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Abstract

The paper deals with a scalar wave equation of the form �utt = (F [ux])x + f ;

where F is a Prandtl-Ishlinskii operator and �; f are given functions. This equation

describes longitudinal vibrations of an elastoplastic rod. The mass density � and the

Prandtl-Ishlinskii distribution function � are allowed to depend on the space variable

x . We prove existence, uniqueness and regularity of solution to a corresponding

initial-boundary value problem. The system is then homogenized by considering a

sequence of equations of the above type with spatially periodic data �
"
and �

"
,

where the spatial period " tends to 0 . We identify the homogenized limits �
�
and

�
�
and prove the convergence of solutions u

"
to the solution u

�
of the homogenized

equation.

Introduction

Homogenization is a mathematical method used in modelling composite materials with

periodic structure. If the spatial period is very small, that is, if the spatial microstruc-

ture is too �ne, one might wish to reduce the computational complexity by replacing the

rapidly varying coe�cients by, say, constant ones, corresponding to an idealized homoge-

neous material, which at the macroscopic level exhibits a qualitatively and quantitatively

similar behaviour. The approach proposed by I. Babu²ka [2] consists in considering a se-

quence of heterogeneous constitutive laws with diminishing periods. One looks for a limit

homogeneous constitutive law which, when coupled with the balance equations, gives a

solution which is a limit of solutions to the original heterogeneous problems. An interested

reader can �nd more information e. g. in [2, 4, 14, 3] and many others.

In this paper, we deal with a homogenization problem for uniaxial longitudinal vibrations

of an elastoplastic rod governed by the one-dimensional quasilinear wave equation, where

the constitutive law is considered in the form of a (spatially inhomogeneous) Prandtl-

Ishlinskii hysteresis operator. The hysteresis approach to elastoplasticity is an alternative

to the method of monotone operators (explained in detail e. g. in [1]) and it seems to

be useful especially in connection with problems of stability and asymptotic behaviour of

solutions. A systematic mathematical investigation of Prandtl-Ishlinskii operators started

relatively recently (see for instance [5, 9, 11, 15]), although the model itself was introduced

much earlier ([13, 8]). These operators are rate-independent, and the system is hyperbolic

in the sense of bounded speed of propagation, see [11].

The paper is organized as follows. In Section 1, we introduce brie�y the problem. Section

2 is devoted to a detailed survey of the theory of hysteresis operators. Special attention is

paid to spatially inhomogeneous Prandtl-Ishlinskii operators which, to the authors' knowl-

edge, have not been studied yet in a su�cient generality. In particular, the convergence

result in Proposition 2.12, which is substantial for the homogenization argument, seems
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to be new. In Section 3, we prove by space semidiscretization that the inhomogeneous

problem admits a unique strong solution. The fact that shocks do not occur in quasilin-

ear hyperbolic equations involving hysteresis operators with convex hysteresis loops has

already been discussed in [11]; here the same result is obtained under weaker hypotheses

on the space dependence.

In Section 4, we derive an explicit form of the homogenized Prandtl-Ishlinskii operator

(it was already derived in [7] without proof of convergence of the solutions) such that

the solution to the limit initial-boundary value problem is a limit of the solutions to

the `periodic' problems. In particular, this result enables us to interpret the underlying

rheological structure of the homogeneous Prandtl-Ishlinskii model as a homogenized limit

of simple one-yield elastoplastic elements periodically distributed along the rod.

1 Formulation of the problem

Let us consider a thin rod occupying a space interval J = (0; `) during a time interval

I = (0; T ) . The longitudinal displacement at the space point x and time t will be

denoted by u = u(x; t) . The vibration of the rod is described in Lagrange coordinates by

the equation of motion

� utt = �x + f ; (1.1)

where � = �(x) is the mass density, � = �(x; t) the stress and f = f(x; t) the volume

force density. The material behaviour is characterized by a constitutive relation between

the stress � and the strain e = ux , which we consider here in the form

� = F(e) ; (1.2)

where F is the spatially inhomogeneous Prandtl-Ishlinskii operator with a space depen-

dent density function � = �(x; r) , x 2 J , r � 0 , which will be described in detail in

Section 2. The problem is hyperbolic in the sense of bounded speed of propagation, see

[11]. In particular, if F is a positive multiple of the identity operator (i.e. in the purely

elastic case �(x; r) � k ), then Eq. (1.1) becomes the well-known linear wave equation.

The equation is completed with static boundary conditions. For the sake of simplicity,

we consider a �xed end of the rod at x = 0 and a free end at x = ` , that is,

u(0; t) = �(`; t) = 0 for t 2 I : (1.3)

Initial conditions will be chosen in the form

u(x; 0) = u0(x) ; ut(x; 0) = u1(x) for x 2 J : (1.4)

We �rst consider a heterogeneous rod, where the material parameters � and � depend

on x in a discontinuous way. In Section 3, Theorem 3.2, we prove that the spatially

inhomogeneous problem admits a unique strong solution.

In Section 4, we consider a material with periodic structure. The mass density � and

the Prandtl-Ishlinskii density � are assumed to be periodic in x with a period " . As a

simplest example we may consider a rod composed of two materials A and B distributed
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in layers of thickness dA" and dB" with dA + dB = 1 , see Fig. 1. More speci�cally, we

consider a family f�"; �"g">0 of material parameters of the form

�"(x) = �(x=") ; �"(x; r) = �(x="; r) ; x 2 J ; r > 0 ; (1.5)

where �; �(�; r) : R! (0;1) are periodic functions for all r � 0 with period 1 , that is,

�(y + 1) = �(y) ; �(y + 1; r) = �(y; r) ; 8y 2 R; r > 0 : (1.6)

�
Figure 1: Layered rod � material with periodic structure.

Letting " tend to 0 , we obtain a family of initial-boundary value problems of the form

(1.1) � (1.4) and a corresponding family of solutions u" . Our main result (Theorem 4.5)

consists in proving that the solutions u" converge under natural hypotheses to a solution

u� of an initial-boundary value problem of the same type with homogeneous parameters

�� = const. and �� = ��(r) . While it is obvious that �� is nothing but the average of

� , the relation between �� and � involves a more detailed analysis of Prandtl-Ishlinskii

operators. In particular, we derive an explicit formula for the homogenized operator F�

based on the inverse operator F�1 to F . This formula was already intuitively derived in

[7].

2 Hysteresis operators

2.1 Stop and play operators

One of the basic elements of the theory of hysteresis operators is borrowed from continuum

mechanics, more precisely, from Prandtl's model for elastic-perfectly plastic constitutive

laws as on Fig. 2, where u and s represent the (scalar) strain and stress, respectively. In

mathematical terms, it can be formally described as the input-output relation between

u 2 W 1;1(I) and s 2 W 1;1(I) de�ned by the variational inequality8>><>>:
s(t) 2 [�r; r] for every t 2 �I ;

( _s(t)� _u(t))(�� s(t)) � 0 for a.e. t 2 I and every � 2 [�r; r] ;
s(0) = s0 ;

(2.1)

where r > 0 and s0 2 [�r; r] are given and the dot denotes derivative with respect to

t . The model corresponds to a rheological combination (cf. Fig. 3) of one linearly elastic

element (represented by a spring) in series with a dry friction term.

We list below some basic well-known analytical properties of the Prandtl model and

its extensions. A detailed discussion on this subject can be found in the monographs

[5, 9, 11, 15]. We do not treat here its vectorial or tensorial counterparts, where the interval

[�r; r] is replaced by an arbitrary convex closed subset Z . The analytical properties of
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Figure 2: Strain-stress diagram for Prandtl's model with yield point r and unit elasticity

modulus.

�
Figure 3: Rheological scheme for Prandtl's model.

the model then depend substantially on the geometry of the set Z and a survey can be

found in [6].

In order to make the presentation consistent and more accessible, we sketch at least some

main ideas of the proofs that are elementary enough.

For every input u 2 W 1;1(I) and initial condition s0 2 [�r; r] , problem (2.1) has a

unique solution s 2 W 1;1(I) . We can therefore de�ne the solution operator Sr : [�r; r]�
W 1;1(I)! W 1;1(I) by the formula

Sr[s0; u] := s : (2.2)

It is convenient to introduce also its complement

Pr[s
0; u] := u� Sr[s0; u] : (2.3)

The argument of the operators is written in square brackets to indicate the functional

dependence, since they map a function to a function. The operators Sr and Pr are called

the stop and play, respectively, with threshold r . In each interval of monotonicity [t0; t1]

of the input function u , the outputs are explicitly given by the formulas

Sr[s0; u](t) = minfr; maxf�r; Sr[s0; u](t0) + u(t)� u(t0)gg ; (2.4)

Pr[s
0; u](t) = maxfu(t)� r; minfu(t) + r; Pr[s

0; u](t0)gg ; (2.5)

which have traditionally been used as alternative de�nitions of the stop and play on

piecewise monotone inputs, see [5, 9]. The following inequalities hold:

Proposition 2.1 For s01; s
0
2 2 [�r; r] and u1; u2 2 W 1;1(I) put pi := Pr[s

0
i ; ui] and

si := Sr[s0i ; ui] , i = 1; 2 . Then we have

(i) ( _p1(t)� _p2(t)) (s1(t)� s2(t)) � 0 for a.e. t 2 I ,

4



(ii) jp1(t)� p2(t)j � max

�
jp1(0) � p2(0)j ; max

0�s�t
ju1(s)� u2(s)j

�
8t 2 �I .

Sketch of the proof. (i) For i = 1; 2 we have by de�nition _pi(t)(si(t)��) � 0 a.e. for all

� 2 [�r; r] . Putting � = s3�i(t) and summing up the resulting inequalities for i = 1; 2 ,

we obtain the assertion.

(ii) For 0 � � � t � T put

Vt(� ) := max

�
jp1(� )� p2(� )j2 ; max

0�s�t
ju1(s)� u2(s)j2

�
;

and assume that for some 0 < � < t we have

@

@�
Vt(� ) > 0 :

This assumption implies

jp1(� )� p2(� )j > max
0�s�t

ju1(s)� u2(s)j ; (2.6)

( _p1(� )� _p2(� ))(p1(� )� p2(� )) > 0 : (2.7)

From (i) and Ineq. (2.7) it follows that (s1(� )� s2(� ))(p1(� )� p2(� )) � 0 , hence

(p1(� )� p2(� ))
2 � (p1(� )� p2(� ))(u1(� )� u2(� )) ;

which contradicts inequality (2.6). We therefore have Vt(t) � Vt(0) and Proposition 2.1

is proved. l

Remark 2.2 Part (ii) of Proposition 2.1 states that the play (and therefore also the stop)

can be extended to Lipschitz continuous mappings from [�r; r]� C(�I) to C(�I) , where

C(�I) denotes the space of continuous functions from �I to R. In the sequel, we will mainly

work with these extensions, still using the same notation.

To simplify the presentation, we consider special initial con�gurations of the stop and

play operators. They consist in choosing

s0 := sign(u(0))minfju(0)j; rg (2.8)

in the variational problem (2.1). In materials sciences, this corresponds to the initially

unperturbed (or virgin) reference state. In some applications, for instance to problems

of fatigue accumulation, it is substantial to consider more general initial states, and an

interested reader can �nd a detailed analysis in [5] or [11]. Here, the results do not depend

on the choice of s0 .

This enables us to consider the stop and play as operators from C(�I) to C(�I) and to

write simply Sr[u] , Pr[u] instead of Sr[s0; u] , Pr[s
0; u] .

The stop and play are obviously locally monotone hysteresis operators in the following

sense:
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De�nition 2.3 An operator � acting in some space R(�I) of functions from �I to R is

called a hysteresis operator if it is

� rate-independent, that is, if for every u 2 R(�I) and every nondecreasing mapping �

of �I onto �I such that u�(t) := u(�(t)) belongs to R(�I) , we have

�[u�](t) = �[u](�(t)) for all t 2 �I ; (2.9)

and

� causal, that is, if the implication

u(t) = v(t) 8 t 2 [0; t0] ) �[u](t0) = �[v](t0) : (2.10)

holds for every u; v 2 R(�I) and t0 2 �I .

The operator � is said to be locally monotone, if

d

dt
�[u](t) � d

dt
u(t) � 0 (2.11)

whenever the derivatives exist.

The local monotonicity of the stop and play has a particular form

d

dt
Pr[u] � d

dt
Sr[u] = 0 a.e. t 2 I ; (2.12)

hence dPr[u](t)=dt = _u(t) , dSr[u](t)=dt = 0 or vice versa.

We endow the space C(�I) with a system of seminorms

kuk[0;t] := max
0�s�t

ju(s)j for u 2 C(�I) and t 2 �I : (2.13)

From Proposition 2.1 we immediately obtain the following estimate.

Corollary 2.4 For u1; u2 2 C(�I) put pi := Pr[ui] , si := Sr[ui] , i = 1; 2 . Then for all

t 2 �I we have

jp1(t)� p2(t)j � ku1 � u2k[0;t] ;
js1(t)� s2(t)j � 2 ku1 � u2k[0;t] :

(2.14)

2.2 Prandtl-Ishlinskii operators

One practical drawback of Prandtl's model in Fig. 2 consists in an instantaneous transition

from the purely elastic to the purely plastic regime. In `real' elastoplastic materials, this

transition zone is smooth, see [12]. Prandtl [13] and Ishlinskii [8] therefore proposed to

combine rheological elements from Fig. 3 corresponding to di�erent values r1 < r2 <

: : : < rn < 1 of the yield point in parallel, as on Figure 4. The purely elastic element

corresponding to r =1 accounts for the kinematic hardening.
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Figure 4: Rheological structure of the Prandtl-Ishlinskii model.

According to Eq. (2.2), the strain-stress law for the Prandtl-Ishlinskii model can be written

in operator form as

� = F [e] := �1 e+
nX
i=1

�i Sri[e] ; (2.15)

where �i are given nonnegative empirical constants.

In fact, there is no reason to restrict the model to �nitely many yield points. For a

mathematical treatment, it is more convenient to work with more general constitutive

operators. This leads us to the following de�nition:

De�nition 2.5 Let us introduce the following sets of functions

PI� := f� : [0;1] ! (0;1) ;

� bounded, nonincreasing, right-continuous, �(1) > 0g ;
P I+ := f� : [0;1) ! (0;1) ;

� bounded, nondecreasing, right-continuous, �(0) > 0g

called admissible Prandtl-Ishlinskii distribution functions.

For a given function � 2 PI� , the operator F de�ned by the Stieltjes integral

F [e] := �(1) e�
Z
1

0
Sr[e]d�(r) ; (2.16)

is called a Prandtl-Ishlinskii operator of stop type.

Indeed, the case (2.15) is included in the above de�nition; it su�ces to put r0 := 0 ,

rn+1 :=1 , �n+1 := �1 , and

�(r) :=
n+1X
i=k

�i for r 2 [rk�1; rk) ; k = 1; : : : ; n+ 1 : (2.17)

In particular, constant functions � correspond to purely elastic constitutive law.

An important practical question consists in identifying the function � from physical mea-

surements. The usual approach is to increase monotonically the load from zero to some
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�nal value and to plot the corresponding strain-stress graph called the initial loading

curve. So, assume that e increases in �I from the starting value e(0) = 0 . Then, at time

t , we have by Eq. (2.4) for every r > 0

Sr[e](t) = minfe(t); rg ;
and formula (2.16) yields

F [e](t) = �1 e(t)�
Z e(t)

0
r d�(r)� e(t)

Z
1

e(t)
d�(r) =

Z e(t)

0
�(r)dr : (2.18)

Given an increasing concave experimental initial loading curve � = '(e) , Eq. (2.18) says

that it determines uniquely the Prandtl-Ishlinskii operator (2.16) through the relation

�(r) := '0(r) � d

dr
'(r) : (2.19)

In the Prandtl-Ishlinskii model, all secondary branches of hysteresis loops have the same

shape, namely � = ��+2'((e� e�)=2) for an increasing branch, � = ��� 2'((e�� e)=2)
for a decreasing branch, where (e�; ��) is a turning point, cf. Fig. 5.

�

�
��

� = '(e)

e� e

Figure 5: A diagram of the Prandtl-Ishlinskii operator.

Prandtl-Ishlinskii operators have a very speci�c property, namely that they are invertible

and the inverse has the same structure. This result goes back to [10] in the time-periodic

case. We need the following version which can be found in [11], Corollary II.3.4.

Theorem 2.6 Let ' : [0;1) ! [0;1) be a concave increasing function, '(0) = 0 ,

'(1) = 1 , '0(0) < 1 , '0(1) > 0 and let  = '�1 : [0;1) ! [0;1) be its inverse.

Let � := '0 , � :=  0 be the right-continuous representatives of their respective derivatives.

Then � 2 PI� , � 2 PI+ and the operator G : C(�I)! C(�I) de�ned by the formula

G[�] := �(0)� +

Z
1

0
Pr[�]d�(r) for � 2 C(�I) (2.20)

is the inverse operator to F given by formula (2.16).

In the situation of Theorem 2.6, we say that (�; �) 2 PI� � PI+ form a pair of ad-

joint Prandtl-Ishlinskii distribution functions. The operator G is called Prandtl-Ishlinskii

operator of play type.
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In terms of the underlying mechanical construction, Theorem 2.6 can be interpreted in

such a way that the rheological models on Fig. 4 and Fig. 6 are equivalent.

Prandtl-Ishlinskii operators are locally monotone hysteresis operators according to De�-

nition 2.3. More precisely, Theorem 2.6 and Eq. (2.12) imply the following inequalities:

Proposition 2.7 Let F be as in De�nition 2.5, and let � , � be positive constants such

that

� � 1=�(0) ; � � �(1) : (2.21)

For e 2 W 1;1(I) put � := F [e] . Then for a.e. t we have

� _e2(t) � _e(t) _�(t) � 1
�
_e2(t) ;

� _�2(t) � _e(t) _�(t) � 1
�
_�2(t) :

(2.22)

Indeed, if (�; �) 2 PI��PI+ is a pair of adjoint Prandtl-Ishlinskii distribution functions,

then, due to the identities �(0) = 1=�(0) and �(1) = 1=�(1) , Ineqs. (2.21) are equivalent

to

0 < � � �(0) ; 0 < � � 1=�(1) : (2.23)

�
0

~r1 ~r2 ~rn

Figure 6: Rheological structure of the Prandtl-Ishlinskii operator of play type.

As an immediate consequence of Theorem 2.6 and Corollary 2.4, we have the following

Lipschitz estimates:

Proposition 2.8 Let F ; �; � be as in Proposition 2.7. For given functions e1; e2 2 C(�I)

put �i := F [ei] for i = 1; 2 . Then for every t 2 �I we have

j�1(t)� �2(t)j �
 
2

�
� �

!
ke1 � e2k[0;t] ; (2.24)

je1(t)� e2(t)j � 1

�
k�1 � �2k[0;t] : (2.25)

For every input function � 2 C(�I) and every �xed time t 2 �I , the function �t : [0;1)!
R de�ned by the formula

�t(r) :=

( Pr[�](t) for r > 0 ;

�(t) for r = 0 ;
(2.26)

represents the memory state of the system at time t . It has the following properties (see

Proposition II.2.5 of [11]).
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Proposition 2.9 Let � 2 C(�I) and t 2 �I be given. Then the function �t de�ned by

Eq. (2.26) is Lipschitz continuous with coe�cient 1 and we have8>><>>:
�t(r) = 0 for r � k�k[0;t]����� @@r�t(r)

����� = 1 for a.e. r 2 (0; k�k[0;t]) :
(2.27)

This result enables us to estimate the di�erence of two Prandtl-Ishlinskii operators of play

type in the following way:

Proposition 2.10 Let �1; �2 2 PI+ be given, and let G1 , G2 be the corresponding oper-

ators of the form (2.20). Let �1; �2 2 C(�I) be arbitrary functions. Then for every t 2 �I

we have

kG1[�1]� G2[�2]k[0;t] � �1(1) k�1 � �2k[0;t] +
Z
k�2k[0;t]

0
j�1(r)� �2(r)jdr : (2.28)

Proof. Using the integration-by-parts formula for the Stieltjes integral, we have for all

t 2 �I

(G1[�1]�G2[�2])(t) = �1(0)(�1 � �2)(t) (2.29)

+

Z
1

0
(Pr[�1]�Pr[�2])(t)d�1(r) �

Z
1

0

@

@r
Pr[�2](t) (�1 � �2)(r) dr ;

and Ineq. (2.28) follows from Corollary 2.4 and Proposition 2.9. l

2.3 Energy inequalities

The energy dissipation is a typical feature of hysteresis phenomena. To introduce it as a

mathematical concept, we have to de�ne an internal energy functional U � 0 correspond-

ing to the constitutive law � = F [e] or equivalently e = G[�] . The second principle of

thermodynamics then requires that the dissipation rate q has to satisfy

q := � _e� _U � 0 : (2.30)

If we choose e as state variable (input) and � = F [e] as state function (output), we de�ne

a continuous family of internal parameters �r := Sr[e] which correspond to individual

stress components in the rheological construction of Fig. 4. It is assumed that no internal

energy can be stored in the dry friction elements; the internal energy U of the system

is then de�ned as the total internal energy of the individual elastic elements, that is, in

operator form,

U = U [e] := 1

2

�
�(1)e2 �

Z
1

0
�2r d�(r)

�
=

1

2

�
�(1)e2 �

Z
1

0
(Sr[e])2 d�(r)

�
: (2.31)

Conversely, if � is the input and e = G[�] is the output, then we choose the strain

components er := Pr[�] to be the internal parameters and the total internal energy has

the form

U = V[�] := 1

2

�
�(0)�2 +

Z
1

0
e2r d�(r)

�
=

1

2

�
�(0)�2 +

Z
1

0
(Pr[�])

2d�(r)

�
: (2.32)
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It can be shown that formulas (2.31) and (2.32) are equivalent. It is easy to check that

for every e; � 2 W 1;1(I) we have

F [e] _e� d

dt
U [e] = �

Z
1

0
Sr[e]

@

@t
Pr[e]d�(r) � 0 a.e.; (2.33)

�
d

dt
G[�]� d

dt
V[�] =

Z
1

0
Sr[�] @

@t
Pr[�]d�(r) � 0 a.e.; (2.34)

hence the model is consistent with inequality (2.30).

Hysteresis operators admit a second order energy inequality which is related to the con-

vexity of hysteresis loops. A detailed discussion on this subject can be found in Section

II.4 of [11]. We need here the following simpli�ed version which follows directly from the

de�nition without referring to the geometry of hysteresis loops.

Theorem 2.11 Let F ; �; � be as in Proposition 2.7 and let e 2 W 2;1(0; T ) be given.

Then � = F [e] belongs to W 1;1(0; T ) and for every t 2 �I we haveZ t

0
�e(� ) _�(� )d� � �

2
_e2(t)� 1

2�
_e2(0) : (2.35)

Proof. The fact that � belongs to W 1;1(0; T ) follows immediately from Proposition

2.7. For an arbitrary h > 0 su�ciently small, r > 0 and t 2 [0; T � h] put e1(t) :=

e(t+ h) , e2(t) := e(t) , �01r := Sr[e](h) , �02r := Sr[e](0) , �r(t) := Sr[e](t) . Then for each

t 2 [0; T � h] we have Sr[�01r; e1](t) = �r(t + h) , Sr[�02r; e2](t) = �r(t) , and Proposition

2.1 (i) yields

( _e(t+ h)� _e(t)) (�r(t+ h)� �r(t)) � 1

2

d

dt
j�r(t+ h)� �r(t)j2 a.e.

Integrating the above inequality we obtain for every 0 � s < t � T � hZ t

s

( _e(� + h)� _e(� )) (�r(� + h)� �r(� ))d� (2.36)

� 1

2

�
j�r(t+ h)� �r(t)j2 � j�r(s+ h) � �r(s)j2

�
:

Proposition II.2.8 and Corollary II.2.9 of [11] enable us to justify the following formal

computation which consists in dividing inequality (2.36) by h2 , letting h tend to 0 and

using the fact that _�2r = _�r _e a.e. according to identity (2.12). We conclude that for a.e.

s < t and every r > 0 except for two values at most, we haveZ t

s

�e(� ) _�r(� )d� � 1

2
( _e(t) _�r(t)� _e(s) _�r(s)) : (2.37)

Integrating with respect to �d�(r) we obtain for a.e. s < tZ t

s

�e(� ) _�(� )d� � 1

2
( _e(t) _�(t)� _e(s) _�(s)) ; (2.38)

and the assertion follows from Proposition 2.7. l
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2.4 Spatially dependent hysteresis operators

It is natural to consider elastoplastic materials whose constitutive properties are spatially

inhomogeneous, that is, the Prandtl-Ishlinskii constitutive law � = F [e] may be di�erent

at di�erent points x 2 J = (0; `) . In other words, we allow the Prandtl-Ishlinskii distri-

bution function � to depend on x . Given an input function e : J � I ! R, we de�ne the

output � by the formula

�(x; t) := F [e](x; t) = �(x;1) e(x; t) �
Z
1

0
Sr[e(x; �)](t)dr�(x; r) (2.39)

for (x; t) 2 J � I . It makes sense for every x 2 J , for which the function t 7! e(x; t) is

continuous and the function r 7! �(x; r) belongs to PI� . For an input function � , we

similarly de�ne the output of the inverse operator

e(x; t) := G[�](x; t) = �(x; 0)�(x; t) +

Z
1

0
Pr[�(x; �)](t)dr�(x; r) ; (2.40)

where (�(x; �); �(x; �)) 2 PI� � PI+ is a pair of adjoint Prandtl-Ishlinskii distribution

functions.

Analogously as in Proposition 2.10, the space-dependent operators are continuous with

respect to input functions from the space C( �J � �I) of continuous functions on �J � �I ,

endowed with the usual sup-norm k � k1 . Below we give a more substantial result on

the continuity with respect to weak-star convergence of the Prandtl-Ishlinskii distribution

functions.

Proposition 2.12 Let �n , n 2 N, be a sequence of functions in L1(J � (0;1) such

that �n(x; �) 2 PI+ for every n 2 N and a.e. x 2 J , and let there exist positive constants

�; � such that for every n 2 N, r > 0 and a.e. x 2 J we have

� � �n(x; r) � 1=� : (2.41)

Assume that �n converge to � in L1(J � (0;1)) weakly-star as n!1 .

Let �n , n 2 N, be a sequence in L1(I � J)) such that �n(x; �) 2 C(�I) for a.e. x 2 J

and k�n � �k1 ! 0 as n ! 1 . Let Gn , G be the operators corresponding to �n; � ,

respectively, according to Eq. (2.40).

Then Gn[�n](�; t) converge to G[�](�; t) for every t 2 I in L1(J) weakly-star as n!1 .

Proof. The function �(x; �) is obviously nondecreasing for a.e. x 2 J and � � �(x; r) �
1=� a.e., hence the operator G is well de�ned. By Eq. (2.29), we have for a.e. x 2 J and

every t 2 I
(Gn[�n]� G[�])(x; t) = �n(x; 0)(�n � �)(x; t) + (2.42)

+

Z
1

0
(Pr[�n(x; �)]�Pr[�(x; �)])(t)dr�n(x; r)

�
Z
1

0

@

@r
Pr[�(x; �)](t) (�n� �)(x; r) dr :

The �rst two terms of the right-hand side of Eq. (2.42) converge uniformly to 0 by

Corollary 2.4 and Ineq. (2.41), the third term converges weakly-star to 0 by Proposition

2.9, and Proposition 2.12 follows. l
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3 The spatially inhomogeneous wave equation

3.1 Statement of the problem

We rewrite Eqs. (1.1), (1.2) in the form of a �rst order system8>>><>>>:
� vt = �x + f ;

et = vx ;

e = G[�]
(3.1)

in J � I , where � = �(x) is a given mass density, v = ut is the velocity, f = f(x; t) is a

given volume force density and G is a Prandtl-Ishlinskii operator of play type of the form

(2.40) with a given density � = �(x; r) .

The boundary and initial conditions (1.3), (1.4) are considered here in the form

v(0; t) = �(`; t) = 0 for t 2 I ; (3.2)

v(x; 0) = v0(x) ; �(x; 0) = �0(x) for x 2 J : (3.3)

This is indeed formally equivalent to (1.3), (1.4). It su�ces to put v0(x) := u1(x) and,

according to the choice (2.8) of the initial conditions for the stop operators,

�0(x) :=

Z e0(x)

0
�(x; r)dr ; e0(x) := u00(x) ;

where (�(x; �); �(x; �)) is a pair of adjoint Prandtl-Ishlinskii distribution functions for a.e.

x 2 J .
The data are assumed to satisfy the following requirements:

Hypothesis 3.1

(i) � 2 L1(J) and there exist constants �m; �M > 0 such that �m � �(x) � �M for

a.e. x 2 J ,
(ii) � 2 L1(J � (0;1)) , the function �(x; �) belongs to PI+ for a.e. x 2 J and there

exist �; � > 0 such that � � �(x; r) � 1=� for a.e. x 2 J ,
(iii) f 2 W 1;1(I;L2(J)) ,

(iv) �0; v0 2 W 1;2(J) , �0(`) = v0(0) = 0 .

We now state the main result of this section.

Theorem 3.2 Let Hypothesis 3.1 hold. Then there exist uniquely determined functions

v; � 2 C( �J� �I) and e 2 L2(J ;C(�I)) such that et; vt; �t; vx; �x 2 L1(I;L2(J)) , conditions

(3.2), (3.3) hold pointwise and Eqs. (3.1) are satis�ed almost everywhere. Moreover, there

exists a constant B > 0 depending only on �; �; �m; �M , the norm of f in W 1;1(I;L2(J))

and the norms of �0; v0 in W 1;2(J) such that the norms of et; vt; �t; vx; �x in L1(I;L2(J))

are estimated from above by the constant B .
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The rest of this section is devoted to the proof of Thm. 3.2 which extends the results of

[11], where the function � in Hypothesis 3.1 is required to be continuous with respect to

x .

The argument consists of several steps. We �rst discretize Eqs. (3.1) in space and solve

for each partition of the interval J the corresponding system of ODEs. Then we derive

upper bounds independent of the discretization parameter for the discrete solutions and

use compact embeddings for passing to the limit. Finally, we check that the limit functions

are the unique solutions of the problem.

3.2 Space discretization

For a �xed integer n 2 N, we divide the interval J = (0; `) into an equidistant partition

of size h = `=n , and consider the system8>>><>>>:
�k _vk = 1

h
(�k+1 � �k) + fk ;

_ek = 1
h
(vk � vk�1) ;

ek = Gk[�k]
(3.4)

for k = 1; : : : ; n � 1 with unknown functions v1; : : : ; vn�1 , �1; : : : ; �n�1 , where the dot

denotes derivative with respect to t . We prescribe `boundary conditions'

v0 = 0 ; �n = 0 (3.5)

and initial conditions

vk(0) = v0(kh) ; �k(0) = �0(kh) ; ek(0) = Gk[�k](0) ; k = 1; : : : ; n� 1 ; (3.6)

where for k = 1; : : : ; n we de�ne

�k�1 :=
1

h

Z kh

(k�1)h
�(x)dx ; (3.7)

fk�1(t) :=
1

h

Z kh

(k�1)h
f(x; t)dx ; (3.8)

Gk[�] := �k(0)� +

Z
1

0
Pr[�]d�k(r) (3.9)

for an arbitrary function � 2 C(�I) , where

�k(r) :=
1

h

Z kh

(k�1)h
�(x; r)dx for r � 0 : (3.10)

The functions �k in Eqs. (3.9), (3.10) are obviously nondecreasing and ful�l the inequal-

ities

� � �k(r) � 1=� 8 r � 0 ; k = 1; : : : ; n ; (3.11)

For the sake of completeness, we recall the following existence result for the system (3.4)

� (3.10) which is analogous as in Section III.2 of [11].
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Proposition 3.3 Let Hypothesis 3.1 holds. Then the system (3.4) � (3.6) admits a

unique global solution in I such that vk 2 W 2;1(I) , ek 2 W 3;1(I) and �k 2 W 1;1(I)

for k = 1; : : : ; n� 1 .

Proof. Let Fk = (Gk)�1 be the inverse operator to Gk for k = 1; : : : ; n according to

Thm. 2.6. System (3.4) � (3.10) is then of the form

_Y = T [Y ] ; Y (0) = Y 0 ; (3.12)

where Y = (Y1; : : : ; Y2n�2) , with

Yj = vj , (T [Y ])j = ((Fj+1[ej+1]�Fj[ej])=h+ fj)=�j for j = 1; : : : ; n� 1 ,

Yj = ej+1�n , (T [Y ])j = (vj+1�n � vj�n)=h for j = n; : : : ; 2n � 2 .

By Proposition 2.8, there exists a constant Ln such that for every Y;Z 2 C(�I;R2n�2)

and every t 2 �I we have

jT [Y ](t)� T [Z](t)j � Ln kY � Zk[0;t] ; (3.13)

with natural extension of the notation from C(�I) to C(�I;R2n�2) . Let us de�ne an aux-

iliary mapping K from C(�I;R2n�2) to C(�I;R2n�2) by the formula

K[Y ](t) := Y 0 +

Z t

0
T [Y ](� )d� : (3.14)

Solutions of Eq. (3.12) can be identi�ed with �xed points of the mapping K . By induction,

the p� th iterate Kp of K ful�ls the inequality

jKp[Y ](t)�Kp[Z](t)j � (Lnt)
p

p!
kY � Zk1 ;

for every Y;Z 2 C(�I;R2n�2) and every t 2 �I . For p su�ciently large, Kp is a contraction,

hence K admits a unique �xed point by the Banach Contraction Principle. The regularity

follows from a usual bootstrapping argument: since fk and �k are continuous, the �rst

equation of (3.4) yields vk 2 C1(�I) , from the second one it follows that ek 2 C2(�I) .

The third equation together with Proposition 2.9 imply that �k 2 W 1;1(I) . Taking into

account the fact that fk 2 W 1;1(I) , we can repeat the procedure and obtain the assertion.

l

3.3 Estimates

With the intention to pass to the limit as n! 1 in the spatially discrete system (3.4),

we derive for its solutions estimates independent of n . Throughout this subsection, we

denote by C1; C2; : : : any constants depending exclusively on �; �; �m; �M , the norm of

f in W 1;1(I;L2(J)) and the norms of �0; v0 in W 1;2(J) .

Lemma 3.4 The solution fvk; ek; �kgn�1k=1 to Problem (3.4) � (3.6) satis�es for every t 2 I
the estimate

h
n�1X
k=1

 
_v2k + _e2k + _�2k +

�
�k+1 � �k

h

�2

+

�
vk � vk�1

h

�2!
(t) � C ; (3.15)
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where C > 0 is a constant which depends only on �; �; �m; �M , the norm of f in

W 1;1(I;L2(J)) and the norms of �0; v0 in W 1;2(J) .

Proof. We di�erentiate Eqs. (3.4) with respect to t , multiply the �rst equation by _vk(t) ,

the second equation by _�k(t) , and sum up over k = 1; : : : ; n � 1 . Using the conditions

(3.5) we obtain
n�1X
k=1

(�k �vk(t) _vk(t) + �ek(t) _�k(t)) =

n�1X
k=1

_fk(t) _vk(t) (3.16)

for a.e. t 2 I . We now �x any t 2 I and integrate Eq. (3.16) from 0 to t . This yields

n�1X
k=1

��k
2

_v2k(t) +

Z t

0
�ek(� ) _�k(� )d�

�
� (3.17)

�
n�1X
k=1

�k

2
_v2k(0) +

0@





n�1X
k=1

_v2k







[0;t]

1A1=2 Z t

0

 
n�1X
k=1

_f2k (� )

!1=2

d� :

To estimate the right-hand side of Ineq. (3.17), we �rst notice that for a.e. � 2 I we have

n�1X
k=1

_f2k (� ) =
1

h2

n�1X
k=1

 Z (k+1)h

kh

ft(x; � )dx

!2

� 1

h

Z
J

f2t (x; � )dx ; (3.18)

hence Z
I

 
h

n�1X
k=1

_f2k (� )

!1=2

d� � kftkL1(I;L2(J)) : (3.19)

Applying the same argument to h
P
f2k , we thus obtain

Z
I

 
h

n�1X
k=1

�
f2k (� ) +

_f2k (� )
�!1=2

d� � C1 : (3.20)

On the other hand, for every function F 2 W 1;1(I) and every 0 � s < t � T we have

F (t) � F (s) +
R t
s jF 0(� )jd� . This yields in particular

 
n�1X
k=1

f2k (t)

!1=2

�
 
n�1X
k=1

f2k (s)

!1=2

+

Z t

s

 
n�1X
k=1

_f2k (� )

!1=2

d� ;

and integrating over s we obtain from Ineq. (3.20) that

h







n�1X
k=1

f2k







[0;T ]

� C2 : (3.21)

From Theorem 2.11 we infer thatZ t

0
�ek(� ) _�k(� )d� � �

2
_e2k(t)�

1

2�
_e2k(0) ; 8 t 2 I ; k = 1; : : : ; n : (3.22)
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Combining Ineqs. (3.17), (3.20) and (3.22), we have for every t 2 I

h
n�1X
k=1

(�k _v2k(t) + � _e2k(t)) � (3.23)

� h
n�1X
k=1

 
�k _v2k(0) +

1

�
_e2k(0)

!
+ C3

0@




h
n�1X
k=1

_v2k







[0;t]

1A1=2

:

To estimate the right-hand side of Ineq. (3.23), we use Eqs. (3.4) which yield for k =

1; : : : ; n� 1 that

�k j _vk(0)j �
������k+1(0)� �k(0)

h

�����+ jfk(0)j (3.24)

� 1

h

Z (k+1)h

kh

j�0x(x)jdx+ jfk(0)j ;

j _ek(0)j �
�����vk(0)� vk�1(0)

h

����� � 1

h

Z kh

(k�1)h
jv0x(x)jdx : (3.25)

The obvious inequality

�m � �k � �M 8k = 0; : : : ; n� 1 (3.26)

together with (3.25), (3.26) and (3.21) implies that

h
n�1X
k=1

 
�k _v2k(0) +

1

�
_e2k(0)

!
� C4 : (3.27)

From Ineq. (3.23) we now easily conclude that

h
n�1X
k=1

�
_v2k(t) + _e2k(t)

�
� C5 (3.28)

independently of t . To complete the proof, it su�ces to use again Eqs. (3.4) and In-

eqs. (3.21), (2.22). l

3.4 Passage to the limit

For each �xed n 2 N, we construct approximate solutions to Eqs. (3.1) as piecewise

constant or piecewise linear interpolates of solutions to the semidiscrete system (3.4).

For t 2 I , r � 0 , x 2 [(k � 1)h; kh) , h = `=n , k = 1; : : : ; n we de�ne the functions

(continuously extended to x = ` )

�(n)(x) := �k�1 ;

�
(n)

(x; r) := �k(r) ;

f
(n)

(x; t) := fk�1(t) ;
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v(n)(x; t) := vk�1(t) ;

e(n)(x; t) := ek(t) ;

�(n)(x; t) := �k(t) ;

bv(n)(x; t) := vk�1(t) +

�
x

h
� (k � 1)

�
(vk(t)� vk�1(t)) ;

b�(n)(x; t) := �k�1(t) +

�
x

h
� (k � 1)

�
(�k(t)� �k�1(t)) ;

e�(n)(x; t) :=

( b�(n)(x; t) for x 2 [h; `] ;

�1(t) for x 2 [0; h) ;

where we put en(t) := 0 , vn(t) := vn�1(t) , �0(t) := �1(t) + h f0(t) . We also introduce

the interpolated Prandtl-Ishlinskii operator

G(n)
[�](x; t) := �

(n)
(x; 0)�(x; t) +

Z
1

0
Pr[�(x; �)](t)dr� (n)(x; r)

for each input � such that �(x; �) 2 C(�I) for a.e. x 2 J .
The above functions have been chosen in order to satisfy the system8>>>><>>>>:

�(n) v
(n)
t = b�(n)x + f

(n)
;

e
(n)
t = bv(n)x ;

e(n) = G(n)
[�(n)]

(3.29)

almost everywhere in J � I , together with boundary conditions

bv(0; t) = b�(`; t) = 0 for t 2 I : (3.30)

The following estimate is crucial for passing to the limit as n!1 .

Proposition 3.5 There exists a constant C6 > 0 such that for every n 2 N we have

max
t2I

Z
J

(je(n)t j2 + jv(n)t j2 + jbv(n)t j2 + je�(n)t j2 (3.31)

+jbv(n)x j2 + jb�(n)x j2 + je�(n)x j2)(x; t)dx � C6 :

Proof. For x 2 [(k � 1)h; kh] we have jbv(n)t (x; t)j2 � _v2k�1(t) + _v2k(t) for k � n � 1 ,

jbv(n)t (x; t)j2 = _v2n�1(t) for k = n and analogously je�(n)t (x; t)j2 � _�2k�1(t)+ _�2k(t) for k � 2 .

For x 2 [0; h] we have je�(n)t (x; t)j2 = _�21(t) and jb�(n)x (x; t)j2 = f20 (t) . This yields for any

t 2 I Z
J

(je(n)t j2 + jv(n)t j2 + jbv(n)t j2 + je�(n)t j2 + jbv(n)x j2 (3.32)

+jb�(n)x j2 + je�(n)x j2)(x; t)dx

� h
n�1X
k=1

 
_e2k + 3 _v2k + 2 _�2k + 2

�
�k+1 � �k

h

�2
+

�
vk � vk�1

h

�2
!
(t)

+h f20 (t) :
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The assertion now follows from Lemma 3.4 and Ineq. (3.21). l

We are now ready to prove Thm. 3.2.

Proof of Theorem 3.2. From Proposition 3.5 it follows that there exist functions v; � 2
C( �J � �I) such that vt; �t; vx; �x 2 L1(I;L2(J)) and a subsequence

nbv(nj); e�(nj)
o

ofnbv(n); e�(n)o such that

bv(nj)
t ! vt weakly-star in L1(I;L2(J)) ;

bv(nj)
x ! vx weakly-star in L1(I;L2(J)) ;

e�(nj)
t ! �t weakly-star in L1(I;L2(J)) ;

e�(nj)
x ! �x weakly-star in L1(I;L2(J)) ;

and, by compact embedding,

bv(nj) ! v uniformly in C( �J � �I) ;

e�(nj) ! � uniformly in C( �J � �I)

as j !1 . We moreover have for every n 2 N and (x; t) 2 J � I

je�(n)(x; t)� b�(n)(x; t)j � h f0(t) � C7

p
h ;

je�(n)(x; t)� �(n)(x; t)j � max
1�k�n�1

j�k+1 � �kj

�
 
n�1X
k=1

(�k+1 � �k)
2

!1=2

� C8

p
h ;

jbv(n)(x; t)� v(n)(x; t)j � max
1�k�n�1

jvk � vk�1j

�
 
n�1X
k=1

(vk � vk�1)
2

!1=2

� C9

p
h :

We conclude that the subsequences can be chosen in such a way that

v
(nj)
t ! vt weakly-star in L1(I;L2(J)) ;

b�(nj)
x ! �x weakly-star in L1(I;L2(J)) ;

b�(nj) ! � uniformly in C( �J � �I) ;

�(nj) ! � uniformly in L1(I � J) ;

v(nj) ! v uniformly in L1(I � J) :

We now check that v; � is a solution of the system (3.1) � (3.3). By construction, we have

�(n) ! � strongly in Lp(J) for every p � 1 and weakly-star in L1(J) ;

f
(n) ! f strongly in L1(I;L2(J)) ;

�
(n) ! � strongly in Lp

(I � J) for every p � 1

and weakly-star in L1(I � J) :
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We are in the situation of Proposition 2.12. In fact, we can prove more. Eq. (2.42) (with

�n replaced by �(nj) etc.) implies that

G(nj)
[�(nj)]! G[�] strongly in Lp(J ;C(�I)) for every p � 1 :

This enables us to conclude that

e(nj) ! e = G[�] strongly in Lp
(J ;C(�I)) for every p � 1 ;

e
(nj)
t ! et weakly-star in L1(I;L2(J)) ;

and passing to the limit in Eqs. (3.4) we see that Eqs. (3.1) hold. The boundary conditions

are obviously ful�lled as a consequence of Eqs. (3.30) and of the uniform convergence of

the approximate solutions. For each n 2 N and x 2 J we moreover have

jv(n)(x; 0)� v0(x)j � C10

p
h ; j�(n)(x; 0)� �0(x)j � C11

p
h ;

and the initial conditions (3.3) follow again from the uniform convergence.

To complete the proof of Thm. 3.2, it remains to prove that the solution is unique. Assume

that v1; �1 , v2; �2 are two solutions of the system (3.1) � (3.3). Then we have8>>><>>>:
� (v1 � v2)t = (�1 � �2)x ;

(e1 � e2)t = (v1 � v2)x ;

ei = G[�i] i = 1; 2

(3.33)

almost everywhere in J � I . By Proposition 2.1 (i) we have

(Pr[�1]�Pr[�2])t(�1 � �2) � 1

2

@

@t
(Pr[�1]�Pr[�2])

2

for every r > 0 and a.e. (x; t) 2 J � I , hence

(e1 � e2)t(�1 � �2) (3.34)

� 1

2

@

@t

�
�(x; 0) (�1 � �2)

2 +

Z
1

0
(Pr[�1]�Pr[�2])

2 dr�(x; r)

�
a.e.

Multiplying the �rst equation of (3.33) by v1�v2 , the second one by �1��2 , integrating
over J � (0; t) for any t 2 I and using Ineq. (3.34), we obtainZ

J

�
�m (v1 � v2)

2 + � (�1 � �2)
2
�
(x; t)dx � 0 ;

hence �1 = �2 , v1 = v2 . Theorem 3.2 is proved. l

4 Homogenization

4.1 Wave equation with weakly convergent parameters
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The homogenization result is based on the weak convergence statement in Thm. 4.2 below.

Let us consider a sequence of initial-boundary value problems on J � I8>>><>>>:
�n vnt = �nx + fn ;

ent = vnx ;

en = Gn[�n] ;

(4.1)

vn(0; t) = �n(`; t) = 0 for t 2 I ; (4.2)

vn(x; 0) = v0n(x) ; �n(x; 0) = �0n(x) for x 2 J (4.3)

in J � I for n 2 N, where Gn are Prandtl-Ishlinskii operators of the form

Gn[�](x; t) = �n(x; 0)�(x; t) +

Z
1

0
Pr[�(x; �)](t)dr�n(x; r) (4.4)

analogous to Eq. (2.40).

We shall prove that the corresponding sequence of solutions vn; en; �n converges to the

solution of a problem of the same type, namely8>>><>>>:
�� v�t = ��x + f� ;

e�t = v�x ;

e� = G�[��] ;
(4.5)

v�(0; t) = ��(`; t) = 0 for t 2 I ; (4.6)

v�(x; 0) = v0�(x) ; ��(x; 0) = �0�(x) for x 2 J ; (4.7)

where G� is Prandtl-Ishlinskii operator de�ned by

G�[�](x; t) = ��(x; 0)�(x; t) +

Z
1

0
Pr[�(x; �)](t)dr��(x; r) : (4.8)

We make the following hypotheses:

Hypothesis 4.1

(i) �n; �� 2 L1(J) , and there exist �m; �M > 0 , � 2 L1(J) such that �m � �n(x) �
�M a.e. for each n 2 N and

�n ! �� weakly-star in L1(J) ,

(ii) �n; �� 2 L1(J � (0;1)) , the functions �n(x; �) belong to PI+ for each n 2 N and

a.e. x 2 J , and there exist �; � > 0 such that � � �n(x; r) � 1=� a.e. for n 2 N
and

�n ! �� weakly-star in L1(J � (0;1)) ,

(iii) fn; f� 2 W 1;1(I;L2(J)) for each n 2 N and

fn ! f� in W 1;1(I;L2(J)) weakly,

(iv) �0n; v
0
n 2 W 1;2(J) , �0n(`) = v0n(0) = 0 for n 2 N, and there exist �0�; v

0
� 2 W 1;2(J)

such that

�0n ! �0
�
, v0n ! v0

�
weakly in W 1;2(J) .
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The above hypotheses imply in particular that the data �n; fn; �n; �0n; v
0
n for n 2 N as

well as the limit data ��; f�; ��; �0
�
; v0

�
satisfy the assumptions of Thm. 3.2. Therefore

each of the problems (4.1) � (4.4) for n 2 N, (4.5) � (4.8) admits a unique solution. The

proof of Thm. 3.2 and Proposition 2.12 can be modi�ed for proving the following result:

Theorem 4.2 Let Hypothesis 4.1 hold. Let vn; en; �n be solutions to problem (4.1)�(4.4)

for n 2 N, and let v�; e�; �� be the solution to the limit problem (4.5)�(4.8). Then

ent ! e�t , v
n
t ! v�t , �

n
t ! ��t , v

n
x ! v�x , �

n
x ! ��x weakly-star in L1(I;L2(J)) , vn ! v� ,

�n ! �� uniformly in C( �J � �I) and en(�; t) ! e�(�; t) weakly-star in L1(J) for every

t 2 I as n!1 .

Proof. From Thm. 3.2 it follows that the norms of ent ; v
n
t ; �

n
t ; v

n
x ; �

n
x in the space

L1(I;L2(J)) are bounded above independently of n . There exists therefore functions

e��; v��; ��� and a subsequence indexed by nj such that the functions e
nj

t ; v
nj

t ; �
nj

t ; v
nj
x ; �

nj
x

converge weakly-star to e��t ; v
��
t ; �

��
t ; v

��
x ; �

��
x , respectively and, by compact embedding,

�nj and vnj converge uniformly in C( �J � �I) to ��� and v�� , respectively.

Using Proposition 2.12 we can pass to the limit in Eqs. (4.1). Indeed, we can pass to the

limit in each term of (4.1) consisting of one weakly converging sequence. We can pass to

the limit even in the product of �nj � vnj

t due to the fact that �n are independent of t

and vnj converges uniformly.

We conclude that the limit functions ���; v��; e�� satisfy the system (4.5) � (4.8) and the

assertion follows from the fact that the solution is unique. l

Remark 4.3 In the considered one-dimensional case we obtain uniform convergence of

�n and vn and only weak-star convergence of en . This is why we use the constitutive

relation in the form en = Gn[�n] . We cannot pass to the limit in the constitutive relation

�n = Fn[en] , since on the right hand side we have a combination of two weakly converging

sequences.

4.2 Homogenization

For a given " > 0 , we consider a system of the form (3.1) � (3.3) with " -periodic data in

the constitutive relations, namely8>>><>>>:
�" v"t = �"x + f ;

e"t = v"x ;

e" = G"[�"] ;

(4.9)

v"(0; t) = �"(`; t) = 0 for t 2 I ; (4.10)

v"(x; 0) = v0(x) ; �"(x; 0) = �0(x) for x 2 J ; (4.11)

where f; v0; �0 satisfy Hypotheses 3.1 (iii), (iv), and �";G" have a special form

�"(x) = �(x=") for x 2 J ; (4.12)

G"
[�"](x; t) = �"(x; 0)�"(x; t) +

Z
1

0
Pr[�

"
(x; �)](t)dr�"(x; r) ; (4.13)
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where

�"(x; r) = �(x="; r) for x 2 J ; r > 0 ; (4.14)

with the intention to pass to the limit as "! 0 . The functions � and � in Eqs. (4.12),

(4.14) are assumed to have the following properties:

Hypothesis 4.4

(i) � 2 L1(R) , there exist �m; �M > 0 such that �m � �(y) � �M and �(y+1) = �(y)

a.e.,

(ii) � 2 L1(R� (0;1)) , the functions �(y; �) belong to PI+ for a.e. y 2 R, there exist
�; � > 0 such that � � �(y; r) � 1=� , and �(y + 1; r) = �(y; r) a.e.

From Thm. 3.2 we immediately see that under the above hypotheses, the system (4.9)

� (4.11) has a unique solution (v"; e"; �") for each " > 0 . The homogenization result

consists in proving that (v"; e"; �") converge to the solution (v�; e�; ��) of the homogenized

problem (4.5) � (4.7) with

�� =

Z 1

0
�(y)dy ; (4.15)

G�[��](x; t) = ��(0)��(x; t) +

Z
1

0
Pr[�

�
(x; �)](t)d��(r) ; (4.16)

��(r) =

Z 1

0
�(y; r)dy for r > 0 : (4.17)

The following statement is a consequence of Thm. 4.2:

Theorem 4.5 Let Hypotheses 4.4 and 3.1 (iii), (iv) hold, and let (v"; e"; �") for " > 0 ,

(v�; e�; ��) be the solutions of the problems (4.9) � (4.11), (4.5) � (4.7), respectively.

Then e"t ! e�t , v
"
t ! v�t , �

"
t ! ��t , v

"
x ! v�x , �

"
x ! ��x weakly-star in L1(I;L2(J)) ,

v" ! v� , �" ! �� uniformly in C( �J � �I) and e"(�; t) ! e�(�; t) weakly-star in L1(J)

for every t 2 I as "! 0 .

Proof. According to Theorem 4.2, we only have to prove that �" ! �� weakly-star

in L1(J) and �" ! �� weakly-star in L1(J � (0;1)) as " ! 0 . For the reader's

convenience, we brie�y recall the argument which is in fact classical, see e.g. [4].

Since the sequence �" is bounded in L1(J) and C1

0 (J) is dense in L1(J) it is su�cient

to check the convergence
R
J (�

"(x)���)'(x)dx! 0 only for smooth test function ' with

compact support in J .

Let ' 2 C1

0 (J) and let us de�ne primitive function

R"(x) =

Z x

0
(�"(�) � ��) d� =

Z x

0
(�(�=") � ��) d� :

Since integral
R
(�" � ��)dx over any subinterval of length " equals to zero, the functions

R"(x) are " -periodic and satisfy the estimate jR"(x)j � c � " with a constant independent

of " . Thus integration by parts yieldsZ `

0
�" 'dx = �

Z `

0
R" '0 dx ;
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which can be estimated by c "
R `
0 j'0jdx and the convergence follows.

In the same way we can check that �" ! �� weakly-star in L1(J � (0;1)) and the

assertion follows from Theorem 4.2. l

Remark 4.6 The homogenization result can be extended to the case of a sequence of

the right hand sides f " of the form

f "(x; t) = f(x; x="; t) ;

where the function f(x; y; t) is periodic in y and continuous in x .

Theorem 4.5 shows that the original statement of the problem in the form (1.1) � (1.4)

was in fact misleading. The natural homogenization takes place in the inverse Prandtl-

Ishlinskii constitutive law e = G[�] rather than in Eq. (1.2). On the other hand, the

above analysis gives a physical justi�cation to the inverse Prandtl-Ishlinskii rheological

model in Fig. 5. We can consider a `real' homogeneous elastoplastic material as a limit

periodic superposition of elastic-perfectly plastic layers, each of them having a single yield

point r > 0 and a (possibly in�nitesimal) relative thickness d�(r) .

Conclusion

We have proved the existence and uniqueness of global solutions to a spatially inhomoge-

neous hyperbolic system with hysteresis describing longitudinal oscillations of a heteroge-

neous elastoplastic rod. Assuming that the spatial structure is periodic with a period "

tending to 0 , we derived the form of the homogenized constitutive operator and proved

that the solutions to the `periodic' system converge to the solution of the homogenized one

as " tends to 0 . In this one-dimensional case, the homogenized operator F� is obtained

by `averaging' the corresponding inverse operators G" to G� .
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