
Institut fiir Angewandte Analysis. 
und Stochastik 
im Forschungsverbund Berlin e.V. 

Most f3 shifts have bad ergodic properties 

J. Schmeling 

submitted: 11th June 1993 

Institut fiir Angewandte Analysis 
und Stochastik 
Mohrenstrafie 39 
D - 10117 Berlin 
Germany 

Preprint No. 50 
Berlin 1993 



Herausgegeben vom 
Institut fiir Angewandte Analysis und Stochastik 
Mohrenstrafie 39 
D - 10117 Berlin 

Fax: + 49 30 2004975 
e-Mail (X.400): c=de;a=dbp;p=iaas-berlin;s=preprint 
e-Mail (Internet): preprint@iaas-berlin.dbp.de 



CONTENTS 

1. Introduction 1 

2. ,8-expansions 1 

3. Ergodic properties of the ,8-shifts 2 

4. Proof of the results 3 
5. Special Cantor sets 8 

6. Proof of statement 1 of the main theorem 11 

7. Concluding remarks 11 

8. Appendix: Hausdorff dimension 12 

References 13 



1. INTRODUCTION 

More than 30 years ago Renyi [1] introduced the representations of real numbers 
with an arbitrary base {3 > 1 as a generalization of the p-adic representations. 
One of the most studied problems in this field is the link between expansions to 
base {3 and ergodic properties of the corresponding {3-shift. 
In this paper we will follow the bibliography of F. Blanchard [2] and give an af-
firmative answer to a question on the size of the set of real numbers {3 having the 
worst ergodic properties of their {3-shifts. 

2. {3-EXPANSIONS 

Throughout this paper we denote by [x] and { x} the integer and the fractional part 
respectively, of the real number x. 
Let {3 > 1 be a real number. 

Definition 2.1. The expansion of a number x E [O, 1] in base {3 is a 
sequence of integers out of {O, 1, ... , [{3]} 

{in} r' = {in ( X, {3)} r', 
defined by one of the following equivalent properties: 

( 1) For all n 2:: 0 
'"""in.< 1 L,,, (3 k (3 n. 

k>n 
(2) ii= [{3x] i2 = [{3 {{3x}] i3 = [{3 {{3 {{3x}}] ... 
(3) If Tf3: [O, 1] ~ [O, 1) is the transformation Tf3(x) = {3x (mod 1) 

then 

We endow the set {O, ... , [{3]}N with the lexicographical order ( <zex or simply <) 
the product topology and the one-sided shift operator u: 

u( iii2 ... in ... ) = i2i2 ... in+l ... 
Moreover we extended the lexicographical ordering to finite blocks: 

Definition 2.2. . The closure of the set of all {3-expansions of x E 
[O, 1] is called the {3-shift Sf3. 
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Remark. Sf3 is a invariant. 
Parry [3] proved that the ,B-shift Sf3 is totally determined by its expansions of 1: 

Theorem 2.1. If {in(l,,B)} is not finite (i.e. it won't terminate with zeros only) 
then {Sn} E { 0, ... , [,B] }1\l' belongs to S f3 if and only if 

ak{sn} <lex {in(l,,B)} k > 0 
If { in(l, ,B)} =ii ... iMOO ... then { sn} belongs to Sf3 if and only if 

According to this theorem we say a word (j1 ... jm) is allowed iff 

ak(j1 ... jm) < { in(l, ,B)} k = 0, 1, ... , m - 1 

Moreover he proved: 

D 

Theorem 2.2. A sequence { sn} E {O, 1, ... , [,B]}N is an expansion of 1 for some ,B 
iff 
ak{sn} <lex {sn} (k > 0) and then ,Bis unique. 
The map 7r : ,B ~ { in(l, ,B)} is monotone increasing. 

A more detail survey can be found in [2], [3]. 

3. ERGODIC PROPERTIES OF THE ,8-SHIFTS 

D 

In this chapter we give a brief summary of a part of Blanchard's paper. For more 
details and literature see [2]. 
The linkbetween topological properties of { in(l, ,B)} and ergodic properties of Sf3 
is completely known. For this we look at the following classes: 

Class 0 1 : Sf3 is a subshift of finite type. 

Proposition 3.1. ,BE 0 1 ifJ{in(l,,B)} is finite. 
This is fullfilled for instance for ,B = ¥ 
Proposition 3.2. ([3}): 0 1 is dense in (1, oo) 

Class 0 2 : Sf3 is sofic. 

Proposition 3.3. ,B E 0 2 iff { in(l, ,B)} is ultimately periodic. 
For ,B = ¥ the expansion of 1 is ultimately periodic but not finite. 

Proposition 3.4. If ${3 is sofic, then ,B is a Perron number. 
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Corollary 3.1. The class C2 is at most countable. 

Class C3 : Class Sf3 is specified. 

Proposition 3.5. /3 E C3 iff there exists an n E N such that all strings of 
O's in {in (1, /3)} have length less than n. This means the origin is not an 
accumulation point of the orbit of 1 under Tf3. 

Class C4 : Class Sf3 is synchronizing. 

Proposition 3.6. /3 E C4 iff {in(l,/3)} does not contain some allowed word. 
That is the orbit of 1 under Tf3 is not dense in [O, 1]. 

Class Cs: Class Sf3 has non of the above properties. 
That is the orbit of 1 is dense and consequently { in(l, /3)} contains all allowed 
words. 

One of the questions raised up by Blanchard is that of the size of the classes C3 , C4 

and Cs. 
The main results of this paper is to answer this question. 

Definition 3.1. A subset C of (1, oo) is said to be residual i:ff it 
contains a countable intersection of open and dense sets. The com-
plement of a residual set is called meager. 

Our aim is to prove the following 

Theorem 3.1. (1) Cs is residual in (1, oo). 
(2) Cs has full Lebesque measure in (1, oo ). 
(3) C3 has Hausdorff dimension 1. 
( 4) C4 \C3 has Hausdorff dimension 1. 

4. PROOF OF THE RESULTS 

We start with a couple of definitions which reflect the properties of Theorem A. 

Definition 4.1. A block B == [i1, ... , im] is called admissible i:ff 
akB < B 
(k-. l, ... ,m-1). 

De: ion 4.2. For an arbitrary block B == [i1, ... , im] we define 
she admissability range of /3 by 

AR( B) == {/3 E ( 1, oo) I ak B < { im ( 1, /3)}, k = 1, ... , m - 1} 

and the admissible block range by 
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AR(B) ={CIC is admissible and ak B < C k = 1, ... , m - 1}. 

Remark. A'R(B) are the starting blocks of the expansions of 1 for f3 E AR(B). 

Lemma 4.1. Let B = [i1 , ... , jm] be an admissible block. Then the cylinder set 

CB = {[3 E ( 1, oo) Ii k ( 1, f3) == j k k == 1, ... , m} 
is the half-open interval [{31, {32 ) with {31 == {31(B) the only solution in {1, oo) of the 
equation 

. . 
f3 · )2 Jm == J1 + - + ... + --{3 {3m-1 

and {32 == {32(B) is the limit of the unique solutions in (1, oo) of the equations 
. . 

f3 . . J2 JN N N N == )1 + {3 + ... + [3m+N-1 E 

where [j1 , ... ,jm im+i ... jN] is the maximal admissible block of length N starting 
with_ entries [j1, ... , jm]. 
The diameter of CB is at most 13f-1. 
Proof. Bec·ause j 1j 2 ••. jmOOO ... is the smallest sequence in the set 7r( CB) it follows 
from the monotonicity of 7r that {31 is the least number in CB. The second part of 
the lemma follows from the fact that each orbit of 1 begins with admissible blocks 
only and from the characterization 1 of {3-expansions in definition 2.1. 
The last part is a consequence of the fact that {32 fulfills the inequation 

f3 
. j2 jm + 1 

2 ~ )1 + {3 + · · · + _{3_m ___ 1 

this follows again from the characterization 1 in definition 2.1. and the equality: 

D 

Definition 4.3. An admissible block [ii, ... , in] is called N-delaying 
for some natural number N iff for all blocks B == [j1, ... ,jmJ, such 
that [i1, ... , in] E A'R(B) the block 

is admissable. 
In the next lemma we give a necessary condition for a block not beeing N-delaying. 
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Lemma 4.2. If an admissible block C is not N-delaying it has the form 

C = [in,···, im, 0, ... , 0, im+N+2, · .. , iM, ii, ... , im] 
~ 

N+l 
for some m E N, M > m + N + 2. 

Proof. Let B = [1] then CE AR(B) but 

aM([i1, ... ,im, 0, ... 'O,im+N+2, ... ,iM,i1, ... ,im, o, ... 'o, 1]) > c, 0, ... '0, B. 
~ ~ 

N N 

So C is not N-delaying. On the other hand if C has not that form it follows from 
the admissability of C that if B is s.t. C E AR(B) then 

ak( C, 0, ... , 0, B) < C, 0, ... , 0, B 
~ 

N 

k = 1, ... , length of [C, 0, ... , 0, B]. D 

Lemma 4.3. Let B = [i1, ... , in] be a N-delaying block. Then the cylinder set CB 
has diameter at least 132 (B)n+N. 

Proof. Since Bis N-delaying the only solutions@_ and "1J of the equations 

{3 = . i i i1 + !.2. + ... + __.!n....__ /3 13n-l and 

R · i i 1 
/.J = 21 + ~ + ''' + ~ + f3N+n respectively 

are contained in CB. But they fulfill the inequality 

D 

Lemma 4.4. There is a constant A> 0 such that for each natural M the set DM,L 

of cylinder sets in [N - 1, N] of length M which are not L-delaying has measure 
at most 
A(N - l)L. 

Proof. By lemma 4.2. a non-L-delaying block of length M has the form 
[N - l,j2, ... ,jk, 0, ... ,O,i1, ... ,im,N -1, ... ,jk] with jk i= 0,2k + L + m = M. 

~ 
L+l 

Each cylinder set CL = C[N-i,;2 , ... ,;,.,~ has length at most {32( CLt(k+L) (lemma 

4.3.). 
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Since N - 1 > 0 by the same argument as in lemma 4.3. the cylinder sets 
c[N-l, ... ,111,0, ... ,0,i1, ... ,im] have length at least /32( CLt(k+L+m). Consequently' there are 

"'-v-' 
L+l 

at most /32( C2 )m of them. Now 

DM,L c u u u c[N-l, ... ,j1c,o, ... ,o,i1, ... ,im,N-l, ... ,j11] 
k [N-l, ... ,j1c] [i1, ... ,im] ~ 

Where the union is taken over all blocks such that 

[N - 1, ... , jn, 0, ... , 0, ii, ... , im, N - 1, ... , jk] ______., 
L+l 

• ?-1 •• 
is admissable. Then the Lebesque measure of DM,L can be estimated as follows: 

:s; E E /32( cLr L( C[N-1, ... ,j1c,o, ... ,o,i1, ... ,im,j1, ... ,j1cJ) 
k [N-1, ... 1j1c] "'-v-' 

L+l 

Using again the same arguments as above and jk =f 0 we obtain 

/3 (c . )-<k-2) > 2 [N-l, ... 111c] > 
/3 (C . . . . )-M-1 -2 [N-l, ... 111c 10, ... ,o,i1, ... ,im,N-l, ... ,J11] 

'-v-' 
L+l 

> /3 (C . )k+L+m+l 2 [N-l, ... ,111] · 

So we can continue 

0 

L(DM,L) < ""' ""' L(C . ) . /3 (C )m/3 (C . )-(k+L+m+l) - Lt Lt [N-1, ... 1111] 2 L 2 [N-l, ... 11n] 
k [N-l, ... 1j1c] 

< '°' '°' L(C · ) · /3 (C · )-(k+L+i) - Lt Lt [N-l, ... 111c] 2 [N-l, ... 111c] 
k [N-l, ... ,j11] 

:s; E(N - 1t(k+L+l) 
k 

6 



Remark. For N = 2 the above estimates are useless. But if we subdivide (1, 2] 
into a countable number of subintervals we can achieve on each such subinterval 
corresponding estimates. 

Lemma 4.5. Let B = [£1 , ... , lm] be an admissable block, then 

L (WB n A'R(B)) = 0 
where WB ={,BE (1, oo)l{in(l,,B)} does not contain Bas a subword.} 

Proof. Let k, N, L E N, N > 2 be given. We denote by C Dn,L( n E N) the comple-
ment of the set Dn,L in lemma 4.4. We will construct inductively sets Wn all con-
taining WBR nAR(Bk), where Bk= [£1, ... '.em, 0, ... '0, l]. Obviously, AR(Bk+1) =:) 

'--v---' 
k 

AR(BR) and 

00 

LJ AR(Bk) = AR(B). 
k=O 

Moreover 

We set 

Wo = [N - 1, N] n AR( Bk) 
Assume that we have constructed all set Wi up to step n - 1. We consider the set 

Wn-1 = Wn-1 n Dn-1,L· 
For each C[N-l, ... ,in-d C Dn-1,L n AR(Bk) we consider the cylinder 
C[N-l, ... 1in-1 101 ... ,01l1 1 ... 1lm] • 

~ 
L 

Clearly, [N - 1, ... , in-1, 0, ... , 0, £1, ... , lm, 0, ... , 0, 1] is in A'R(Bk) and admiss-
'--v---' ~ 

L k 
able and hence, by the standard arguments used before 

L(C[N-1, ... ,in-tl) < NL+m+k 
L(C · ) -[N-l, ... 1in-1 10, ... ,0,l1 1 ... 1lm10, ... ,0,l] 

'-v-' '-v-' 
L It 

The set Wn we define as 

Wn = (Dn-1,L n Wn-1) u (wn-1 \ u C[N-l, ... ,in-110, ... ,0,l1, ... ,Lm,O, ... ,o,1]) 
- CDn-1,LnAR(B1t) i y 

According to the above estimates and lemma 4.4. the measures of Wn fulfill the 
inequalities: 
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L(Wn) ::0: L ( Dn-1,L n Wn-1) + ( 1 - (-h t+m+k) L (Wn-1) 

:::: A(N -1JL + (i - (-hrm+T 
Hence 

00 

Using that WB1c n AR( Bk) c n Wn for all Land letting L tend to infinity we can 
n=O 

derive 

L(WB1c n AR( Bk)) = 0. 
Finally the observations at the beginning of the proof give the desired result. D 

From the arbitrary choice of B and the remark after lemma 4.4. we get as a corol-
lary: 

Proposition 4.1. 0 5 has full Lebesque measure. 

Remark. Carrying out a slightly more detailed analysis in the proof of the previous 
lemma, we are able to show that the Hausdorff dimension of the set W B = {,B E 
WBl{in(l,,B} contains all allowed words except B} n AR(B) equals the Hausdorff 
dimension of 

WB n AR(B). 

Our next step is to prove the claims 3) and 4) of the main theorem. 
The crucial point in the proof is the estimation of the Hausdorff dimension of a 
class of special Cantor sets. 

5. SPECIAL CANTOR SETS 

We want to construct a class of Cantor sets which enable us to prove the statements 
2 and 3 of the main theorem. 
The construction will be made by inductively deleting intervals. 
Let the natural numbers m and N be fixed. 
In the first step we cancel one of the open intervals 

interior (o[ J) - w[ ] . N - 1, ii, ... , im - N - 1 
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with [N - 1, i 1 , ... , im] an admissable block. After leaving out all intervals up to 
step n we proceed as follows: 
In each remaining interval of the form 

C[N-1,j1 , ••• ,jn-il ([N - l,ji, ... ,jn-1] is admissable) 
we delete exactly one interval 

Wi[N · · ] = interior (o[N-1 · · l l ]) -1,J11···1Jn-1 1Jl1···1Jn-l1 11•••1 m 

with [N - 1, ji, ... , in-1' li, ... , lm] an admissable block. This procedure gives rise 
to a Cantor set Um in [N - 1, N]. 
In the next lemma we give a lower bound of its Hausdorff dimension. 

Lemma 5.1. Let Um be a Cantor set constructed as descripted above. Then 

d. U log ( ( N - 1 r - 1) 
1mH . m ~ l (N ) . og -1 m 

Proof. We want to associate to Um a measureµ in order to use Frostmans lemma 
(see appendix). 
Let the construction - and therefore Um - be fixed. 
We define ·µ by assigning to any cylinder set its value: 

. µ ( [ N - 1, N]) = 1 
If 0[N-1,i1, ... ,in] is a remaining interval then, obviously, is C[N-1,i1, ... ,in-m+il and they 
are nonempty. So we assign to the interval D[N-11i1, ... ,in] the measure 

(a . . ) diam ( C[N-1, ... in]) 
µ [N-l,i1 1 ••• 1in-m] diam (O . . ) · 

[N-l,i1 1 ••• 1in-m] 

Thusµ can be extended to a measure concentrated on Um. Let /3 E Um have as the 
expansion of 1 the sequence { in(l, /3)} = {in}· 
Then the construction implies the property 

(
C ) [~] diam ( D(N-1 1 ••• 1in]) 

µ [ N - 1, ... , in] ::; al II ( d" ( ) ) 
k=l 1 _ l~m W(N-1, ... in-(k-l)m] 

diam( C[N-1, ... ,in-kml) 

With the help of similar arguments to that of lemma 4.3. we conclude 

diam ( D[N-11 ... 1in]) ::; (N -1)-n 
and 

diam (Wi[N-1 · ]) __ _:._ __ , .. _.1i_n-~(k_-......;1)_m_,:_ ::; ( N ~ l )-m 
diam ( D[N-1, ... ,in-km]) 
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There exists a constant a2 such that for every interval I~(f3) with centre f3 and 
diameter e one can find a number p = p( e) fitting the inequalities 

and 

So we get 

Consequently 

logµ( J~(f3)) 
loge 

1. . f logµ( I~(f3)) 1m1n ~-o 1 oge 
> log((N - 1r - 1) 
- log(N -1r 

for all f3 E Um and Frostmans lemma implies this lemma. D 

Corollary 5.1. dimH 03 = 1. 

Proof. We specify the construction of Um by cancelling the intervals ending with a 
string of m zeros. Then the lemma gives the statement for the limit m ~ oo. D 

Sketch of the Proof. By the remark after proposition 4.1. we see that 
dimH{f31{ in(l, {3)} contains all allowed words but the allowed word 
B} = dimH{f3l{in(l,{3} does not contain B} holds. 
Let now {Bn} be a sequence of words whose length tends to infinity and containing 
only strings of zeros of a commonly bounded length. If Un is the special Cantor set 
constructed by leaving out the word Bn whenever it is possible then Un is contained 
in the set {f31{ in(l, {3)} contains all allowed words but Bn}· Since the Hausdorff 
dimension of Un tends to 1 this implies the corollary. 
0 
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6. PROOF OF STATEMENT 1 OF THE MAIN THEOREM 

Proposition 6.1. Cs is residual. 

Proof. We build a set G ~ Cs which is the countable intersection of open and dense 
sets. 
For a natural n and an admissable block [i1, ... , in] we consider the lexicographicly 
ordered sequence of all allowed blocks { Bk}k=l. It is easy to check that the block 

[ii, ... ' in, 0, ... '0, Bk-1, 0, ... '0, Bk, 0, ... '0, Bm] = B([i1, ... 'in]) ,..___,__, 
k!·n 

is admissable. Therefore the set 

LJ C B([i1, ... , in]) 
[i1, ... , in] 

is admissable 

is open. Moreover, for each natural N the set 

GN = LJ LJ C B([i1, ... ;in]) 
n 2:: N [i1, ... ,in] 

is admissable 

is open and dense in (1, oo ). Obviously the set 

00 

is residual and contained in Cs because for each /3 E G and each natural number 
mall allowed words up to length m occure in the expansion of 1 {in(l,/3)}. D 

The theorem is now the summary of the above propositions. 

7. CONCLUDING REMARKS 

We found a quite complete hierarchy in the classes introduced by F. Blanchard. 
This leads to the following picture: 
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Their sizes are indicated in the diagram below 

01 02\01 03\02 04\03 Os 

Hausdorff dimension 0 0 1 1 1 

Lebesque measure 0 0 0 0 full 
measure 

Baire category countable countable meager meager residual 
and dense and dense and dense and dense 

The transition from 0 4 to Os is quite strong in size. It goes both from zero to 
full Lebesque measure and from a meager to a residual set. This indicates to look 
for a subset of Os exhibiting only one "jump" in size. In a forthcoming paper we 
introduce one of such subsets, namely a set having full Lebesque measure but being 
meager. The set we are looking at is that of all (3 where the expansion of one is 
normal ([4]). 

8. APPENDIX: HAUSDORFF DIMENSION 

For general definitions and results in the theory of Hausdorff dimension see [5]. 
Let X C JR. An at most countable collection of sets is called an e-cover of Y if 
it covers Y and the diameters of all its members are less then e. For s E JR+ the 
s-dimensional outer Hausdorff measure of Xis defined by 

ms(X) == liminf {I: diameter (Ui)8l{Ui} is an e - cover of x}. 
t:-+0 

There is a unique critical value s0 for which the s-dimensional Hausdorff measure 
jumps from infinity to zero: 

so== inf {slms(X) == O}. 
This value is called the Hausdorff dimension dimH(X) of X. A very usefull tool to 
get estimations of the Hausdorff dimension from below is Frostman's lemma: 

Lemma 8.1. Ifµ is a probability measure concentrated on X and 

1 .. f logµ(Ie(x)) > 1m1n s 
e-+O loge -

for all x E X and le( x )-the interval centered at x with diameter e, then 

D 
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