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Abstract

In this paper we describe two limiting processes for families of Banach spaces

closely related to the standard de�nition of projective and inductive limits.

These processes lead again to Banach spaces. Information about linear op-

erators and duality between basic families of spaces is carried over to the

corresponding limit spaces.

The abstract results are shown to be applicable to Campanato spaces and

Sobolev-Campanato spaces. In particular, we obtain the existence and a char-

acterization of predual spaces. Some imbedding relations are investigated in

more detail.

Introduction

When the treatment of second order elliptic boundary value problems in Sobolev

spaces started, the di�erential equations were usually written (using the summation

convention) as

8v 2 C1
0(
) :

Z


aijDjuDiv + : : : =

Z


(gv + fiDiv); (1)

and requirements with respect to the right hand side of the form

g 2 Lq=2(
); fi 2 Lq(
); i = 1; : : : ; N;

were made (see [LU]). Later it became clear that essential is not the representation

of the right hand side of the equation by means of g; f1; : : : ; fN , but the fact that

the right hand side is in W�1;q(
) for some q. Moreover, if

aij 2 L1(
); kaijkL1(
) �
1
"; i; j = 1; : : : ; N ;

aij(x)�i�j � "j�j2 for some " > 0; all � 2 IRN and almost all x 2 
;

9=; (2)

then there exists a q0 > 2 depending on 
; N and " only such that for all q 2 [2; q0]
the following holds: Each solution u 2 W 1;2

0 (
) to (1) belongs to W 1;q(
) if and
only if the right hand side belongs to W�1;q(
). If N > 2 this regularity result does
not imply Hölder continuity of solutions to (1).
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The treatment of boundary value problems in Morrey-Campanato spaces started also

with the formulation (1) but with di�erent requirements with respect to g; f1; : : : ; fN ,

which read for example as follows

g 2 L2;(��2)+(
); fi 2 L
2;�(
); i = 1; : : : ; N ;

here � is a parameter and L2;�(
) a corresponding Campanato space (see [Tr]).

The question what, in the context of Campanato spaces, could be an appropriate

substitute for the Sobolev spacesW�1;q(
) was ignored (or considered unimportant)

for a long time. Some years ago the second author (see [R]) introduced W�1;2;�(
)
as the image ofW 1;2;�

0 (
) under the duality map ofW 1;2
0 (
); here W 1;2;�

0 (
) consists
of those elements of the Sobolev space W 1;2

0 (
) the �rst derivatives of which are in

the Campanato space L2;�(
). It was shown that, if (2) is satis�ed, there exists a

�0 > N � 2, depending on 
; N and " only such that for all � 2 [0; �0] a solution

u 2 W 1;2
0 (
) to (1) belongs to W 1;2;�(
) if and only if the right hand side belongs

to W�1;2;�(
). Later these results were generalized to a broader class of problems

by Griepentrog and Recke in [GrR]. Note that these regularity results imply Hölder

continuity (up to the boundary) of the solutions to (1) for all space dimensions N ,

because for � > N � 2 the space W 1;2;�(
) is continuously imbedded into a Hölder

space.

The de�nition of W�1;2;�(
) mentioned above has drawbacks: On the one hand it

is di�cult to decide whether a given right hand side is in the space W�1;2;�(
) or
not. On the other hand one can doubt whether a de�nition is appropriate, which

makes the solvability of equations with the duality map for right hand sides from

W�1;2;�(
) a trivial consequence of the de�nition of W�1;2;�(
). In a forthcoming

paper Griepentrog [Gr] will present another de�nition of W�1;2;�(
) which seems to

be more natural and simpler to handle. His de�nition follows closely the original

de�nition of Morrey spaces. Simultaneously the �rst author developped the idea to

de�ne spaces W�k;p;�(
) as dual spaces of suitably chosen other spaces. This idea

came up because for Sobolev spaces one has

W�k;p(
) := (W k;p0

0 (
))�; p 2 ]1;1[: (3)

The de�nition W�k;p(
) := (W k;p0

0 (
))� is usually motivated by the fact that for

p 2 ]1;1[ the Lebesgue space Lp(
); 1 < p < 1; is the dual of Lp0(
), i.e. of

a space from the scale of Lebesgue spaces itself. It is this relation that allows to

interpret the scaleW�k;p(
); k 2 IN; as a continuation of the scaleW k;p(
); k 2 6Z+.

Generally it is not true that Campanato spaces are duals of other Campanato spaces.

However, it is well known (see [Le]) that for each of the Hölder spaces C0;�(
) (which
are part of the scale of Campanato spaces) there exists a predual Banach space, i.e.,

a Banach space the dual of which is C0;�(
).

In the present paper we are going to show that for all Campanato spaces there

exist predual Banach spaces. We want to convince the reader that the scale of

these preduals can be interpreted in a natural way as a continuation of the scale of
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Campanato spaces. More precisely, using the notation Lp;m;�(
) instead of Cam-

panato's notation L
(p;�)
k (
) (where m = k + 1; � = �=p, cf. [Ca]), we introduce

spaces Lp;m;��(
) such that

Lp;m;�(
) = (Lp0;m;��(
))�:

Moreover, we are going to show that for Sobolev-Campanato spaces the situation is

analogous: We present spaces W�k;p;m;�(
) and W k;p;m;��
0 (
) such that

W�k;p;m;�(
) = (W k;p0;m;��
0 (
))�: (4)

Hence, the relation (3) has a counterpart in the theory of Sobolev-Campanato spaces.

The de�nition of W�1;2;m;�(
) is closely connected to a new criterion for the right

hand side of (1) which is necessary and su�cient for a solution to belong toW 1;2;�(
).

It turned out that the construction of predual spaces for Sobolev-Campanato spaces

is based only on a few properties of these spaces, namely:

1. The restriction of an element of a Sobolev space to a (small) subset U of the

original domain of de�nition belongs to the corresponding Sobolev space over U .

2. Elements of Sobolev-Campanato spaces can be characterized by a �nice� depen-

dence of (semi)norms of those restrictions on the subset U .

The essential point is that di�erent norms can be considered simultaneously. The

observation that for many results the concrete nature of the Sobolev spaces is unim-

portant has had great in�uence on the structure of our paper. We proceed as follows.

In the �rst section we introduce projective and inductive systems of Banach spaces.

We show that such systems can be viewed as an �abstract� setting which allows

to create new Banach spaces like, for example, Campanato spaces. In particular,

we deal with duality: We make precise in which sense spaces created by means of

projective systems of Banach spaces are dual to spaces created by means of inductive

systems of Banach spaces.

The second section is devoted to linear operators. We show how continuity and com-

pactness properties of mappings between the newly created spaces can be reduced

to properties of mappings between the spaces of the systems we start from. Our

procedure is similar to that of interpolation theory.

In Section 3 and 4 we consider � as applications of the preceding results � the

classical Campanato spaces and Sobolev-Campanato spaces on open subsets of IRN .

We show that di�erent characterizations lead to the same spaces and to equal or

equivalent norms. Moreover we deal with some imbedding theorems.

We are well aware that there is a lot of further subjects, which should and could

be treated: trace theorems, multiplier theorems and the behaviour of Sobolev-

Campanato spaces with respect to transformation of coordinates, solvability of

boundary value problems with right hand sides in Sobolev-Campanato spaces

W�k;p;m;�(
), to mention only a few. We omitted these points in order keep a

reasonable length of this paper.
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1. Projective and inductive systems

Throughout this paper we denote by B the class of all real Banach spaces. Sometimes

B will be regarded as a category with the continuous linear mappings as morphisms.

As usual, if E and F are Banach spaces, then L(E;F ) denotes the space of all linear
continuous mappings from E into F and E� the dual of E.

For the time being let F be any set, and let BF be the set of all mappings from F

into B.

De�nition 1.1. For X 2 BF and p 2 [1;1] we introduce

lp(X) := fg = (gU)U2F 2
Y
U2F

X(U); kgklp(X) <1g;

where

kgklp(X) :=
� X
U2F

kgUk
p
X(U)

� 1

p

if p <1; kgkl1(X) := sup
U2F

kgUkX(U):

Here
P

U2F is to be interpreted as the integral on F with respect to the counting

measure, i.e., as the limit of the net of sums over �nite subsets of F .

It is easy to check � and well known � that (lp(X); k � klp(X)) is a Banach space.

The following result is also known; it can easily be deduced from the corresponding

result on the standard lp-spaces.

Theorem 1.2. For X 2 BF let X� 2 BF be de�ned by X�(U) := (X(U))�; U 2 F .

Moreover, let p 2 [1;1] and 1
p + 1

p 0 = 1. Then

h�(f); gi :=
X
U2F

hfU ; gUi for f 2 lp
0

(X�); g 2 lp(X);

de�nes an isometric linear mapping � from lp
0

(X�) into (lp(X))�. If p < 1, then

� is surjective.

In the sequel we shall identify f and �(f). In particular, l1(X�) will be considered
as the dual of l1(X). The notation X� introduced in Theorem 1.2 will be used

throughout the paper without further explanation.

>From now on we assume that F is a family of subsets of some �xed set 
. This

family will be regarded as a category: The objects of F are its elements, the set of

morphisms from V 2 F into U 2 F consists of the identical imbedding iUV : V �! U ,
if V � U , and is empty, if V 6� U .

We remark that the family F could be replaced by any ordered set. In the appli-

cations in this paper F will be a family of open subsets of IRN serving as domains

of de�nition of functions. This is the reason why we use the letters U; V for the
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elements of F . There exist, however, quite di�erent applications. For example, the

construction of new Banach spaces carried out by Gröger [G] can be interpreted as

a special case of the constructions described below. In that special case the rôle of

F had been played by the set fp 2 IR; p > 2g with its usual ordering.

De�nition 1.3. We call P a projective system of Banach spaces on F if it is a

contravariant functor from F into B. We denote by P(F) the class of all such

functors.

Thus, P 2 P(F) means that P assigns to each U 2 F a Banach space P (U) and to

each pair U; V 2 F satisfying V � U an operator PU
V := P (iUV ) 2 L(P (U);P (V ))

such that PU
U is the identity map of P (U) and

P V
WP

U
V = PU

W if W � V � U:

De�nition 1.4. Let P 2 P(F). We de�ne

l
 

(P ) := ff 2 l1(P ); fV = PU
V fU ; if V � U and U; V 2 Fg:

Using the notation l1(P ) we do not distinguish between the functor P 2 P(F)
and the underlying mapping U 7�! P (U); U 2 F . Clearly, (l

 

(P ); k � kl1(P )) is a
Banach space. It is not the standard projective limit of P (in the sense of locally

convex spaces) but a good substitute for this limit if one wants to remain within the

framework of Banach spaces. To simplify the notation we write k � kP for the norm

on l
 

(P ).

De�nition 1.5. We call S an inductive system of Banach spaces on F , if it is a

covariant functor from F into B. We denote by S(F) the class of all such functors.

Thus, S 2 S(F) means that S assigns to each U 2 F a Banach space S(U) and to

each pair U; V 2 F satisfying V � U an operator SU
V := S(iUV ) 2 L(S(V );S(U))

such that SV
V is the identity map of S(V ) and

SU
V S

V
W = SU

W if W � V � U:

In the following speaking about projective or inductive systems we always have in

mind projective or inductive systems of Banach spaces on F .

De�nition 1.6. Let S 2 S(F). We de�ne

~l(S) := l1(S)=N(S);

where N(S) is the closed linear subspace of l1(S) generated by those elements

g = (gU)U2F which, for some V; W 2 F such that W � V , satisfy

gV = �SV
WgW ; gU = 0; if U 6= V; W: (1.1)
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The space ~l(S) can be regarded as a good substitute for the inductive limit of S in

the framework of Banach spaces. It is a Banach space with the usual factor space

norm

kg +N(S)kS := inf
h2N(S)

kg + hkl1(S):

Here g + N(S) denotes the class of g 2 l1(S) in the factor space l1(S)=N(S). An

analogous notation will be used in the sequel also for other factor spaces without

further explanation.

The following statement is an immediate consequence of the de�nitions of projective

and inductive systems of Banach spaces.

If P is a projective system, then P �, de�ned by

P �(U) := (P (U))�; P �U
V := (PU

V )�;

is an inductive system. If S is an inductive system, then S�, de�ned by

S�(U) := (S(U))�; S�UV := (SU
V )

�;

is a projective system. We call P � the dual of P and S� the dual of S.

Theorem 1.7. Let S be an inductive system on F and S� the dual projective system.

Then there exists a canonical linear isometric mapping from (~l(S))� onto l
 

(S�).

Proof. By a standard result of linear functional analysis the dual to the factor

space l1(S)=N(S) is canonically isometric to the subspace N0(S) of those elements of

(l1(S))� = l1(S�) which vanish on N(S). Thus, it su�ces to prove l
 

(S�) = N0(S).

Let f 2 l1(S�) and let g 2 l1(S) satisfy (1.1). Then

hf; gi = hfW ; gW i+
D
fV ;�S

V
WgW

E
=
D
fW � (SV

W )�fV ; gW
E
:

Hence f 2 N0(S) if and only if

fW = (SV
W )�fV for all V;W 2 F such that W � V;

i.e., if f 2 l
 

(S�). This is the desired result.

Remark 1.8. In the sequel we shall identify l
 

(S�) and (~l(S))� identifying f 2 N0(S)
with the functional assigning the value hf; gi to the equivalence class of g 2 l1(S) in
the factor space l1(S)=N(S).

Next we create in a rather simple manner new spaces by means of weight functions.

We denote by AF the set of all positive valued functions on F , regarded as a group

with respect to the pointwise multiplication. For a; b 2 AF we write a � b if

a(U) � b(U) for every U 2 F . Moreover, for � 2 IR and a 2 AF we de�ne

a�(U) := (a(U))�; U 2 F . The elements of AF will play the rôle of weight functions.

6



If E is any Banach space and � 2 ]0;1[, we denote by E� the space E equipped

with the norm �k � kE. Let a 2 AF . For X 2 BF let Xa 2 BF be de�ned by

Xa(U) := X(U)a(U). For P 2 P(F) we de�ne Pa 2 P(F) setting

Pa(U) := P (U)a(U); (Pa)
U
V := PU

V if U; V 2 F ; V � U:

Analogously we de�ne Sa 2 S(F) for S 2 S(F). Obviously,

(Pa)
� = (P �)a�1 and (Sa)

� = (S�)a�1 :

As a consequence of Theorem 1.7 and Remark 1.8 we have the following

Corollary 1.9. Suppose that S is an inductive system on F and a 2 AF . Then

(~l(Sa))
�= l
 

((S�)a�1).

To conclude this section we want to compare spaces generated by means of di�erent

families F and G. Let G be a subfamily of F . Clearly, each P 2 P(F) can be re-

stricted to the category G, and this restriction, denoted by P jG, is in P(G). We shall

formulate simple su�cient conditions guaranteeing that spaces generated by means

of P are canonically isomorphic to spaces generated by means of P jG. Analogously,
we shall deal with restrictions SjG of inductive system S 2 S(F). As usual, we call
G a directed subfamily of F , if for arbitrary V;W 2 G there exists U 2 G such that

V � U and W � U .

Lemma 1.10. Let G be a directed subfamily of F . Suppose that for P 2 P(F) and
c > 0 the following holds: For every V 2 F there exists U 2 G such that V � U
and kPU

V kL(P (U);P (V )) � c. Then l
 

(P ) and l
 

(P jG) are canonically isomorphic as

topological linear spaces.

Proof. For f = (fU)U2F 2 l
 

(P ) we de�ne f jG := (fU)U2G. We want to show that

the mapping f 7�! f jG is a topological linear isomorphism from l
 

(P ) onto l
 

(P jG).
Obviously, kf jGkl1(P jG) � kfkl1(P ) and f jG 2 l

 

(P jG). The linearity of the mapping

f 7�! f jG is also obvious. Moreover,

kfkP = sup
V 2F

kfV kP (V ) = sup
V 2F

inf
U2G; V�U

kPU
V fUkP (V )

� sup
V 2F

inf
U2G; V�U

kPU
V kL(P (U);P (V ))kfUkP (U)

� c sup
U2G

kfUkP (U) = c kf jGkP jG :

Consequently, the mapping f 7�! f jG is a homeomorphism onto its image. Now,

let f 0 2 l
 

(P jG) be given. For every V 2 F we choose U 2 G such that V � U

and de�ne fV := PU
V f

0

U : Because G is a directed family it is easy to check that this

de�nition is independent of the choice of U 2 G. The preceding estimate shows that

f := (fU)U2F is in l
 

(P ). Since f jG = f 0, the mapping f 7�! f jG is surjective.
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Corollary 1.11. Let G be a directed subfamily of F . Suppose that for P 2 P(F),
a 2 AF and c > 0 the following holds: For every V 2 F there exists U 2 G such that

V � U and a(V )kPU
V kL(P (U);P (V )) � c a(U). Then l

 

(Pa) and l
 

(PajG) are canonically

isomorphic as topological linear spaces.

Proof. In view of the elementary relation kPU
V kL(Pa(U);Pa(V )) =

a(V )

a(U)
kPU

V kL(P (U);P (V ))

the assertion is an immediate consequence of Lemma 1.10.

Next we state counterparts of Lemma 1.10 and Corollary 1.11 for inductive systems.

Lemma 1.12. Let G be a directed subfamily of F . Suppose that for S 2 S(F) and

c > 0 the following holds: For every V 2 F there exists U 2 G such that V � U and

kSU
V kL(S(V );S(U)) � c. Then ~l(S) and ~l(SjG) are canonically isomorphic as topological

linear spaces.

Proof. 1. For g0 2 l1(SjG) let g 2 l1(S) be de�ned by

gU :=

8<: g0U if U 2 G;

0 if U 62 G:

Clearly, g0 7�! g is a continuous linear mapping I from l1(SjG) into l
1(S). Moreover,

it is evident that I maps the elements generatingN(SjG) (cf. (1.1)) intoN(S). Hence

g0 +N(SjG) 7�! g +N(S) (1.2)

is a correctly de�ned mapping J from ~l(SjG) into ~l(S). We have

kg +N(S)kS = inf
h2N(S)

kg + hkl1(S) � inf
h02N(SjG)

kg0 + h0kl1(SjG) = kg0 +N(SjG)kSjG :

2. In view of Lemma 1.10 and Theorem 1.7 we �nd (using the same notation as in

the proof of Lemma 1.10)

kg0 +N(SjG)kSjG = sup fhf 0; g0i ; f 0 2 l
 

((SjG)
�); kf 0k(SjG)� � 1g

= sup fhf jG; g
0i ; f 2 l

 

(S�); kf jGkS�jG � 1g

� sup fhf; gi ; kfkS� � cg = c kg +N(S)kS:

Hence, the mapping J is a topological linear isomorphism onto its image. In partic-

ular, its image is closed in ~l(S).

3. Assume that for some f 2 l
 

(S�) we have hf; gi = 0 for every g = Ig0; g0 2 l1(SjG).
Then hf jG; g

0i = 0 for every g0 2 l1(SjG). Theorem 1.7 shows that this is possible

only if f jG = 0. In view of Lemma 1.10 this means that f = 0. By the Hahn-Banach

theorem this result implies that the image of J is dense in ~l(S).

4. Combining the results of the preceding steps of the proof we �nd that J is a

topological linear isomorphism from ~l(SjG) onto ~l(S).

8



Corollary 1.13. Let G be a directed subfamily of F . Suppose that for S 2 S(F),
a 2 AF and c > 0 the following holds: For every V 2 F there exists U 2 G such that

V � U and a(U)kSU
V kL(S(V );S(U)) � c a(V ). Then ~l(Sa) and ~l(SajG) are canonically

isomorphic as topological linear spaces.

Recall that the elements of F are subsets of a �xed set 
. For the �nal part of this
section we shall assume that 
 2 F . In that case 
 is the unique maximal element

of F with respect to inclusion.

Lemma 1.14. Let P 2 P(F) be such that kP

V kL(P (
);P (V )) � 1 for every V 2 F

and suppose that 
 2 F . Then the mapping

f 7�! f
; where f = (fV )V 2F 2 l
 

(P );

is isometric from l
 

(P ) onto P (
).

Proof. The hypotheses of Lemma 1.10 are satis�ed with G = f
g and c = 1.
Obviously, l

 

(P jG) = P (
). Moreover, for c = 1 the proof of Lemma 1.10 shows that

the mapping from l
 

(P ) onto l
 

(P jG) is isometric.

Remark 1.15. In the following, whenever the hypotheses of Lemma 1.14 are sat-

is�ed, we shall (tacitly) identify l
 

(P ) and P (
) identifying f and f
. As a conse-

quence, subspaces of l
 

(P ) will be treated as subspaces of P (
).

Lemma 1.16. Let S 2 S(F) be such that kS

V kL(S(V );S(
)) � 1 for every V 2 F and

suppose that 
 2 F . Then the mapping

g0 7�! g +N(S); g02S(
); where g=(gV )V 2F ; g
=g0; gV =0; if V 6= 
; (1.3)

is isometric from S(
) onto ~l(S).

Proof. One may apply Lemma 1.12 with G = f
g and c = 1.

Remark 1.17. In the following, whenever the hypotheses of Lemma 1.16 are satis-

�ed, we shall (tacitly) identify S(
) and ~l(S) by means of the mapping (1.3). This

corresponds to our treatment of projective systems (cf. Remark 1.15).

2. Linear operators

In the �rst part of this section we shall deal with linear mappings between spaces

of the kind lp(X) introduced in De�nition 1.1. Here F might be any set.

For X; Y 2 BF we denote by L(X;Y ) the linear space of all mappings A de�ned on

F assigning to U 2 F an operator AU 2 L(X(U);Y (U)). Each A 2 L(X;Y ) can
be regarded as a continuous linear mapping from

Q
U2F X(U) into

Q
U2F Y (U): The

9



image Af of f 2
Q
U2F X(U) is de�ned by (Af)U :=AUfU ; U 2 F . For X; Y 2BF

and A 2 L(X;Y ) we de�ne �A 2 AF by

�A(U) := kAUkL(X(U);Y (U)): (2.1)

Lemma 2.1. Let a; b 2 AF , X; Y 2 BF and A 2 L(X;Y ). Moreover, let p 2 [1;1].
Then the following holds:

i) If

c := sup
U2F

�A(U)
b(U)

a(U)
<1;

then A maps lp(Xa) continuously into lp(Yb), where the norm of A, considered as an

element of L(lp(Xa); l
p(Yb)), is bounded by c.

ii) If, for some functions b0; b1 2 AF , the operator A is compact as a mapping from

lp(Xa) into lp(Yb0) and continuous as a mapping from lp(Xa) into lp(Yb1), then A is

compact also as a mapping from lp(Xa) into l
p(Yb) provided that b � b1��0 b�1; � 2 [0; 1[.

Proof. 1. The assertion i) is an elementary consequence of the de�nition of the

norms involved.

2. Let M � lp(Xa) be bounded. We have to show that A[M ] is precompact in

lp(Yb). By Young's Inequality b(U) � "b1(U) + c"b0(U) for arbitrarily chosen " > 0
and an appropriate constant c". For every f 2 lp(Xa); p <1; we have

kAfklp(Yb) =
� X
U2F

(b(U)kAUfUkY (U))
p
� 1

p

�
� X
U2F

(("b1(U) + c"b0(U))kAUfUkY (U))
p
� 1

p

� "kAfklp(Yb1 ) + c"kAfklp(Yb0 ):

An obvious modi�cation of the argument shows that the estimate is true also for

p = 1. We choose now f1; : : : ; fn in M such that inf
1�i�n

kAf � Afiklp(Yb0 ) �
"
c"

for every f 2 M . This is possible because of the compactness hypothesis. The

preceding estimate implies that

inf
1�i�n

kAf � Afiklp(Yb) � "
�
2 sup
g2A[M ]

kgklp(Yb1 ) + 1
�

provided that f 2M . Hence, A[M ] has a �nite "-net in lp(Yb) for every " > 0:

Remark 2.2. Note that, if AU is isometric from X(U) into Y (U) for every U 2 F ,

then A is isometric also as a mapping from lp(Xa) into l
p(Ya).

For arbitrary P;Q 2 P(F) we denote by L(P ;Q) the set of all natural transforma-

tions from the functor P : F �! B to the functor Q : F �! B. Thus, K 2 L(P ;Q)
means that K associates to each U 2 F an operator KU 2 L(P (U);Q(U)) such that

KV P
U
V = QU

VKU ; (2.2)
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provided that U; V 2 F and V � U . The class P(F) can be considered as a category
with the sets L(P ;Q), P;Q 2 P(F), as the corresponding sets of morphisms.

We emphazise that, working with L(P ;Q), we have to distinguish between the

functor P 2 P(F) and the underlying mapping U 7�! P (U); U 2 F . If, for

a moment, we denote this mapping by P o, then L(P o;Qo) is strictly larger than

L(P ;Q) because its de�nition does not include the relation(2.2). It is clear, however,
that for K 2 L(P ;Q) the function �K is de�ned (cf. (2.1)) and that an analogue of

Lemma 2.1 holds for K 2 L(P ;Q).

Theorem 2.3. Let a; b 2 AF , P;Q 2 P(F) and K 2 L(P ;Q). Then the following

holds:

i) If

c := sup
U2F

�K(U)
b(U)

a(U)
<1;

then K maps l
 

(Pa) continuously into l
 

(Qb), where the norm of K, considered as an

element of L(l
 

(Pa); l
 

(Qb)), is bounded by c.

ii) If, for some functions b0; b1 2 AF , the operator K is compact as a mapping from

l
 

(Pa) into l
 

(Qb0) and continuous as a mapping from l
 

(Pa) into l
 

(Qb1), then K is

compact also as a mapping from l
 

(Pa) into l
 

(Qb) provided that b � b1��0 b�1; � 2 [0; 1[.

The proof of this theorem is essentially the same as that of Lemma 2.1. The relation

K[l
 

(Pa)] � l
 

(Qb) is a consequence of (2.2). We omit the details.

Remark 2.4. Whenever this seems desirable in order to avoid misunderstandings

we shall write Ka;b for K considered as a mapping from l
 

(Pa) into l
 

(Qb).

Corollary 2.5. Suppose that 
 2 F ; and let the function a 2 AF and the system

P 2 P(F) be such that a � const > 0 and kP

V kL(P (
);P (V )) � 1 for every V 2 F .

Then l
 

(Pa) is continuously imbedded into P (
) and an element f 2 P (
) is in

l
 

(Pa) if and only if

sup
V 2F

a(V )kP

V fkP (V ) <1: (2.3)

If (2.3) holds, then

kfkPa = sup
V 2F

a(V )kP

V fkP (V ):

Proof. The continuous imbedding l
 

(Pa) ,! l
 

(P ) = P (
) follows from Theorem 2.3,

Lemma 1.14 and Remark 1.15. In view of the identi�cation of f and f
 we �nd

kfkl1(Pa) = sup
V 2F

a(V )kfV kP (V )

= sup
V 2F

a(V )kP

V f
kP (V ) = sup

V 2F

a(V )kP

V fkP (V ):

By de�nition of l
 

(Pa) an element f 2 P (
) is in l
 

(Pa) if and only if kfkl1(Pa) is

�nite, and in that case kfkPa = kfkl1(Pa).
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For arbitrary S; T 2 S(F) we denote by L(S;T ) the set of all natural transformations

from the functor S : F �! B to the functor T : F �! B. Thus, L 2 L(S;T ) means

that L associates to each U 2 F an operator LU 2 L(S(U);T (U)) such that

LUS
U
V = TU

V LV ; (2.4)

provided that U; V 2 F and V � U . The class S(F) can be regarded as a category

with the sets L(S;T ), S; T 2 S(F), as the corresponding sets of morphisms.

Theorem 2.6. Let a; b 2 AF , S; T 2 S(F) and L 2 L(S;T ). Then the following

holds:

i) If

c := sup
U2F

�L(U)
b(U)

a(U)
<1;

then one can de�ne La;b 2 L(~l(Sa);~l(Tb)) setting

La;b(g +N(Sa)) := Lg +N(Tb) for g 2 l1(Sa):

It holds kLa;bkL(~l(Sa);~l(Tb)) � c:

ii) Let, for some b0; b1 2 AF , the relations �Lbi � const a; i = 0; 1; be satis�ed. If the
operator La;b0 is compact, then La;b is compact provided that b � b1��0 b�1; � 2 [0; 1[.

Proof. 1. Since �L b � c a, Lemma 2.1 proves that L maps l1(Sa) continuously
into l1(Tb) and that the corresponding norm is bounded by c. In view of (2.4) the

operator L maps N(Sa) into N(Tb). This implies that La;b is correctly de�ned.

Obviously, the norm of La;b does not exceed the norm of L as a mapping from l1(Sa)
into l1(Tb).

2. The compactness result can be proved as the corresponding part of Lemma 2.1.

Next we state as corollaries two simple consequences of the de�nition of the operators

La;b. We omit the elementary proofs.

Corollary 2.7. Let L 2 L(S;T ), where S and T are inductive systems on F , and

let L� 2 L(T �;S�) be de�ned by (L�)U := (LU)
�; U 2 F . Then

(La;b)
� = (L�)b�1;a�1 for all a; b 2 AF :

Corollary 2.8. Suppose that S; S 0; S 00 are inductive systems on F . Moreover, let

L 2 L(S;S 0); L0 2 L(S 0;S 00) and a; a0; a00 2 AF be given such that �L a
0 � const a;

�L0 a
00 � const a0. Then

(L0L)a;a00 = L0a0;a00La;a0 :
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Lemma 2.9. Let a; b 2 AF , b � const a, and let IS denote the identity morphism

of S, i.e., let ISU be the identity map of S(U). Then ISa;b maps ~l(Sa) (continuously)

onto a dense subset of ~l(Sb)). The adjoint (ISa;b)
�
is the imbedding of l

 

((S�)b�1) into

l
 

((S�)a�1).

Proof. 1. The density statement follows from the obvious fact that

lc(S) :=
n
g 2

Y
U2F

S(U); gU 6= 0 only for �nitely many U 2 F
o

is contained and dense in l1(Sa) and l1(Sb).

2. Clearly, (IS)� = IS
�

, where IS
�

denotes the identity morphism of S�. Therefore
the second assertion follows from Corollary 2.7.

Remark 2.10. The operator ISa;b is not necessarily injective. Hence, generally we

have not ~l(Sa) ,! ~l(Sb).

Remark 2.11. Later we shall use the following special case of Corollary 2.8: If

L2L(S;T ); S; T 2 S(F); and b � const a; a; b 2 AF , then

La;b = ITa;bLa;a = Lb;bI
S
a;b;

because L = ITL = LIS.

In the following we denote by e the unit element of AF , i.e., the weight function

with the value 1 for every U 2 F .

Corollary 2.12. Suppose that 
 2F ; and let the function b 2AF and the system

S 2 S(F) be such that b � const < 1 and kS

V kL(S(V );S(
)) � 1 for every V 2 F .

Then the operator ISe;b 2 L(S(
);
~l(Sb)) satis�es, for g

0 2 S(
),

kISe;b g
0kSb = inf

n X
V 2G

b(V )kgV kS(V );
X
V 2G

S

V gV = g0; G � F �nite

o
: (2.5)

Proof. By de�nition of N(Sb) (cf. De�nition 1.6) the linear space

Nc(S) :=
n
h 2

Y
V 2F

S(V );
X
V 2F

S

V hV = 0; hV 6= 0 only for �nitely many V 2 F

o

is dense in N(Sb). Hence, if g
0 2 S(
) and

g = (gV )V 2F ; g
 = g0; gV = 0; if V 6= 
;

then (cf. Remark 1.17 and (1.3))

kISe;b g
0kSb = kg +N(Sb)kSb = inf fkg + hkl1(Sb); h 2 Nc(S)g

= inf
n X
V 2G

b(V )kgV kS(V );
X
V 2G

S

V gV = g0; G � F �nite

o
:
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Remark 2.13. Whenever ISe;b is injective we may identify g0 2 S(
) and ISe;b g
0. In

this way S(
) becomes a (dense) subset of ~l(Sb) and it holds

kg0kSb = inf
n X
V 2G

b(V )kgV kS(V );
X
V 2G

S

V gV = g0; G � F �nite

o
for g0 2 S(
):

3. Campanato spaces

Throughout this section we assume that 
 is a �xed open and bounded subset of

IRN and that F is the family of all nonempty open subsets of 
. The diameter of a

set U 2 F (with respect to the usual Euclidean metric of IRN ) will be denoted by

dU . We shall use the weight functions a� 2 AF de�ned by

a�(U) :=
�
d

dU

��
for U 2 F ; � 2 IR: (3.1)

We de�ne IPm; m 2 IN; as the space of polynomials of degree less thanm with respect

to the coordinates of the argument x 2 IRN . For m = 0 we de�ne IPm := f0g.

In the following measurability, integrability and integrals will always be understood

with respect to the N-dimensional Lebesgue measure. If E is a measurable subset

of IRN , then jEj denotes its measure. The letter p will always denote a number

from [1;1]. For given p the dual exponent p0 is de�ned by 1
p + 1

p 0 = 1: The spaces

Lp(U); U 2 F ; will be equipped with their standard norms, denoted by k � kp;U or

simply k � kp.

For m 2 6Z+ we de�ne a projective system P p;m and an inductive systems Sp;m

setting for U; V 2 F such that V � U :

P p;m(U) := Lp(U)=IPm; (P
p;m)UV (u+ IPm) := ujV + IPm; if U 6= 
;

P p;m(
) := Lp(
); (P p;m)
V u := ujV + IPm; if V 6= 
:

9=; (3.2)

and

Sp;m(U) := fu 2 Lp(U);
R
U uw = 0 for all w 2 IPmg; if U 6= 
;

Sp;m(
) := Lp(
); (Sp;m)UV v := vU :

9=; (3.3)

Here and in the sequel vU denotes the extension of v from its original domain of

de�nition (which will always be a subset of U) to U by 0. In (3.2), (3.3) the space IPm

is to be regarded as a subspace of Lp(U); Lp(V ) and Lp0(U), respectively. Similarly,

IPm will be used below as a subspace of di�erent function spaces (with di�erent

domains of de�nition). This should not lead to misunderstandings.

The notation introduced here will be used throughout this section without further

explanation.
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Lemma 3.1. If 1 � p <1, then (Sp;m)� = P p0;m
. The space P 1;m(U) is isometri-

cally imbedded into (S1;m(U))� for every U 2 F .

Proof. We have (Lp(U))� = Lp0(U) for p 2 [1;1[, and L1(U) is isometrically

imbedded into (L1(U))�. Moreover, IPm is the annihilator of�
u 2 Lp(U);

Z
U
uw = 0 for all w 2 IPm

�

in Lp0(U). These facts prove the lemma.

De�nition 3.2. For � 2 IR+ we de�ne the Banach spaces

Lp;m;�(
) := l
 

(P p;m
a�

) and Lp;m;��(
) := ~l(Sp;m
a��

);

(cf. (3.1) for the de�nition of the weight functions a� and a��).

Theorem 3.3. For � 2 IR+ it holds (Lp;m;��(
))� = Lp0;m;�(
), 1 � p < 1, and

L1;m;�(
) is isometrically imbedded into (L1;m;��(
))�.

Proof. The theorem is a consequence of Lemma 3.1 and Corollary 1.9 (cf. also

Remark 2.2).

Remark 3.4. Since V � 
, k(P p;m)
V kL(P (
);P (V )) � 1 for all V 2 F and a� �
const > 0 for � 2 IR+, the hypotheses of Corollary 2.5 are satis�ed. Consequently,

Lp;m;�(
) is to be regarded as a subspace of Lp(
), and we have

kukLp;m;�(
) = max
�
kukp;
; sup

V 2F

inf
w2IPm

�
d


dV

��
kujV � wkp;V

�
: (3.4)

An element of Lp(
) is in Lp;m;�(
) if and only if the right hand side of (3.4) is

�nite. In the following we shall write simply u instead of ujV ; it should be clear that

for ku� wkp;V the function u is to be restricted to V .

Remark 3.5. From Lemma 1.10 it follows that kukLp;m;�(
); � 2 IR+; is equivalent to

the norm

jujp;m;�;
 := max
n
kukp;
; sup

r>0; x2


inf
w2IPm

r��ku� wkp;Br(x)\


o
: (3.5)

(As usual, Br(x) denotes the open ball of radius r centered at x.) Indeed, one can

apply Lemma 1.10 to G := f
 \ Br(x); r > 0; x 2 
g because G � F and

V 2 F =) V � W := 
 \ BdV (x); x 2 V:

Obviously, we could de�ne another equivalent norm replacing Br(x) in (3.5) by the

cube of side length r centered at x with edges parallel to the coordinate axes in IRN .

15



Remark 3.6. If 
 is a bounded domain in IRN , then Lp;m;�(
); 1 � p <1; m 2 6Z+;

� 2 IR+; is the well known scale of Campanato spaces. We changed, however, the

notation of these spaces and replaced the original norms by equivalent norms (cf.

[Ca]). Our notation also di�ers from that adopted by Triebel [T]. As mentioned

already in the introduction we replace Campanato's notation L
(p;�)
k (
) by Lp;m;�(
),

where m = k + 1; � = �=p. Our notation allows to express the duality result of

Theorem 3.3 in a very simple way. This result would look more complicated with

Campanato's or Triebel's notation. The change of norms compared to those in

[Ca] allows a simpler description of the predual spaces Lp0;m;��(
). The original

Campanato norm di�ers only slightly from the norm j � jp;m;�;
 introduced in the

preceding remark.

Remark 3.7. Our notation suggests that all the spaces de�ned above should be

considered as parts of one scale of spaces. This point of view will be justi�ed by

some of the results below. Since both Lp;m;0(
) and Lp;m;�0(
) coincide with Lp(
)
(including the norm), our notation does not cause problems for � = 0:

Remark 3.8. Campanato [Ca] proved that Lp;m;�(
) = IPm if 
 is a bounded domain

and � > m+N
p . On the other hand, it is easy to prove by means of Taylor's Formula

that Cm
c (
) (the space of functions on 
 with compact support having continuous

derivatives up to the order m) is contained in Lp;m;�(
) provided that � � m+ N
p .

Because of this fact and the duality theorem above we shall be interested in the

spaces Lp;m;�(
) mainly for � 2 [�m� N
p 0 ; m+ N

p ]:

Remark 3.9. In the sequel the number m in the notation for spaces and norms will

be omitted if it is 0. We write, for example, shortly Lp;�(
) instead of Lp;0;�(
). For
u 2 Lp(
) and � 2 IR+ we have (cf. Remark 3.4)

kukLp;�(
) = sup
V 2F

�
d


dV

��
kukp;V :

The spaces Lp;�(
); � 2 IR+; were introduced by Morrey; they are now called Mor-

rey spaces (see [KJF]).

Lemma 3.10. Let � 2 [0; m + N
p 0 ]. Then the operator IS

p;m

e;a��
treated in Lemma 2.9

is injective. The space Lp(
) can be regarded as a dense subset of Lp;m;��(
), and
it holds

kukLp;m;��(
)=inf
n X
V 2G

�
dV

d


��
kvV kp;V ; u=

X
V 2G

v
V ; vV 2S
p;m(V ); G � F �nite

o
for every u 2 Lp(
) (see (3.3) for the de�nition of the spaces Sp;m(V ) used here).

Proof. Let IS
p;m

e;a��
u = 0 for some u 2 Lp(
). For every f 2 Cm

c (
) � Lp0;m;�(
) we
have (cf. Lemma 2.9)Z



fu =

D
(IS

p;m

e;a��
)�f; u

E
=
D
f; IS

p;m

e;a��
u
E
= 0:
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Because of the arbitrariness of f this implies that u = 0, i.e., IS
p;m

e;a��
is injective. For

the proof of the remaining assertions we refer to Remark 2.13.

Remark 3.11. In the sequel, whenever � 2 [0; m+ N
p 0 ], we shall consider L

p(
) as a

subspace of Lp;m;��(
).

Theorem 3.12. Let 1 � q � p � 1; � := N
q � N

p and �m � N
q 0
� � � � + � �

m + N
q : Moreover, let c := !

�=N
N , where !N denotes the measure of the unit ball

in IRN
. Then the following holds:

i) If � � 0, then Lp;m;�(
) ,! Lq;m;�(
) and the norm of the corresponding imbed-

ding operator does not exceed cd�
.

ii) If � < 0 then Lp(
) is dense in Lp;m;�(
) and Lp(
) ,! Lq;m;�(
): The imbedding

of Lp(
) into Lq;m;�(
) can uniquely be extended to a continuous (linear) mapping

from Lp;m;�(
) into Lq;m;�(
) the norm of which does not exceed cd�
.

Proof. We choose a := a� and b := a� . For u 2 Lq(U); U 2 F ; we have

kukq;U � jU j
1

q
�
1

pkukp;U � cd�Ukukp;U : (3.6)

We distinguish four cases:

1. Case � � 0; � � 0 : Let KU be the natural imbedding of P p;m(U) into P q;m(U),
U 2 F . Then K 2 L(P p;m;P q;m) and �K(U) � cd�U . This follows easily from (3.6).

Theorem 2.3 yields Lp;m;�(
) � Lq;m;�(
) and, for u 2 Lp;m;�(
),

kukLq;m;�(
) = kukP q;m

b

� cd�
kukP p;m

a
= cd�
kukLp;m;�(
):

2. Case � � 0; � � 0 : In this case let LU be the natural imbedding of Sp;m(U)
into Sq;m(U). Then �L(U) � cd�U . The hypotheses with respect to � and � imply

that Lp(
) is contained and dense in Lp;m;�(
) and Lq;m;�(
) (cf. Lemma 3.10). By

Theorem 2.6 we have, for u 2 Lp(
),

kukLq;m;�(
) = kukSq;m
b

� cd�
kukSp;ma
= cd�
kukLp;m;�(
):

3. Case � � 0; � � 0 : Using step 2 of this proof with (0; 0) instead of (�; �) and
step 1 with 0 instead of � we �nd that Lq;m;�(
) � Lq(
) � Lp;m;�(
) and, for

u 2 Lp;m;�(
),
kukLq;m;�(
) � kukLq;m;0(
) � cd�
kukLp;m;�(
):

4. Case � � 0; � � 0 : In this case we can refer neither to Theorem 2.3 nor to

Theorem 2.6. (It is this case which indicates that it is natural to consider the spaces

de�ned by means of P p;m and of Sp;m as one scale.) Note that �� � �� + � � N
p 0 :

Therefore Lp(
) is contained and dense not only in Lp;m;�(
) but also in Lp;�(
)
(cf. again Lemma 3.10). For u 2 Lp(
) it holds kukLq;m;�(
) � kukLq;�(
) and

kukLp;�(
) � kukLp;m;�(
): Therefore it su�ces to prove the estimate

kukLq;�(
) � cd�
kukLp;�(
) for u 2 Lp(
): (3.7)
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Let

u =
X
V 2G

v
V ; vV 2 Lp(V ); G �nite subset of F :

Then we obtain for W 2 F :

b(W )kukq;W �

�
d


dW

�� X
V 2G

kv
V kq;V \W

�

�
d

dW

�� X
V 2G

cd�V \Wkv


V kp;V \W

� cd�

X
V 2G

�
d


dV

��
kv
V kp;


= cd�

X
V 2G

a(V )kv
V kp;
:

From this relation the desired estimate (3.7) follows (cf. Lemma 3.10).

Remark 3.13. For � � 0 part i) of the theorem had been proved already by

Campanato [Ca]. Note that the extended operator in part ii) of the theorem is not

necessarily injective.

We want to conclude this section with a result essentially due to Campanato [Ca].

To state this result we need the following de�nition.

De�nition 3.14. A bounded set 
 in IRN is said to be of type A, A > 0; if for
every x 2 
 and every r 2 ]0; d
] we have j
 \ Br(x)j � ArN .

Theorem 3.15. Let 
 be a bounded domain of type A > 0. Then Lp;m;�(
) and

Lp;n;�(
) coincide as linear topological spaces, if n < m and �n� N
p 0 < � < n+ N

p .

Proof. 1. Let � � 0: For 1 � p <1 the assertion has been proved by Campanato

[Ca]. An inspection of his proof shows that it remains valid also for p =1.

2. Let � < 0. By the �rst step of this proof the spaces Lp0;m;��(
) and Lp0;n;��(
)
coincide as topological linear spaces. Hence Theorem 3.3 allows to regard Lp;m;�(
)
and Lp;n;�(
) as closed subspaces of the dual to Lp0;m;��(
). Because we know from

Lemma 3.10 that Lp(
) is dense in Lp;m;�(
) as well as in Lp;n;� these spaces must

be equal as topological linear spaces.

4. Sobolev-Campanato spaces

As in the preceding section we assume that an open bounded set 
 � IRN is �xed

and that F is the family of all nonempty open subsets of 
. Throughout this section
k andm denote numbers from 6Z+, and p denotes a number in ]1;1[. We supplement
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the de�nitions of the preceding section setting IPn := f0g and Lp;n;�(U) := Lp;�(U)
if n is a negative integer. This will help to simplify the presentation.

We want to de�ne spaces of functions with derivatives in Campanato spaces. We

use the possibility to introduce such spaces in the same way as we introduced the

Campanato spaces in the preceding section, namely by means of appropriate pro-

jective and inductive systems. We shall use the same weight functions a� as for

Campanato spaces (cf. (3.1)).

The spaces W k;p(U); U 2 F ; are the usual Sobolev spaces equipped with their

standard norms, denoted by k � kk;p;U or shortly k � kk;p. We de�ne W k;p
0 (U) as the

closure of the set fu 2 W k;p(U); supp u � Ug in W k;p(U) and W�k;p0(U) as the
dual of W k;p

0 (U). For k = 0 this means that we identify (Lp(U))� and Lp0(U).

We de�ne projective and inductive systems P k;p;m and Sk;p;m, respectively, setting

for U; V 2 F such that V � U :

P k;p;m(
) := W k;p(
); P k;p;m(U) := W k;p(U)=IPm+k; if U 6= 
;

(P k;p;m)
V u := ujV + IPm+k; if V 6= 
;

(P k;p;m)UV (u+ IPm+k) := ujV + IPm+k; if U 6= 
:

9>>>=>>>; (4.1)

and

Sk;p;m(U) := fu 2 W k;p
0 (U);

R
U uw = 0 for all w 2 IPm�kg; if U 6= 
;

Sk;p;m(
) := W k;p
0 (
); (Sk;p;m)UV v := vU :

9=; (4.2)

De�nition 4.1. For � 2 IR+ we introduce

W k;p;m;�(
) := l
 

(P k;p;m
a�

); W k;p;m;��
0 (
) := ~l(Sk;p;m

a��
):

Remark 4.2. According to Remark 1.15 the space W k;p;m;�(
) will be regarded as

a subspace of W k;p(
). The norm in W k;p;m;�(
) is

kukW k;p;m;�(
) = max
�
kukk;p;
; sup

U2F

n�d

dU

��
inf

w2IPm+k

ku� wkk;p;U
o�

; (4.3)

and W k;p;m;�(
) consists of all elements of W k;p(
) for which the right hand side of

(4.3) is �nite (cf. Corollary 2.5).

Remark 4.3. If � 2 IR+; j�j � k; l � k � j�j; n + l � m+ k � j�j; l; n 2 6Z+, then

D� 2 L(W k;p(U);W l;p(U)); kD�k
L(W k;p(U);W l;p(U)) � 1 and D�[IPm+k] � IPn+l:

Consequently, D� is a linear bounded operator from P k;p;m(U) into P l;p;n(U) with
norm not larger than 1 for all U 2 F , and hence (cf. Theorem 2.3)

D� 2 L(W k;p;m;�(
);W l;p;n;�(
)); kD�k
L(W k;p;m;�(
);W l;p;n;�(
)) � 1

provided that 0 � � � �. Moreover, D�2 L(W k;p;m;�(
);W l;p;n;�(
)) is compact,

whenever 0 � � < � and D�2L(W k;p(
);W l;p(
)) is compact, which is the case if
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l < k � j�j and 
 is not too bad.

Remark 4.4. The preceding remark and Remark 3.8 show that W k;p;m;�(
) consists

of elements which are locally polynomials, if � > m+N
p . Therefore we are interested

in the spaces W k;p;m;�(
) mainly if 0 � � � m+ N
p .

Remark 4.5. If � 2 IR+; j�j � k; l � k � j�j; n� l � m� k + j�j; l; n 2 6Z+, then

D� 2 L(W k;p
0 (U);W l;p

0 (U)); kD�k
L(W

k;p

0
(U);W

l;p

0
(U))

� 1

and Z
U
wD�u = (�1)j�j

Z
U
uD�w = 0 if u 2 Sk;p;m(U); w 2 IPn�l:

Hence D� induces an operator in L(W k;p;m;��
0 (
);W l;p;n;��

0 (
)) if 0 � � � �, which

is compact if 0 � � < � and l < k � j�j (cf. Theorem 2.6).

Remark 4.6. Let IS
k;p;m

e;a��
u = 0 for some u 2 W k;p

0 (
). Then (cf. Remark 2.11)

IS
p;m

e;a��
D�u = D�

a��;a��
IS

k;p;m

e;a��
u = 0;

where D�
a��;a��

denotes the operator induced by D�, considered as an element of

L(Sk;p;m;Sp;m) . We have seen in Lemma 3.10 that the operator IS
p;m

e;a��
is injective

provided that � 2 [0; m + N
p 0 ]. In that case D�u = 0; j�j = k. Since u 2 W k;p

0 (
)

this implies that u = 0. Hence under the hypothesis � 2 [0; m + N
p 0 ] the operator

IS
k;p;m

e;a��
is injective, W k;p

0 (
) is a dense subset of W k;p;m;��
0 (
) and, for u 2 W k;p

0 (
),
we have (cf. Remark 2.13)

kukW k;p;m;��(
)=inf
nX
V 2G

�
dV

d


��
kvV kk;p;V ; u=

X
V 2G

v
V ; vV 2S
k;p;m(V ); G � F �nite

o
:

For the next results we introduce some more notation.

De�nition 4.7. For any bounded open set V � IRN we introduce

%(V ) := sup
n jEj
jBj

; E � V � B; where E; B are balls
o
:

A bounded open set U � IRN is said to be of class � > 0 if %(Br(�)\U) � � provided

that � 2 U and r > 0. We denote by F� the family of all U 2 F of class � > 0.

Remark 4.8. The family of sets which are of class � for some � > 0 is rather large:

It is invariant with respect to bi-Lipschitz transformations and contains the class

of domains with Lipschitz boundary (we refer to [GR] for a detailed discussion of

various types of domains). On the other hand, each element of this family is of type

A for some A > 0.

Remark 4.9. If 
 2 F�, then

l
 

(P k;p;m
a�

) = l
 

(P k;p;m
a�

jF�) and ~l(Sk;p;m
a��

) = ~l(Sk;p;m
a��

jF�);
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where the spaces are to be understood as linear topological spaces, i.e., restricting

ourselves in the de�nition of the norms of W k;p;m;�(
) and W k;p;m;��
0 (
) to sets

U 2 F� we arrive at norms which are equivalent to those de�ned by means of all

U 2 F . Indeed, by de�nition of F� for each U 2 F we have U � BdU (�) \ 
 2 F�

for every � 2 U . Therefore the claim follows from Lemma 1.10 and Lemma 1.12.

Theorem 4.10. Let 
 be of class � for some � > 0, and let � 2 IR+. Then

W k;p;m;�(
) = fu 2 Lp(
); D�u 2 Lp;m+k�j�j;�(
); j�j � kg

and the norm k � kW k;p;m;�(
) is equivalent to
P
j�j�k kD

�ukLp;m+k�j�j;�(
):

We postpone the proof of this theorem and proceed with some auxiliary results.

Lemma 4.11. Let E and B be two open balls in IRN
such that E � B. Then there

exists a �nite number c depending on N; p;m and
jEj

jBj
only such that

8w 2 IPm : kwkp;B � ckwkp;E:

Proof. It su�ces to prove the lemma under the additional assumption that B is the

unit ball. If the assertion were wrong, then there would exist functions wn 2 IPm

and balls Br(�n) � B of the same radius r > 0 such that

kwnkp;B = 1;
Z
Br(�n)

jwnj
p �! 0 as n!1:

Without loss of generality we may assume that wn �! w in C(B) (since IPm is �nite

dimensional) and that �n �! �. Then

kwkp;B = 1 and

Z
Br(�)

jwjp = lim
n!1

Z
Br(�n)

jwnj
p = 0:

Because w is a polynomial this is impossible. The contradiction completes the proof.

Lemma 4.12. Let U 2 F . Then, for every u 2 W k;p(U) there exists w 2 IPm+k

such that, for j�j � k,

kD�(u� w)kp;U � c inf
w�2IPm+k�j�j

kD�u� w�kp;U ;

where c is independent of u and depends on U via %(U) only (cf. De�nition 4.7).

Proof. 1. First let E = fx 2 IRN ; jxj < 1g: For a given u 2 W k;p(E) we choose w
as the unique element of IPm+k such that

8 ew 2 IPm+k :
Z
E
w ew =

Z
E
u ew:
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We de�ne

g�(x) := (1� jxj2)j�j for x 2 E:

Using partial integration and the de�nition of w, we �nd, for any w� 2 IPm+k�j�j,Z
E
D�(u� w)(D�w � w�)g� = (�1)j�j

Z
E
(u� w)D�((D�w � w�)g�) = 0:

HenceZ
E
jD�w�w�j

2g� =
Z
E
(D�u�w�)(D

�w�w�)g� � kD�u�w�kp;EkD
�w�w�kp0;E:

Since ew 7!
R
E
ew2g� is a norm on IPm+k�j�j and all norms on IPm+k�j�j are equivalent,

this gives

kD�w � w�kp;E � c0kD
�u� w�kp;E;

where c0 is independent of u. Consequently,

kD�(u� w)kp;E � kD�u� w�kp;E + kw� �D�wkp;E � (1 + c0)kD
�u� w�kp;E:

Because this is true for every w� 2 IPm+k�j�j, we have (with c1 := 1 + c0)

kD�(u� w)kp;E � c1 inf
w�2IPm+k�j�j

kD�u� w�kp;E:

This is the assertion for the special case U = E. A simple scaling argument shows

that the assertion holds for every ball U .

2. For arbitrary U 2 F we choose balls E and B such that E � U � B and
jEj

jBj
� 2%(U). Let u 2 W k;p(U) be given. Using the �rst step of the proof we choose

w 2 IPm+k such that for j�j � k

kD�(u� w)kp;E � c1 inf
w�2IPm+k�j�j

kD�u� w�kp;E:

Then, for arbitrary w� 2 IPm�j�j, we �nd

kD�(u� w)kp;U � kD�u� w�kp;U + kw� �D�wkp;B

� kD�u� w�kp;U + ckw� �D�wkp;E

� (1 + c)kD�u� w�kp;U + ckD�u�D�wkp;E

� (1 + c+ cc1)kD
�u� w�kp;U ;

where c depends on U via %(U) only (cf. Lemma 4.11).

Proof of Theorem 4.10. Let 
 2 F�. According to Remark 4.9 we can de�ne an

equivalent norm in W k;p;m;�(
) as follows:

kukF�
W k;p;m;�(
)

:= max
�
kukk;p;
; sup

U2F�

�
d


dU

��
inf

w2IPm+k

ku� wkk;p;U

�
:
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By the preceding lemma

kukF�
W k;p;m;�(
)

� max
�
kukk;p;
; c sup

U2F�

X
j�j�k

�
d


dU

��
inf

w�2IPm+k�j�j

kD�u� w�kp;U

�

� c
X
j�j�k

max
�
kD�ukp;
; sup

U2F

�
d


dU

��
inf

w�2IPm+k�j�j

kD�u� w�kp;U

�
= c

X
j�j�k

kD�ukLp;m+k�j�j;�(
):

Since the converse inequality had been obtained already with Remark 4.3 the proof

is complete.

Next we de�ne projective systems P�k;p;m and inductive systems S�k;p;m setting for

U; V 2 F such that V � U ,

P�k;p;m(
) := W�k;p(
); P�k;p;m(U) := W�k;p(U)=IPm�k; if U 6= 
;

(P�k;p;m)
V f := f jV + IPm�k; if V 6= 
;

(P�k;p;m)UV (f + IPm�k) := f jV + IPm�k; if U 6= 
:

9>>>>=>>>>; (4.4)

and

S�k;p;m(U) :=fg 2 (W k;p0(U))� : hg; wi=0 for all w2 IPm+kg; if U 6= 
;

S�k;p;m(
) :=(W k;p0(
))�; (S�k;p;m)UV g := gU :

9=; (4.5)

Here f jV for f 2 W�k;p(U) is de�ned by hf jV ; vi :=
D
f; vU

E
for v 2 W k;p0

0 (V ), and the

extension gU of g 2 (W k;p0(V ))� is de�ned by
D
gU ; u

E
:= hg; ujV i for u 2 W k;p0(U).

Obviously,

P�k;p;m = (Sk;p0;m)� and S�k;p;m = (P k;p0;m)�;

where Sk;p0;m and P k;p0;m are given by (4.2), (4.1).

De�nition 4.13. For � 2 IR+ we introduce

W�k;p;m;�(
) := l
 

(P�k;p;m
a�

); W�k;p;m;��
�

(
) := ~l(S�k;p;ma��
):

Remark 4.14. According to Remark 1.15 the space W�k;p;m;�(
) will be regarded
as a subspace of W�k;p(
). The norm in W�k;p;m;�(
) is

kfkW�k;p;m;�(
) = max
�
kfk�k;p;
; sup

U2F

n�d

dU

��
inf

w2IPm�k
kf � wk�k;p;U

o�
; (4.6)

and W�k;p;m;�(
) consists of all elements of W�k;p(
) for which the right hand side

of (4.6) is �nite (cf. Corollary 2.5). The last statement can also be expressed as

follows: A functional f 2 W�k;p(
) is in W�k;p;m;�(
) if and only if there exists a

constant c such that the hypotheses

v 2 W k;p0

0 (
); supp v � U and

Z


vw = 0 for all w 2 IPm�k
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imply that

j hf; vi j � cd�Ukvkk;p0;
:

By means of Corollary 1.9 one obtains immediately

Theorem 4.15. For � 2 IR+ it holds

W�k;p;m;�(
) = (W k;p0;m;��
0 (
))� and W k;p;m;�(
) = (W�k;p0;m;��

�
(
))�:

Remark 4.16. Combining the �rst part of this theorem with Theorem 3.3 and Re-

mark 4.5 we obtain the following result: If f� 2 Lp;m�k+j�j;�(
); j�j � k; and

hf; vi :=
X
j�j�k

hf�; D
�vi for v 2 W k;p0

0 (
);

then f 2 W�k;p;m;�(
).

Theorem 4.17. Suppose that there exists a bijective mapping �: 
�! e
, wheree
 � IRN
is convex and �; ��1 are Lipschitzian. Moreover, let � 2 [0; m + N

p ].

Then

8u 2 W k;p(
) : kukLp;m+k;�+k(
) � kukp;
 + c
X
j�j=k

kD�ukLp;m;�(
);

where c is a constant independent of u.

For the proof of this theorem we need some auxiliary results.

Lemma 4.18. Let U be a bounded open convex subset of IRN
and let u 2 W 1;p(U)

be such that
R
U u = 0. Then

kukp;U � 2NdU
NX
i=1

kDiukp;U : (4.7)

Proof. It su�ces to prove the inequality (4.7) under the additional assumption that

u 2 C1(U) \W 1;p(U). We obtain for x; y 2 U

u(x) = u(y) +
Z 1

0

d

dt
u(y + t(x� y))dt

= u(y) +
Z 1

0

NX
i=1

(Diu)(y + t(x� y))(xi � yi)dt:

Integration with respect to y gives

jU ju(x) =
Z
U

Z 1

0

NX
i=1

(Diu)(y + t(x� y))(xi � yi)dt dy:
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Hence

jU jju(x)j � (jU jN)
1

p0 dU

�Z
U

Z 1

0

NX
i=1

j(Diu)(y + t(x� y))jpdt dy
�1

p

and

kukp;U � jU j�
1

pN
1

p0 dU

 Z 1

0

Z
U

Z
U

NX
i=1

j(Diu)(y + t(x� y))jpdy dx dt

! 1

p

� jU j�
1

pN
1

p0 dU

 Z 1

2

0

Z
U

Z
U

NX
i=1

j(Diu)(z)j
p dz

(1�t)N
dx dt

+
Z 1

1

2

Z
U

Z
U

NX
i=1

j(Diu)(z)j
pdz

tN
dy dt

! 1

p

� 2
N

p N
1

p0 dU

NX
i=1

kDiukp;U � 2NdU
NX
i=1

kDiukp;U :

This is the desired estimate.

Lemma 4.19. Suppose that � : 
 �! e
 is bijective, where e
 � IRN
is convex and

�; ��1 are Lipschitzian with the Lipschitz constant L. Let

G := fW 2 F ; �(W ) = Br(e�) \ �(
) for some e� 2 �(
); r > 0g:

Then, for every V 2 F there exists W 2 G such that V � W and dW � 2L2dV .
Moreover, there exists a � > 0 such that %(W ) � � for every W 2 G (cf. De�ni-

tion 4.7).

Proof. 1. We have d�(V ) � LdV . We �x e� 2 �(V ) arbitrarily and de�ne W 2 G by

�(W ) := BLdV (
e�) \ �(
):

Then �(V ) � �(W ) and therefore V � W: Moreover d�(W ) � 2LdV . Consequently,
it holds dW � 2L2dV .

2. Elementary considerations show that %(Br(e�) \ �(
)) � (r0=d
)
N if r0 is the

radius of a ball contained in �(U). Since the image under ��1 of a ball of radius r

contains a ball of radius r=L and is contained in a ball of radius Lr the last relation

implies that %(W ) � (r0=L
2d
)

N .

Lemma 4.20. Under the hypotheses of the preceding lemma there exists a constant

ck such that

8W 2 G; 8u 2 W k;p(W ) : inf
w2IPk

ku� wkp;W � ckd
k
W

X
�=k

kD�ukp;W :
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Proof. We prove the assertion by induction with respect to k.

1. Let k = 1. Let fW := �(W ) and eu(ex) := u(��1(ex)) for ex 2 fW; u 2 W 1;p(W ):
Using Lemma 4.18 we �nd, setting a := 1

j eW j

R
eW eu,

ku� akp;W =
�Z

W
ju(x)� ajpdx

� 1

p

=
�Z
eW jeu(ex)� ajpdet (��1)0(ex)dex� 1

p

� L
N

p keu� ak
p; eW � 2NL

N

p d eW NX
i=1

kfDieukp; eW
� 2NL

N

p
+1dW

NX
i=1

 NX
j=1

(Dju) � ��1 � fDi(�
�1)j


p; eW

� 2NL
2N

p
+2NdW

NX
j=1

kDjukp;W :

Hence

inf
w2IP1

ku� wkp;W � c1dW

NX
j=1

kDjukp;W ;

where c1 depends on L;N and p only.

2. We prove the assertion for k under the hypothesis that it has been proved already

for k � 1 instead of k. Let u 2 W k;p(W ): We de�ne

v(x) := u(x)�
X

j�j=k�1

a�x
�

�!
;

where the a�; j�j = k � 1; are chosen such that

kD�vkp;W � c1dW

NX
i=1

kDiD
�vkp;W

(cf. step 1 of this proof). Using this result and the induction hypothesis we �nd

inf
w2IPk�1

kv � wkp;W � ck�1d
k�1
W

X
j�j=k�1

kD�vkp;W

� ck�1d
k�1
W c1dW

NX
i=1

X
j�j=k�1

kDiD
�vkp;W

� ck�1c1NdkW
X
j�j=k

kD�vkp;W :

In view of the relation between u and v this proves the assertion with ck := ck�1c1N:

Proof of Theorem 4.17. We introduce G as in Lemma 4.19. Let u 2 W k;p(U) and
W 2 G be �xed. We choose w 2 IPm+k such that for j�j = k

kD�(u� w)kp;W � c inf
w�2IPm

kD�u� w�kp;W ;
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where c is independent of u and W (cf. Lemma 4.12 and Lemma 4.19). Next we

use Lemma 4.20 to obtain

infew2IPk ku�w� ewkp;W � cdkW
X
j�j=k

kD�(u�w)kp;W � cdkW
X
j�j=k

inf
w�2IPm

kD�u�w�kp;W :

In view of Lemma 1.10 and Lemma 4.19 this estimate implies that

kukLp;m+k;�+k(
) � max
n
kukp;
; c sup

W2G

d
���k
W inf

w2IPm+k

ku� wkp;W
o

� max
n
kukp;
; c sup

W2G

X
j�j=k

d��W inf
w�2IPm

kD�u� w�kp;W
o

� kukp;
 + c
X
j�j=k

kD�ukp;m;�;
:

This is the desired estimate.

Remark 4.21. Let the hypotheses of Theorem 4.17 be satis�ed and let l 2 6Z+ be

such that 0 � l � k. If j�j = k � l, then D�u 2 W p;l(
) and D�(D�u) 2 Lp;m;�(
)
for j�j = l. Therefore, the theorem can be applied with D�u and l instead of u
and k. One obtains

kD�ukp;m+l;�+l � kD�ukp + c
X
j�j=k

kD�ukp;m;�

� c
�
kukp +

X
j�j=k

kD�ukp;m;�

�
:

This result implies in particular that D�u 2 Lp;m+k�j�j;�(
) for all �; j�j � k, which

is equivalent to u 2 W k;p;m;�(
) by Theorem 4.10. Thus, u 2 W k;p;m;�(
) if and
only if D�u 2 Lp;m;�(
) for j�j = k.

Remark 4.22. For u 2 W k;p
0 (
) the assertion of Theorem 4.17 is true for every

bounded open set 
 � IRN . This follows immediately from the fact that u can be

extended by 0 to the convex hull of 
 without any change of the relevant norms.
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