X and it

is continuous and positive on X .

ED (Equispaced design) The design points X1; : : : ;Xn form the regular grid in the

unit cube [0; 1]d with the step �n such that ��1n is an integer number and ��dn = n .

Recall that each bandwidth hi is de�ned as the smallest radius h providing a non

degenerated linear �t in the ball Uh(Xi) . This implies that the number Nh(Xi) of design

points in the ball Uh(Xi) is at least d + 1 . De�ne N = maxiNhi(Xi) . The following

technical result is straightforward.

Lemma 3.1. Under RD, it holds P
�
N = d+ 1

�
= 1 . Under ED, it holds N = 2d+1 .

Further, let hi be the smallest radius providing at least d + 1 point in the ball

Uhi(Xi) with the center at Xi , and let h =

�
n�1

nP
i=1

h4i

�1=4
. Under ED, one clearly

has hi = n�1=d for all i , so that h = n�1=d . Under RD, the following result can be

proved:

Lemma 3.2. Under RD, it holds for some positive constant � � 1 depending on d and

design density p(x) only such that

P

�
h � �n�1=d

�
� n�1:
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Next, since s2i =
P

j c
2
ij , the Cauchy-Schwarz inequality implies0@X

j 6=i

jcij j

1A2

� Nhi(Xi)
X
j 6=i

c2ij � Nhi(Xi)s
2
i

and hence, if the function f has a bounded second derivative, i.e. if kf 00k � L , then

Li � L for all i and

�2 � 1

n

nX
i=1

L2ih
4
iNhi(Xi) �

L2N

n

nX
i=1

h4i = L2h
4
N � �2L2n�4=d

with � from Lemma 3.2.

Further we bound S . The de�nition of the stochastic terms �i implies E�i = 0 and

E�2i = n�1s�2i E

0@ nX
j=1

cij"j

1A2

=
�2

n
:

Therefore, for all i; j , it holds vij = E�i�j � �2=n and moreover, if jXj�Xij > hi+hj ,

then �i and �j are independent and E�i�j = 0 . This implies for every i � n

nX
j=1

v2ij � Nin
�2�4

with

Ni = #fXj : jXj �Xij < hi + hjg:

Similarly to Lemmas 3.1 and 3.2 one can bound under ED

1

n

nX
i=1

Ni � N�

with some �xed constant N� depending on d only. Under RD, a similar bound holds

with a probability exponentially close to 1 and the constant N� depends also on the

design density. Therefore,

S2 = 2��4
nX
i=1

nX
j=1

v2ij �
2N�

n
:

On the other side,

nX
i=1

nX
j=1

v2ij �
nX
i=1

v2ii = �4n�1

that is, 2 � nS2 � 2N� . This and the inequality � � L�n�2=d yield in view of (3.1)

the following rate of estimation: with a probability at least 1� e��
2=4��t=2

�
�b�2 � �2

�
� �2 + ��S1=2� + (�+ t)S�2

� �2L2n�4=d + ��L(2N�)1=4�n�2=d�1=4 + (�+ t)�2
p
2N�n�1=2:
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We observe that for d < 8 , the �rst two summands in this bound are smaller in rate

than the last one which is O(n�1=2) . If d = 8 , then all three summands are of order

n�1=2 and for d > 8 , the �rst term (which is of order n�4=d ) starts to dominate. Given

a loss function w , de�ne the risk of estimation

R(b�2) =
8<:Ew

�
n1=2��2(b�2 � �2)

�
; d � 8;

Ew
�
n4=d��2(b�2 � �2)

�
; otherwise:

The above considerations lead to the following

Theorem 3.2. Let b�2 be the variance estimate from (2.1). Let the quantities � and

S de�ned in Theorem 3.1 and depending on n , the design X1; : : : ; Xn and on the

smoothness properties of the regression function f , satisfy the conditions

� � Bn�2=d;

S2 � 2N�

n

with some �xed constants B;N�
. Then for every continuously di�erentiable loss function

w which obeys the conditions w(0) = 0 , w(x) = w(�x) , w0(x) � 0 for x > 0 andR
w0(x)e��x dx < 1 for every � > 0 , the corresponding risk R(b�2) remains bounded

by some constant C = C(B;N�; w) depending on B;N�
and the function w only:

R(b�2) � C(B;N�; w):

3.2. Non-Gaussian case

Here we discard the assumption that the errors "i are normally distributed. Instead we

assume that that they are independent identically distributed with 6 �nite moments.

Our variance estimate allows for the following representation, cf. (2.1):

b�2 = nX
i=1

24 nX
j=1

�ij ff(Xj) + "jg

352 = nX
i=1

0@bi + nX
j=1

�ij"j

1A2

where the coe�cients �ij satisfy
Pn

j=1 �
2
ij = 1=n so that

Pn
i=1

Pn
j=1 �

2
ij = 1 , andPn

i=1 b
2
i � �2 , see the proof of Theorem 3.1. Clearly

b�2 = nX
i=1

b2i + 2

nX
i=1

nX
j=1

�ijbi"j +

nX
i=1

nX
j=1

�ij"i"j

with

�ij =

nX
k=1

�ki�kj:
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Theorem 3.3. Let the errors "i from (1.1) be i.i.d. random variables with E"i = 0 ,

E"2i = �2 , E("2i � �2)2 � C2
4�

4
and Ej"2i � �2j3 � C6�

6
for all i . Let also value CA

be such that

n max
i=1;::: ;n

nP
j=1

�2ij

nP
i=1

nP
j=1

�2ij

� CA;

n max
i=1;::: ;n

�2ii

nP
i=1

�2ii

� CA:

Then there exists an absolute constant C such that for every � � 0 with �2 � n
2CA

every t � 0 and every � with 0 < � � 1

P

�
�(b�2 � �2) > �2 + 2�S1=2� + (�+ t+ �)S�2 + (�+ t)S00�2

�
� 2e��

2=4��t=2 +Cn�1=2��3

where jS00j2 =
nP
i=1

�2ii and the constant C depends on C4; C6 and CA only.

This result clearly implies an analog of Theorem 3.2 for non-Gaussian errors under the

conditions of Theorem 3.3.

3.3. Rate optimality

Here we show that the critical dimension d = 8 appears not only for our particular

estimator. Actually, no estimator achieves the rate n�1=2 for d > 8 uniformly over any

class of smooth functions with the smoothness degree 2.

To simplify the construction, we suppose hereafter that n1=d is an integer number, and

X1; : : : ;Xn form the regular grid in the unit cube [0; 1]d . De�ne the following Sobolev

type class Fn(2; L) :

Fn(2; L) =

(
f :

1

n

nX
i=1

sup
x:jx�Xij�n�1=d

kf 00(x)k2 � L2

)
:

Let P f;�2 denote the measure on the observation space which corresponds to a regression

function f and the variance �2 and let Ef;�2 denote the expectation w.r.t. P f;�2 .

Theorem 3.4. Let X1; : : : ;Xn be the equispaced design in the unit cube [0; 1]d and

the the observations Y1; : : : ; Yn be generated from the regression model (1.1) with i.i.d.

Gaussian errors "i � N (0; �2) . For d � 8 , su�ciently large L and for every continuous

bounded loss function w ,

lim
n!1

inf
e�2n

sup
f2Fn(2;L)

sup
�22�n

Ef;�2 w
�
n4=d(e�2n � �2)

�
= r > 0

where the in�mum is taken over the set of all possible estimates of the parameter �2 and

�n is the three points set of the form �n = f1; 1 + n�4=d; 1 + 2n�4=dg .
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4. Proofs

In this section we gather the proofs of Theorem 3.1 through 3.4.

4.1. Proof of Theorem 3.1

De�ne

fhi(Xi) =

nX
j=1

aij;hif(Xj)

so that

nX
j=1

cijf(Xj) =

nX
j=1

aij;hif(Xj)� f(Xi) = fhi(Xi)� f(Xi):

The model equation (1.1) implies for every i � n

bei =

nX
j=1

cijYj

=

nX
j=1

cijff(Xj) + "jg

=

nX
j=1

cijf(Xj) +

nX
j=1

cij"j

which leads to the following representation for the estimate b�2 :
b�2 = 1

n

nX
i=1

jbeij2
s2i

=

nX
i=1

(bi + �i)
2

with

bi = n�1=2s�1i ffhi(Xi)� f(Xi)g;

�i = n�1=2s�1i

nX
j=1

cij"j :

The smoothness assumption on the function f implies for every j with jXj �Xij � hi

jf(Xj)� f(Xi)� f 0(Xi)(Xj �Xi)j � Lih
2
i :



10 SPOKOINY, V.

The properties
Pn

j=1 cij = 0 and
Pn

j=1 cij(Xj �Xi) = 0 provide

jfhi(Xi)� f(Xi)j =

������
nX

j=1

cijf(Xj)� f(Xi)

nX
j=1

cij � f 0(Xi)

nX
j=1

cij(Xj �Xi)

������
=

������
nX

j=1

cijff(Xj)� f(Xi)� f 0(Xi)(Xj �Xi)g

������
� Li h

2
i

X
j 6=i

jcij j:

Therefore

nX
i=1

b2i �
1

n

nX
i=1

L2i h
4
i s
�2
i

0@X
j 6=i

jcij j

1A2

= �2: (4.1)

We now apply the following general statement from Spokoiny (1999, Proposition

6.2). Let V denote the covariance matrix of the vector � = (�1; : : : ; �n) , that is,

V = (E�i�j; i; j = 1; : : : ; n) . Then for every positive  > 0 with  � kV k�1
p
trV 2=2

and every t � 0

P

 
�
 

nX
i=1

j�ij2 � trV

!
> ( + t)

p
2 tr V 2

!
� e�

2=4�t=2 (4.2)

and

P

 
�
 

nX
i=1

jbi + �ij2 � kbk2 � trV

!
> kbk(2 tr V 2)1=4 + ( + t)

p
2 tr V 2

!
� 2e�

2=4�t=2:

Here kbk2 =
Pn

i=1 b
2
i and trV (resp. trV 2 ) denotes the trace of the matrix V (resp.

V 2 ). Since E�2i = �2=n , then clearly

tr V =

nX
i=1

E�2i = �2:

Next, for i 6= j

E�i�j =
�2

nsisj

nX
k=1

cikcjk = �2rij

so that

2 trV 2 = 2

nX
i=1

nX
j=1

(E�i�j)
2 = 2�4

nX
i=1

nX
j=1

r2ij = �4S2:

This implies the required assertion in view of (4.1).
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4.2. Proof of Theorem 3.2

This result is an easy corollary of Theorem 3.1. Indeed, application of this result with

d � 8 ,  = 1 and varying t yields

P

�
n1=2��2jb�2 � �2j > C + t

p
2N�

�
� 2e�t=2:

where C = B2��2 +B(2N�)1=4��1 +
p
2N� . Therefore

R(b�2) = Ew
�
n1=2��2(b�2 � �2)

�
� �

Z 1

0

w(x) dP
�
n1=2��2jb�2 � �2j > x

�
� w(C) +

Z 1

0

w0(t+ C)P
�
n1=2��2jb�2 � �2j > t+ C

�
dt

� w(C) +

Z 1

0

w0(t+ C) exp

�
� t

2
p
2N�

�
dt

and the assertion follows. The case of d > 8 can be treated similarly.

4.3. Proof of Theorem 3.3

Since
Pn

i=1 �ii =
Pn

i=1

Pn
j=1 �

2
ij = 1 , the di�erence b�2 � �2 can be represented in the

form

b�2 � �2 =

nX
i=1

b2i + 2

nX
i=1

0@ nX
j=1

�jibj

1A "i +
X
i=1

�ii("
2
i � �2) +

nX
i=1

nX
j 6=i

�ij"i"j

=

nX
i=1

b2i +Q2 +Q3 +Q4:

We now estimate separately each term in this expression. Note �rst that

nX
i=1

b2i � �2

see the proof of Theorem 3.1.

Let e"1; : : : ; e"n be a sequence of i.i.d. random variables from the normal law N (0; �2) .

De�ne the sums eQ2; eQ3; eQ4 similarly to Q2; Q3; Q4 with e"i 's in place of "i 's. The

idea is to show that the distribution of every Qk only weakly depends on the particular

distribution of "i 's and therefore, the bounds for eQk are valid for Qk as well (in some

asymptotic sense if n is large enough), k = 2; 3; 4 .

First we estimate the sum

Q2 = 2

nX
i=1

nX
j=1

bi�ij"j = 2

nX
j=1

cj"j
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with cj =
Pn

i=1 �ijbi . De�ne the n�n -matrix A with elements �ij and the vectors b

(resp. c ) with elements bi (resp. ci ) and note that

nX
j=1

c2j = jAT bj2 = b>AA>b � kAA>k jbj2 � kAA>k�2:

Note also that kAA>k = kA>Ak = kRk with the matrix R de�ned in Theorem 3.1. By

the Cauchy-Schwarz inequality

P

 �����
nX
i=1

ci"i

����� > �S1=2�

!
� �2

Pn
i=1 c

2
i

�2S�2
� kRk

S

and by the conditions of the theorem, see also Remark 3.1, nkRk2=S2 � CA , so that

P

�
jQ2j > 2�S1=2�

�
� 4C

1=2
A n�1=2:

Next, it holds for Q3

EQ2
3 = E

 
nX
i=1

�ii("
2
i � �2)

!2

= C2
4�

4
nX
i=1

�2ii

and the Berry-Essen inequality, see Petrov (1975), applied to Q3 yields with S00 =

��2
p
EQ2

3

P
�
Q3 > xS00�2

�
� P

� eQ3 > xS00�2
�
+ ���3

1

S003�6

nX
i=1

E

���ii("2i � �2)
��3

� P

� eQ3 > (x� �)S00�2
�
+C6��

�3(S00)�3
nX
i=1

j�iij3:

The conditions of the theorem provide

nX
i=1

j�iij3 � max
i=1;::: ;n

�ii

nX
i=1

j�iij2 � CAS
003n�1=2

and hence

P
�
Q3 > xS00�2

�
� P

� eQ3 > xS00�2
�
+ C6��

�3CAn
�1=2:

In addition, the use of (4.2) yields for every � with �2 � n
2CA

P

� eQ3 > (�+ t)S00�2
�
� e��

2=4��t=2:

For estimating Q4 , we apply the following general result from Spokoiny (1999, Corol-

lary 6.2). Let U = (uij ; i; j = 1; : : : ; n) be a n�n symmetric matrix with uii = 0 for

all i . By U("1; : : : ; "n) we denote the corresponding quadratic form of i.i.d. random

variables "1; : : : "n , that is,

U("1; : : : ; "n) =

nX
i=1

nX
j 6=i

uij"i"j:
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Let also e"1; : : : ; e"n be a sequence of independent Gaussian r.v.'s with Ee"i = 0 and

Ee"2i = �2 , i = 1; : : : ; n . De�ne another quadratic form

U(e"1; : : : ; e"n) = nX
i=1

X
j 6=i

uije"ie"j:
Clearly EU(e"1; : : : ; e"n) = 0 and EjU(e"1; : : : ; e"n)j2 = EjU("1; : : : ; "n)j2 .
Proposition 4.1. Let E"4i � C4�

4
for some �xed constant C4 � 3 . Let, for a sym-

metric matrix U with uii = 0 for i = 1; : : : ; n , and for a normalizing constant G , the

value CU be de�ned by

CU = max
i=1;::: ;n

nG�2�4
nX

j=1

u2ij :

Then, for each � > 0 and every x

P
�
G�1U("1; : : : ; "n) > x

�
� P

�
G�1U(e"1; : : : ; e"n) > x� �

�
+ �(C4CU )

3=2n�1=2��3

with an absolute constant � .

We now apply this result to Q4 with uij = �ij , i 6= j and

G = �2

0@ nX
i=1

nX
j=1

�2ij

1A1=2

:

Since

nX
i=1

nX
j=1

�2ij = tr(AA>)2 = trR2 = S2

we derive

P
�
Q4 > (�+ t+ �)�2S

�
� P

� eQ4 > (�+ t)�2S
�
+ �(C4CA)

3=2n�1=2��3:

The bound (4.2) applied to eQ4 provides for every � with �2 � n
2CA

and every t > 0

P

� eQ4 > (�+ t)�2S
�
� e��

2=4��t=2:

Summing up everything, what we have got so far, leads to the bound

P

�
�(b�2 � �2) > �2 + 2�S1=2� + (�+ t+ �)S�2 + (�+ t)S00�2

�
� P

�
jQ2j > 2�S1=2�

�
+ P

�
�Q3 > (�+ t)S00�2

�
+ P

�
�Q4 > (�+ t+ �)S�2

�
� 2e��

2=4��t=2 + Cn�1=2��3

where C depends on C4; C6 and CA only.
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4.4. Proof of Theorem 3.4

The idea of the proof is as follows. We �rst change the minimax statement for a Bayes

one. For a prior measure � on the set F , de�ne the corresponding marginal measure

P �;�2 by

P �;�2(A) =

Z
P f;�2(A)�( df):

We intend to show that there exists a sequence of random functions fn with prior

distributions �n satisfying �n (Fn(2; L))! 1 and such that

E�n;�2w
�
n4=d(e�2n � �2)

�
= r > 0

for n large enough. For the latter, it su�ces to show that the measures P �n;�20
with

�20 = 1 and P �n;�2n
with �2n = �20 + n�4=d are not asymptotically separable.

The priors �n are selected on the base of the following consideration. We de�ne the

values of random functions fn either identically zero or i.i.d. normally distributed at

each design point Xi . If d is su�ciently large and if the variance of this distribution

is small enough, then this random function will be with a large probability in the class

Fn(2; L) . Then clearly this random function fn introduce some additional noise in the

observations Yi and we cannot distinguish whether this noise comes from the errors "i

only (this would be the case when fn � 0 ) or there is some contribution from the random

regression function fn . More precisely, let �1; : : : ; �n be i.i.d. standard Gaussian r.v.'s

and �n = n�2=d . We will show that there exist random functions gn with gn(Xi) = �n�i

and with P (gn 2 Fn(2; L)) ! 1 as n ! 1 for d � 8 . The random functions fn are

constructed as follows. With probability 1=2 , we set fn = 0 and with probability 1=2 ,

the function fn coincides with gn . Then, for � = �0 the marginal distribution of the

observations Yi = f(Xi) + �"i is with probability 1/2 i.i.d. from N (0; �20) and with

probability 1/2 i.i.d. from N (0; �2n) . Similarly, for � = �n , the marginal distribution

of the observations Yi corresponds with probability 1/2 an i.i.d. sample from N (0; �2n)

and with probability 1/2 an i.i.d. sample from N (0; �2n+n
�4=d) . Hence, with a positive

probability, these two marginal distributions coincide and therefore any estimate has a

non-vanishing risk.

Now we present a formal description. Let h = n�1=d . De�ne for every grid point Xi

a function �i of the form

�i(x) =

dY
`=1

Q

�
x` �Xi;`

h

�
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where Q is a smooth symmetric nonnegative function supported on [�1; 1] . Clearly all

functions �i have non-overlapping supports and for every i

j�i(x)j � 1;����@�i(x)@x`

���� � kQ0k
h

;����@2�i(x)@x` @xk

���� � maxfkQ0k2; kQ00kg
h2

so that

k�00i (x)k �
CQ

h2
(4.3)

with CQ =
p
dmaxfkQ0k2; kQ00kg .

Let also f�i; i = 1; : : : ; ng be a collection of independent standard Gaussian random

variables. De�ne the random function gn of the form

gn(x) = �n

nX
i=1

�i�i(x):

Finally, for an independent of gn Bernoulli random variable �n with P (�n = 0) =

P (�n = 1) = 1=2 , de�ne

fn = �ngn:

The property (4.3) provides for every i � n

sup
x:jx�Xij�n�1=d

kg00n(x)k2 � CQh
�4�2n max

j:Xj2Uh(Xi)
�2j � CQ

X
j:Xj2Uh(Xi)

�2j

and hence, using Nh(Xi) � 2d+ 1

1

n

nX
i=1

sup
x:jx�Xij�n�1=d

kg00n(x)k2 �
CQ

n
(2d+ 1)

nX
i=1

�2i

so that, for L2 > (2d+ 1)CQ , by the law of large numbers,

P

 
1

n

nX
i=1

sup
x:jx�Xij�n�1=d

kg00n(x)k2 > L2

!
! 0; n!1:

This means that the random functions gn belong to Fn(2; L) with a probability close

to 1 if L2 > (2d + 1)CQ and clearly the same holds for fn 's.

Let now P
(n)
� denote the product measure in R

n corresponding to the model Yi = �"i

with i.i.d. standard normal errors "i . Then clearly

P fn;�20
=
�
P
(n)
�0

+ P (n)
�n

�
=2;

P fn;�2n
=
�
P
(n)
�n + P (n)

sn

�
=2
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with s2n = �2n+n
�4=d = �20+2n�4=d . Next we show that all three sequences of measures

(P
(n)
�0 ) , (P

(n)
�n ) and (P

(n)
sn ) are pairwise asymptotically singular, if d > 8 . Then the

required assertion follows from the next general result.

Lemma 4.1. Let three sequences P
(n)
j , j = 0; 1; 2; , of probability measures be pairwise

asymptotically singular, that is,

Z
(n)

k;j =
dP

(n)
k

dP
(n)
j

P
(n)
j

��! 0; n!1; k 6= j:

Then for any continuous bounded function u(x) , it holds

Hn =
1

2

Z
u

 
dP

(n)
0 + dP

(n)
1

dP
(n)
1 + dP

(n)
2

!
d
�
P
(n)
1 + P

(n)
2

�
! fu(0) + u(1)g =2; (4.4)

that is, the likelihood
dP

(n)
0 +dP

(n)
1

dP
(n)
1 +dP

(n)
2

converges weakly to the Bernoulli distribution with

parameter 1/2.

Proof. One obviously has

2Hn =

Z
u

 
Z
(n)
0;1 + 1

Z
(n)
2;1 + 1

!
dP

(n)
1 +

Z
u

 
Z
(n)
0;2 + Z

(n)
1;2

Z
(n)
1;2 + 1

!
dP

(n)
2 ! u(1) + u(0)

as required.

It remains to check (4.4) for the sequences P
(n)
� with � 2 f�0; �n; sng . We consider

the derivative Z
(n)
0;1 = dP

(n)
�0 =dP

(n)
�n , the other cases can be treated similarly.

The de�nition �2n = �20 + �2n = 1 + �2n clearly yields

L
(n)
0;1 := log

dP
(n)
�0

dP
(n)
�n

= n log(�n=�0)�
nX
i=1

Y 2
i

2�20
+

nX
i=1

Y 2
i

2�2n
=
n

2
log

�20 + �2n
�20

�
nX
i=1

Y 2
i �

2
n

2�20�
2
n

:

Under the measure P
(n)
�n , it holds Yi = �n�i with i.i.d. standard normal r.v.'s �i .

Therefore

L
(n)
0;1 =

n

2
log
�
1 + �2n

�
� �2n

2

nX
i=1

�2i

=
n

2
log
�
1 + �2n

�
� n�2n

2
�
p
n�2n
2

1p
n

nX
i=1

(�2i � 1)

=
n

2
log
�
1 + �2n

�
� n�2n

2
�
p
n�2n
2

�n

=

p
n�2n
2

(rn � �n)

where the random variables �n =
1p
n

Pn
i=1(�

2
i � 1) are asymptotically standard normal

and

rn =

p
n

�2n
log
�
1 + �2n

�
�
p
n � �

p
n

�
�2n
2
� �4n

3

�
= �

p
n

(
n�4=d

2
� n�8=d

3

)
! �1
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if d > 8 . Since also
p
n�2n = n1=2�4=d ! 1 , this implies L

(n)
0;1 ! �1 and hence

Z
(n)
0;1 = expL

(n)
0;1 ! 0 as required.
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