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A SUPER-BROWNIAN MOTION WITH A SINGLE POINT CATALYST 

By Donald A. Dawson, and Klaus Fleischmann 

Carleton University and Institute of Applied Analysis and Stochastics 

Summary. A one-dimensional continuous measure-valued process {'.rt;t<::O} is dis-

cussed, where branching occurs only at a single point catalyst described by 

the Dirac a-function ac. A (spatial) density field {a:/z);t>O,z;ec} exists 

which is jointly continuous. At a fixed time t>O, the density a:/z) at z de-

generates to 0 stochastically as z approaches the catalyst's position c. On 

the other hand, the occupation time process Y t It dr T ( •) has a (spatial) o r 

occupation density field {~/z);t<::O,zelR} which is jointly continuous even at 

c and non-vanishing there. Moreover, the corresponding "occupation density 

measure" d~t(c) =: i\ c(dt) at c has carrying Hausdorff-Besicovitch dimension 

one. Roughly speaking, density of mass, arriving at c normally dies immedia-

tely, whereas creation of density mass occurs only on a singular time set. 

Starting initially with a unit mass concentrated at c, the total occupation 

time measure Y equals in law a random multiple of the Lebesgue measure where 
00 

that factor is just the total occupation density at the catalyst's position 

and has a stable distribution with index 112. The main analytical tool is a 

reaction diffusion equation (cumulant equation) in which a-functions enter in 

three ways, namely as coefficient oc of the quadratic reaction term (describ-

ing the point-catalytic medium}, as Cauchy initial condition (leading to ba-

sic solutions), and as external force term (related to the occupation density). 

AMS 1980 subject classifications. Primary 60180; secondary 60155, 60G57 

Key words and phrases. Point-catalytic medium, critical branching, 
super-Brownian motion, superprocess, measure-valued branching, Hausdorff 
dimension, occupation time, occupation density, local extinction 
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1. INTRODUCTION AND RESULTS 

1.1. Introduction 

In Dawson and Fleischmann (1991) a one-dimensional superprocess X = 

{Xt;t:::::O} was constructed in which critical branching occurs only in the pre-

sence of some catalysts. These are an infinite system of weighted points, 

stochastically fluctuating both in time and space. The catalysts are densely 

situated in space and have an infinite overall density of weights. 1> (Heuris-

tically, the model makes sense, since the underlying motion process has a po-

sitive occupation density at the point catalyst's locations since the space 

d . . . b . 2)) 1mens10n is one y assumpt10n. 

In spite of that singular and highly fluctuating nature of the random 

medium, in Dawson, Fleischmann, and Roelly (1991) it was shown that at a fi-

xed time t>O the random measure Xt on IR is absolutely continuous, i.e. 

with probability one there exists a representation Xt(dz) = a::t(z)dz with a::t:::::O 

a measurable function. But the paper left the question open as to what pro-

perties the random density a::t or even a density process a:: would have. 

To attack this problem, in the present paper we focus our attention on 

the extremely simple case of a single, non-moving and non-random catalyst, 

described by the Dirac o-function o, c where celR is fixed once and for 

all. Consequently, branching occurs only at site c, namely according to the 

simplest continuous state Galton-Watson process, but with an "infinite rate" 

(in the sense of a-functions), whereas off c we merely have a deterministic 

dispersion of population mass by means of the heat flow. More precisely, we 

consider the (time-homogeneous) super-Brownian motion X related to the non-

1} 
For a physical discussion of fractal catalysts we refer to Sapoval (1991). 

2) 
For recent re.suits on local times on superprocesses, see Barlow et al. (1991) 
and Adler and Lewin (1990). 
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linear (formal) equation 

{ ~tu(t,z) = 

u(O,z) = 
(1.1.1) 

2 
K ti.u(t,z) - oc ( z) u (t,z), 

<p(z), ZEIR, <pEG , 
+ 

t~o. zelR, 

via its Laplace transition functional 

(1.1.2) 

Here K>O is the diffusion constant, the (one-dimensional) Laplacian 

acts on the space variable z, and the set G just contains all those con-

tinuous functions defined on IR having "Gaussian decay", that is, 

2 !<p(z)!exp[c z ], zEIR, <p is bounded for some constant c >0. 
<p 

Moreover,, M 
f 

denotes the set of all finite (non-negative) measures defined on IR, equip-

ped with the topology of "exp-vague" convergence, i.e. the coarsest topology 

such that all functions will be continuous, where (µ,<p) 

abbreviates the integral fµ(dz) <p(z). By the way, in Dawson and Fleischmann 

(1992, 1991) mild solutions u to ( 1.1. l), and the superprocess :r were 

constructed (even in more generality) by means of approximating o c by the 

smooth functions p(c,( • )-c), c>O, where p(c, •) is the symmetric Gaussian 

density 

(1.1.3) ( ) (47lK<')-l/2 [ 2/4 ] p c ,z : = c. exp -z Kc , ZEIR, 

and c~o (see also Section 2 below). Of course, X can also be understood 

as a high density limit of a particle model (diffusion approximation; for the 

constant branching rate case, see e.g. Le Gall (1991) and the references 

therein). 

As already mentioned, by the results in [71, for fixed t>O the random 

measure :rt has almost surely a density function xt on IR. In order to 

get a preliminary feeling for its properties, we suggest the following heuri-

stic considerations. Formally, we can interpret the density at site 

z as (Tt,o2 ), for Lebesgue almost all zelR (recall the notion of a deri-

vative of a measure). Keeping in mind the well-known formulas for the moments 
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of (Xt'<p ), where for the moment :r denotes a superprocess with regular 

branching rate p(z) instead of o (z), c then by the formal substitution 

and <p H<'5 we arrive at the following expectation and covariance for-z 
mulas: 

(1.1.4) [{a:t(z) I T 0 =µ} = Jµ(da) p(t,z-a) = [µ*p(t)](z) 

(l.l.5) ICov{a)z),a:t(z') I :r0 =µ} = 2 J µ(da) J~ dr p(r,c-a)p(s-r,z-c)p(t-r,z'-c), 

O<s:S.t, z,z' -:;:. c. Now, for fixed t>O, a,celR, we get 

(1.1.6) War{ a:t(z) I :r 0 =o a} ~ const I log I z-c I f as z~c, 

i.e. the variance of the random density xt blows up as z approaches the 

catalyst's position c. Roughly speaking, in the vicinity of the catalyst 

the density of :rt is highly fluctuating. This very vague idea, of course, 

raises the question as to how the density a;t actually behaves as z~c. Al-

so, the absolute continuity for fixed t does not exclude the possibility 

that :rt could be pathological on a set of time points t of Lebesgue mea-

sure zero. 

In the present paper we will give some results related to these prob-

lems. In particular, this will also provide some probabilistic insight into 

the basic nature of measure-valued branching processes (superprocesses) in 

point catalytic media. 

From a technical point of view, we will prove the existence of density 

fields and study their continuity properties. For the model with regular 

branching rate (instead of a point-catalytic medium), the path continuity of 

the superprocess with continuous branching component was demonstrated by Wa-

tanabe (1968) and in a very general form given by Fitzsimmons (1988). In the 

one-dimensional case, the existence of (spatial) densities at a fixed time 

t>O was first proved by Roelly-Coppoletta (1986) and, in more generality, in 

Fleischmann (1988). Joint continuity of a density field was first obtained in 
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Konno and Shiga (1988), and for the corresponding occupation time process is 

due to Sugitani (1989). Our approach is rather close to the latter two refe-

rences using Kolmogorov's continuity criterion. 

The outline of the paper is as follows. Next we formulate our main re-

sults, followed by a discussion of the longtime behavior of the process. Re-

sults on the cumulant equation are mainly collected in Section 2. The follow-

ing section is devoted to our superprocess and its density field, whereas the 

final section deals with the occupation time process and occupation densi-

ties. 

Remark 1.1. 7. Let us mention at this point another interesting topic excluded 

here, namely the question of existence of (non-degenerate) superprocesses in 

multi-dimensional singular media which possess absolutely continuous states. 

This will be the subject of a forthcoming paper of the authors. o 

1.2. Main Results 

First of all we remark that we will always interpret equation (l.1.1) 

(or related ones) in its mild form, i.e. as an integral equation, 

(1.2.0) u(t,z) = St<p(z) - I~ dr p(t-r,c-z) u 2(r,c), t?:.0, ZEIR, 

where denotes the Brownian semigroup corresponding to ( 1.1. 3), 

i.e. the Markov semigroup with "generator" Kb. and transition density p; 

for more details, see Section 2 below. Although the super-Brownian motion re-

lated to this equation does not fit 3l into the very general formulation of 

Fitzsimmons (1988), as in the latter the continuity in time of the branching 

component yields the continuity in time of the whole measure-valued process: 

Theorem 1.2.1 (path continuity). The time-homogeneous Markov process X 

[X,IP ,µEM ) 
µ f 

determined by equation (1.1.1) (i.e. (1.2.0)) via the Laplace 

3) 
As pointed out in Dawson et al. (1991), our super-Brownian motion can be viewed as a 

special case of a model in Dynkln (1991). 
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transition functional (1.1.2) can be constructed on the space C[IR ,,tt ] + f 
of 

continuous finite measure-valued trajectories. The following expectation and 

covariance formulas hold 

(1.2.2) 

( 0$.S$.t, µe,tf, , <p ,!/f EG): 
f 

[µ('.Xt,rp) = (µSt,rp) 

ICov [(X ,rp),(Xt,t/J)J = 2 fµ(da) Is dr p(r,c-a) s rp(c) st l/f(c). µ s o s-r -r (1.2.3) 

The next result establishes the existence of a density field which can 

be chosen to be continuous in time and space excluding the catalyst's posit-

ion c: 

Theorem 1. 2. 4 (jointly continuous density). There is a version of X such 

that there exists a sample joint continuous random field a:: = {a:/z);t>O,z:;ec} 

satisfying 
1/dz) = a::/z)dz for all t>O, IP -a.s., µEM . µ f 

The state at time t>O of the time-homogeneous Markov process a: has 

the Laplace function 

(1.2.5) k [ exp[-L xt(z.)e.] = exp(µ,-u(t)), µ i=l L L 

where u?!O satisfies 
a 2 at U = K/::;.U - O CU , uf =Ik eo 

t=O+ i=l i Zi 

(see Proposition 2.3.2 below). In particular, the expectation and covariance 

formulas (l.1.4) and (l.1.5) hold. 

Recall that according to (1.1.6) the variance of the continuous density 

x/z> blows up as z~c. Opposed to this, the following holds: 

Theorem 1.2.6 (vanishing density at the catalyst's position). For fixed t>O, 

in probability. 

Consequently, at a fixed time t>O, approaching the catalyst's position 

c the "increasingly fluctuating" random density xt degenerates stochasti-

cally to 0 (opposed to the non-degeneration of its expectation [a::t accor-

ding to (1.1.4)); in particular, the probability for to be large will 
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become very small as z~c. Heuristically this can be explained as follows: 

Since at c the branching rate is "infinite", population mass which- is even-

tually present at c will be killed with "overwhelming" probability leading 

to the fact that Xt almost surely has density a:t(c):=O at c (with an 

exceptional set depending on t). 

On the other hand, having in mind the dynamics of the X-process, as long 

as it is not extinct, there will be a permanent flow of absolutely continuous 

mass into c, where not only a killing takes place as just described, but 

also a production of mass according to the critical continuous state branch-

ing mechanism. By the "infinite" branching rate, the latter effect happens 

with a "very small" probability, and the set of time points t where a pro-

duction of population mass will actually occur (which will be smeared out by 

the heat flow) should be "very thin". 

Our next result will in fact constitute that despite that a.s. degenera-

tion a:/c)=O at fixed time points t as described in Theorem 1.2.6, our 

super-Brownian motion X has a positive occupation density even at the cata-

lyst's position c. In fact, by the sample path continuity of the X-process, 

we may introduce the occupation time process Y = {Yt;f?:O} related to X, 

defined by Yt = J~ ds x, 
s or more precisely, by 

(Yt,<f!) = J~ ds (Xs,<f!), <pEG+. 

Of course, by the integration, y is smoother than x, and 

(1.2.7) q,/z> := r ds a: (z), 0 s 
t~O, z;t:c, 

yields a density field of Y, which is IP -a. s., µe.M , µ f 
jointly continuous on 

IR+x{z;t:c}. It remains to determine its behavior at the catalyst's position c. 

Theorem 1.2.8 (everywhere continuou~ occupation density). There is a version 

of X such that the density field 1-J of Y defined by (1.2.7) extends con-

tinuously to all of IR xlR. 
+ 

Moreover, 
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k [ exp[- E. 1.Jt(z.)e.] = exp(µ,-u(t)), µ l =1 t l 
t!!.0, 9 ,i:!:O, 2 .EIR, ]Sisk, 

i l 

where u!!.0 solves 

a 
Btu = KD.u -(1.2.10} ou2 +"k e.o ul =0 c Li =l i z.' t=o+ ' 

i 
(see Lemma 2.2.2 below). The following expectation, variance, and covariance 

formulas hold (O:ss:st<s':st', z,z'e!R, µEM ): 
f 

(1.2.11) [µ1.J/z> = J µ(da) J~ ds p(s,z-a), 

(1.2.12) War µ[1.Jt(z)-1.Js(z)] = 2 Jµ(da) J~ d-r p(-r,c-a) [J~vs dr p(r-T,z-c)] 2 , 

(1.2.13) O::ov µ[1.Jt(z)-1.Js(z), 1.Jt,(z')-1.Js,(z')] 

= 2 Jµ(da) J: dr J:: dr' J: dT p(T,c-a) p(r-T,z-c) p(r'--r,z'-c), 

We call 1.Jt(z) the occupation density of X at z during the time pe-

riod [O,t]. Note that the expectation formula implies that even at the ca-

talyst's position the occupation density cannot be identically 0, 

which is in contrast to the a.s. vanishing random density xt(c) at c for 

fixed t, in the sense of Theorem 1.2.6. Note also that the variance of IJ 

is finite even at the catalyst's position, in contrast to the blowing up ef-

feet ( 1.1. 6). 

For each ze!R, the sample monotone stochastic process {IJ/zl;t!!.O} de-

termines some locally finite continuous random measure dl.Jt(z) =: ;\2 (dt) de-

fined on IR+' which we call the occupation density measure at z. By the 

definition ( 1. 2. 7) it is a. s. an absolutely continuous measure on the time 

parameter set 

sity measure 

IR , 
+ 

"Ac 

as long as z~c. What can be said on the occupation den-

at the catalyst's position? Heuristically it measures just 

the "thin" time set where there is a non-vanishing population density at c. 

Theorem 1.2.6 suggests that this measure has to be singular a.s. Neverthe-

less, in the next result we will show that ;\ c has a support of "full dimen-

sion". 

Let us first recall the definition of the Hausdorf f-Besicovitch dimens-
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ion d = dlm(A) e (0,1] of a subset A of IR: It is defined by the requi-

rement that 

liminf"' {I: (dlam(B l)p; u B :)A, dlam(B )<o} 
u40+ k k k k k 

equals +oo for pe(O,d) whereas it vanishes for pe(d,1]. Here (B ) 
k 

is a 

countable covering of A by closed intervals B 
k 

with diameter smaller than 

o. (For more details, we refer to Billingsley (1965), §14.) Furthermore, a 

measure µ defined on IR (more precisely defined on the Borel o--algebra 'R. 

in IR) is said to have carrying (Hausdorff-Besicovitch) dimension .caruilm(µ) 

= d if d is the smallest number such that dlm(A)=d for some Ae'.R with 

µ(IR\A)=O. Now we are ready to formulate our next result: 

Theorem 1.2.14 (carrying dimension). Given X (IR)>O, 
0 

the occupation density 

measure at the catalyst's position has a.s. carrying (Hausdorff-

Besicovitch) dimension one. 

It is interesting to compare this with the usual Brownian local time (at 

a fixed point) which determines a singular random measure with carrying di-

mension 112. 

Remark 1.2.15. The results of this paper suggest that in the "original" cata-

lytic superprocess of [5] with a dense set of point catalysts the correspond-

ing occupation time process has a sample jointly continuous (spatial) densi-

ty, too. In fact, in the singular situation (if the branching rate is not re-

gular), the occupation time process Y, or more precisely, its density pro-

cess ~ seems to be an essential even for the formulation of the model. For 

instance, the martingale problem for our super-Brownian motion with a single 

point catalyst at c, should be posed as follows: For rp E Gf'l'.D(ti.), 

. Mt(q>) := (Xt,rp) - (Xo,t) - J~ dr err' Kti.rp), t?:.0, 

is a martingale with quadratic variation process 
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where 

J~ dr crr,rp) - J dz {jt(z) rp(z) = 0, t?:.0. 

That is, this quadratic variation disappears if rp(c)=O, and it cannot be 

defined simply in terms of ('X t' <p) as in the case of a regular branching ra-

te (Fitzsimmons (1988)). o 

1.3. Further Properties: Longterm Behavior 

In this subsection we establish some further properties of the processes 

X and Y, specifically concerning their asymptotic properties as time tends 

to infinity. 

Up to this point the superprocess X is defined in the space of finite 

measures. But assume for the moment, that the super-Brownian motion X starts 

off at time 0 with the Lebesgue measure denoted by l, 

t(dz). Then 
(Xt,<p) --7 0 stochastically, for each rpeG+' 

t ->oo 

that is X (dz) = 
0 

i.e. suffers local extinction. In fact (recall that the Laplace trans-

form of Xt is given by (1.1.2) in conjunction with equation (l.1.1)): 

Proposition 1.3.l (local extinction). For aH 

0, where u<!::O is the solution to (l.1.1). 

<pEG , 
+ 

we have u(t,z) --7 
t ->oo 

This property is interesting in that the single catalyst finally kills 

off all the mass in any bounded region. Consequently, from this point of 

view, the branching component dominates the spatial diffusion of mass (since 

in the pure diffusion case Xt=l holds). Of course, from the intuitive view-

point, the recurrence of the one-dimensional Brownian motion is necessary 

here. On the other hand, note that "stability of second order" of a branching 

random walk on the square lattice with (critical binary) branching only at 

the origin is established in Matthes, Siegmund-Schultze, and Wakolbinger 

(1992), Example 3.7. 

Our next result concerns the limiting behavior as t->oo of the occupat-
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ion time Yt and the occupation densities z 
J.jt(z) = i\ ([O,t]) at z. 

Theorem 1.3.2. Assume that X =8 and fix zE!R (for instance z=c). 
0 c 

(i) 

(ii) 

(total occupation density): converges in distribution as t->oo 

to some stable random variable J./ (z) with index 112 determined by 
00 

its Laplace function IEexp[-BJ./ (z)] = exp[-Ve], Si!.0. 
00 

(total occupation time): Y t converges in distribution as t->oo to y 
00 

:= J./ (c)t, a random multiple of the Lebesgue measure £. 
00 

We call Y the total occupation time and 
00 

z J./ (z) = i\ (IR) 
00 

the total oc-

cupation density at ZEIR. It is interesting to compare these results with 

the corresponding properties resulting from the "individual mechanisms" in 

the model. In fact, if we drop the branching mechanism, then Yt(dz) equals 

the "potential measure" (J~ ds p(s,z-c))dz which approximates fl e(dz) as 

t->oo (except a constant factor). On the other hand, if we omit the diffusion 

mechanism (or replace the point catalytic branching rate by a constant rate) 

then forms the occupation time process of the simplest continuous 

state Galton-Watson process, which has in law a stable random limit variable 

<:; with index 1/2 as t->oo; see Dawson and Fleischmann (1988), p. 198. Hen-

ce, our point catalytic model combines and reflects features of both mecha-

nisms resulting in y '!2 <:;t. 
00 

In other words, adding a point catalyst to the 

pure diffusion situation leads to a reduction and randomization of the "uni-

form" limiting mass. 

2. THE CUMULANT [QUATION 

In this section we will collect some basic facts on the (integral) equa-

tion (1.1.1), but in a certain more general form. 

2.1. Prerequisites 

Fix a time interval I = [L,T], L<T. Let G 1 denote the set of all 
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continuous mappings u: I H G which are dominated in the sense that 

I u(t,x) I ::: f (x), tel, xelR, for some f eG . We equip G and c1 with u u + 

the supremum norm of uniform convergence, denoted by II• II (in both cases), 

resulting into normed subspaces of the Banach spaces C ([R) 
0 

00 

and c UxlR). 
0 

Particular subsets of c1 are given by the following families (recall 

that S denotes the Brownian semigroup): 

(2.1.1) I [s,x]eixlR H S q;(x) =: (S q;)(s,x), 
T-s 

rpeG, 

[s,x]eixlR H f: dr p(r-s,y-x), yelR. 

Note that S1 is a linear contraction operator of G into G1. Observe al-

so that in the second case, for fixed y, a dominating function is given by 

c (T-L) p(T,y-( • )), for a sufficiently large constant c. 

Finally, let d denote the set of all (non-negative) kernels w(t,dx) 

from I into IR (that is w is a non-negative function defined on Jx7{ 

which is measurable in the first variable and a finite measure in the second) 

with the following property: the mapping 

(2.1.2) [s,x]eixlR H f: dr J w(r,dy) p(r-s,y-x) =: (W1w)(s,x) 

belongs to Natural examples are absolutely continuous kernels w(t,dx) 

= l/J(t,x)dx with the property that the (measurable) density kernel l/J?:.0 is 

dominated by some f t/JEG +; or the kernels w(t,dx) = f(t)o (dx) with zelR z 
and a bounded (measurable) function f?:.0. In d we introduce a notion of 

convergence w ~ w by the requirement that 
n n-?co 

W 1w ~ W 1w 
n n-700 

in G 1 . 
+ 

Note that in the case of absolutely continuous kernels w (t,dx) = l/J (t,x)dx 
n n 

the convergence automatically holds if in c1. 

2.2. Basic Setting 

Given and i;e.M , 
f 

instead of (1.1.1) we now consider 

the more general integral equation 

(2. 2.1) u(s,x) = S rp(x) + JT dr Jw (r,dy) p(r-s,y-x) 
T-s s 1 
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-f: dr J w}r,dy) p(r-s,y-x) u(r,y) - f: dr I t;(dy) p(r-s,y-x) u 2(r,y), 

[s,x]EixlR, or more formally, 

uj = <p. s=T 

If w =0 2 , and w 
1 

is absolutely continuous with a dominated density 

kernel, then (2.2.1) is a special case of an equation studied in [6]. Analyz-

ing the proofs of the Theorems 2.6, 2.10, 2.11, and 2.13 there, one can check 

that the proofs remain valid in the more general setting concerning w 
1 

and 

w if one incorporates the obvious changes (in particular, also the transit-
2 

ion from the forward formulation there to the backward one here). In other 

words, the following two lemmas can be derived. 

Lemma 2.2.2. To the given 

element u I U [<p,W ,W ,t;J 
1 2 

I I [<p,w ,w ,t;J E G xQ xQ xM , there exists a unique 
1 2 + f 

in G 1 satisfying the non-Linear equation (2. 2.1). 
+ 

Moreover, u monotonously depends on its "parameters" <p,W ,W ,t;. 
1 2 

If <pn --"<(! as n-"oo is valid in G + and all functions are dominated in 

the sense that <pn~f, n?:.1, for some fEG+' then we will refer to this as 

dominated convergence. Each E; in M can be approximated by the absolute-r 

ly continuous measures 

(2.2.3) (t;Se)(dy) := (J t;(dx) p(e,y-x)) dy E Mr' e>O. 

For this particular weak convergence <=s ~ <= in M we will use the term 
<,, £ £-"O <,, f 

approximating convergence. 

Lemma 2. 2. 4. I U [<p,w ,w ,t;J continuously depends on its parameters 
1 2 

I I [<p,w ,w ,£;] E G xQ xQ xM in the sense of dominated convergence in G+' 
1 2 + f 

the previously defined convergence in d, and approximating convergence 

in M. 
f 

Remark 2.2.5. The backward formulation in equation (2.2.1) is adequate to in-

elude inhomogeneous "data" as W,W 
1 2 

(which, for instance, will be needed to 

write down the Laplace transform of the occupation density measures). On the 
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other hand, if w1,w2 do not depend on the space variable, i.e. all "parame-

ters" entering into the equation are homogeneous, then it is often profitable 

to switch to the forward setting, in particular when dealing with scaling 

properties, and we will frequently exploit this. o 

2.3. Fundamental Solutions 

At this place we recall the existence of basic solutions of the non-

linear equation (1.1.1) established in [7], Theorem 3.5. Since in our case 

the catalytic medium is constant in time, for convenience we may switch from 

the time-inhomogeneous and backward setting there to a homogeneous forward 

one by replacing the considered time interval [L,T) by [-T,O) and revers-

ing the time (cf. Remark 2.2.5). Consequently, we fix a finite half open time 

interval J = (0, Tl, T>O. We also introduce the normed space GJ of all 

continuous mappings u: J H G with II u II : = f ds II u(s) II < oo. J J CXl 

Let El denote the set of all those measures {} in At which are 
f 

either atomic with a finite set of atoms (i.e. the support of {} consists of 

a finite set) or which are absolutely continuous with a density function 

dominated by some f 11eG +· Note that {} H {t>*p(t);teJ} continuously maps 

El into GJ (i:ndeed, proceed as in the proof of Lemma 3.1 in [7} by using 
+ 

the fact that, for t fixed, 0 *p(t) is bounded above by a function in y 

G, uniformly for each bounded set of y). The uniform distribution on the 
+ 

interval [-c,+cl serves as an example of a measure in El, let denote 

its density function, c>O. 

Given '6-€8, instead of (2.2.1) we now consider the equation 

(2.3.1) u(t,x) = iJ*p(t)(x) - J~ dr p(t-r,c-x) u 2 (r,c), teJ, xelR, 

or more formally, 
u I = {}. t=O+ 

Proposition 2.3.2 (basic solutions). To each t>eEl which does not have an 
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atom at c, there exists a unique element 
J 

u =: U [1'7,0,0,c\l 

fying equation (2.3.1). Moreover, 

in G1 satis-+ 

J u [-o- +-o- *q (x)dx,O,O,o ] 
1 z e c 

J u [ii- +1'7 ,o,o,o J 
1 2 c for all such ii-,'(} • 

1 2 

Proof. See [7], Theorem 3.5, with the obvious changes required by the slight-

ly more general set e (allowing a finite set of atoms instead of a single 

one) and the "splitting" of fJ within the continuity assertion. • 

for instance, if 1'7==o2 , z;ec, then the previous lemma establishes the 

existence of basic solutions. This, of course, is also a place where our 

restriction to a model in space dimension one is essential. By the way, the 

restriction z;ec cannot be dropped, see Remark 3.5.4 below. 

2.4. An Asymptotic Property 

Here we will present a lemma which will later be used to show the 

"degeneration" of density at the catalyst's position and also to show local 

extinction. We are dealing with asymptotic properties of solutions u = 
J U [1'7,0,0,o ] to (2.3.1) according to Proposition 2.3.2 (with o replaced 

0 c 

by 0 ). 
0 

Since the end point T of the interval J = (O,T] is arbitrary, 

formally we may and shall switch to J = (O,+oo). Write 11µ11 for the total 

mass µ(IR) of a measure µeAt . 
f 

Lemma 2.4.1. Let 1'.le8 with 1'7({0})=0. Then the solution 
J u=U [1'7,0,0,o J 

0 

to (2.3.1) according to Proposition 2.3.2 with J = (O,+oo) satisfies 

(i) ..ft u(t;ltxt) --7 0 whenever xt --7 x in IR, 
t~oo t~oo 

(ii) f ~ dr u 2(r,0) = ll'l'.1-11. 

Proof. Using the self-similarity 

(2.4.2) 2 Kp(K r,Ky) = p(r,y), r,K>O, yelR, 

of Gaussian densities, we get from (2.3.1) 

(2.4.3) vt u(t,vtx) = 1'7(dy) (4nK) exp[-(t y-x) /4K] _Q -~ I -1/2 -1/2 2 

15 
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- I~ 2 dr p(l-rlt,x) u (r,0), 
Integrating over x yields 

l!u(t)ll 
1 

which implies that 

(2.4.4) 

f dx u(t,x) = 11-0.11 - f ~ dr u\r,O), 

f: dr u2 (r,O) :s ll'l'J-11 < oo. 

By the way, this already gives 

(2.4.5) liminf fl u(t,O) = 0. 
t ~00 

t:!;0, 

t>O, XE!R. 

Replacing x by xt in (2.4.3), by dominated convergence the first term on 

the r.h.s. of (2.4.3) converges as t~oo, namely to p(l,x) ll'l'J-11. Next we 

want to establish that the second term in (2.4.3) will also converge. 

Take any constant "f]E(0,1). Then from equation (2.3.l), 

u(r,O) :s '6-*p(r)(O) :s 11'611 p(r,O) :s 11'611 p("f]t,0), r:!;"f]t>O. 
Thus It dr p(l-rlt,xt) u 2 (r,O) :s 11'611 2 p 2("1]t,0) Jt dr p(l-rlt,O) 

"f]t "f]t 

resulting in a negligible error term since the latter expression equals 

canst v'l-"1J'/"1J and converges to 0 as "1]~1. On the other hand, for fixed 

"f]E(0,1), using (2.4.4), we get 

J~ dr l{r:s"f]t} p(l-rlt,xt) u 2 (r,O) ~ p(l,x) J~ dr u 2(r,O) 

by dominated convergence, since l{r:s11t} p(l-rlt,xt) tends to p(l,x) as 

t~oo and is uniformly bounded by p(l-"1],0)<oo. Summarizing, we showed that 

HlJi fl u1(t,flxt) = p(l,x) (11'611 - J: ctr u~(r,o)). 
From (2.4.5) we conclude that in the case xt=x=O the r.h.s. will disappear. 

But then it is identically zero, and the proof is finished. • 

2.5. Signed Solutions around the Origin 

Later on we also need to have solutions of the cumulant equation in the 

case of some "signed" initial data. Then, generally speaking, the solutions 

will explode in a finite time. Therefore we have to restrict our considerat-

ion to those initial functions which are sufficiently "small". The route we 

will follow here is related to Fleischmann and Kaj (1992) where in the case 
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of the "classical" equation in constant medium an implicit function theorem 

approach is used. 

In order to switch to a Banach space setting, we introduce the following 

spaces. Let qi denote the set of all real-valued continuous functions <p 

defined on !R such that e I 2 I <p(z) has a finite limit as I z 1->oo. We endow 

qi with the norm lzl ll<pll := sup{e <p(z);ze!R}, <pEqi, resulting into a Banach 

space. Moreover, for fixed I:=[O,T], T>O, we introduce the Banach space <P1 

of all continuous maps u of I into equipped with the norm !lull 
I 

sup{ llu(t)ll; tel}. The spaces <Ii and qi1 become Banach algebras with 

respect to the pointwise product of functions. Note also that Gcqi and 

and that the topologies in G,G1 induced by I 
qi' qi ' respectively, 

are stronger since ll<pll :Sli<pll, <pEqi. 
00 

Analogously to (2.1.1) and (2.1.2), set 

I 
(S <p)(t,x) .- St<p(x), I ft (W l/J){t,x) := ds S l/J(x), 

0 s OstsT, XEIR, <p,!/JE<li, 

and define 

(2.5.1) (H1(u))(t,x) := J~ dr p(t-r,c-x) u(r,c), 
I OstsT, xe!R, ueqi . 

By standard arguments one gets the following properties: 

Lemma 2.5.2. s1, W1 and H 1 are bounded linear operators of qi and qi1, 

respectively, into <P1• 

For the fixed T>O and given "signed" <p,!/JEqi we now consider 

(2.5.3) u(t,x) = St<p(x) + J~ds S5 1/J(x) - J~dr p(t-r,c-x) u2 (r,c), 

or in a symbolic form, 

u I = <p. t=O 

O:St:ST' XEIR' 

Lemma 2.5.4. There are positive numbers 8 
1 

and 8 
2 

such that for each 

pair <p,l/JE<l> with ll<pll+ll!/Jll < c there exists exactly one element u =: 
1 

U1[ ,,, O "' ) ;n "'1 wi"th if>•'P• ,u ~ "' c !lull <c satisfying the equation (2.5.3). More-
l 2 

17 
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over, u is analytic as a functional of [cp,l/JJ (in that range considered). 

Of course, in this real Banach space setting, analyticity at a point means 

that the power series expansion at that point has a positive radius of 

convergence; see e.g. Zeidler (1986), Section 8.2. Note also that in the case 

rp,t/JEG the solution according to Lemma 2.5.4 coincides with the solution in + 

Gr according to Lemma 2. 2. 2. 
+ 

Proof. Set 
I I I 2 F(<p,l/J,u) := u - S <p - W t/J + H (u ), 

I [rp,t/J,u] E <Px<Px<P , 

I and H defined immediately before Lemma 2.5.2. Then we may 

rewrite equation (2.5.3) as F(rp,t/J,u)=O. For given [<p,t/JJ, we will solve 

this equation with the help of the implicit function theorem. Since <P1 is a 

Banach algebra, by Lemma 2.5.2 F maps <Px<Px<P1 continuously into <PI. 

Furthermore, at each point I [<p,l/J,u] E <Px<Px<P we get the following first par-

tial (Frechet) derivative of F with respect to u: 

(2.5.5) 1 I D F(<p,l/J,u)v = v + 2H (uv), u 

Consequently, this partial derivative is linear in u and continuous in 

[rp,t/J,u] (recall Lemma 2.5.2 and that <P1 is a Banach algebra). But trivial-

ly, F(0,0,0) = 0, 1 and D F(0,0,0) is the identity operator, hence is u 

bijective. Therefore, the existence and uniqueness claim follows from the 

implicit function theorem, see, for instance, Zeidler (1986), Theorem 4.B, 

(a) and (b). Now, the first partial derivative of F with respect to [rp,l/J] 

is given by 
D~rp,t/J{(<p,l/J,u)[~.(] = - SI~ - W1(, ~.(e<P, 

hence is independent of [rp,l/JJ. Combined with (2.5.5), the first partial 

derivative 1 
D[ •h ]F(rp,l/J,u) rp,'l',u exists and is even continuous in [ rp,t/J, u]. 

Next, 

that is 2 D F(<p,l/J,u) u 

2 I D F(<p,t/J,u)vw = 2H (vw), u 

is independent of [rp,l/J,u]. 

I v,we<P , 

Consequently, all higher 
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partial derivatives of F with respect to [q;,l/J,u] will disappear (roughly 

speaking, F is a polynomial in [q;,ljJ,u]). Therefore F(q;,ljl,u) is analytic 

in [rp,l/J,u] and the claimed analyticity property follows too; see Zeidler 

(1986), Corollary 4.23. 11 

2.6. Estimates for Derivatives to a Parameter 

In order to estimate later higher moments of the random processes, at 

this point we want to provide some estimates for higher derivatives with res-

pect to a parameter 0 at 0=0 of solutions of the cumulant equation in the 

"signed setting" of (2.5.3). But let us first introduce some terminology which 

will be useful here and later. 

Convention 2.6.1. Let be given a set E, an open neighborhood 'U of 0 in 

!R, and a function f: Ex'U H !R. For n?:.0, we will write Dnf for the n-th 

partial derivative of f with respect to the second variable 0e'U provided 

that it exists. By an abuse of notation we set J'n) := Dnfl 
0=0 

for the n-th 

partial derivative taken at 0=0. We will interpret 0 as a parameter, and 

will often suppress it in notation. o 

Fix T>O and for the moment q;eGciP. According to Lemma 2.5.4 there 

are positive numbers 

one solution in 

e 
1 

and e such that for 
2 

of 

ISl<e, 
1 

(2.6.2) u(t,x) = eSt<p(x) - J~ dr p(t-r,c-x} u 2 (r,c), 

or, in a symbolic form, of 

a 
atu = 

satisfying llull <e . 
I 2 

Set 

Kf::.U - o u 2 
c u I t=O = Sq;, 

there is exactly 

O:st:sT, xe!R, 

(2.6.3) v(t,x) := eSt<p(x) - u(t,x), O:st~T, xe!R, I e I <ei' 
(k) Recall that according to the Convention 2.6.1 we denote by v the k-th 

derivative of v with respect to e, taken at 0=0, (which exists by the 

analyticity property in Lemma 2.5.4). Put 

19 
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(2.6.4) q;eG, T>O. 

Lemma 2.6.5. There are constants ck>O, k2=2, such that the power series 

k ) c e e>O, has a positive radius of convergence and that 
~=:2 k ' 

llv(k)(t)ll 00 s k! ck i!S<llil~ t(k-ll/Z' 

(with v defined in (2.6.3) and (2.6.2)). 

OstsT, <pEG, k2::2, 

Proof. By definition, 

Hence, 

(2.6.6) 

v(t,x) = I~ dr p(t-r,c-x) u 2(r,c), OstsT, XEIR, f{JEG' I e I <c . 
l 

(n) Jt ( n (n) (n-il (i)) v (t,x) = 0 dr p(t-r,c-x) I:i=O l u u (r,c), 

The analyticity of u implies, in particular, continuity at 9=0, hence 

and thus V(Ol __ O--v(l). 0 th h h d d"ff t" t" (2 6 3) n e ot er an , i eren ia mg . . 

we get u<1l=Sq;i and u(k)=-v(k', k2::2. Inserting this into (2.6.6) yields 

(2.6.7) (2) Jt 2 v (t,x) = 2 dr p(t-r,c-x)[S <p(c)] o r ~ 2llS<pll~ J~ dr p(t-r,c-x), 

(k) Jt ( (k-1) \' (l_{) (k-i) (i)) ( ) v (t,x) = 0dr p(t-r,c-x) -2kS<p y + L 1 v v r,c , 

Now, 2Si:Sk-2 

(2.6.8) p(s,y) s p(s,O) 

and for all constants p=:O, 

-1/2 = p(l,O) s s>O, yEIR, 

(2.6.9) J~ dr (t-rf112 rp = tp+vz J~ dr (1-rf112 ~ s 2 tp+112, 

Let {ck;k=:l} be the unique solution of the following recursive system: 

(2.6.10) ck := 4 p(l,O) " ck .c., L.,l:Si:Sk-1 -i L 

Note that the corresponding power series g(e) := ~2::1 ckek, eelR, satisfies 

the quadratic equation 2 g(e) - e = 4 p(l,O) g (e), which can be solved for 

I e I sufficiently small. Using (2.6.8), (2.6. 9), and (2.6.10), the claim easily 

follows from (2.6. 7) by induction on k. • 

To fixed T>O and l/JeGciI>, according to Lemma 2.5.4 there are positive 

numbers c and c such that for I e I <c , there is exactly one solution 
1 2 1 

u=u e in 4> 1 of 
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(2.6.11) u(t,x) = e J~ dr Srl/J(x) - J~ dr p(t-r,c-x) u 2 (r,c), 

or, in a symbolic form, of 

0-s.t-s.T, XEIR, 

satisfying llull <e . 
I 2 

Set 

KflU + 81/J - o U 2 
c 

(2.6.12) v(t,x) := e J~ dr S l/J(x) - u(t,x), r 

(2.6.13) 

Denote again by (k) v 

.- I J~ dr SrifJ(c) I· 
the k-th derivative of 

o-s.t-s.T, xEIR, I e I <e , 
1 

t/JEG, T>O. 

v with respect to e, taken 

at 8=0. Then analogously to Lemma 2.6.5 we get the following result. 

Lemma 2.6.14. There are constants ck>O, k~2, such that the power series 

k ) c e , e>O, has a positive radius of convergence and that 
~~2 k 

llv(kl(t)ll 00 -s. k! ck llWl/Jll~ t(k-l)/2' 

(with v defined in (2.6.12) and (2.6.11)). 

0-s.t-s.T, l/JEG, k~2, 

3. CONTINUITY OF OUR SUPERPROCESS AND ITS DENSITY FIELD 

3.1. Construction of the Density Field 

The purpose of this subsection is to give a rigorous justification of the 

formal transition from (X t' <p) to (X t' o) which (heuristically) describes 

the density a:t(z) of the random measure Xt at z (for almost all z). 

From the construction in (SJ we know that there exists a time-

homogeneous Markov process X = [X, IP , µEM ] defined on the o--field 
µ f 

generated by the cylinder subsets of (M )[O,oo) and determined by the 
f 

Laplace transition functional 

(3.1.1) IEµexp(Xt,-<p) = exp(µ,-u(t)), t~O, µEM , rpeG , 
f + 

with u the solution to 

(3.1. 2) u I = <p t=O 

(in Write J:=(O,+oo). From the Markov property we immediately get the 

following formula. 

21 
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Lemma 3.1.3. For each finite collection O<t < ... <t and <p , .. .,<p eG , 
1 n 1 n + 

(3.1.4) IE exp[-z:n (Xt ,<p.)] = exp{µ, -A [t ,. .. ,t ;<p , .. .,<p ]), µe.Mr, µ i =l . l n 1 n 1 n 
I 

J 
is recursively defined by A [t,<p] := U [rp,0,0,o ](t) with 

1 c where 
n 

J 
U [<p,0,0,oc] = u the solution to (3:1.2), and, for n2!2, 

A [t ,. .. ,t ;<p , ... ,<p ] . - A [t , <p +A [t -t , ... ,t -t ;<p ,. .. ,<p ]] • n 1 n 1 n 1 1 1 n-1 2 1 n 1 2 n 

The point is now that by Proposition 2.3.2 the right hand side of the 

formula (3.1.4) makes sense if we replace the <pi 

In particular, we can do this for -a-
i 

of the form 

by -& EEJ 
i 

with -& ({c})=O. 
i 

<p eG , e ,e' 2!0, z(i,j);=c, e>O, 
i,j + i,j l,j 

lsi,j::::n. Moreover, by the continuity assertion in Proposition 2.3.2, the 

limit transition £-'>0 makes sense leading to well-defined expressions in 

terms of solutions to (3.1.2), which additionally converge to 0 as 

e ,e' ---7 0 (use domination by the heat solution). Therefore, we arrive 
i,j i,j 

at Laplace transforms of certain random vectors. By consistency and Kolmogo-

rov's extension theorem we can finally construct a random family 

defined on some complete probability space [Q,'.¥,1' l µ which satisfies the as-

sertions in Lemma 3.1.3 provided that we adopt the following convention: 

Convention 3.1.5. In Lemma 3.1.3, the <p1 may be replaced by 

by reading (Xt,-&i) as 
l 

formally identify a:t(z) 

I~=1 
with 

<fl . • eG +' e ..• e'. 2!0, z(i,j):;.:c, 1:::.i,j:r.n, 
!,J I,J l,j 

[e. (Xt ,<fJ . .) + e'. .IXt (z(i,j))]; 
l,j i l,J l,J i 

that is, we 

(Xt,o2 ), t>O, z:;.:c. o 

Note that in particular this covers the representation (1.2.5) in our 

Theorem 1.2.4. Consequently, we constructed a "density field" 1£, and it 

remains to construct continuous versions of X and a: and to rigorously 

identify 1£ with the density field of X as claimed in Theorem 1.2.4. 
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3.2. Some Moment Estimates 

The proof of the existence of continuous versions of our processes will 

be based on Kolmogorov's continuity criterion involving some higher moment 

estimates. In fact, despite the singular branching rate o c' the random 

field [X,a:] has moments of all orders (recall that z*C in the definition 

of the density field a:), since our model is based on the simplest possible 

continuous state branching mechanism. 

As a preparation for such proofs, in this subsection we obtain some mo-

ment estimates. We fix our attention to a finite time interval [O,T], T>O. 

Set O:st:sT. Note that IE Z =O since µ t 
(which, 

for instance, will follow from formula (3.2.4) below). Also recall the notat-

ion (2.6.4). 

23 

Lemma 3.2.1. Fix T>O. To each k2:.2 there exists a constant C such that 

(3.2.2) 

k 

Os.ts.T, µeM , <()EG. 
f 

Proof. Start by considering a non-negative <()EG. By formula (3.1.1) combined 

with the notation (2.6.3), 

(3.2.3) O:sts.T, µeM , <()EG , 82:.0. 
f + 

(Note that these exponential moments exist finitely, since Zt:sµSt !P µ -a.s.) 

Differentiate this identity once with respect to 9 to get 

1 
IEµCZt'<p)exp{Zt,9<p) = {µ,D v(t)) IEµexp{Zt'e<p) 

For k:::2, differentiate this now (k-1) times at 9=0+ to arrive at 

(3.2.4) IEµ{Zt,<p)k = E~:~(k:J1){µ,v(k-jl(t)) IEµ{Zt'<P)j 

(recall the Convention 2.6.1). Since IEµ{Zt,<p) = v(l)(t) = 0, the summands 

for j=l and j=k-1 disappear. Hence, for <peG +' 

k (k) (k-1) (k-j) j (3.2.5) IEµ(Zt,<p) = {µ,v (t)) + Lz:sj:Sk-z J {µ,v (t)) IEµ(Zt,<p), k2:.2. 

Now we want to verify that the latter formula is valid also for "signed" 

functions <()EG. In fact, first let <pEG have the form <P = a<p +b<p with + 1 2 



24 D.A.DAWSON AND K.FLEISCHMANN 

Then, for fixed <p ,<p EG , the expectation ex-
1 2 + 

pressions in (3.2.S) are polynomials in a,be[0,1}. Simultaneously, each 

/k\t), k?::.2, OstsT, is a polynomial in a,be[O,l]. In fact, this follows 

from the recursion formulas (2. 6. 7). However, all expressions remain meaning-

ful if we switch to a,be[-1,l} and they continue to be polynomials. Hence, 

the validity of (3.2.5) for those non-negative <p = a<p1+b<p2 , <p1,<p2EG +' 

a,be[O,l], continues to hold for "signed" a,be[-1,1]. Specializing to 

a=l, b=-1, ({) -m "1-.,,+· and rp2 =r.p _, yields the desired claim, i.e. ( 3. 2. 5) holds 

for all <pEG. 

If k=2, then (3.2.2) directly follows from Lemma 2.6.5. Assume that 

the estimate (3.2.2) holds for n=2, ... ,k-1 with k?::.3. Then from (3.2.5) 

and Lemma 2.6.5 we get 

I (z }kl 11s llk(11 11t<k-1>12 + '\' t<k-J-1>12ty4 \'J-1,, 11i+1). [µ t'<p s canst <p T µ l-2sJ~k-2 l-1=1 µ 

But (k-j-1)/2 + j/4 is certainly <::: k/4, for all j in that range of 

summation, and (3.2.2) follows by induction on k. • 

Lemma 3.2.1 will now be used to estimate the even moments of the in-

crements of the process Z: 

Lemma 3.2.6. Fix k?::.1, T>O, and µE.Mr. Then there exists a constant c 

such that 

[µ(Zt+h -Zt, <p)2k s c [jjS(Sh<p-<p)ll~k + hk12 jjS<pjl~k], Ostst+hsT, <pEG. 

Proof. For 0:$tSi+hsT, from (µS t+h'<p) = (µS t'Sh <p) we conclude that 

(3.2.7) (Zt+h -zt' <p) = (Zt' Sh<p-rp) + (Xtsh -xt+h' <p). 

Apply the elementary inequality 

(3.2.8) I In n-1 n n x+y s 2 (Ix I +I y I ), x,yEIR, n?::.0, 

the Markov property, and time-homogeneity to get 

~ ( ~ ~) 'ff.µ(Zt+h -Zt, <p) s canst !Eµ(Zt' Sh<p-<p) + [µlf..'Xt (Zh,<p) . 

By Lemma 3. 2.1, we may continue with 
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(3.2.9) 

Again by (3.2.8) and Lemma 3.2.1, 

(3.2.10) {IEµ11Xtlli)2 :s IEµllXtll 2i :s const(IEµ(Zt([R))2i + 11µ11 2 i) :s canst. 

Thus, the sum in the second term of (3. 2. 9) can be absorbed into the 

constant, and the proof is complete. • 

3.3. Path Continuity of Our Super-Brownian Motion X 

This subsection is devoted to the Proof of Theorem 1. 2.1, i.e. we want 

to show that the superprocess X can be realized on the space of continuous 

At -valued trajectories. 
f 

Let 'D denote a subset of the domain of definition of the "generator" 
0 

Kt. of the strongly continuous semi-group S, which is a dense subset of G 
+ 

(in the supremum norm II • II ) . 
CXl 

Then 

(3.3.1) 

Therefore Lemma 3. 2. 6 yields 

Fix T>O, µe.M, 
f 

and for the moment <pE'D . 
0 

= const h. const h II b.<p II 
CXl 

(3.3.2) 2k 2k k/2 k/2 ff.µ{Zt+h -Zt, <t>) :s const [h + h ] :s const h , O:st:st+h:sT. 

Applying this to k=3, with the help of Kolmogorov's criterion we conclude 

that the real-valued process has a version which has IP -a. s. µ 

continuous sample paths, for each fixed µe.M 
f 

and me'D . .,, o' see e.g. Ikeda and 

Watanabe (1981), Corollary 1.4.3. But G is separable, therefore Z = µS-X 

is IP -a.s. continuous. However, µS = {µS ;O:st:sT} is also continuous (even µ t 
in the weak topology in At ), 

f 
and we get the desired continuity assertion 

for X. 

If s<t, then the covariance formula follows from the Markov property 

and twice applying (3.2.5) and (2.6.7) for k=2. In the case s=t, consider 

the two-parameter [9 ,e ]-Laplace function with <p,l/JeG , 
1 2 + 

partially diff e-

rentiate to both parameters and evaluate at e =0 =O etc., we omit the stan-
1 2 

25 
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dard details. The generalization to signed test functions can be provided by 

immediate calculations (or working from the beginning with exponential mo-

ments and with the "signed" equation according to Lemma 2.5.4). This finishes 

the proof of Theorem 1. 2 .1. • 

Remark 3.3.3. Note that the rough moment estimates (3.3.2) imply sample 

Holder continuity of the orders 114 - e > 0 ( e>O) for the real-valued pro-

cesses {{Xt,<p);t~O}, for fixed <pEG; cf. Gihman and Skorohod (1980), Co-

rollary 3.5.1). This can be contrasted with the known 112 - e sample Holder 

continuity of the usual super-Brownian motion, see Perkins (1992). Actually, 

we obtained the moment estimates in a unified form in order to cover all 

three cases we need to establish sample continuity, and no effort was made 

to get estimates which would produce the optimal Holder index. o 

3.4. Continuity of the Density Field 

The purpose of this subsection is to provide the Proof of Theorem 1. 2. 4. 

Our starting point is the random family [X,a.:1 constructed in Subsection 3.1. 

To apply a two-parameter version of Kolmogorov's theorem, see e.g. Walsh 

(1986), Corollary 1.2, we will work with the moment estimates of the time and 

space increments separately, and we may restrict our attention to the space 

component IR := {Ye!R,ly-cl~e}, 
€ 

for a fixed e>O. 

Recalling the Convention 3.1.5 and the continuity properties, the argu-

ments of Subsection 3.2 remain completely valid, if we replace q;eG by 0 y 

with yelR fixed. In particular, Lemma 3.1.3 immediately yields the repre-
£ 

sentation (1.2.5) of the Laplace functional. In Lemma 3.2.1, for t>O we 

-1 sup {p(t,y-c)} :S const e = const, 
O<t:ST 

ye!R , 
€ 

where we used the elementary fact that the function s HSP e -s is bounded on 

{s;s~e'}, for each fixed constant p~O and e'>O. Approximating o-functions 
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by functions from G +' by continuity in the case of a single a-function, the 

estimate (3.2.2) can be extended to hold for <p = ay-oy, , y,y'elR8 , and for 

o * p(h) - o , yEIR , O:sh::sT. Then II S( o -a , ) II has to be interpreted as y y C y y T 

supo<t<-T I p(t,y-c) - p(t,y'-c) / = I y-y' I sup < I 88 p(t,y+e(y'-y )-c) I O<t-T y · 

where ee[0,1] depends on t,y,y',c. Again using the elementary boundedness 
I 

effect, we conclude that the latter supremum expression is finite, uniformly 

in e and y,y'elR . Hence, 
8 

(3.4.1) 

(3.4.2) 

yelR , O:sh:sT. 
8 

supo<t:ST / p(t,y-c) - p(t,y'-c) I :s const I y-y' I, 

Setting 'h := 'X0*p(t) - a:.r O<t::sT, by Lemma 3.2.1 and (3.4.1) for 

fixed k?:l (and µ, c, T) we get 

(3.4.3) 2k 2k k/2 IEµ[1't(y)-1't(y')] :sconst ly-y'I :sconst ly-y'I , 

O<t:sT, y,y'elR . c Similarly, by Lemma 3.2.6 and (3.4.2) we obtain 

(3.4.4) 2k 
[µ[1-t+h(y) - 1-t(y)] 

2k k/2 k/2 
:s const (h + h ) :s const h , 

O<t:st+h:sT, yelR (also for fixed T,k,c,µ). c 

Take k=5, then (3.4.3) and (3.4.4) and Kolmogorov's Theorem yield the 

desired existence of a continuous version of 1- = µ*p - a; on 

where O<c<T, hence of a: on {t>O,z:#:c}. 

[c,T]xlR c 

The expectation and covariance formulas follow in a similar way as 

for the 'X process (or formally by replacing <p,t/J in (1.2.2) and (1.2.3) by 

a-functions). 

The constructed continuous field a; is really the desired density 

field. In fact, as in the proof of the basic Lemma 1.15 in [7], Section 2, 

we get that [p xt-almost everywhere ('Xt, o *q, ) converges to the existing µ z 8 

density a:.t(z), say, of 'Xt at z*C as c->0, for fixed t>O. Hence, for 

27 
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Lebesgue almost all z we get convergence in distribution towards ·X/z>. 
By uniqueness of the limit, a:.t(z) must coincide with a:./z), for a.a. z, 

according to the Convention 3.1. 5. Thus, x yields the claimed continuous 

density field of X, and the proof of Theorem 1. 2. 4 is complete. • 

3.5. Mass Density Zero at the Catalyst's Position 

Here we are going to present the Proof" of Theorem 1.2.6. Fix t>O. From 

Theorem 1.2.4 we know that 

(3.5.1) IEexp[-ea:.t(zl] = IEexp [-J X0 (da) u2 (t,a)], t>O, z=;ec, e~o, 

where u (for fixed z*c and e~O) satisfies equation (2.3. ll with rJ = z 
Bo and J=(O,+co). To prove that (3.5.1) tends to 1 as z-+c, it is enough z 
to show that, for fixed Bi:!:O, we have (X ,u (t, • l) --? 0 a.s. 

0 Z z-+C 

assumption x 
0 

is a finite random measure, and 

u (t,y) :S ep(t,z-y) :S ep(t,O) < oo, z 

Since by 

by bounded convergence it suffices to prove that approaching the catalyst's 

position the solutions to (2.3.1) will degenerate: 

(3.5.2) u (t,a) --? 0, 
Z z-+C 

ae!R. 

By the spatial homogeneity of the motion component in the model, without loss 

of generality we may assume that c=O. Also, by the symmetry of the Gaussian 

density (1.1.3), we may restrict our attention to z>O. 

Using the self -similarity (2. 4. 2) of Gaussian densities, by uniqueness 

of the solution to (2.3.1) one easily verifies the self-similarity property 

(3.5.3) 2 Ku (K r,Ky) = u (r,y), 
Kz z 

K,r,z>O, yelR. 

Applying this first to K=t-1/2 we note that, in showing (3.5.2), without 

loss of generality we may assume that t=l. Next we apply (3.5.3) to -1 K=z 

and make a change of variables to s:=z -z Then instead of (3.5.2) we have 

to prove that v'S u1(s,v'Sa) --? 0, ae!R. But this immediately follows from 
s ->c:o 

Lemma 2.4.1 (i). • 
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Remark 3.5.4. The integral equation (2.3.1), applied to the "limiting" situa-

tion '11-=Sc\ (which is excluded in Proposition 2.3.2) does not describe the 

random density of Xt at c (which we proved to be zero in the sense of 

Theorem 1.2.6) since it does not have a non-negative solution at all. In 

fact, for x=c we get (dropping the constants) the "ordinary" equation 

v(t) = t-112 - J~ dr (t-r)-112 v2(r), t>O, 

which fails to have a non-negative solution. o 

3.6. Local Extinction 

This section is devoted to the Proof of Proposition 1.3.1. Without loss 

of generality we may again assume that c=O. 

~o, 
t-too 

(3.6.1) 

for fixed <pEG , where 
+ 

u(t,x) = St<p(x) - J~ ds p(t-s,c-x) 

We have to show that llu(t)ll 
1 

2 u (s,c), tii::O, XEIR. 

Integrating the equation with the Lebesgue measure t(dx) yields 

llu(t)ll = llrpll - Jt ds u2 (s,O), tii::.0. 
1 1 0 

Then the claim follows from Lemma 2.4.1 (ii) with 'l'J-(dx) = <p(x)dx. • 

Remark 3.6.2. Another consequence of Lemma 2.4.1 is the following extinction 

property: 1) 
{(Xt,<p) Ix =Vfo } ~ o, o a t -too <pEG +' ae!R. 

Consequently, although here the process starts with an increasing initial 

mass, nevertheless it will become locally extinct. In fact, only use the re-

lations (3.1.1) and (3.6.1) in conjunction with Lemma 2.4.1 (i) in the case 

-112 xt := t a and -O(dx) = <p(x)dx (and c=O without loss of generality). o 

4. OCCUPATION TIME PROCESSES AND DENSITIES 

4.1. Occupation Times 

In order to formulate a more general time-space random measure process 

:!) which has the occupation time process Y as its "marginal", we need the 

following definitions. 

29 
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For t"<!:.0, let .Mt denote the set of all finite measures on [O,t]x!R, 
f 

and write 

(v,t/J)[s,s'J := Jrs,s'Jx[R v(d[r,x]) l/J(r,x), O< < '<t "t ,,, G[O,tl -S-S - , VEHl , 'l'E . 
f + 

Note that such t/J can be considered as the density kernel of a kernel w in 

d0 ·t1, and then identify l/J and w. Set 

Based on the Lemmas 2.2.2 and 2.2.4, we get the following representation for 

the joint distribution of the super-Brownian motion X in the point-

catalytic medium 0 c and its related occupation time measure process :!}: 

Proposition 4.1.1 (occupation time). The (time-inhomogeneous) Markov process 

[X,DJ =: [r:r,:!}J, !P 1 1, se!R , µe.M , veA18 ] has Laplace transition functional 
s, µ,v + r r 

!Es,!µ,vJ exp[(xt,-<p) + 0\.-1/J)[o,tJ} = (4.1.2) exp[(v,-t{J) + (µ,-u(s))J, 
[0,s] 

s [O,t) 
0'5.s-s.t, µe.Mr' ve.Mf, rpeG +' tjleG + , where u is the solution to 

u(s,x) = st-srp(x) + J: dr J dy l/J(r,y) p(r-s,y-x) - f: dr p(r-s,c-x) 

O-s,s-s,t, xe!R, or f ormaily, to 

a 2 
- BsU = K.f:::.U + l/J - oCU , u I = <p. s=t 

2 u (r,c), 

(That is, U = U[O,t]( '" 0 O ] <p,<p, ' c is the solution of (2.2.1) in the case I=[O,t], 

and f}=o .) c 

In the constant branching rate case, i.e. if for the coefficient f> of 

the non-linear term we formally have f>(dx) = canst t(dx), this representat-

ion was given in Iscoe (1986), Theorem 3.2. In our framework, the generali-

zation is straightforward, and we leave the details to the reader. 

Note that by definition Vt is a random measure on the product space 

[O,t]x!R, for each t"<!:.0. Its marginal measure Y/Bl := :!Jt([O,t]xB), Be"R, 

is the usual occupation time at time t of the Subsections 1.2 and 1.3 above. 
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4.2. Occupation Densities 

The purpose of this subsection is to deal with the Proof of the occupat-

ion density Theorem 1.2.8. The method will again be to apply Kolmogorov's 

criterion, and we proceed in the same way as above. 

Fix T>O, µeM . From Proposition 4.1.1 and the Lemmas 2.2.2 and 2.2.4 
f 

we obtain the following formulas: 

( 4. 2.1) -{µ u(O)) rE exp( -{ q, ( z)-11 ( z))e] = e ' µ t+h 'a't ' O:st:st+h:sT, z:;z:c, 8?!:0, 

where [ = [ and µ O,[µ,O] u=u solves 

(4.2.2) u(s,x) = 8 Jt+h 
sVt 

t,h,z 

dr p(r-s,z-x) - dr p(r-s,c-x) u (r,c), ft
8
+h 2 

O:ss:st+h, xelR, or, in a more symbolic form, 

a 2 
- -U = Kt.U + 81 O - O U as [t,t+h] z c ' O:ss:st+h, uj = 0. s=t+h 

That is, u = u = u!O,t+hl[o,01 o ,o,o ] 
t,h,z [t,t+h) z C 

is the so 1 ution of ( 2. 2.1) 

in the case I=[O,t+h], w (r,dx) = e 1 (r) 0 (dx), w =0 
l [t,t+h) z 2 ' 

and 't'.l=o • c 

Set 

(4.2.3) v(s,x) := eft+h dr p(r-s,z-x) - u(s,x), O:ss:st+h, xelR, 0?::0, z;t:c. 
sVt 

Then for v(k)=v(k) , the k-th derivative of v=v at 0=0, we get: 
t,h,z t,h,z 

Lemma 4.2.4. Fix T>O. To each k::2 there exists a constant c such that 
k 

(4.2.5) 11/kl (s)ll 
t,h,z en 

:S hk/2 c ' k 
Oss, tst+h:sT, z;t:c. 

Proof. By definition, 

(4.2.6) ft+h 2 v(s,x) = s dr p(r-s,c-x) u (r,c), o:ss,t:st+h, xelR, e::o. 

Hence, 

(4.2.7) (n) Jt+h ( n (n) {n-i) (i)) v (s,x) = s dr p(r-s,c-x) Li=O i u u (r,c), 

Since u . . (4 2 2) . i· (O)_,.., th (O) 0 (l) is non-negative, . . imp ies u =v, us v = =v . On 

the other hand, differentiating (4.2.3) we obtain 

(4.2.8) (1) Jt+h -~ _/L' u (s,x) = dr p(r-s,z-x) :s const [vt+h-s - i/(t-s)+'] :s const vh, 
sVt 

·r 1 · 11 th th and <kl __ <kl k>2 uni orm y in a ose s, , ,x,z, u - v , - . Inserting this 

into (4.2.7) yields 

31 
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(4.2.9) (2) Jt+h -1/2 v (s,x) :S const 5 dr (r-s) h s. const h, 

I /k>(t,x) I Jt+hd ( )-1/2 (-Rh I {k-1) I \' I {k-i) (i) I) ( ) ::= canst r r-s v n v + L < < v v r, c , 
s 2-i-k-2 

k:.:?::.3. 

The claim now easily follows by induction on k. • 

Set 
i:t-/z) := Jxo(da) I~ dr p(r,z-a) - vt(z), Os.ts.T, z:;t:c, 

Note that [µr,;/zl=O. Similar to the derivation of (3.2.5) we get 

[ [~ (z)-~ (z)]k = (µ,v{kJ(O)) 
µ t+h t 

+ L <·< (k:J1) (µ, /k-j)(O)) [ [r,; (z)-r,; (z)]j, Os.ts.t+hs.T, z:;ec, k:.:?::.2, 
2-J-k-2 µ t+h t 

v=v from (4.2.3). By induction on k, 
t,h,z 

with 

(4.2.10) [ [~ (z)-~ (z)Jk s. const hk/2 , µ t+h t 

(recall that T>O and µe.M are fixed). 
f 

Lemma 4. 2. 4 then implies 

Put (Zt'l/J) := J~ ds (X0Ss - Yt, l/J), Os.ts.T. Based on Lemma 2.6.14, in 

analogy with Lemma 3.2.1, one obtains the following result. 

Lemma 4.2.11. Fix T>O. To each k:.:?::.2 there exists a constant C such that 
k 

(4.2.12) Os.ts.T, µe.M , l/JEG. 
f 

Again by a continuous transition to t/J = o 2 -o 2 , , z,z':;ec, as in 

Subsection 3.4 the latter inequality yields 

2k 2k (4.2.13) [µ[~t(z) - r,;t(z')] s. const I z-z' I , O<ts.T, z,z':;ec, 

since the potential function x H J~ dr p(r,x) is Lipschitz continuous. 

Combining (4.2.10) and (4.2.13), Kolmogorov's criterion implies that the 

occupation density field 1-J has an everywhere sample continuous version. The 

derivation of expectation and covariance formulas is again standard and will 

be omitted. This terminates the· proof of Theorem 1. 2. 8. • 

4.3. A Counterpart to Lemma 2. 4.1 

To formulate the following counterpart to Lemma 2.4.l we first note that 

to each ~EEi by w(t,dx) = ~(dx) we get an element w in d. We deal 

with the solution u = U1[~,w ,w .~J to (2.2.1) as in Lemma 2.2.2, but with 
1 2 



A POINT-CATALYTIC SUPER-BROWNIAN MOTION 

rp=O, w1 ='l'>e9 (in the sense just described), w2 =0, and E;=o . 
0 

Moreover, by 

the time-homogeneity in this case, we may again switch to the forward setting: 

(4.3.1) u(t,x) = J~ dr 'l'>*p(r)(x) - J~ dr p(t-r,x) u 2 (r,O), t>O, xe!R, 

or more formally, 
ul = 0. t=O+ 

Lemma 4.3.2. Let 17e8 be absolutely continuous with a continuous density 

function, or atomic with a single atom. Then the solution u to (4.3.1) 

satisfies 

(i) t - 112u(t,t112xt) .. ' 0 h . ro ---, w enever xt ~ x in ITT, 
t~ro t~oo 

(ii) u(t,x) /1 some u(oo,x) < oo, xe[R, and u(oo,O) = v'lfiW. 
t~oo 

Proof. 1°. Fi'rst of all, · t d · · th t' · bl u is mono one non- ecreasmg m e ime varia e. 

In fact, this follows from its probabilistic meaning as "cumulant function" 

u(t,x) = log [O,[o ,OJ exp(Yt,-17), O~s!:t, xe!R, 
x 

in the same sense as the Convention 3.1.5, that is we interpret (Yt,17) as 

(Yt,rp) if 17(dx} = rp(x)dx, rpeG +' or as eyt(z) 

2°. Next, we observe that 

if 17 = ea , z 

111711 J~ dr p(r,O) ;?; J~ dr 'l}*p(r)(O). 

e~o, ze!R. 

From (4.3.1) with x=O, combined with the non-negativity of u we may 

continue with 
;?; J~ dr p(t-r,O) u 2(r,O) ;?; p(t,O) J~ dr u 2 (r,O). 

Hence, 
-1 It 2 2 111711 ;?; t 0 dr u (r,O), t>O. 

By 1°, in the latter expression we may let t tend to infinity to conclude 

that u(t,O} increases as t~oo to some finite value denoted by u(oo,O). 

3°. Assume xt ~ x in [R. By (4.3.1) and the self-similarity (2.4.2), 
t~oo 

-112 112 f 1 J -1/2 Jl 2 t u(t,t xt) = 0 dr 17(dy) p(r,t y-xt) - 0 dr p(l-r,xt) u (tr,O). 

By dominated convergence, the r.h.s. tends to 

(4.3.3) Jl 2 
0 dr p(r,x) (111711 - u (oo,O)). 
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But in the case xl:.O, 0 by 2 the l.h.s. of the former equation converges to 

0. Therefore (4.3.3) must be identical to 0. 

4°. It remains to show that u(oo,x) is finite for each fixed xEIR. First 

observe that to each constant k>O there exist a constant K>O such that 

(4.3.4) l ( I -3/2 sup{ p t,x) - p(t,y) ; Ix I, I y I sk} s K t , t>O. 

Consider u(t,0) - u(t,x), and write it with the help of (4.3.1). For O<rsl 

use p(r,y) s p(r,O) whereas for r>l apply (4.3.4) to see that u(t,O) -

u(t,x) is bounded in t, for fixed x. This finishes the proof. • 

4.4. Total Occupation Time and Total Occupation Density 

In this subsection we complete the Proof of Theorem 1.3.2. Without loss 

of generality, again we may assume that c=O. Fix -0-EEl with properties as 

in Lemma 4.3.2. As in the previous proof, we interpret (Yt,O) as (Yt,<p) 

if 1J(dx) = <p(x)dx, <pEG +' or as Syt(z) 

Lemma 4.3.2 (ii) we conclude that 

if fJ = So , z S;?:0, ZEIR. 

[ [ ( q1 )] -u(t,O) e-u(oo,O) = exp[-·~l-"11]. 
0 [o OJ exp - "t'o = e ~ v uv11 

' o' 

Then from 

But 11011 = llq;ll 1 if 1J(dx) = <p(x)dx, qieG+, whereas 11011 = s if o = so , z 

8;?:0, ze!R. Then the claims follow directly. • 

4.5. Hausdorff Dimension One 

This subsection is devoted to the Proof of Theorem 1.2.14. Let Ccomp 
+ 

denote the set of all continuous non-negative functions f defined on 1R 

having compact support. Write s(f) and t(f) for the infimum and supremum 

of the support of a non-vanishing fECcomp. Given X =µ, µe.M , from Propo-
+ 0 f 

sition 4.1.1 and the Lemmas 2.2.2 and 2.2.4 we conclude the following formu-

las for the occupation density measures ;\.2 , ze!R: 

(4.5.1) z -(µ,u(O)) 
[ 0 [ OJ exp(;\. ,-f) = e , 

' µ, 
where u solves 

(4.5.2) ft(f) Jt(f) 2 u(s,x) = s dr f(r) p(r-s,z-x) - s dr p(r-s,c-x) u (r,c), 
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Oss:St(f), xe!R, or in a more symbolic form, 

(That is, 

J=[O, t(f)J, 

a 2 
- asu = Kllu + fo2 - ocu , oss:St(f), 

u = U[O,t(f)J[O fo 0 o J is the solution of (2.2.1) in the case ' z' ' c 
w (r,dx) = f(r)o (dx), 

1 z w =0 
2 ' 

and ~=o .) In generalization of c 
the formula (1.2.13) one easily justifies the following identity. For y,ze!R 

and f,geCcomp with t(f) < s(g), 
+ 
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Cov{(i\Y,f),{i\2 ,g)} = 2J µ(da) J ds f(s) J dt g(t) J~dr p(r,c-a)p(s-r,y-c)p(t-r,z-c). 

Hence, the occupation density measure i\ c at the catalyst's position has the 

correlation density 

(4.5.3) &c(s,t) := 2 J~ dr p(s-r,O) p(t-r,0) J µ(da) p(r,c-a), O<s<t. 

Assume µt!O. Distinguishing between r < s/2 and r > s/2, we easily see 

g_ C Js/2£ -1/2 -1/2 
{lt (s,s+e) ~ const 0 dr r (r+e) 

Js/2e -1/2 -v2 I I ~ canst 0 dr r (r+l) ~ const loge as e->O, 

for each fixed s>O. Consequently, the correlation density &c of the 

occupation time measure ·;{ has a logarithmic pole along the whole diagonal. 

Then, 
O<e<T, O<o<l, 

and from Frostman's lower bound technique (see, for instance, Zahle (1988), 

assertion 6. 3) follows that i\ c has a. s. carrying dimension one. 11 
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