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Abstract

In this paper we investigate the structure of the equilibrium state of three{dimensional

catalytic super-Brownian motion where the catalyst is itself a classical super-Brownian motion.
We show that the reactant has an in�nite local biodiversity or genetic abundance. This contrasts

the �nite local biodiversity of the equilibrium of classical super-Brownian motion.

Another question we address is that of extinction of the reactant in �nite time or in the
long{time limit in dimensions d = 2; 3. Here we assume that the catalyst starts in the Lebesgue

measure and the reactant starts in a �nite measure. We show that there is extinction in the

long{time limit if d = 2 or 3. There is, however, no �nite time extinction if d = 3 (for d = 2
this problem is left open). This complements a result of Dawson and Fleischmann (1997a) for

d = 1 and again contrasts the behaviour of classical super-Brownian motion.

As a key tool for both problems we show that in d = 3 the reactant matter propagates
everywhere in space immediately.

1 Introduction and results

Catalytic super-Brownian motion (CSBM) X% is the measure{valued (�nite variance) branching
di�usion on Rd where the local branching rate is given by a space{time varying medium %, the so{
called catalyst. For a survey on CSBM and a variety of di�erent spatial branching models see Klenke
(1999). The case on which we focus here is where % is a random sample of classical super-Brownian
motion (SBM). In order that the reactant is non{degenerate we have to restrict to d � 3.

This model has been constructed in Dawson and Fleischmann (1997a) and has been considered
under various aspects, for instance, also in Dawson and Fleischmann (1997b) and Fleischmann and
Klenke (1999). This paper is meant to be concise { not self{contained. So we skip the usual heuristics
and repetitive constructions and only refer to the above mentioned papers.

1.1 Biodiversity

The main subject of this paper is the local biodiversity or genetic abundance of the equilibrium
states in d = 3. The investigation of biodiversity is a booming �eld in biology. Roughly speaking,
biodiversity is a measure for the number of species per square meter in an ecosystem. Our ecosystem
is the reactant of three{dimensional catalytic super{Brownian motion in a steady state. Before we
make mathematical statements about its biodiversity we have to �x this notion.

It is well known that (if d � 3) SBM has a unique ergodic equilibrium with intensity ic (ic > 0).
We denote by P�1;ic` the law of the corresponding equilibrium process (%t)t2R. For �xed % consider
X% started at time t in ir`, ir > 0, (` is the Lebesgue measure) and denote its law by P %

t;ir`
. Letting

t!�1 one obtains P %

�1;ir`
and (%t; X

%

t
)t2Ris the (bivariate) equilibrium process (see [DF97b]):

P�1;ic`[P
%

�1;ir`
[(%T+t; X

%

T+t)t2R2 �] 2 �] is independent of T 2 R: (1.1)

Furthermore P�1;ic`{almost surely E%

�1;ir`
[X%

0 ] = ir`, and P %

�1;ir`
[X%

0 2 �] is in�nitely divisible.
Note that the outlined P refers to the medium and the italic P to the reactant. All other

quantities' laws will be denoted by a bold P. Expectations will be denoted by the symbol E in the
respective font.

We are interested in the number of families that contribute to X
%

0 (B) for, say, the unit ball B.
To make this notion precise recall that an in�nitely divisible random measure Y (with values in
M(Rd), the space of Radon measures on Rd) has a cluster representation

Y = �+
X
i

�i; (1.2)
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where � 2 M(Rd) is the deterministic component of Y (or the essential in�mum of Y ). The
�i 2M(Rd) are the \points" of a Poissonian point process on M(Rd) n f0g with intensity measure
Q which is called the canonical measure of Y . We can reformulate (1.2) as the classical L�evy-Hincin
formula for the Laplace transforms

� logE
�
e�hY;'i

�
= h�; 'i+

Z
M(Rd)

Q(d�)(1� e�h�;'i): (1.3)

Here ' 2 C+
c
(Rd) (the space of nonnegative continuous functions on Rd with compact support) and

h�; 'i denotes the integral
R
'd�. We also write k�k = h�;1i for the total mass of �.

If � = 0 then the number of families in B (that is #fi : �i(B) > 0g) has a Poisson distribution
with expectation Q(� : �(B) > 0). If �(B) > 0 then a \continuum of families" contributes to
Y (B). This motivates the following de�nition.

De�nition 1.1 We say that the local biodiversity of the in�nitely divisible random measure Y is

� �nite, if � = 0 and Q(� : �(B) > 0) <1 for every compact set B,

� countably in�nite, if � = 0 and Q(� : �(B) > 0) =1 for every open set B 6= ;,

� uncountably in�nite, if �(B) > 0 for every open set B 6= ;.

Note that this distinction is exhaustive if the distribution of Y is translation invariant.
As a trivial example we would like to mention Y = St�, where St is the heat ow at time t > 0

and � 6= 0 is a �nite measure. In this case obviously Y has uncountably in�nite local biodiversity.
As a second example we consider in d � 3 the equilibrium super{Brownian motion (%t)t2R. It

is easily veri�ed that %0 has �nite local biodiversity. In fact, for general Y to have �nite local

biodiversity it is suÆcient and necessary that

P[Y (B) = 0] > 0 for any compact set B: (1.4)

This follows from the simple observation that if � = 0

Q(� : �(B) > 0) = � logP[Y (B) = 0]: (1.5)

Coming back to the equilibrium of super{Brownian motion, it is easily veri�ed that for every compact
set B, P�1;ic`

[%0(B) = 0] > 0.
The situation is quite di�erent for CSBM and this is the content of our main result.

Theorem 1 (Biodiversity) Let d = 3. For P�1;ic`{almost all % the random measure X
%

0 (under
the distribution P

%

�1;ir`
) has countably in�nite local biodiversity.

The intuitive reasons for this behaviour are that

(i) In three dimensions the catalyst % lives on such a thin time{space set that small amounts of
reactant mass can percolate to B along catalyst free regions. In contrast, this is not possible
for classical SBM: Here too small portions of mass (immigrating from outer space) get killed
before they reach B.

(ii) The catalyst is not that thin that the reactant could sustain a deterministic component. Thus

its genetic abundance is not as \rich" as that of the heat ow.
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1.2 Instantaneous propagation of matter

They key ingredient for the proof of Theorem 1 is an instantaneous propagation of the reactant
matter. Like the heat ow, the three{dimensional reactant spills out mass everywhere in space im-
mediately. This property contrasts the compact support property of classical SBM (see Iscoe (1988))
and, for example, one{dimensional CSBM where the (time{homogeneous) catalyst is a certain stable
random measure (see Dawson, Li and Mueller (1995)). An instantaneous propagation of matter for
a super-L�evy process was �rst established by Perkins (1990); see also Evans and Perkins (1991) for
a generalization and a slimmer proof.

Before we formulate our proposition we introduce some notation which helps de�ning CSBM in
a somewhat more general setup. Let Mf (R

d) = f� 2 M(Rd) : k�k < 1g, and de�ne the space of
tempered measures M0(Rd) =

S
p>d

Mp(R
d), where

Mp(R
d) = f� 2 M(Rd) : h�; (1 + k � k2)�p=2i <1g:

M0(Rd) is the state space for both % and X%. Denote by Pt;� the law of % started at time t in the
state � 2M0(Rd) and for given % by P %

t;m the law of X% started at time t in the state m 2M0(Rd).
Let � denote absolute continuity and � equivalence of measures.

In order that X% can be de�ned properly an additional restriction applies to �. The crucial
property is that we can de�ne the collision local time (see Evans and Perkins (1994), Theorem 4.1)
of a Brownian particle with % started in � as a so{called nice branching functional. We call such a
� admissible. The class of admissible � has not been characterized yet. However � is known to be
admissible if, for example, it is \�{di�usive" in the sense of [FK99]. Here we only mention that the
Lebesgue measure `, any �� ` with bounded density and Pt;ic`{almost all %0 are admissible, where
t 2 [�1; 0) if d = 3 and t 2 (�1; 0) if d = 2. (This has been shown for in [FK99] only for t 2 (�1; 0)
but follows easily for d = 3 and t = �1. In fact, �{di�usivity is essentially a local property. However,
for any compact B � R3, the total variation kPt;ic`[%

0

��
B

2 �]�P�1;ic`[%
0

��
B

2 �]kTV tends to 0 as

t!�1, as can be seen by a simple cluster decomposition, e.g.)
Now we can formulate our proposition on the instantaneous propagation of the reactant matter.

Proposition 1.2 (Instantaneous propagation of matter) Assume d = 3, that � 2 M0(Rd) is
admissible and that m 2 M0(Rd), m 6= 0. Then for all t > 0,

E0;� [P
%

0;m[`� X
%

t j X%

t 6= 0]] = 1: (1.6)

Together with the result of [FK99] saying that P0;�{a.s. the reactant's states X
%

t
are absolutely

continuous w.r.t. ` we get

Corollary 1.3 Assume d = 3, that � 2M0(Rd) is admissible and that m 2M0(Rd), m 6= 0. Then
for all t > 0,

E0;� [P
%

0;m[` � X
%

t
j X%

t
6= 0]] = 1: (1.7)

The reason why Proposition 1.2 is true is that in d = 3 the catalyst is so thin that it will not hit
thin (time{space) cylinders connecting two points. Through those tubes reactant mass propagates
from one point to all other points in space immediately. It might seem reasonable to expect such
a behaviour also for d = 2. However here the catalyst does hit the tubes (more formally: in d = 2
lines are not polar for super{Brownian motion). In order to mimic an argument as for d = 3 one
would have to establish a percolation argument for the complement of the time{space support of
two{dimensional super{Brownian motion.
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1.3 Finite mass extinction

Another question we address in this paper is that of long{term extinction or �nite time extinction
of �nite reactant masses in a catalyst started in Lebesgue measure. More precisely, assume that
%0 = ic`, ic > 0, and X0 = m 2Mf (R

d). Is it true that X%

t
! 0, E0;ic `[P

%

0;m]{almost surely or even
E0;ic `[P

%

0;m[X
%

t
= 0]]! 1 as t!1?

The corresponding question for classical SBM is very simple to answer. Assume for the moment
that the SBM % is started with a �nite initial measure � 2 Mf (R

d). Then the total mass process
(k%tk)t�0 is simply Feller's branching di�usion with initial mass k�k (this is the di�usion on [0;1)

with in�nitesimal generator
p
2x @

2

@x2
). Hence P0;�[%t = 0] = exp(�k�k=t) and we have extinction in

�nite time:
lim
t!1

P0;�[%t = 0] = 1; � 2Mf (R
d):

This is contrasted by the behaviour of the reactant X%. In [DF97a], Theorem 5, it is shown that
if d = 1 then for P0;ic`{a.a. % under P

%

0;m the total mass process (kX%

t
k)t�0 is an L2{bounded

martingale and hence converges almost surely to a random variable with full expectation kmk and
�nite variance (persistence of second order).

However for d = 2; 3 the reactant's behaviour is quite di�erent. In the long run the catalyst is not
so scarce as in d = 1 and so we do not have persistence of �nite reactant mass, not even long{term
survival. However, we neither have extinction in �nite time (at least for d = 3). Here is our result.

Theorem 2 (Finite mass extinction) Let d = 3 and m 2 Mf (R
d), m 6= 0. Then there is no

�nite time extinction for the reactant:

E0;ic`[P
%

0;m[X
%

t
6= 0]] = 1; t � 0: (1.8)

However, for d = 2 or d = 3 there is extinction in the long{term limit:

E0;ic `

h
P
%

0;m

h
lim
t!1

kX%

t
k = 0

ii
= 1: (1.9)

The reason why we do not have �nite time extinction is simple to explain. The key is the instan-
taneous propagation of matter (Proposition 1.2). At time t = 0 reactant mass is instantaneously
spilled everywhere in space. For every t > 0 and " 2 (0; t) there are tubes (x + B) � ["; t] in the
complement of the time{space support of %. In these tubes the reactant can survive until time t as
it dominates heat ow with absorption at the boundary of x+ B. We will convert this idea into a
rigorous proof in Section 3.

Remark Statement (1.8) depends on the assumption d = 3 only by the instantaneous propagation
of matter property (1.6). It would be true also for d = 2 if one could show (1.6) also for d = 2 which
seems to be a reasonable statement.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we give the short proof of Proposition 1.2.
In Section 3 we prove Theorem 1. It takes some technical e�ort involving exit measures to turn the
reasoning below Theorem 2 into a rigorous proof. This is the content of Section 4.

2 Instantaneous propagation of matter

Here we prove Proposition 1.2.
The rough idea is that any two time{space points (t; x) and (t; y) can be connected by a straight

line that is not hit by supp(%). (We denote by supp(%) � [0;1) � Rd the closed support of the
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measure dt%t(dx).) Hence also a time{space neighbourhood of this line is catalyst free. If there is
reactant matter around y at time t then a small amount has percolated according to the heat ow
through the \tube" to x. If we condition on X%

t
6= 0 then there is some y such that there is reactant

matter around (t; y). Thus there is some matter around (t; x) also and we are done. The following
lines make this idea rigorous.

For t > 0 �xed, x; y 2 Rd and " 2 (0; t) de�ne the tube

T (t; x; y; ") =
�
(s; z) : s 2 (t � "; t+ "); z 2 Rd; 9� 2 [0; 1] : jz � (�x+ (1� �)y)j < "

	
: (2.1)

Since lines are polar for the time{space support supp(%) of three{dimensional super{Brownian mo-
tion (see Dynkin (1992), Theorem 3.5.B) we have

lim
"!0

P0;ic`

"Z
T (t;x;y;")

ds%s(dz) = 0

#
= 1: (2.2)

Thus with probability 1, for any x; y 2 Q3 (the three{dimensional rational numbers) there exists a
random number "(x; y) > 0 such that

R
T (t;x;y;"(x;y))

ds%s(dz) = 0.

We know that X%

t is absolutely continuous with respect to Lebesgue measure and that its density
function �

%

t is continuous o� supp(%) and solves the heat equation (see [FK99]). Let St = fz 2
R3 : (t; z) 2 supp(%)g. Assume now that X

%

t 6= 0. Since `(St) = 0 a.s. it suÆces to show for
x 2 Sc

t := R
3 n St that �%t (x) > 0. By the continuity of the density we need to show this only for all

x 2 Q3 \ Sc
t
. Note that X%

t
6= 0 implies that there exists some y 2 Q3 \ Sc

t
with �

%

t
(y) > 0. Since

T (t; x; y; "(x; y)) ! [0;1), (s; z) 7! �%s (z) solves the heat equation we have in fact �%s (z) > 0 for all
(s; z) 2 T (t; x; y; "(x; y)). 2

3 In�nite Biodiversity

In this section we prove Theorem 1. The statement we have to show consists of two parts: (i) the
deterministic component of X%

0 vanishes and (ii) the canonical measure of f� : �(B) > 0g is in�nite
for every open set B 6= ;.

3.1 Vanishing deterministic component

We start with the proof of the �rst statement. Recall that we consider the bivariate process
(%t; X

%

t
)t2Rin the equilibrium. That is, % is sampled according to P�1;ic`

and for given % the law
of X% is P %

�1;ir`
. For convenience we agree that for �xed % we let be de�ned all random variables

related to superprocesses in the catalytic medium % on the same suÆciently large underlying proba-
bility space whose law we denote by P %: For the deterministic and random component of a random
measure Y over this probability space we simply write det%Y := essinf Y and ran% Y := Y � det%Y .

Lemma 3.1 Let d = 3. For P�1;ic`{almost all %

det%X%

0 = 0:

Proof It suÆces to show that the expected deterministic component E �1;ic`[det
%X

%

0 ] disappears.
Assume the contrary. Then, by the spatial shift{invariance of P�1;ic` we have

E �1;ic`[det
%X

%

0 ] = b` for some b 2 (0; ir]: (3.1)

Fix a sample % such that det%X%

0 6= 0: Given X
%

0 introduce independent CSBM X%;d = (X
%;d

t )t�0

and X%;r = (X%;r

t )t�0 (in the medium %) with initial states X%;d

0 = det%X%

0 and X
%;r

0 = ran%X%

0 . By
the branching property we may assume that

X
%

1 = X
%;d

1 +X
%;r

1 : (3.2)
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We claim that

det%X%;r

1 = 0: (3.3)

In fact, �x a compact A � R3 and an " > 0: For R > 0; the �xed %; and given X
%;r

0 ; as before we
decompose X%;r into independent catalytic super-Brownian motions X%;r;i, i = 1; 2, with catalyst %
and initial states

X
%;r;1
0 = X

%;r

0 1B(0;R); X
%;r;2
0 = X

%;r

0 1B(0;R)c ;

where B(x;R) is the open ball with radius R centered at x 2 Rd. Assume that

X
%;r

1 = X
%;r;1
1 +X

%;r;2
1 : (3.4)

Note that also det%X
%;r

1 = det%X
%;r;1
1 + det%X

%;r;2
1 . By the Markov property and the expectation

formula, (recall that St is the heat ow)
E%[X%;r;2

1 (A)] = E%[hS1(X%;r

0 1B(0;R)c);1Ai] = E%[hX%;r

0 1B(0;R)c;S11Ai]:
Hence we can choose R large enough such that

E%[X%;r;2
1 (A)] � " (3.5)

(recall that X%;r;2
1 � X

%;r

1 � X
%

1 , where the latter term has P %{expectation ir`).
Since X

%;r

0 has a vanishing deterministic component its in�nite divisibility implies that also
kX%;r;1

0 k = X
%;r

0 (B(0; R)) does not have a deterministic component. Thus for all Æ > 0 we have
P %[kX%;r;1

0 k < Æ=2] > 0. Noting that (kX%;r;1
t k)t�0 is a martingale we get

P %

h
kX%;r;1

1 k � 2kX%;r;1
0 k

��� kX%;r;1
0 k

i
� 1

2
almost surely,

and thus

P %[kX%;r;1
1 k < Æ] � 1

2
P %[kX%;r;1

0 k < Æ=2] > 0:

Hence det%X%;r;1
1 = 0. Combining this with (3.5) the claim (3.3) follows.

Recall that we �xed % such that X%;d

0 = det%X%

0 6= 0. This implies ran%X%;d

1 6= 0 with positive

P %{probability, thus E%[ran%X
%;d

1 ] 6= 0: By translation invariance of P�1;ic` there exists an a > 0
such that

E �1;ic`[E
%[ran%X%;d

1 ]] = a`: (3.6)

Finally, by the decomposition (3.2) and by (3.3), det%X%

1 = det%X%;d

1 = X%;d

1 � ran%X%;d

1 ; and
therefore we can build the annealed expectation to obtain

b` = E �1;ic`[E
%[det%X%

1 ]] = E �1;ic`[E
%[X

%;d

1 ]]� E �1;ic`[E
%[ran%X

%;d

1 ]] = (b� a)`: (3.7)

This is clearly a contradiction and �nishes the proof. 2

3.2 The equilibrium reactant charges every set

We complete the proof of Theorem 1 by showing that the reactant's canonical measure is in�nite
on f� : �(B) > 0g for any open set B 6= ;. Recall from (1.5) that is is enough to show that the
reactant charges any open set:

E �1;ic`[P
%

�1;ir`
[X%

0 (B) = 0]] = 0 for any open B 6= ;: (3.8)

However this follows from the instantaneous propagation of matter (Proposition 1.2), and Theorem 1
is now completely proved. 2
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4 Finite mass extinction

In this section we prove Theorem 2. The proofs of the two statements (no �nite time extinction but
long{term extinction) are methodologically di�erent and we present them in separate subsections.

4.1 No �nite time extinction

Recall that here % is distributed according toP0;ic` and X
% according to P %

0;m for some non{vanishing

m 2 Mf (R
d).

In order to show that there is no �nite time extinction we rely again on the instantaneous
propagation of reactant matter (Proposition 1.2). Additionally we need the following property of
the support supp(%) � [0;1) � Rd of the the measure dt%t(dx). Recall that B(x; r) � Rd is the
open ball of radius r centered at x.

Lemma 4.1 (Empty tubes in the catalyst) Assume d � 2. For every t > 0, " 2 (0; t) and
P0;ic`{a.a. % there exists a z 2Zd such that supp(%) \ (["; t]�B(z; 1)) = ;.
Proof Fix t > " > 0. For z 2 Rd de�ne the event

A(z) =
�
supp(%) \ (["; t]�B(z; 1)) = ;	:

Fix R > 0 and note that by the branching property of SBM we have

P0;ic`[A(z)] = P0;ic`1B(z;R)
[A(z)] �P0;ic`1B(z;R)c

[A(z)]: (4.1)

Obviously,

P0;ic`1B(z;R)
[A(z)] � P0;ic`1B(z;R)

[%" = 0] > 0; R > 0: (4.2)

For the other factor in (4.1) we need an estimate on the range of SBM (see Dawson, Iscoe and
Perkins (1989), Theorem 3.3a): Fix R > 2t1=2. Then there exists a c > 0 such that for x 2 Rd

fz(x) := P0;Æx[A(z)
c] � c exp(�kx� zk2=2t): (4.3)

Noting that log(1� s) > �2s for s 2 [0; 1
2
] we see that for R suÆciently large

P0;ic`1B(z;R)c
[A(z)] = exp

 
ic

Z
B(z;R)c

log(1� fz(x))dx

!

� exp

 
�2cic

Z
B(z;R)c

exp(�kx� zk2=2t) dx
!

> 0:

(4.4)

Thus P0;ic`[A(z)] > 0 and we can infer from the ergodic theorem (note that P0;ic` is spatially ergodic)
P0;ic`[[z2ZdA(z)] = 1. 2

With this lemma we are almost done. Recall that we specify on d = 3. Fix Æ 2 (0; 1) and
" 2 (0; t) such that P0;ic`[P

%

0;m[X
%
" 6= 0] > 1 � Æ] > 1 � Æ: Now choose such a % and an X%

" that

are in the described event. We may assume that % 2 [z2Z3A(z). Let z 2 Z3 such that % 2 A(z).
By Proposition 1.2 we have X%

" (B(z;
1
2)) > 0. Denote by (Szs )s�0 the semigroup of heat ow with

absorption at R3 nB(z; 1). Then we can estimate

X
%

t (B(z; 1)) � kSzt�"X%

" k � kSzt�"(1B(z; 1
2
)X

%

" )k > 0: (4.5)

Hence
P0;ic`[P

%

0;m[X
%

t 6= 0] > 1� Æ] > 1� Æ:

Now let Æ ! 0. This shows the �rst assertion of Theorem 2.
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4.2 Long{term extinction

In this subsection we show the second statement of Theorem 2. We �rst outline the idea of the
proof.

An \in�nitesimal particle" ofX% performs Brownian motionW onRd whose law and expectation
is denoted by Px and Ex respectively, x 2 Rd. The branching along such a reactant's path W is
governed by the collision local time L[W;%] of W with the catalyst %. This can be de�ned for d � 3
as the L2{limit (see [EP94] and [DF97a])

L[W;%](0; t) = lim
"!0

Z
t

0

ds

Z
Rd

%s(dz)p"(z;Ws); t � 0; (4.6)

where (pt)t>0 is the family of standard Brownian transition densities. (For d � 4, supp(%) is polar
for W ; that is, W does not collide with %, and X% degenerates to the heat ow.)

Loosely speaking the idea is that by a �xed large time T most in�nitesimal reactant particles
have collected a large amount of collision local time, say at least K. With a high probability (namely
the extinction probability of Feller's branching di�usion at timeK) all these particles have died. The
expected number of particles that have collected less collision local time is E0[P0;ic`[L[W;%](0; T ) <
K]] which tends to 0 as T !1.

In�nite total collision local time

However intuitively appealing and verbally simple to describe the idea is, we need some technical
e�ort to make it rigorous. We start by showing that the collision local time L[W;%] increases in fact to
1 almost surely if d = 2; 3. Note that this contrasts with dimension d = 1 where L[W;%](0;1) <1
almost surely (see [DF97a, Proposition 8]). The di�erence between dimension one and two is that %
dies out locally almost surely if d = 1 while it does so only in probability if d = 2. In the latter case
the clusters recur to visit the window of observation at arbitrarily late times. Of course, for d = 3
there is no extinction and a law of large numbers applies.

Proposition 4.2 Let d = 2; 3. Then

Ex[P0;ic`[L[W;%](0;1) =1]] = 1; x 2 Rd: (4.7)

Proof By spatial homogeneity of Brownian motion and the law of % it suÆces to consider x = 0.
For d = 3 the claim follows from a law of large numbers (see [DF97b]):

E0[P0;ic`[ lim
t!1

t�1L[W;%](0; t) = ic]] = 1: (4.8)

For d = 2 there is no law of large numbers. Rather L[W;%] is self similar in the sense that (see
[DF97b])

E0[P0;ic`[L[W;%](0; t) 2 �]] = E0[P0;ic`[T
�1L[W;%](0; T t) 2 �]]; t; T > 0: (4.9)

Since E0[E0;ic `[L[W;%](0; 1)]] = ic > 0 we have that

E0[P0;ic`[L[W;%](0;1) <1]] = E0[P0;ic`[L[W;%](0; 1) = 0]] < 1: (4.10)

We are done if we can show a suitable 0-1 law for the l.h.s. of (4.10). This is a spin{o� of the
subsequent lemma which then �nishes the proof of the proposition. 2
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Lemma 4.3 (0-1 law) Assume d � 3. Denote by A(W ) the set

A(W ) = f% : L[W;%](t;1) = 0 for some t > 0 g: (4.11)

Then one of the following two alternatives holds

Px[W : P0;ic`[% 2 A(W )] = 0] = 1; x 2 Rd; (4.12)

or

Px[W : P0;ic`[% 2 A(W )] = 1] = 1; x 2 Rd: (4.13)

Proof Again by spatial homogeneity, either alternative holds if it does for x = 0.
We �rst show that

P0[P0;ic`[% 2 A(W )] 2 f0; 1g] = 1: (4.14)

In fact, let % =
P

z2Zd
%z be a decomposition of % into independent SBM starting in %z0 = `1z+[0;1)d .

Since P0;ic`[
P

z2Z
%zt = 0]! 1 as t!1, for any �nite Z �Zd, the event A(W ) is in the completion

of the tail �eld:

A(W ) 2
\
n2N

�(%z ; kzk � n) (mod P0;ic`): (4.15)

The tail �eld is P0;ic`{trivial and (4.14) follows.
Assume now that (4.12) does not hold. Hence P0[W : P0;ic`[% 2 A(W )] > 0] > 0 and by (4.14)

P0[W : P0;ic`[% 2 A(W )] = 1] > 0: (4.16)

Fix t > 0. Note that A(W ) = f% : %t+� 2 A(Wt+�)g, hence we have

P0;ic`[% 2 A(W )] = P0;ic`[%t+� 2 A(Wt+�)] = P0;ic`[%t+� 2 A(Wt+� �Wt)]; (4.17)

where in the last step we used the spatial translation invariance of P0;ic`. Hence W 7! P0;ic`[% 2
A(W )] is measurable w.r.t. the tail �eld of the increments of W and thus constant. By (4.16) we
get (4.13). 2

Remark 4.4 Note that the proof of Proposition 4.2 shows for d = 2 even the stronger statement
that for all x 2 R2 and ExP0;ic`{almost surely

L[W;%](0; t) > 0 and L[W;%](t;1) =1; t > 0: (4.18)

Exit measures

Now we make precise the idea of the collision local time collected by individual \in�nitesimal par-
ticles" from the introduction of this subsection. Note that the idea of using exit measures for this
purpose has been employed successfully also by Dawson, Fleischmann and Mueller (1998) (see also
Fleischmann and Mueller (1997)).

Choose a sample % according to P0;ic`. Recall that d = 2; 3. From Proposition 4.2 it follows that
the following stopping times of W are Px{almost surely �nite:

�K = infft > 0 : L[W;%](0; t) � Kg; K � 0: (4.19)
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For each of these stopping times we could de�ne Dynkin's stopped measure, which is approximately
what we want. However this is a (random) measure on the particles' path space and needs a con-
struction of historical CSBM. This is not too hard to do but we prefer to follow a slightly more
elementary route.

We would like to consider the joint process of W and its collision local time L[W;%]. It will, how-

ever, be convenient to introduce the trivariate (time{homogeneous) Markov process fW = (W;L; I)
on Rd� [0;1)� [0;1), where for t � 0

It = t+ I0;

Lt = L0 + L[W;%](I0; It);
(4.20)

with I0; L0 � 0. For this enriched process fW , started in (W0; 0; 0), each �K is an exit time:

�K = infft > 0 : fWt 62 Ag; (4.21)

where
A = Rd� [0;K)� [0;1):

We can de�ne the catalytic branching process eX% which is the catalytic superprocess (on Rd �
[0;1) � [0;1)) with underlying motion fW , with \critical binary" branching and with branching
functional L. For an initial state em 2Mf (R

d� [0;1)� [0;1)) we denote its law by P %

em
. Note that

for

em concentrated on Rd� f0g � f0g with
em(� � [0;1)� [0;1)) = m(�)

(4.22)

X
%

T
(�) and eX%

T
(� � [0;1)� fTg) coincide in distribution. Hence we are done if we can show that

lim sup
T!1

P
%

em
[k eX%

T
k > "] = 0; " > 0: (4.23)

(Note that the P
%

0;m{almost sure convergence statement (1.9) of Theorem 2 follows from this as
(kX%

t k)t�0 is a nonnegative martingale and hence almost surely convergent.)

For an exit time � of a domain A � Rd� [0;1)� [0;1) we can de�ne the exit measure eX%
� by

the following procedure. Let eX%;� be de�ned as eX% but with fW�^� instead of fW as motion (and
with L�^� as branching functional). That is, the in�nitesimal particles get frozen when they reach

the boundary @A of A. Finally, let eX%
� be the measure that is supported by @A and that is obtained

as the monotone limit eX%

� = lim
t!1

eX%;�

t (@A \ �): (4.24)

Note that for em as in (4.22) and � a �nite exit time we have

E
%

em
[ eX%

� ] =

Z
m(dx)Px[fW� 2 �]: (4.25)

For the exit measures eX%
� we have the so{called special Markov property which amounts to saying

that if � � � are exit times of fW then we obtain eX%
� from eX%

� by starting the process afresh
(cf. Dynkin (1991b), Theorem 1.6, and Dynkin (1991a), Theorem 1.5). More precisely, if for ' 2
C+
c (R

d� [0;1)� [0;1)) and x 2 Rd� [0;1)� [0;1) we de�ne

(V %

� ')(x) = � logE%

Æx
[exp(�h eX%

� ; 'i)]; (4.26)
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then

E
%

em
[exp(�h eX%

�
; 'i)] = E

%

em
[exp(�h eX%

�
; V %

�
'i)]: (4.27)

In particular, if @A = A1 [ A2, A1 \A2 = ;, and eX%;1 and eX%;2 are independent processes (given

their initial states) of the type introduced above with eX%;i

0 = eX%

� (A
i \ �), i = 1; 2, then eX%

� is equal
in distribution to their sum,

eX%

�

d
= eX%;1

�
+ eX%;2

�
: (4.28)

Now we come back to our concrete situation. Here � � T and � = �K^T , A = Rd�[0;K)�[0; T ),
@A = A1 [A2, where A1 = Rd� [0;K)� fTg and A2 = Rd� fKg � [0; T ]. Assume that em is as in
(4.22). Hence, using (4.25) we get

E%[k eX%;1
T
k] = E

%

em
[ eX%

�K^T
(A1)] =

Z
m(dx)Px[�K > T ]! 0; T !1: (4.29)

On the other hand eX%

�K^T
(A2) = eX%

�K
(A2), thus

P %[ eX%;2
T

6= 0] � P
%

em
[ eX%

�K
(A2) > 0]: (4.30)

Now we employ a result of [DFM98] that the process (k eX%

�t
k)t�0 is Feller's branching di�usion.

Hence we have P %

em
[k eX%

�K
k > 0] = 1� e�kmk=K and thus

P %[k eX%;2
T
k > 0] � 1� e�kmk=K : (4.31)

Combining (4.28), (4.29) and (4.31), where we �rst let T !1 and then K !1, we get that (4.23)
holds. 2
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